You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1291 lines
41KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  23. * the algorithm used
  24. */
  25. /**
  26. * @file huffyuv.c
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "common.h"
  30. #include "bitstream.h"
  31. #include "avcodec.h"
  32. #include "dsputil.h"
  33. #define VLC_BITS 11
  34. #ifdef WORDS_BIGENDIAN
  35. #define B 3
  36. #define G 2
  37. #define R 1
  38. #else
  39. #define B 0
  40. #define G 1
  41. #define R 2
  42. #endif
  43. typedef enum Predictor{
  44. LEFT= 0,
  45. PLANE,
  46. MEDIAN,
  47. } Predictor;
  48. typedef struct HYuvContext{
  49. AVCodecContext *avctx;
  50. Predictor predictor;
  51. GetBitContext gb;
  52. PutBitContext pb;
  53. int interlaced;
  54. int decorrelate;
  55. int bitstream_bpp;
  56. int version;
  57. int yuy2; //use yuy2 instead of 422P
  58. int bgr32; //use bgr32 instead of bgr24
  59. int width, height;
  60. int flags;
  61. int context;
  62. int picture_number;
  63. int last_slice_end;
  64. uint8_t *temp[3];
  65. uint64_t stats[3][256];
  66. uint8_t len[3][256];
  67. uint32_t bits[3][256];
  68. VLC vlc[3];
  69. AVFrame picture;
  70. uint8_t *bitstream_buffer;
  71. unsigned int bitstream_buffer_size;
  72. DSPContext dsp;
  73. }HYuvContext;
  74. static const unsigned char classic_shift_luma[] = {
  75. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  76. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  77. 69,68, 0
  78. };
  79. static const unsigned char classic_shift_chroma[] = {
  80. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  81. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  82. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  83. };
  84. static const unsigned char classic_add_luma[256] = {
  85. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  86. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  87. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  88. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  89. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  90. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  91. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  92. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  93. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  94. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  95. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  96. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  97. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  98. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  99. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  100. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  101. };
  102. static const unsigned char classic_add_chroma[256] = {
  103. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  104. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  105. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  106. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  107. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  108. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  109. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  110. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  111. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  112. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  113. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  114. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  115. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  116. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  117. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  118. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  119. };
  120. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  121. int i;
  122. for(i=0; i<w-1; i++){
  123. acc+= src[i];
  124. dst[i]= acc;
  125. i++;
  126. acc+= src[i];
  127. dst[i]= acc;
  128. }
  129. for(; i<w; i++){
  130. acc+= src[i];
  131. dst[i]= acc;
  132. }
  133. return acc;
  134. }
  135. static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
  136. int i;
  137. uint8_t l, lt;
  138. l= *left;
  139. lt= *left_top;
  140. for(i=0; i<w; i++){
  141. l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
  142. lt= src1[i];
  143. dst[i]= l;
  144. }
  145. *left= l;
  146. *left_top= lt;
  147. }
  148. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  149. int i;
  150. int r,g,b;
  151. r= *red;
  152. g= *green;
  153. b= *blue;
  154. for(i=0; i<w; i++){
  155. b+= src[4*i+B];
  156. g+= src[4*i+G];
  157. r+= src[4*i+R];
  158. dst[4*i+B]= b;
  159. dst[4*i+G]= g;
  160. dst[4*i+R]= r;
  161. }
  162. *red= r;
  163. *green= g;
  164. *blue= b;
  165. }
  166. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  167. int i;
  168. if(w<32){
  169. for(i=0; i<w; i++){
