You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1807 lines
64KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #include <assert.h>
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avutil.h"
  39. #include "libavutil/bswap.h"
  40. #include "libavutil/cpu.h"
  41. #include "libavutil/intreadwrite.h"
  42. #include "libavutil/mathematics.h"
  43. #include "libavutil/opt.h"
  44. #include "libavutil/pixdesc.h"
  45. #include "libavutil/ppc/cpu.h"
  46. #include "libavutil/x86/asm.h"
  47. #include "libavutil/x86/cpu.h"
  48. #include "rgb2rgb.h"
  49. #include "swscale.h"
  50. #include "swscale_internal.h"
  51. unsigned swscale_version(void)
  52. {
  53. return LIBSWSCALE_VERSION_INT;
  54. }
  55. const char *swscale_configuration(void)
  56. {
  57. return LIBAV_CONFIGURATION;
  58. }
  59. const char *swscale_license(void)
  60. {
  61. #define LICENSE_PREFIX "libswscale license: "
  62. return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  63. }
  64. #define RET 0xC3 // near return opcode for x86
  65. typedef struct FormatEntry {
  66. uint8_t is_supported_in :1;
  67. uint8_t is_supported_out :1;
  68. uint8_t is_supported_endianness :1;
  69. } FormatEntry;
  70. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  71. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  72. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  73. [AV_PIX_FMT_RGB24] = { 1, 1 },
  74. [AV_PIX_FMT_BGR24] = { 1, 1 },
  75. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  76. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  77. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  78. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  79. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  80. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  81. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  82. [AV_PIX_FMT_PAL8] = { 1, 0 },
  83. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  84. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  85. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  86. [AV_PIX_FMT_YVYU422] = { 1, 1 },
  87. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  88. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  89. [AV_PIX_FMT_BGR8] = { 1, 1 },
  90. [AV_PIX_FMT_BGR4] = { 0, 1 },
  91. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  92. [AV_PIX_FMT_RGB8] = { 1, 1 },
  93. [AV_PIX_FMT_RGB4] = { 0, 1 },
  94. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  95. [AV_PIX_FMT_NV12] = { 1, 1 },
  96. [AV_PIX_FMT_NV21] = { 1, 1 },
  97. [AV_PIX_FMT_ARGB] = { 1, 1 },
  98. [AV_PIX_FMT_RGBA] = { 1, 1 },
  99. [AV_PIX_FMT_ABGR] = { 1, 1 },
  100. [AV_PIX_FMT_BGRA] = { 1, 1 },
  101. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  102. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  103. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  104. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  105. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  106. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  107. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  108. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  109. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  110. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  111. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  112. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  113. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  114. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  115. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  116. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  117. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  118. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  119. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  120. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  121. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  122. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  123. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  124. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  125. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  126. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  127. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  128. [AV_PIX_FMT_RGBA64BE] = { 0, 0, 1 },
  129. [AV_PIX_FMT_RGBA64LE] = { 0, 0, 1 },
  130. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  131. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  132. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  133. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  134. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  135. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  136. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  137. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  138. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  139. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  140. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  141. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  142. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  143. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  144. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  145. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  146. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  147. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  148. [AV_PIX_FMT_YA8] = { 1, 0 },
  149. [AV_PIX_FMT_YA16BE] = { 1, 0 },
  150. [AV_PIX_FMT_YA16LE] = { 1, 0 },
  151. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  152. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  153. [AV_PIX_FMT_BGRA64BE] = { 0, 0, 1 },
  154. [AV_PIX_FMT_BGRA64LE] = { 0, 0, 1 },
  155. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  156. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  157. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  158. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  159. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  160. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  161. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  162. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  163. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  164. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  165. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  166. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  167. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  168. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  169. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  170. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  173. [AV_PIX_FMT_GBRP] = { 1, 1 },
  174. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  175. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  176. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  177. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  178. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  179. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  180. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  181. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  182. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  183. [AV_PIX_FMT_GBRAP12LE] = { 1, 1 },
  184. [AV_PIX_FMT_GBRAP12BE] = { 1, 1 },
  185. [AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
  186. [AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
  187. [AV_PIX_FMT_XYZ12BE] = { 0, 0, 1 },
  188. [AV_PIX_FMT_XYZ12LE] = { 0, 0, 1 },
  189. [AV_PIX_FMT_P010LE] = { 1, 0 },
  190. [AV_PIX_FMT_P010BE] = { 1, 0 },
  191. };
  192. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  193. {
  194. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  195. format_entries[pix_fmt].is_supported_in : 0;
  196. }
  197. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  198. {
  199. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  200. format_entries[pix_fmt].is_supported_out : 0;
  201. }
  202. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  203. {
  204. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  205. format_entries[pix_fmt].is_supported_endianness : 0;
  206. }
  207. const char *sws_format_name(enum AVPixelFormat format)
  208. {
  209. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  210. if (desc)
  211. return desc->name;
  212. else
  213. return "Unknown format";
  214. }
  215. static double getSplineCoeff(double a, double b, double c, double d,
  216. double dist)
  217. {
  218. if (dist <= 1.0)
