You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3611 lines
123KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * the C code (not assembly, mmx, ...) of this file can be used
  21. * under the LGPL license too
  22. */
  23. /*
  24. supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR32_1, BGR24, BGR16, BGR15, RGB32, RGB32_1, RGB24, Y8/Y800, YVU9/IF09, PAL8
  25. supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
  26. {BGR,RGB}{1,4,8,15,16} support dithering
  27. unscaled special converters (YV12=I420=IYUV, Y800=Y8)
  28. YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
  29. x -> x
  30. YUV9 -> YV12
  31. YUV9/YV12 -> Y800
  32. Y800 -> YUV9/YV12
  33. BGR24 -> BGR32 & RGB24 -> RGB32
  34. BGR32 -> BGR24 & RGB32 -> RGB24
  35. BGR15 -> BGR16
  36. */
  37. /*
  38. tested special converters (most are tested actually, but I did not write it down ...)
  39. YV12 -> BGR16
  40. YV12 -> YV12
  41. BGR15 -> BGR16
  42. BGR16 -> BGR16
  43. YVU9 -> YV12
  44. untested special converters
  45. YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be OK)
  46. YV12/I420 -> YV12/I420
  47. YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
  48. BGR24 -> BGR32 & RGB24 -> RGB32
  49. BGR32 -> BGR24 & RGB32 -> RGB24
  50. BGR24 -> YV12
  51. */
  52. #define _SVID_SOURCE //needed for MAP_ANONYMOUS
  53. #include <inttypes.h>
  54. #include <string.h>
  55. #include <math.h>
  56. #include <stdio.h>
  57. #include <unistd.h>
  58. #include "config.h"
  59. #include <assert.h>
  60. #if HAVE_SYS_MMAN_H
  61. #include <sys/mman.h>
  62. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  63. #define MAP_ANONYMOUS MAP_ANON
  64. #endif
  65. #endif
  66. #if HAVE_VIRTUALALLOC
  67. #define WIN32_LEAN_AND_MEAN
  68. #include <windows.h>
  69. #endif
  70. #include "swscale.h"
  71. #include "swscale_internal.h"
  72. #include "rgb2rgb.h"
  73. #include "libavutil/x86_cpu.h"
  74. #include "libavutil/bswap.h"
  75. unsigned swscale_version(void)
  76. {
  77. return LIBSWSCALE_VERSION_INT;
  78. }
  79. #undef MOVNTQ
  80. #undef PAVGB
  81. //#undef HAVE_MMX2
  82. //#define HAVE_AMD3DNOW
  83. //#undef HAVE_MMX
  84. //#undef ARCH_X86
  85. //#define WORDS_BIGENDIAN
  86. #define DITHER1XBPP
  87. #define FAST_BGR2YV12 // use 7 bit coefficients instead of 15 bit
  88. #define RET 0xC3 //near return opcode for x86
  89. #ifdef M_PI
  90. #define PI M_PI
  91. #else
  92. #define PI 3.14159265358979323846
  93. #endif
  94. #define isSupportedIn(x) ( \
  95. (x)==PIX_FMT_YUV420P \
  96. || (x)==PIX_FMT_YUVA420P \
  97. || (x)==PIX_FMT_YUYV422 \
  98. || (x)==PIX_FMT_UYVY422 \
  99. || (x)==PIX_FMT_RGB48BE \
  100. || (x)==PIX_FMT_RGB48LE \
  101. || (x)==PIX_FMT_RGB32 \
  102. || (x)==PIX_FMT_RGB32_1 \
  103. || (x)==PIX_FMT_BGR24 \
  104. || (x)==PIX_FMT_BGR565 \
  105. || (x)==PIX_FMT_BGR555 \
  106. || (x)==PIX_FMT_BGR32 \
  107. || (x)==PIX_FMT_BGR32_1 \
  108. || (x)==PIX_FMT_RGB24 \
  109. || (x)==PIX_FMT_RGB565 \
  110. || (x)==PIX_FMT_RGB555 \
  111. || (x)==PIX_FMT_GRAY8 \
  112. || (x)==PIX_FMT_YUV410P \
  113. || (x)==PIX_FMT_YUV440P \
  114. || (x)==PIX_FMT_GRAY16BE \
  115. || (x)==PIX_FMT_GRAY16LE \
  116. || (x)==PIX_FMT_YUV444P \
  117. || (x)==PIX_FMT_YUV422P \
  118. || (x)==PIX_FMT_YUV411P \
  119. || (x)==PIX_FMT_PAL8 \
  120. || (x)==PIX_FMT_BGR8 \
  121. || (x)==PIX_FMT_RGB8 \
  122. || (x)==PIX_FMT_BGR4_BYTE \
  123. || (x)==PIX_FMT_RGB4_BYTE \
  124. || (x)==PIX_FMT_YUV440P \
  125. || (x)==PIX_FMT_MONOWHITE \
  126. || (x)==PIX_FMT_MONOBLACK \
  127. || (x)==PIX_FMT_YUV420PLE \
  128. || (x)==PIX_FMT_YUV422PLE \
  129. || (x)==PIX_FMT_YUV444PLE \
  130. || (x)==PIX_FMT_YUV420PBE \
  131. || (x)==PIX_FMT_YUV422PBE \
  132. || (x)==PIX_FMT_YUV444PBE \
  133. )
  134. #define isSupportedOut(x) ( \
  135. (x)==PIX_FMT_YUV420P \
  136. || (x)==PIX_FMT_YUVA420P \
  137. || (x)==PIX_FMT_YUYV422 \
  138. || (x)==PIX_FMT_UYVY422 \
  139. || (x)==PIX_FMT_YUV444P \
  140. || (x)==PIX_FMT_YUV422P \