  170. const int temp= src[i];
  171. dst[i]= temp - left;
  172. left= temp;
  173. }
  174. return left;
  175. }else{
  176. for(i=0; i<16; i++){
  177. const int temp= src[i];
  178. dst[i]= temp - left;
  179. left= temp;
  180. }
  181. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  182. return src[w-1];
  183. }
  184. }
  185. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  186. int i, val, repeat;
  187. for(i=0; i<256;){
  188. repeat= get_bits(gb, 3);
  189. val = get_bits(gb, 5);
  190. if(repeat==0)
  191. repeat= get_bits(gb, 8);
  192. //printf("%d %d\n", val, repeat);
  193. while (repeat--)
  194. dst[i++] = val;
  195. }
  196. }
  197. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  198. int len, index;
  199. uint32_t bits=0;
  200. for(len=32; len>0; len--){
  201. for(index=0; index<256; index++){
  202. if(len_table[index]==len)
  203. dst[index]= bits++;
  204. }
  205. if(bits & 1){
  206. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  207. return -1;
  208. }
  209. bits >>= 1;
  210. }
  211. return 0;
  212. }
  213. #ifdef CONFIG_ENCODERS
  214. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  215. uint64_t counts[2*size];
  216. int up[2*size];
  217. int offset, i, next;
  218. for(offset=1; ; offset<<=1){
  219. for(i=0; i<size; i++){
  220. counts[i]= stats[i] + offset - 1;
  221. }
  222. for(next=size; next<size*2; next++){
  223. uint64_t min1, min2;
  224. int min1_i, min2_i;
  225. min1=min2= INT64_MAX;
  226. min1_i= min2_i=-1;
  227. for(i=0; i<next; i++){
  228. if(min2 > counts[i]){
  229. if(min1 > counts[i]){
  230. min2= min1;
  231. min2_i= min1_i;
  232. min1= counts[i];
  233. min1_i= i;
  234. }else{
  235. min2= counts[i];
  236. min2_i= i;
  237. }
  238. }
  239. }
  240. if(min2==INT64_MAX) break;
  241. counts[next]= min1 + min2;
  242. counts[min1_i]=
  243. counts[min2_i]= INT64_MAX;
  244. up[min1_i]=
  245. up[min2_i]= next;
  246. up[next]= -1;
  247. }
  248. for(i=0; i<size; i++){
  249. int len;
  250. int index=i;
  251. for(len=0; up[index] != -1; len++)
  252. index= up[index];
  253. if(len >= 32) break;
  254. dst[i]= len;
  255. }
  256. if(i==size) break;
  257. }
  258. }
  259. #endif /* CONFIG_ENCODERS */
  260. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  261. GetBitContext gb;
  262. int i;
  263. init_get_bits(&gb, src, length*8);
  264. for(i=0; i<3; i++){
  265. read_len_table(s->len[i], &gb);
  266. if(generate_bits_table(s->bits[i], s->len[i])<0){
  267. return -1;
  268. }
  269. #if 0
  270. for(j=0; j<256; j++){
  271. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  272. }
  273. #endif
  274. free_vlc(&s->vlc[i]);
  275. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  276. }
  277. return (get_bits_count(&gb)+7)/8;
  278. }
  279. static int read_old_huffman_tables(HYuvContext *s){
  280. #if 1
  281. GetBitContext gb;
  282. int i;
  283. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  284. read_len_table(s->len[0], &gb);
  285. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  286. read_len_table(s->len[1], &gb);
  287. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  288. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  289. if(s->bitstream_bpp >= 24){
  290. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  291. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  292. }
  293. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  294. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  295. for(i=0; i<3; i++){
  296. free_vlc(&s->vlc[i]);
  297. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  298. }
  299. return 0;
  300. #else
  301. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  302. return -1;
  303. #endif
  304. }
  305. static void alloc_temp(HYuvContext *s){
  306. int i;
  307. if(s->bitstream_bpp<24){
  308. for(i=0; i<3; i++){
  309. s->temp[i]= av_malloc(s->width + 16);
  310. }
  311. }else{
  312. s->temp[0]= av_malloc(4*s->width + 16);
  313. }
  314. }
  315. static int common_init(AVCodecContext *avctx){
  316. HYuvContext *s = avctx->priv_data;
  317. s->avctx= avctx;
  318. s->flags= avctx->flags;
  319. dsputil_init(&s->dsp, avctx);
  320. s->width= avctx->width;
  321. s->height= avctx->height;
  322. assert(s->width>0 && s->height>0);
  323. return 0;
  324. }
  325. #ifdef CONFIG_DECODERS
  326. static int decode_init(AVCodecContext *avctx)
  327. {
  328. HYuvContext *s = avctx->priv_data;
  329. common_init(avctx);
  330. memset(s->vlc, 0, 3*sizeof(VLC));
  331. avctx->coded_frame= &s->picture;
  332. s->interlaced= s->height > 288;
  333. s->bgr32=1;
  334. //if(avctx->extradata)
  335. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  336. if(avctx->extradata_size){
  337. if((avctx->bits_per_sample&7) && avctx->bits_per_sample != 12)
  338. s->version=1; // do such files exist at all?