  219. return ((d * dist + c) * dist + b) * dist + a;
  220. else
  221. return getSplineCoeff(0.0,
  222. b + 2.0 * c + 3.0 * d,
  223. c + 3.0 * d,
  224. -b - 3.0 * c - 6.0 * d,
  225. dist - 1.0);
  226. }
  227. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  228. int *outFilterSize, int xInc, int srcW,
  229. int dstW, int filterAlign, int one,
  230. int flags, int cpu_flags,
  231. SwsVector *srcFilter, SwsVector *dstFilter,
  232. double param[2], int is_horizontal)
  233. {
  234. int i;
  235. int filterSize;
  236. int filter2Size;
  237. int minFilterSize;
  238. int64_t *filter = NULL;
  239. int64_t *filter2 = NULL;
  240. const int64_t fone = 1LL << 54;
  241. int ret = -1;
  242. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  243. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  244. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  245. if (FFABS(xInc - 0x10000) < 10) { // unscaled
  246. int i;
  247. filterSize = 1;
  248. FF_ALLOCZ_OR_GOTO(NULL, filter,
  249. dstW * sizeof(*filter) * filterSize, fail);
  250. for (i = 0; i < dstW; i++) {
  251. filter[i * filterSize] = fone;
  252. (*filterPos)[i] = i;
  253. }
  254. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  255. int i;
  256. int xDstInSrc;
  257. filterSize = 1;
  258. FF_ALLOC_OR_GOTO(NULL, filter,
  259. dstW * sizeof(*filter) * filterSize, fail);
  260. xDstInSrc = xInc / 2 - 0x8000;
  261. for (i = 0; i < dstW; i++) {
  262. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  263. (*filterPos)[i] = xx;
  264. filter[i] = fone;
  265. xDstInSrc += xInc;
  266. }
  267. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  268. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  269. int i;
  270. int xDstInSrc;
  271. filterSize = 2;
  272. FF_ALLOC_OR_GOTO(NULL, filter,
  273. dstW * sizeof(*filter) * filterSize, fail);
  274. xDstInSrc = xInc / 2 - 0x8000;
  275. for (i = 0; i < dstW; i++) {
  276. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  277. int j;
  278. (*filterPos)[i] = xx;
  279. // bilinear upscale / linear interpolate / area averaging
  280. for (j = 0; j < filterSize; j++) {
  281. int64_t coeff = fone - FFABS((xx << 16) - xDstInSrc) *
  282. (fone >> 16);
  283. if (coeff < 0)
  284. coeff = 0;
  285. filter[i * filterSize + j] = coeff;
  286. xx++;
  287. }
  288. xDstInSrc += xInc;
  289. }
  290. } else {
  291. int64_t xDstInSrc;
  292. int sizeFactor;
  293. if (flags & SWS_BICUBIC)
  294. sizeFactor = 4;
  295. else if (flags & SWS_X)
  296. sizeFactor = 8;
  297. else if (flags & SWS_AREA)
  298. sizeFactor = 1; // downscale only, for upscale it is bilinear
  299. else if (flags & SWS_GAUSS)
  300. sizeFactor = 8; // infinite ;)
  301. else if (flags & SWS_LANCZOS)
  302. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  303. else if (flags & SWS_SINC)
  304. sizeFactor = 20; // infinite ;)
  305. else if (flags & SWS_SPLINE)
  306. sizeFactor = 20; // infinite ;)
  307. else if (flags & SWS_BILINEAR)
  308. sizeFactor = 2;
  309. else {
  310. sizeFactor = 0; // GCC warning killer
  311. assert(0);
  312. }
  313. if (xInc <= 1 << 16)
  314. filterSize = 1 + sizeFactor; // upscale
  315. else
  316. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  317. filterSize = FFMIN(filterSize, srcW - 2);
  318. filterSize = FFMAX(filterSize, 1);
  319. FF_ALLOC_OR_GOTO(NULL, filter,
  320. dstW * sizeof(*filter) * filterSize, fail);
  321. xDstInSrc = xInc - 0x10000;
  322. for (i = 0; i < dstW; i++) {
  323. int xx = (xDstInSrc - ((int64_t)(filterSize - 2) << 16)) / (1 << 17);
  324. int j;
  325. (*filterPos)[i] = xx;
  326. for (j = 0; j < filterSize; j++) {
  327. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  328. double floatd;
  329. int64_t coeff;
  330. if (xInc > 1 << 16)
  331. d = d * dstW / srcW;
  332. floatd = d * (1.0 / (1 << 30));
  333. if (flags & SWS_BICUBIC) {
  334. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  335. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  336. if (d >= 1LL << 31) {
  337. coeff = 0.0;
  338. } else {
  339. int64_t dd = (d * d) >> 30;
  340. int64_t ddd = (dd * d) >> 30;
  341. if (d < 1LL << 30)
  342. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  343. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  344. (6 * (1 << 24) - 2 * B) * (1 << 30);
  345. else
  346. coeff = (-B - 6 * C) * ddd +
  347. (6 * B + 30 * C) * dd +
  348. (-12 * B - 48 * C) * d +
  349. (8 * B + 24 * C) * (1 << 30);
  350. }
  351. coeff *= fone >> (30 + 24);
  352. }
  353. else if (flags & SWS_X) {
  354. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  355. double c;
  356. if (floatd < 1.0)
  357. c = cos(floatd * M_PI);
  358. else
  359. c = -1.0;
  360. if (c < 0.0)
  361. c = -pow(-c, A);
  362. else
  363. c = pow(c, A);
  364. coeff = (c * 0.5 + 0.5) * fone;
  365. } else if (flags & SWS_AREA) {
  366. int64_t d2 = d - (1 << 29);
  367. if (d2 * xInc < -(1LL << (29 + 16)))
  368. coeff = 1.0 * (1LL << (30 + 16));
  369. else if (d2 * xInc < (1LL << (29 + 16)))
  370. coeff = -d2 * xInc + (1LL << (29 + 16));
  371. else
  372. coeff = 0.0;
  373. coeff *= fone >> (30 + 16);
  374. } else if (flags & SWS_GAUSS) {
  375. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  376. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  377. } else if (flags & SWS_SINC) {
  378. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  379. } else if (flags & SWS_LANCZOS) {
  380. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  381. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  382. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  383. if (floatd > p)
  384. coeff = 0;
  385. } else if (flags & SWS_BILINEAR) {
  386. coeff = (1 << 30) - d;
  387. if (coeff < 0)
  388. coeff = 0;
  389. coeff *= fone >> 30;
  390. } else if (flags & SWS_SPLINE) {
  391. double p = -2.196152422706632;
  392. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  393. } else {
  394. coeff = 0.0; // GCC warning killer
  395. assert(0);
  396. }
  397. filter[i * filterSize + j] = coeff;
  398. xx++;
  399. }
  400. xDstInSrc += 2 * xInc;
  401. }
  402. }
  403. /* apply src & dst Filter to filter -> filter2
  404. * av_free(filter);
  405. */
  406. assert(filterSize > 0);
  407. filter2Size = filterSize;
  408. if (srcFilter)
  409. filter2Size += srcFilter->length - 1;
  410. if (dstFilter)
  411. filter2Size += dstFilter->length - 1;
  412. assert(filter2Size > 0);
  413. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  414. for (i = 0; i < dstW; i++) {
  415. int j, k;
  416. if (srcFilter) {
  417. for (k = 0; k < srcFilter->length; k++) {
  418. for (j = 0; j < filterSize; j++)
  419. filter2[i * filter2Size + k + j] +=
  420. srcFilter->coeff[k] * filter[i * filterSize + j];
  421. }
  422. } else {
  423. for (j = 0; j < filterSize; j++)
  424. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  425. }
  426. // FIXME dstFilter
  427. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  428. }
  429. av_freep(&filter);
  430. /* try to reduce the filter-size (step1 find size and shift left) */
  431. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  432. minFilterSize = 0;
  433. for (i = dstW - 1; i >= 0; i--) {
  434. int min = filter2Size;
  435. int j;
  436. int64_t cutOff = 0.0;
  437. /* get rid of near zero elements on the left by shifting left */
  438. for (j = 0; j < filter2Size; j++) {
  439. int k;
  440. cutOff += FFABS(filter2[i * filter2Size]);
  441. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  442. break;
  443. /* preserve monotonicity because the core can't handle the
  444. * filter otherwise */
  445. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  446. break;
  447. // move filter coefficients left
  448. for (k = 1; k < filter2Size; k++)
  449. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  450. filter2[i * filter2Size + k - 1] = 0;
  451. (*filterPos)[i]++;
  452. }
  453. cutOff = 0;
  454. /* count near zeros on the right */
  455. for (j = filter2Size - 1; j > 0; j--) {
  456. cutOff += FFABS(filter2[i * filter2Size + j]);
  457. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  458. break;
  459. min--;
  460. }
  461. if (min > minFilterSize)
  462. minFilterSize = min;
  463. }
  464. if (PPC_ALTIVEC(cpu_flags)) {
  465. // we can handle the special case 4, so we don't want to go the full 8
  466. if (minFilterSize < 5)
  467. filterAlign = 4;
  468. /* We really don't want to waste our time doing useless computation, so
  469. * fall back on the scalar C code for very small filters.