  339. else
  340. s->version=2;
  341. }else
  342. s->version=0;
  343. if(s->version==2){
  344. int method, interlace;
  345. method= ((uint8_t*)avctx->extradata)[0];
  346. s->decorrelate= method&64 ? 1 : 0;
  347. s->predictor= method&63;
  348. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  349. if(s->bitstream_bpp==0)
  350. s->bitstream_bpp= avctx->bits_per_sample&~7;
  351. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  352. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  353. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  354. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  355. return -1;
  356. }else{
  357. switch(avctx->bits_per_sample&7){
  358. case 1:
  359. s->predictor= LEFT;
  360. s->decorrelate= 0;
  361. break;
  362. case 2:
  363. s->predictor= LEFT;
  364. s->decorrelate= 1;
  365. break;
  366. case 3:
  367. s->predictor= PLANE;
  368. s->decorrelate= avctx->bits_per_sample >= 24;
  369. break;
  370. case 4:
  371. s->predictor= MEDIAN;
  372. s->decorrelate= 0;
  373. break;
  374. default:
  375. s->predictor= LEFT; //OLD
  376. s->decorrelate= 0;
  377. break;
  378. }
  379. s->bitstream_bpp= avctx->bits_per_sample & ~7;
  380. s->context= 0;
  381. if(read_old_huffman_tables(s) < 0)
  382. return -1;
  383. }
  384. switch(s->bitstream_bpp){
  385. case 12:
  386. avctx->pix_fmt = PIX_FMT_YUV420P;
  387. break;
  388. case 16:
  389. if(s->yuy2){
  390. avctx->pix_fmt = PIX_FMT_YUV422;
  391. }else{
  392. avctx->pix_fmt = PIX_FMT_YUV422P;
  393. }
  394. break;
  395. case 24:
  396. case 32:
  397. if(s->bgr32){
  398. avctx->pix_fmt = PIX_FMT_RGBA32;
  399. }else{
  400. avctx->pix_fmt = PIX_FMT_BGR24;
  401. }
  402. break;
  403. default:
  404. assert(0);
  405. }
  406. alloc_temp(s);
  407. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  408. return 0;
  409. }
  410. #endif
  411. #ifdef CONFIG_ENCODERS
  412. static int store_table(HYuvContext *s, uint8_t *len, uint8_t *buf){
  413. int i;
  414. int index= 0;
  415. for(i=0; i<256;){
  416. int val= len[i];
  417. int repeat=0;
  418. for(; i<256 && len[i]==val && repeat<255; i++)
  419. repeat++;
  420. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  421. if(repeat>7){
  422. buf[index++]= val;
  423. buf[index++]= repeat;
  424. }else{
  425. buf[index++]= val | (repeat<<5);
  426. }
  427. }
  428. return index;
  429. }
  430. static int encode_init(AVCodecContext *avctx)
  431. {
  432. HYuvContext *s = avctx->priv_data;
  433. int i, j;
  434. common_init(avctx);
  435. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  436. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  437. s->version=2;
  438. avctx->coded_frame= &s->picture;
  439. switch(avctx->pix_fmt){
  440. case PIX_FMT_YUV420P:
  441. s->bitstream_bpp= 12;
  442. break;
  443. case PIX_FMT_YUV422P:
  444. s->bitstream_bpp= 16;
  445. break;
  446. default:
  447. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  448. return -1;
  449. }
  450. avctx->bits_per_sample= s->bitstream_bpp;
  451. s->decorrelate= s->bitstream_bpp >= 24;
  452. s->predictor= avctx->prediction_method;
  453. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  454. if(avctx->context_model==1){
  455. s->context= avctx->context_model;
  456. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  457. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  458. return -1;
  459. }
  460. }else s->context= 0;
  461. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  462. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  463. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  464. return -1;
  465. }
  466. if(avctx->context_model){
  467. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  468. return -1;
  469. }
  470. if(s->interlaced != ( s->height > 288 ))
  471. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  472. }
  473. ((uint8_t*)avctx->extradata)[0]= s->predictor;
  474. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  475. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  476. if(s->context)
  477. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  478. ((uint8_t*)avctx->extradata)[3]= 0;
  479. s->avctx->extradata_size= 4;
  480. if(avctx->stats_in){
  481. char *p= avctx->stats_in;
  482. for(i=0; i<3; i++)
  483. for(j=0; j<256; j++)
  484. s->stats[i][j]= 1;
  485. for(;;){
  486. for(i=0; i<3; i++){
  487. char *next;
  488. for(j=0; j<256; j++){
  489. s->stats[i][j]+= strtol(p, &next, 0);
  490. if(next==p) return -1;
  491. p=next;
  492. }
  493. }
  494. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  495. }
  496. }else{
  497. for(i=0; i<3; i++)
  498. for(j=0; j<256; j++){
  499. int d= FFMIN(j, 256-j);
  500. s->stats[i][j]= 100000000/(d+1);
  501. }
  502. }
  503. for(i=0; i<3; i++){
  504. generate_len_table(s->len[i], s->stats[i], 256);
  505. if(generate_bits_table(s->bits[i], s->len[i])<0){
  506. return -1;
  507. }
  508. s->avctx->extradata_size+=
  509. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  510. }
  511. if(s->context){
  512. for(i=0; i<3; i++){
  513. int pels = s->width*s->height / (i?40:10);
  514. for(j=0; j<256; j++){
  515. int d= FFMIN(j, 256-j);
  516. s->stats[i][j]= pels/(d+1);
  517. }
  518. }
  519. }else{
  520. for(i=0; i<3; i++)
  521. for(j=0; j<256; j++)
  522. s->stats[i][j]= 0;
  523. }
  524. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  525. alloc_temp(s);
  526. s->picture_number=0;
  527. return 0;
  528. }
  529. #endif /* CONFIG_ENCODERS */
  530. static void decode_422_bitstream(HYuvContext *s, int count){
  531. int i;
  532. count/=2;
  533. for(i=0; i<count; i++){
  534. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  535. s->temp[1][ i ]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  536. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  537. s->temp[2][ i ]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  538. }
  539. }
  540. static void decode_gray_bitstream(HYuvContext *s, int count){
  541. int i;
  542. count/=2;
  543. for(i=0; i<count; i++){
  544. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  545. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  546. }
  547. }
  548. #ifdef CONFIG_ENCODERS
  549. static int encode_422_bitstream(HYuvContext *s, int count){
  550. int i;
  551. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  552. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  553. return -1;
  554. }
  555. count/=2;
  556. if(s->flags&CODEC_FLAG_PASS1){
  557. for(i=0; i<count; i++){
  558. s->stats[0][ s->temp[0][2*i ] ]++;
  559. s->stats[1][ s->temp[1][ i ] ]++;
  560. s->stats[0][ s->temp[0][2*i+1] ]++;
  561. s->stats[2][ s->temp[2][ i ] ]++;
  562. }
  563. }
  564. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  565. return 0;
  566. if(s->context){
  567. for(i=0; i<count; i++){
  568. s->stats[0][ s->temp[0][2*i ] ]++;
  569. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  570. s->stats[1][ s->temp[1][ i ] ]++;
  571. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  572. s->stats[0][ s->temp[0][2*i+1] ]++;
  573. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  574. s->stats[2][ s->temp[2][ i ] ]++;
  575. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  576. }
  577. }else{
  578. for(i=0; i<count; i++){
  579. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  580. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  581. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  582. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  583. }
  584. }
  585. return 0;
  586. }
  587. static int encode_gray_bitstream(HYuvContext *s, int count){
  588. int i;
  589. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  590. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  591. return -1;
  592. }
  593. count/=2;
  594. if(s->flags&CODEC_FLAG_PASS1){
  595. for(i=0; i<count; i++){
  596. s->stats[0][ s->temp[0][2*i ] ]++;
  597. s->stats[0][ s->temp[0][2*i+1] ]++;
  598. }
  599. }
  600. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  601. return 0;
  602. if(s->context){
  603. for(i=0; i<count; i++){
  604. s->stats[0][ s->temp[0][2*i ] ]++;
  605. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  606. s->stats[0][ s->temp[0][2*i+1] ]++;