  470. * Vectorizing is worth it only if you have a decent-sized vector. */
  471. if (minFilterSize < 3)
  472. filterAlign = 1;
  473. }
  474. if (INLINE_MMX(cpu_flags)) {
  475. // special case for unscaled vertical filtering
  476. if (minFilterSize == 1 && filterAlign == 2)
  477. filterAlign = 1;
  478. }
  479. assert(minFilterSize > 0);
  480. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  481. assert(filterSize > 0);
  482. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  483. if (filterSize >= MAX_FILTER_SIZE * 16 /
  484. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  485. goto fail;
  486. *outFilterSize = filterSize;
  487. if (flags & SWS_PRINT_INFO)
  488. av_log(NULL, AV_LOG_VERBOSE,
  489. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  490. filter2Size, filterSize);
  491. /* try to reduce the filter-size (step2 reduce it) */
  492. for (i = 0; i < dstW; i++) {
  493. int j;
  494. for (j = 0; j < filterSize; j++) {
  495. if (j >= filter2Size)
  496. filter[i * filterSize + j] = 0;
  497. else
  498. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  499. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  500. filter[i * filterSize + j] = 0;
  501. }
  502. }
  503. // FIXME try to align filterPos if possible
  504. // fix borders
  505. if (is_horizontal) {
  506. for (i = 0; i < dstW; i++) {
  507. int j;
  508. if ((*filterPos)[i] < 0) {
  509. // move filter coefficients left to compensate for filterPos
  510. for (j = 1; j < filterSize; j++) {
  511. int left = FFMAX(j + (*filterPos)[i], 0);
  512. filter[i * filterSize + left] += filter[i * filterSize + j];
  513. filter[i * filterSize + j] = 0;
  514. }
  515. (*filterPos)[i] = 0;
  516. }
  517. if ((*filterPos)[i] + filterSize > srcW) {
  518. int shift = (*filterPos)[i] + filterSize - srcW;
  519. // move filter coefficients right to compensate for filterPos
  520. for (j = filterSize - 2; j >= 0; j--) {
  521. int right = FFMIN(j + shift, filterSize - 1);
  522. filter[i * filterSize + right] += filter[i * filterSize + j];
  523. filter[i * filterSize + j] = 0;
  524. }
  525. (*filterPos)[i] = srcW - filterSize;
  526. }
  527. }
  528. }
  529. // Note the +1 is for the MMX scaler which reads over the end
  530. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  531. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  532. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  533. /* normalize & store in outFilter */
  534. for (i = 0; i < dstW; i++) {
  535. int j;
  536. int64_t error = 0;
  537. int64_t sum = 0;
  538. for (j = 0; j < filterSize; j++) {
  539. sum += filter[i * filterSize + j];
  540. }
  541. sum = (sum + one / 2) / one;
  542. for (j = 0; j < *outFilterSize; j++) {
  543. int64_t v = filter[i * filterSize + j] + error;
  544. int intV = ROUNDED_DIV(v, sum);
  545. (*outFilter)[i * (*outFilterSize) + j] = intV;
  546. error = v - intV * sum;
  547. }
  548. }
  549. (*filterPos)[dstW + 0] =
  550. (*filterPos)[dstW + 1] =
  551. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  552. * read over the end */
  553. for (i = 0; i < *outFilterSize; i++) {
  554. int k = (dstW - 1) * (*outFilterSize) + i;
  555. (*outFilter)[k + 1 * (*outFilterSize)] =
  556. (*outFilter)[k + 2 * (*outFilterSize)] =
  557. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  558. }
  559. ret = 0;
  560. fail:
  561. av_free(filter);
  562. av_free(filter2);
  563. return ret;
  564. }
  565. #if HAVE_MMXEXT_INLINE
  566. static av_cold int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
  567. int16_t *filter, int32_t *filterPos,
  568. int numSplits)
  569. {
  570. uint8_t *fragmentA;
  571. x86_reg imm8OfPShufW1A;
  572. x86_reg imm8OfPShufW2A;
  573. x86_reg fragmentLengthA;
  574. uint8_t *fragmentB;
  575. x86_reg imm8OfPShufW1B;
  576. x86_reg imm8OfPShufW2B;
  577. x86_reg fragmentLengthB;
  578. int fragmentPos;
  579. int xpos, i;
  580. // create an optimized horizontal scaling routine
  581. /* This scaler is made of runtime-generated MMXEXT code using specially tuned
  582. * pshufw instructions. For every four output pixels, if four input pixels
  583. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  584. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  585. */
  586. // code fragment
  587. __asm__ volatile (
  588. "jmp 9f \n\t"
  589. // Begin
  590. "0: \n\t"
  591. "movq (%%"FF_REG_d", %%"FF_REG_a"), %%mm3 \n\t"
  592. "movd (%%"FF_REG_c", %%"FF_REG_S"), %%mm0 \n\t"
  593. "movd 1(%%"FF_REG_c", %%"FF_REG_S"), %%mm1 \n\t"
  594. "punpcklbw %%mm7, %%mm1 \n\t"
  595. "punpcklbw %%mm7, %%mm0 \n\t"
  596. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  597. "1: \n\t"
  598. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  599. "2: \n\t"
  600. "psubw %%mm1, %%mm0 \n\t"
  601. "movl 8(%%"FF_REG_b", %%"FF_REG_a"), %%esi \n\t"
  602. "pmullw %%mm3, %%mm0 \n\t"
  603. "psllw $7, %%mm1 \n\t"
  604. "paddw %%mm1, %%mm0 \n\t"
  605. "movq %%mm0, (%%"FF_REG_D", %%"FF_REG_a") \n\t"
  606. "add $8, %%"FF_REG_a" \n\t"
  607. // End
  608. "9: \n\t"
  609. // "int $3 \n\t"
  610. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  611. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  612. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  613. "dec %1 \n\t"
  614. "dec %2 \n\t"
  615. "sub %0, %1 \n\t"
  616. "sub %0, %2 \n\t"
  617. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  618. "sub %0, %3 \n\t"
  619. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  620. "=r" (fragmentLengthA)
  621. );
  622. __asm__ volatile (
  623. "jmp 9f \n\t"
  624. // Begin
  625. "0: \n\t"
  626. "movq (%%"FF_REG_d", %%"FF_REG_a"), %%mm3 \n\t"
  627. "movd (%%"FF_REG_c", %%"FF_REG_S"), %%mm0 \n\t"
  628. "punpcklbw %%mm7, %%mm0 \n\t"
  629. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  630. "1: \n\t"
  631. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  632. "2: \n\t"
  633. "psubw %%mm1, %%mm0 \n\t"
  634. "movl 8(%%"FF_REG_b", %%"FF_REG_a"), %%esi \n\t"
  635. "pmullw %%mm3, %%mm0 \n\t"
  636. "psllw $7, %%mm1 \n\t"
  637. "paddw %%mm1, %%mm0 \n\t"
  638. "movq %%mm0, (%%"FF_REG_D", %%"FF_REG_a") \n\t"
  639. "add $8, %%"FF_REG_a" \n\t"
  640. // End
  641. "9: \n\t"
  642. // "int $3 \n\t"
  643. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  644. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  645. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  646. "dec %1 \n\t"