  607. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  608. }
  609. }else{
  610. for(i=0; i<count; i++){
  611. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  612. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  613. }
  614. }
  615. return 0;
  616. }
  617. #endif /* CONFIG_ENCODERS */
  618. static void decode_bgr_bitstream(HYuvContext *s, int count){
  619. int i;
  620. if(s->decorrelate){
  621. if(s->bitstream_bpp==24){
  622. for(i=0; i<count; i++){
  623. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  624. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  625. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  626. }
  627. }else{
  628. for(i=0; i<count; i++){
  629. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  630. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  631. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  632. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  633. }
  634. }
  635. }else{
  636. if(s->bitstream_bpp==24){
  637. for(i=0; i<count; i++){
  638. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  639. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  640. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  641. }
  642. }else{
  643. for(i=0; i<count; i++){
  644. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  645. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  646. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  647. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  648. }
  649. }
  650. }
  651. }
  652. #ifdef CONFIG_DECODERS
  653. static void draw_slice(HYuvContext *s, int y){
  654. int h, cy;
  655. int offset[4];
  656. if(s->avctx->draw_horiz_band==NULL)
  657. return;
  658. h= y - s->last_slice_end;
  659. y -= h;
  660. if(s->bitstream_bpp==12){
  661. cy= y>>1;
  662. }else{
  663. cy= y;
  664. }
  665. offset[0] = s->picture.linesize[0]*y;
  666. offset[1] = s->picture.linesize[1]*cy;
  667. offset[2] = s->picture.linesize[2]*cy;
  668. offset[3] = 0;
  669. emms_c();
  670. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  671. s->last_slice_end= y + h;
  672. }
  673. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
  674. HYuvContext *s = avctx->priv_data;
  675. const int width= s->width;
  676. const int width2= s->width>>1;
  677. const int height= s->height;
  678. int fake_ystride, fake_ustride, fake_vstride;
  679. AVFrame * const p= &s->picture;
  680. int table_size= 0;
  681. AVFrame *picture = data;
  682. s->bitstream_buffer= av_fast_realloc(s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  683. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  684. if(p->data[0])
  685. avctx->release_buffer(avctx, p);
  686. p->reference= 0;
  687. if(avctx->get_buffer(avctx, p) < 0){
  688. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  689. return -1;
  690. }
  691. if(s->context){
  692. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  693. if(table_size < 0)
  694. return -1;
  695. }
  696. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  697. return -1;
  698. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  699. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  700. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  701. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  702. s->last_slice_end= 0;
  703. if(s->bitstream_bpp<24){
  704. int y, cy;
  705. int lefty, leftu, leftv;
  706. int lefttopy, lefttopu, lefttopv;
  707. if(s->yuy2){
  708. p->data[0][3]= get_bits(&s->gb, 8);
  709. p->data[0][2]= get_bits(&s->gb, 8);
  710. p->data[0][1]= get_bits(&s->gb, 8);
  711. p->data[0][0]= get_bits(&s->gb, 8);
  712. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  713. return -1;
  714. }else{
  715. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  716. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  717. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  718. p->data[0][0]= get_bits(&s->gb, 8);
  719. switch(s->predictor){
  720. case LEFT:
  721. case PLANE:
  722. decode_422_bitstream(s, width-2);
  723. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  724. if(!(s->flags&CODEC_FLAG_GRAY)){