  647. "dec %2 \n\t"
  648. "sub %0, %1 \n\t"
  649. "sub %0, %2 \n\t"
  650. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  651. "sub %0, %3 \n\t"
  652. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  653. "=r" (fragmentLengthB)
  654. );
  655. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  656. fragmentPos = 0;
  657. for (i = 0; i < dstW / numSplits; i++) {
  658. int xx = xpos >> 16;
  659. if ((i & 3) == 0) {
  660. int a = 0;
  661. int b = ((xpos + xInc) >> 16) - xx;
  662. int c = ((xpos + xInc * 2) >> 16) - xx;
  663. int d = ((xpos + xInc * 3) >> 16) - xx;
  664. int inc = (d + 1 < 4);
  665. uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
  666. x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  667. x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  668. x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
  669. int maxShift = 3 - (d + inc);
  670. int shift = 0;
  671. if (filterCode) {
  672. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  673. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  674. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  675. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  676. filterPos[i / 2] = xx;
  677. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  678. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  679. ((b + inc) << 2) |
  680. ((c + inc) << 4) |
  681. ((d + inc) << 6);
  682. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  683. (c << 4) |
  684. (d << 6);
  685. if (i + 4 - inc >= dstW)
  686. shift = maxShift; // avoid overread
  687. else if ((filterPos[i / 2] & 3) <= maxShift)
  688. shift = filterPos[i / 2] & 3; // align
  689. if (shift && i >= shift) {
  690. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  691. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  692. filterPos[i / 2] -= shift;
  693. }
  694. }
  695. fragmentPos += fragmentLength;
  696. if (filterCode)
  697. filterCode[fragmentPos] = RET;
  698. }
  699. xpos += xInc;
  700. }
  701. if (filterCode)
  702. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  703. return fragmentPos + 1;
  704. }
  705. #endif /* HAVE_MMXEXT_INLINE */
  706. static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
  707. {
  708. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  709. *h = desc->log2_chroma_w;
  710. *v = desc->log2_chroma_h;
  711. }
  712. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  713. int srcRange, const int table[4], int dstRange,
  714. int brightness, int contrast, int saturation)
  715. {
  716. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  717. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
  718. memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  719. memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
  720. c->brightness = brightness;
  721. c->contrast = contrast;
  722. c->saturation = saturation;
  723. c->srcRange = srcRange;
  724. c->dstRange = dstRange;
  725. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  726. return -1;
  727. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  728. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  729. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  730. contrast, saturation);
  731. // FIXME factorize
  732. if (ARCH_PPC)
  733. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  734. contrast, saturation);
  735. return 0;
  736. }
  737. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  738. int *srcRange, int **table, int *dstRange,
  739. int *brightness, int *contrast, int *saturation)
  740. {
  741. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  742. return -1;
  743. *inv_table = c->srcColorspaceTable;
  744. *table = c->dstColorspaceTable;
  745. *srcRange = c->srcRange;
  746. *dstRange = c->dstRange;
  747. *brightness = c->brightness;
  748. *contrast = c->contrast;
  749. *saturation = c->saturation;
  750. return 0;
  751. }
  752. static int handle_jpeg(enum AVPixelFormat *format)
  753. {
  754. switch (*format) {
  755. case AV_PIX_FMT_YUVJ420P:
  756. *format = AV_PIX_FMT_YUV420P;
  757. return 1;
  758. case AV_PIX_FMT_YUVJ422P:
  759. *format = AV_PIX_FMT_YUV422P;
  760. return 1;
  761. case AV_PIX_FMT_YUVJ444P:
  762. *format = AV_PIX_FMT_YUV444P;
  763. return 1;
  764. case AV_PIX_FMT_YUVJ440P:
  765. *format = AV_PIX_FMT_YUV440P;
  766. return 1;
  767. default:
  768. return 0;
  769. }
  770. }
  771. SwsContext *sws_alloc_context(void)
  772. {
  773. SwsContext *c = av_mallocz(sizeof(SwsContext));
  774. if (c) {
  775. c->av_class = &ff_sws_context_class;
  776. av_opt_set_defaults(c);
  777. }
  778. return c;
  779. }
  780. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  781. SwsFilter *dstFilter)
  782. {
  783. int i;
  784. int usesVFilter, usesHFilter;
  785. int unscaled;
  786. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  787. int srcW = c->srcW;
  788. int srcH = c->srcH;
  789. int dstW = c->dstW;
  790. int dstH = c->dstH;
  791. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16);
  792. int dst_stride_px = dst_stride >> 1;
  793. int flags, cpu_flags;
  794. enum AVPixelFormat srcFormat = c->srcFormat;
  795. enum AVPixelFormat dstFormat = c->dstFormat;
  796. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
  797. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
  798. cpu_flags = av_get_cpu_flags();
  799. flags = c->flags;
  800. emms_c();
  801. if (!rgb15to16)
  802. ff_rgb2rgb_init();
  803. unscaled = (srcW == dstW && srcH == dstH);
  804. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  805. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  806. if (!sws_isSupportedInput(srcFormat)) {
  807. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  808. sws_format_name(srcFormat));
  809. return AVERROR(EINVAL);
  810. }
  811. if (!sws_isSupportedOutput(dstFormat)) {
  812. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  813. sws_format_name(dstFormat));
  814. return AVERROR(EINVAL);
  815. }
  816. }
  817. i = flags & (SWS_POINT |
  818. SWS_AREA |
  819. SWS_BILINEAR |
  820. SWS_FAST_BILINEAR |
  821. SWS_BICUBIC |
  822. SWS_X |
  823. SWS_GAUSS |
  824. SWS_LANCZOS |
  825. SWS_SINC |
  826. SWS_SPLINE |
  827. SWS_BICUBLIN);
  828. /* provide a default scaler if not set by caller */