  725. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  726. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  727. }
  728. for(cy=y=1; y<s->height; y++,cy++){
  729. uint8_t *ydst, *udst, *vdst;
  730. if(s->bitstream_bpp==12){
  731. decode_gray_bitstream(s, width);
  732. ydst= p->data[0] + p->linesize[0]*y;
  733. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  734. if(s->predictor == PLANE){
  735. if(y>s->interlaced)
  736. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  737. }
  738. y++;
  739. if(y>=s->height) break;
  740. }
  741. draw_slice(s, y);
  742. ydst= p->data[0] + p->linesize[0]*y;
  743. udst= p->data[1] + p->linesize[1]*cy;
  744. vdst= p->data[2] + p->linesize[2]*cy;
  745. decode_422_bitstream(s, width);
  746. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  747. if(!(s->flags&CODEC_FLAG_GRAY)){
  748. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  749. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  750. }
  751. if(s->predictor == PLANE){
  752. if(cy>s->interlaced){
  753. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  754. if(!(s->flags&CODEC_FLAG_GRAY)){
  755. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  756. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  757. }
  758. }
  759. }
  760. }
  761. draw_slice(s, height);
  762. break;
  763. case MEDIAN:
  764. /* first line except first 2 pixels is left predicted */
  765. decode_422_bitstream(s, width-2);
  766. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  767. if(!(s->flags&CODEC_FLAG_GRAY)){
  768. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  769. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  770. }
  771. cy=y=1;
  772. /* second line is left predicted for interlaced case */
  773. if(s->interlaced){
  774. decode_422_bitstream(s, width);
  775. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  776. if(!(s->flags&CODEC_FLAG_GRAY)){
  777. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  778. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  779. }
  780. y++; cy++;
  781. }
  782. /* next 4 pixels are left predicted too */
  783. decode_422_bitstream(s, 4);
  784. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  785. if(!(s->flags&CODEC_FLAG_GRAY)){
  786. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  787. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  788. }
  789. /* next line except the first 4 pixels is median predicted */
  790. lefttopy= p->data[0][3];
  791. decode_422_bitstream(s, width-4);
  792. add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  793. if(!(s->flags&CODEC_FLAG_GRAY)){
  794. lefttopu= p->data[1][1];
  795. lefttopv= p->data[2][1];
  796. add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  797. add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  798. }
  799. y++; cy++;
  800. for(; y<height; y++,cy++){
  801. uint8_t *ydst, *udst, *vdst;
  802. if(s->bitstream_bpp==12){
  803. while(2*cy > y){
  804. decode_gray_bitstream(s, width);
  805. ydst= p->data[0] + p->linesize[0]*y;
  806. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  807. y++;
  808. }
  809. if(y>=height) break;
  810. }
  811. draw_slice(s, y);
  812. decode_422_bitstream(s, width);
  813. ydst= p->data[0] + p->linesize[0]*y;
  814. udst= p->data[1] + p->linesize[1]*cy;
  815. vdst= p->data[2] + p->linesize[2]*cy;
  816. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  817. if(!(s->flags&CODEC_FLAG_GRAY)){
  818. add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  819. add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  820. }
  821. }
  822. draw_slice(s, height);
  823. break;
  824. }
  825. }
  826. }else{
  827. int y;
  828. int leftr, leftg, leftb;
  829. const int last_line= (height-1)*p->linesize[0];
  830. if(s->bitstream_bpp==32){
  831. skip_bits(&s->gb, 8);
  832. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  833. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  834. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  835. }else{
  836. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  837. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  838. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  839. skip_bits(&s->gb, 8);