  829. if (!i) {
  830. if (dstW < srcW && dstH < srcH)
  831. flags |= SWS_GAUSS;
  832. else if (dstW > srcW && dstH > srcH)
  833. flags |= SWS_SINC;
  834. else
  835. flags |= SWS_LANCZOS;
  836. c->flags = flags;
  837. } else if (i & (i - 1)) {
  838. av_log(c, AV_LOG_ERROR,
  839. "Exactly one scaler algorithm must be chosen\n");
  840. return AVERROR(EINVAL);
  841. }
  842. /* sanity check */
  843. if (srcW < 4 || srcH < 1 || dstW < 8 || dstH < 1) {
  844. /* FIXME check if these are enough and try to lower them after
  845. * fixing the relevant parts of the code */
  846. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  847. srcW, srcH, dstW, dstH);
  848. return AVERROR(EINVAL);
  849. }
  850. if (!dstFilter)
  851. dstFilter = &dummyFilter;
  852. if (!srcFilter)
  853. srcFilter = &dummyFilter;
  854. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  855. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  856. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  857. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  858. c->vRounder = 4 * 0x0001000100010001ULL;
  859. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  860. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  861. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  862. (dstFilter->chrV && dstFilter->chrV->length > 1);
  863. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  864. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  865. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  866. (dstFilter->chrH && dstFilter->chrH->length > 1);
  867. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  868. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  869. if (isPlanarRGB(dstFormat)) {
  870. if (!(flags & SWS_FULL_CHR_H_INT)) {
  871. av_log(c, AV_LOG_DEBUG,
  872. "%s output is not supported with half chroma resolution, switching to full\n",
  873. av_get_pix_fmt_name(dstFormat));
  874. flags |= SWS_FULL_CHR_H_INT;
  875. c->flags = flags;
  876. }
  877. }
  878. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  879. * chroma interpolation */
  880. if (flags & SWS_FULL_CHR_H_INT &&
  881. isAnyRGB(dstFormat) &&
  882. !isPlanarRGB(dstFormat) &&
  883. dstFormat != AV_PIX_FMT_RGBA &&
  884. dstFormat != AV_PIX_FMT_ARGB &&
  885. dstFormat != AV_PIX_FMT_BGRA &&
  886. dstFormat != AV_PIX_FMT_ABGR &&
  887. dstFormat != AV_PIX_FMT_RGB24 &&
  888. dstFormat != AV_PIX_FMT_BGR24) {
  889. av_log(c, AV_LOG_ERROR,
  890. "full chroma interpolation for destination format '%s' not yet implemented\n",
  891. sws_format_name(dstFormat));
  892. flags &= ~SWS_FULL_CHR_H_INT;
  893. c->flags = flags;
  894. }
  895. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  896. c->chrDstHSubSample = 1;
  897. // drop some chroma lines if the user wants it
  898. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  899. SWS_SRC_V_CHR_DROP_SHIFT;
  900. c->chrSrcVSubSample += c->vChrDrop;
  901. /* drop every other pixel for chroma calculation unless user
  902. * wants full chroma */
  903. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  904. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  905. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  906. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  907. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  908. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  909. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  910. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  911. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  912. (flags & SWS_FAST_BILINEAR)))
  913. c->chrSrcHSubSample = 1;
  914. // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
  915. c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  916. c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  917. c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  918. c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  919. /* unscaled special cases */
  920. if (unscaled && !usesHFilter && !usesVFilter &&
  921. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  922. ff_get_unscaled_swscale(c);
  923. if (c->swscale) {
  924. if (flags & SWS_PRINT_INFO)
  925. av_log(c, AV_LOG_INFO,
  926. "using unscaled %s -> %s special converter\n",
  927. sws_format_name(srcFormat), sws_format_name(dstFormat));
  928. return 0;
  929. }
  930. }
  931. c->srcBpc = desc_src->comp[0].depth;
  932. if (c->srcBpc < 8)
  933. c->srcBpc = 8;
  934. c->dstBpc = desc_dst->comp[0].depth;
  935. if (c->dstBpc < 8)
  936. c->dstBpc = 8;
  937. if (c->dstBpc == 16)
  938. dst_stride <<= 1;
  939. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer,
  940. (FFALIGN(srcW, 16) * 2 * FFALIGN(c->srcBpc, 8) >> 3) + 16,
  941. fail);
  942. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 12) {
  943. c->canMMXEXTBeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
  944. (srcW & 15) == 0) ? 1 : 0;
  945. if (!c->canMMXEXTBeUsed && dstW >= srcW && (srcW & 15) == 0
  946. && (flags & SWS_FAST_BILINEAR)) {
  947. if (flags & SWS_PRINT_INFO)
  948. av_log(c, AV_LOG_INFO,
  949. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  950. }
  951. if (usesHFilter)
  952. c->canMMXEXTBeUsed = 0;
  953. } else
  954. c->canMMXEXTBeUsed = 0;
  955. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  956. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  957. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  958. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  959. * correct scaling.
  960. * n-2 is the last chrominance sample available.
  961. * This is not perfect, but no one should notice the difference, the more
  962. * correct variant would be like the vertical one, but that would require
  963. * some special code for the first and last pixel */
  964. if (flags & SWS_FAST_BILINEAR) {
  965. if (c->canMMXEXTBeUsed) {
  966. c->lumXInc += 20;
  967. c->chrXInc += 20;
  968. }
  969. // we don't use the x86 asm scaler if MMX is available
  970. else if (INLINE_MMX(cpu_flags)) {
  971. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  972. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  973. }
  974. }
  975. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  976. /* precalculate horizontal scaler filter coefficients */
  977. {
  978. #if HAVE_MMXEXT_INLINE
  979. // can't downscale !!!
  980. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  981. c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  982. NULL, NULL, 8);
  983. c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  984. NULL, NULL, NULL, 4);
  985. #if USE_MMAP
  986. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  987. PROT_READ | PROT_WRITE,
  988. MAP_PRIVATE | MAP_ANONYMOUS,
  989. -1, 0);
  990. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  991. PROT_READ | PROT_WRITE,
  992. MAP_PRIVATE | MAP_ANONYMOUS,
  993. -1, 0);
  994. #elif HAVE_VIRTUALALLOC
  995. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  996. c->lumMmxextFilterCodeSize,
  997. MEM_COMMIT,
  998. PAGE_EXECUTE_READWRITE);
  999. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1000. c->chrMmxextFilterCodeSize,
  1001. MEM_COMMIT,
  1002. PAGE_EXECUTE_READWRITE);
  1003. #else
  1004. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1005. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1006. #endif
  1007. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1008. return AVERROR(ENOMEM);
  1009. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1010. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1011. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1012. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1013. init_hscaler_mmxext(dstW, c->lumXInc, c->lumMmxextFilterCode,
  1014. c->hLumFilter, c->hLumFilterPos, 8);
  1015. init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1016. c->hChrFilter, c->hChrFilterPos, 4);
  1017. #if USE_MMAP
  1018. mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1019. mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1020. #endif
  1021. } else
  1022. #endif /* HAVE_MMXEXT_INLINE */
  1023. {
  1024. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1025. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1026. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1027. &c->hLumFilterSize, c->lumXInc,
  1028. srcW, dstW, filterAlign, 1 << 14,
  1029. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1030. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1031. c->param, 1) < 0)
  1032. goto fail;
  1033. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1034. &c->hChrFilterSize, c->chrXInc,
  1035. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1036. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1037. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1038. c->param, 1) < 0)
  1039. goto fail;
  1040. }
  1041. } // initialize horizontal stuff
  1042. /* precalculate vertical scaler filter coefficients */
  1043. {
  1044. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1045. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1046. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1047. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1048. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1049. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1050. c->param, 0) < 0)
  1051. goto fail;
  1052. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1053. c->chrYInc, c->chrSrcH, c->chrDstH,
  1054. filterAlign, (1 << 12),
  1055. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1056. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1057. c->param, 0) < 0)
  1058. goto fail;
  1059. #if HAVE_ALTIVEC
  1060. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1061. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1062. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1063. int j;
  1064. short *p = (short *)&c->vYCoeffsBank[i];
  1065. for (j = 0; j < 8; j++)
  1066. p[j] = c->vLumFilter[i];
  1067. }
  1068. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1069. int j;
  1070. short *p = (short *)&c->vCCoeffsBank[i];
  1071. for (j = 0; j < 8; j++)
  1072. p[j] = c->vChrFilter[i];
  1073. }
  1074. #endif
  1075. }
  1076. // calculate buffer sizes so that they won't run out while handling these damn slices
  1077. c->vLumBufSize = c->vLumFilterSize;
  1078. c->vChrBufSize = c->vChrFilterSize;
  1079. for (i = 0; i < dstH; i++) {
  1080. int chrI = (int64_t)i * c->chrDstH / dstH;
  1081. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1082. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1083. << c->chrSrcVSubSample));
  1084. nextSlice >>= c->chrSrcVSubSample;
  1085. nextSlice <<= c->chrSrcVSubSample;
  1086. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1087. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1088. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1089. (nextSlice >> c->chrSrcVSubSample))
  1090. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1091. c->vChrFilterPos[chrI];
  1092. }
  1093. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1094. * need to allocate several megabytes to handle all possible cases) */
  1095. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1096. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1097. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1098. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1099. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1100. /* Note we need at least one pixel more at the end because of the MMX code
  1101. * (just in case someone wants to replace the 4000/8000). */
  1102. /* align at 16 bytes for AltiVec */
  1103. for (i = 0; i < c->vLumBufSize; i++) {
  1104. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1105. dst_stride + 16, fail);
  1106. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1107. }
  1108. // 64 / (c->dstBpc & ~7) is the same as 16 / sizeof(scaling_intermediate)
  1109. c->uv_off_px = dst_stride_px + 64 / (c->dstBpc & ~7);
  1110. c->uv_off_byte = dst_stride + 16;
  1111. for (i = 0; i < c->vChrBufSize; i++) {
  1112. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1113. dst_stride * 2 + 32, fail);
  1114. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1115. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1116. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1117. }
  1118. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1119. for (i = 0; i < c->vLumBufSize; i++) {
  1120. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1121. dst_stride + 16, fail);
  1122. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1123. }
  1124. // try to avoid drawing green stuff between the right end and the stride end
  1125. for (i = 0; i < c->vChrBufSize; i++)
  1126. memset(c->chrUPixBuf[i], 64, dst_stride * 2 + 1);
  1127. assert(c->chrDstH <= dstH);
  1128. if (flags & SWS_PRINT_INFO) {
  1129. if (flags & SWS_FAST_BILINEAR)
  1130. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  1131. else if (flags & SWS_BILINEAR)
  1132. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  1133. else if (flags & SWS_BICUBIC)
  1134. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  1135. else if (flags & SWS_X)
  1136. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  1137. else if (flags & SWS_POINT)
  1138. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  1139. else if (flags & SWS_AREA)
  1140. av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  1141. else if (flags & SWS_BICUBLIN)
  1142. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  1143. else if (flags & SWS_GAUSS)