  840. }
  841. if(s->bgr32){
  842. switch(s->predictor){
  843. case LEFT:
  844. case PLANE:
  845. decode_bgr_bitstream(s, width-1);
  846. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  847. for(y=s->height-2; y>=0; y--){ //yes its stored upside down
  848. decode_bgr_bitstream(s, width);
  849. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  850. if(s->predictor == PLANE){
  851. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  852. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  853. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  854. }
  855. }
  856. }
  857. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  858. break;
  859. default:
  860. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  861. }
  862. }else{
  863. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  864. return -1;
  865. }
  866. }
  867. emms_c();
  868. *picture= *p;
  869. *data_size = sizeof(AVFrame);
  870. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  871. }
  872. #endif
  873. static int common_end(HYuvContext *s){
  874. int i;
  875. for(i=0; i<3; i++){
  876. av_freep(&s->temp[i]);
  877. }
  878. return 0;
  879. }
  880. #ifdef CONFIG_DECODERS
  881. static int decode_end(AVCodecContext *avctx)
  882. {
  883. HYuvContext *s = avctx->priv_data;
  884. int i;
  885. common_end(s);
  886. av_freep(&s->bitstream_buffer);
  887. for(i=0; i<3; i++){
  888. free_vlc(&s->vlc[i]);
  889. }
  890. return 0;
  891. }
  892. #endif
  893. #ifdef CONFIG_ENCODERS
  894. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  895. HYuvContext *s = avctx->priv_data;
  896. AVFrame *pict = data;
  897. const int width= s->width;
  898. const int width2= s->width>>1;
  899. const int height= s->height;
  900. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  901. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  902. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  903. AVFrame * const p= &s->picture;
  904. int i, j, size=0;
  905. *p = *pict;
  906. p->pict_type= FF_I_TYPE;
  907. p->key_frame= 1;
  908. if(s->context){
  909. for(i=0; i<3; i++){
  910. generate_len_table(s->len[i], s->stats[i], 256);
  911. if(generate_bits_table(s->bits[i], s->len[i])<0)
  912. return -1;
  913. size+= store_table(s, s->len[i], &buf[size]);
  914. }
  915. for(i=0; i<3; i++)
  916. for(j=0; j<256; j++)
  917. s->stats[i][j] >>= 1;
  918. }
  919. init_put_bits(&s->pb, buf+size, buf_size-size);
  920. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  921. int lefty, leftu, leftv, y, cy;
  922. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  923. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  924. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  925. put_bits(&s->pb, 8, p->data[0][0]);
  926. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  927. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  928. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  929. encode_422_bitstream(s, width-2);
  930. if(s->predictor==MEDIAN){
  931. int lefttopy, lefttopu, lefttopv;
  932. cy=y=1;
  933. if(s->interlaced){
  934. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  935. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  936. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  937. encode_422_bitstream(s, width);
  938. y++; cy++;
  939. }
  940. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  941. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  942. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  943. encode_422_bitstream(s, 4);
  944. lefttopy= p->data[0][3];
  945. lefttopu= p->data[1][1];
  946. lefttopv= p->data[2][1];
  947. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  948. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  949. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  950. encode_422_bitstream(s, width-4);
  951. y++; cy++;
  952. for(; y<height; y++,cy++){
  953. uint8_t *ydst, *udst, *vdst;
  954. if(s->bitstream_bpp==12){
  955. while(2*cy > y){
  956. ydst= p->data[0] + p->linesize[0]*y;