  1144. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  1145. else if (flags & SWS_SINC)
  1146. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  1147. else if (flags & SWS_LANCZOS)
  1148. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  1149. else if (flags & SWS_SPLINE)
  1150. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  1151. else
  1152. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  1153. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  1154. sws_format_name(srcFormat),
  1155. #ifdef DITHER1XBPP
  1156. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1157. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1158. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1159. "dithered " : "",
  1160. #else
  1161. "",
  1162. #endif
  1163. sws_format_name(dstFormat));
  1164. if (INLINE_MMXEXT(cpu_flags))
  1165. av_log(c, AV_LOG_INFO, "using MMXEXT\n");
  1166. else if (INLINE_AMD3DNOW(cpu_flags))
  1167. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  1168. else if (INLINE_MMX(cpu_flags))
  1169. av_log(c, AV_LOG_INFO, "using MMX\n");
  1170. else if (PPC_ALTIVEC(cpu_flags))
  1171. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  1172. else
  1173. av_log(c, AV_LOG_INFO, "using C\n");
  1174. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1175. av_log(c, AV_LOG_DEBUG,
  1176. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1177. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1178. av_log(c, AV_LOG_DEBUG,
  1179. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1180. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1181. c->chrXInc, c->chrYInc);
  1182. }
  1183. c->swscale = ff_getSwsFunc(c);
  1184. return 0;
  1185. fail: // FIXME replace things by appropriate error codes
  1186. return -1;
  1187. }
  1188. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1189. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1190. int flags, SwsFilter *srcFilter,
  1191. SwsFilter *dstFilter, const double *param)
  1192. {
  1193. SwsContext *c;
  1194. if (!(c = sws_alloc_context()))
  1195. return NULL;
  1196. c->flags = flags;
  1197. c->srcW = srcW;
  1198. c->srcH = srcH;
  1199. c->dstW = dstW;
  1200. c->dstH = dstH;
  1201. c->srcRange = handle_jpeg(&srcFormat);
  1202. c->dstRange = handle_jpeg(&dstFormat);
  1203. c->srcFormat = srcFormat;
  1204. c->dstFormat = dstFormat;
  1205. if (param) {
  1206. c->param[0] = param[0];
  1207. c->param[1] = param[1];
  1208. }
  1209. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1210. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1211. c->dstRange, 0, 1 << 16, 1 << 16);
  1212. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1213. sws_freeContext(c);
  1214. return NULL;
  1215. }
  1216. return c;
  1217. }
  1218. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1219. float lumaSharpen, float chromaSharpen,
  1220. float chromaHShift, float chromaVShift,
  1221. int verbose)
  1222. {
  1223. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1224. if (!filter)
  1225. return NULL;
  1226. if (lumaGBlur != 0.0) {
  1227. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1228. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1229. } else {
  1230. filter->lumH = sws_getIdentityVec();
  1231. filter->lumV = sws_getIdentityVec();
  1232. }
  1233. if (chromaGBlur != 0.0) {
  1234. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1235. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1236. } else {
  1237. filter->chrH = sws_getIdentityVec();
  1238. filter->chrV = sws_getIdentityVec();
  1239. }
  1240. if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
  1241. goto fail;
  1242. if (chromaSharpen != 0.0) {
  1243. SwsVector *id = sws_getIdentityVec();
  1244. if (!id)
  1245. goto fail;
  1246. sws_scaleVec(filter->chrH, -chromaSharpen);
  1247. sws_scaleVec(filter->chrV, -chromaSharpen);
  1248. sws_addVec(filter->chrH, id);
  1249. sws_addVec(filter->chrV, id);
  1250. sws_freeVec(id);
  1251. }
  1252. if (lumaSharpen != 0.0) {
  1253. SwsVector *id = sws_getIdentityVec();
  1254. if (!id)
  1255. goto fail;
  1256. sws_scaleVec(filter->lumH, -lumaSharpen);
  1257. sws_scaleVec(filter->lumV, -lumaSharpen);
  1258. sws_addVec(filter->lumH, id);
  1259. sws_addVec(filter->lumV, id);
  1260. sws_freeVec(id);
  1261. }
  1262. if (chromaHShift != 0.0)
  1263. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1264. if (chromaVShift != 0.0)
  1265. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1266. sws_normalizeVec(filter->chrH, 1.0);
  1267. sws_normalizeVec(filter->chrV, 1.0);
  1268. sws_normalizeVec(filter->lumH, 1.0);
  1269. sws_normalizeVec(filter->lumV, 1.0);
  1270. if (verbose)
  1271. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1272. if (verbose)
  1273. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1274. return filter;
  1275. fail:
  1276. sws_freeVec(filter->lumH);
  1277. sws_freeVec(filter->lumV);
  1278. sws_freeVec(filter->chrH);
  1279. sws_freeVec(filter->chrV);
  1280. av_freep(&filter);
  1281. return NULL;
  1282. }
  1283. SwsVector *sws_allocVec(int length)
  1284. {
  1285. SwsVector *vec = av_malloc(sizeof(SwsVector));
  1286. if (!vec)
  1287. return NULL;
  1288. vec->length = length;
  1289. vec->coeff = av_malloc(sizeof(double) * length);
  1290. if (!vec->coeff)
  1291. av_freep(&vec);
  1292. return vec;
  1293. }
  1294. SwsVector *sws_getGaussianVec(double variance, double quality)
  1295. {
  1296. const int length = (int)(variance * quality + 0.5) | 1;
  1297. int i;
  1298. double middle = (length - 1) * 0.5;
  1299. SwsVector *vec = sws_allocVec(length);
  1300. if (!vec)
  1301. return NULL;
  1302. for (i = 0; i < length; i++) {
  1303. double dist = i - middle;
  1304. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1305. sqrt(2 * variance * M_PI);
  1306. }
  1307. sws_normalizeVec(vec, 1.0);
  1308. return vec;
  1309. }
  1310. SwsVector *sws_getConstVec(double c, int length)
  1311. {
  1312. int i;
  1313. SwsVector *vec = sws_allocVec(length);
  1314. if (!vec)
  1315. return NULL;
  1316. for (i = 0; i < length; i++)
  1317. vec->coeff[i] = c;
  1318. return vec;
  1319. }
  1320. SwsVector *sws_getIdentityVec(void)
  1321. {
  1322. return sws_getConstVec(1.0, 1);
  1323. }
  1324. static double sws_dcVec(SwsVector *a)
  1325. {
  1326. int i;
  1327. double sum = 0;
  1328. for (i = 0; i < a->length; i++)
  1329. sum += a->coeff[i];
  1330. return sum;
  1331. }
  1332. void sws_scaleVec(SwsVector *a, double scalar)
  1333. {
  1334. int i;
  1335. for (i = 0; i < a->length; i++)
  1336. a->coeff[i] *= scalar;
  1337. }
  1338. void sws_normalizeVec(SwsVector *a, double height)
  1339. {
  1340. sws_scaleVec(a, height / sws_dcVec(a));
  1341. }
  1342. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1343. {
  1344. int length = a->length + b->length - 1;
  1345. int i, j;
  1346. SwsVector *vec = sws_getConstVec(0.0, length);
  1347. if (!vec)
  1348. return NULL;
  1349. for (i = 0; i < a->length; i++) {
  1350. for (j = 0; j < b->length; j++) {
  1351. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1352. }
  1353. }
  1354. return vec;
  1355. }
  1356. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1357. {
  1358. int length = FFMAX(a->length, b->length);
  1359. int i;
  1360. SwsVector *vec = sws_getConstVec(0.0, length);
  1361. if (!vec)
  1362. return NULL;
  1363. for (i = 0; i < a->length; i++)
  1364. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1365. for (i = 0; i < b->length; i++)
  1366. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1367. return vec;
  1368. }
  1369. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1370. {
  1371. int length = FFMAX(a->length, b->length);
  1372. int i;
  1373. SwsVector *vec = sws_getConstVec(0.0, length);
  1374. if (!vec)
  1375. return NULL;
  1376. for (i = 0; i < a->length; i++)
  1377. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1378. for (i = 0; i < b->length; i++)
  1379. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1380. return vec;
  1381. }
  1382. /* shift left / or right if "shift" is negative */
  1383. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1384. {
  1385. int length = a->length + FFABS(shift) * 2;
  1386. int i;
  1387. SwsVector *vec = sws_getConstVec(0.0, length);
  1388. if (!vec)
  1389. return NULL;
  1390. for (i = 0; i < a->length; i++) {
  1391. vec->coeff[i + (length - 1) / 2 -
  1392. (a->length - 1) / 2 - shift] = a->coeff[i];
  1393. }
  1394. return vec;
  1395. }
  1396. void sws_shiftVec(SwsVector *a, int shift)
  1397. {
  1398. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1399. av_free(a->coeff);
  1400. a->coeff = shifted->coeff;
  1401. a->length = shifted->length;
  1402. av_free(shifted);
  1403. }
  1404. void sws_addVec(SwsVector *a, SwsVector *b)
  1405. {
  1406. SwsVector *sum = sws_sumVec(a, b);
  1407. av_free(a->coeff);
  1408. a->coeff = sum->coeff;
  1409. a->length = sum->length;
  1410. av_free(sum);
  1411. }
  1412. void sws_subVec(SwsVector *a, SwsVector *b)
  1413. {
  1414. SwsVector *diff = sws_diffVec(a, b);
  1415. av_free(a->coeff);
  1416. a->coeff = diff->coeff;
  1417. a->length = diff->length;
  1418. av_free(diff);
  1419. }
  1420. void sws_convVec(SwsVector *a, SwsVector *b)
  1421. {
  1422. SwsVector *conv = sws_getConvVec(a, b);
  1423. av_free(a->coeff);
  1424. a->coeff = conv->coeff;
  1425. a->length = conv->length;
  1426. av_free(conv);
  1427. }
  1428. SwsVector *sws_cloneVec(SwsVector *a)
  1429. {
  1430. int i;
  1431. SwsVector *vec = sws_allocVec(a->length);
  1432. if (!vec)
  1433. return NULL;
  1434. for (i = 0; i < a->length; i++)
  1435. vec->coeff[i] = a->coeff[i];
  1436. return vec;
  1437. }
  1438. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1439. {
  1440. int i;
  1441. double max = 0;
  1442. double min = 0;
  1443. double range;
  1444. for (i = 0; i < a->length; i++)
  1445. if (a->coeff[i] > max)
  1446. max = a->coeff[i];
  1447. for (i = 0; i < a->length; i++)
  1448. if (a->coeff[i] < min)
  1449. min = a->coeff[i];
  1450. range = max - min;
  1451. for (i = 0; i < a->length; i++) {
  1452. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1453. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1454. for (; x > 0; x--)
  1455. av_log(log_ctx, log_level, " ");
  1456. av_log(log_ctx, log_level, "|\n");
  1457. }
  1458. }
  1459. void sws_freeVec(SwsVector *a)
  1460. {
  1461. if (!a)
  1462. return;
  1463. av_freep(&a->coeff);
  1464. a->length = 0;
  1465. av_free(a);
  1466. }
  1467. void sws_freeFilter(SwsFilter *filter)
  1468. {
  1469. if (!filter)
  1470. return;
  1471. if (filter->lumH)
  1472. sws_freeVec(filter->lumH);
  1473. if (filter->lumV)
  1474. sws_freeVec(filter->lumV);
  1475. if (filter->chrH)
  1476. sws_freeVec(filter->chrH);
  1477. if (filter->chrV)
  1478. sws_freeVec(filter->chrV);
  1479. av_free(filter);
  1480. }
  1481. void sws_freeContext(SwsContext *c)
  1482. {
  1483. int i;
  1484. if (!c)
  1485. return;
  1486. if (c->lumPixBuf) {
  1487. for (i = 0; i < c->vLumBufSize; i++)
  1488. av_freep(&c->lumPixBuf[i]);
  1489. av_freep(&c->lumPixBuf);
  1490. }
  1491. if (c->chrUPixBuf) {
  1492. for (i = 0; i < c->vChrBufSize; i++)
  1493. av_freep(&c->chrUPixBuf[i]);
  1494. av_freep(&c->chrUPixBuf);
  1495. av_freep(&c->chrVPixBuf);
  1496. }
  1497. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1498. for (i = 0; i < c->vLumBufSize; i++)
  1499. av_freep(&c->alpPixBuf[i]);
  1500. av_freep(&c->alpPixBuf);
  1501. }
  1502. av_freep(&c->vLumFilter);
  1503. av_freep(&c->vChrFilter);
  1504. av_freep(&c->hLumFilter);
  1505. av_freep(&c->hChrFilter);
  1506. #if HAVE_ALTIVEC
  1507. av_freep(&c->vYCoeffsBank);
  1508. av_freep(&c->vCCoeffsBank);
  1509. #endif
  1510. av_freep(&c->vLumFilterPos);
  1511. av_freep(&c->vChrFilterPos);
  1512. av_freep(&c->hLumFilterPos);
  1513. av_freep(&c->hChrFilterPos);
  1514. #if HAVE_MMX_INLINE
  1515. #if USE_MMAP
  1516. if (c->lumMmxextFilterCode)
  1517. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1518. if (c->chrMmxextFilterCode)
  1519. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1520. #elif HAVE_VIRTUALALLOC
  1521. if (c->lumMmxextFilterCode)
  1522. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1523. if (c->chrMmxextFilterCode)
  1524. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1525. #else
  1526. av_free(c->lumMmxextFilterCode);
  1527. av_free(c->chrMmxextFilterCode);
  1528. #endif
  1529. c->lumMmxextFilterCode = NULL;
  1530. c->chrMmxextFilterCode = NULL;
  1531. #endif /* HAVE_MMX_INLINE */
  1532. av_freep(&c->yuvTable);
  1533. av_free(c->formatConvBuffer);
  1534. av_free(c);
  1535. }
  1536. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1537. int srcH, enum AVPixelFormat srcFormat,
  1538. int dstW, int dstH,
  1539. enum AVPixelFormat dstFormat, int flags,
  1540. SwsFilter *srcFilter,
  1541. SwsFilter *dstFilter,
  1542. const double *param)
  1543. {
  1544. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1545. SWS_PARAM_DEFAULT };
  1546. if (!param)
  1547. param = default_param;
  1548. if (context &&
  1549. (context->srcW != srcW ||
  1550. context->srcH != srcH ||
  1551. context->srcFormat != srcFormat ||
  1552. context->dstW != dstW ||
  1553. context->dstH != dstH ||
  1554. context->dstFormat != dstFormat ||
  1555. context->flags != flags ||
  1556. context->param[0] != param[0] ||
  1557. context->param[1] != param[1])) {
  1558. sws_freeContext(context);
  1559. context = NULL;
  1560. }
  1561. if (!context) {
  1562. if (!(context = sws_alloc_context()))
  1563. return NULL;
  1564. context->srcW = srcW;
  1565. context->srcH = srcH;
  1566. context->srcRange = handle_jpeg(&srcFormat);
  1567. context->srcFormat = srcFormat;
  1568. context->dstW = dstW;
  1569. context->dstH = dstH;
  1570. context->dstRange = handle_jpeg(&dstFormat);
  1571. context->dstFormat = dstFormat;
  1572. context->flags = flags;
  1573. context->param[0] = param[0];
  1574. context->param[1] = param[1];
  1575. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1576. context->srcRange,
  1577. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1578. context->dstRange, 0, 1 << 16, 1 << 16);
  1579. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1580. sws_freeContext(context);
  1581. return NULL;
  1582. }
  1583. }
  1584. return context;
  1585. }