  957. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  958. encode_gray_bitstream(s, width);
  959. y++;
  960. }
  961. if(y>=height) break;
  962. }
  963. ydst= p->data[0] + p->linesize[0]*y;
  964. udst= p->data[1] + p->linesize[1]*cy;
  965. vdst= p->data[2] + p->linesize[2]*cy;
  966. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  967. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  968. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  969. encode_422_bitstream(s, width);
  970. }
  971. }else{
  972. for(cy=y=1; y<height; y++,cy++){
  973. uint8_t *ydst, *udst, *vdst;
  974. /* encode a luma only line & y++ */
  975. if(s->bitstream_bpp==12){
  976. ydst= p->data[0] + p->linesize[0]*y;
  977. if(s->predictor == PLANE && s->interlaced < y){
  978. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  979. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  980. }else{
  981. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  982. }
  983. encode_gray_bitstream(s, width);
  984. y++;
  985. if(y>=height) break;
  986. }
  987. ydst= p->data[0] + p->linesize[0]*y;
  988. udst= p->data[1] + p->linesize[1]*cy;
  989. vdst= p->data[2] + p->linesize[2]*cy;
  990. if(s->predictor == PLANE && s->interlaced < cy){
  991. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  992. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  993. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  994. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  995. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  996. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  997. }else{
  998. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  999. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1000. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1001. }
  1002. encode_422_bitstream(s, width);
  1003. }
  1004. }
  1005. }else{
  1006. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1007. }
  1008. emms_c();
  1009. size+= (put_bits_count(&s->pb)+31)/8;
  1010. size/= 4;
  1011. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1012. int j;
  1013. char *p= avctx->stats_out;
  1014. char *end= p + 1024*30;
  1015. for(i=0; i<3; i++){
  1016. for(j=0; j<256; j++){
  1017. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1018. p+= strlen(p);
  1019. s->stats[i][j]= 0;
  1020. }
  1021. snprintf(p, end-p, "\n");
  1022. p++;
  1023. }
  1024. }
  1025. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1026. flush_put_bits(&s->pb);
  1027. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  1028. avctx->stats_out[0] = '\0';
  1029. }
  1030. s->picture_number++;
  1031. return size*4;
  1032. }
  1033. static int encode_end(AVCodecContext *avctx)
  1034. {
  1035. HYuvContext *s = avctx->priv_data;
  1036. common_end(s);
  1037. av_freep(&avctx->extradata);
  1038. av_freep(&avctx->stats_out);
  1039. return 0;
  1040. }
  1041. #endif /* CONFIG_ENCODERS */
  1042. #ifdef CONFIG_DECODERS
  1043. AVCodec huffyuv_decoder = {
  1044. "huffyuv",
  1045. CODEC_TYPE_VIDEO,
  1046. CODEC_ID_HUFFYUV,
  1047. sizeof(HYuvContext),
  1048. decode_init,
  1049. NULL,
  1050. decode_end,
  1051. decode_frame,
  1052. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1053. NULL
  1054. };
  1055. AVCodec ffvhuff_decoder = {
  1056. "ffvhuff",
  1057. CODEC_TYPE_VIDEO,
  1058. CODEC_ID_FFVHUFF,
  1059. sizeof(HYuvContext),
  1060. decode_init,
  1061. NULL,
  1062. decode_end,
  1063. decode_frame,
  1064. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1065. NULL
  1066. };
  1067. #endif
  1068. #ifdef CONFIG_ENCODERS
  1069. AVCodec huffyuv_encoder = {
  1070. "huffyuv",
  1071. CODEC_TYPE_VIDEO,
  1072. CODEC_ID_HUFFYUV,
  1073. sizeof(HYuvContext),
  1074. encode_init,
  1075. encode_frame,
  1076. encode_end,
  1077. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV422P, -1},
  1078. };
  1079. AVCodec ffvhuff_encoder = {
  1080. "ffvhuff",
  1081. CODEC_TYPE_VIDEO,
  1082. CODEC_ID_FFVHUFF,
  1083. sizeof(HYuvContext),
  1084. encode_init,
  1085. encode_frame,
  1086. encode_end,
  1087. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, -1},
  1088. };
  1089. #endif //CONFIG_ENCODERS