  141. || (x)==PIX_FMT_YUV411P \
  142. || isRGB(x) \
  143. || isBGR(x) \
  144. || (x)==PIX_FMT_NV12 \
  145. || (x)==PIX_FMT_NV21 \
  146. || (x)==PIX_FMT_GRAY16BE \
  147. || (x)==PIX_FMT_GRAY16LE \
  148. || (x)==PIX_FMT_GRAY8 \
  149. || (x)==PIX_FMT_YUV410P \
  150. || (x)==PIX_FMT_YUV440P \
  151. || (x)==PIX_FMT_YUV420PLE \
  152. || (x)==PIX_FMT_YUV422PLE \
  153. || (x)==PIX_FMT_YUV444PLE \
  154. || (x)==PIX_FMT_YUV420PBE \
  155. || (x)==PIX_FMT_YUV422PBE \
  156. || (x)==PIX_FMT_YUV444PBE \
  157. )
  158. #define isPacked(x) ( \
  159. (x)==PIX_FMT_PAL8 \
  160. || (x)==PIX_FMT_YUYV422 \
  161. || (x)==PIX_FMT_UYVY422 \
  162. || isRGB(x) \
  163. || isBGR(x) \
  164. )
  165. #define usePal(x) ( \
  166. (x)==PIX_FMT_PAL8 \
  167. || (x)==PIX_FMT_BGR4_BYTE \
  168. || (x)==PIX_FMT_RGB4_BYTE \
  169. || (x)==PIX_FMT_BGR8 \
  170. || (x)==PIX_FMT_RGB8 \
  171. )
  172. #define RGB2YUV_SHIFT 15
  173. #define BY ( (int)(0.114*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  174. #define BV (-(int)(0.081*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  175. #define BU ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  176. #define GY ( (int)(0.587*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  177. #define GV (-(int)(0.419*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  178. #define GU (-(int)(0.331*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  179. #define RY ( (int)(0.299*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  180. #define RV ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  181. #define RU (-(int)(0.169*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  182. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  183. static const double rgb2yuv_table[8][9]={
  184. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  185. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  186. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  187. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  188. {0.59 , 0.11 , 0.30 , -0.331, 0.5, -0.169, -0.421, -0.079, 0.5}, //FCC
  189. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  190. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5}, //SMPTE 170M
  191. {0.701 , 0.087 , 0.212 , -0.384, 0.5 -0.116, -0.445, -0.055, 0.5}, //SMPTE 240M
  192. };
  193. /*
  194. NOTES
  195. Special versions: fast Y 1:1 scaling (no interpolation in y direction)
  196. TODO
  197. more intelligent misalignment avoidance for the horizontal scaler
  198. write special vertical cubic upscale version
  199. optimize C code (YV12 / minmax)
  200. add support for packed pixel YUV input & output
  201. add support for Y8 output
  202. optimize BGR24 & BGR32
  203. add BGR4 output support
  204. write special BGR->BGR scaler
  205. */
  206. #if ARCH_X86 && CONFIG_GPL
  207. DECLARE_ASM_CONST(8, uint64_t, bF8)= 0xF8F8F8F8F8F8F8F8LL;
  208. DECLARE_ASM_CONST(8, uint64_t, bFC)= 0xFCFCFCFCFCFCFCFCLL;
  209. DECLARE_ASM_CONST(8, uint64_t, w10)= 0x0010001000100010LL;
  210. DECLARE_ASM_CONST(8, uint64_t, w02)= 0x0002000200020002LL;
  211. DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL;
  212. DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL;
  213. DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL;
  214. DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL;
  215. const DECLARE_ALIGNED(8, uint64_t, ff_dither4[2]) = {
  216. 0x0103010301030103LL,
  217. 0x0200020002000200LL,};
  218. const DECLARE_ALIGNED(8, uint64_t, ff_dither8[2]) = {
  219. 0x0602060206020602LL,
  220. 0x0004000400040004LL,};
  221. DECLARE_ASM_CONST(8, uint64_t, b16Mask)= 0x001F001F001F001FLL;
  222. DECLARE_ASM_CONST(8, uint64_t, g16Mask)= 0x07E007E007E007E0LL;
  223. DECLARE_ASM_CONST(8, uint64_t, r16Mask)= 0xF800F800F800F800LL;
  224. DECLARE_ASM_CONST(8, uint64_t, b15Mask)= 0x001F001F001F001FLL;
  225. DECLARE_ASM_CONST(8, uint64_t, g15Mask)= 0x03E003E003E003E0LL;
  226. DECLARE_ASM_CONST(8, uint64_t, r15Mask)= 0x7C007C007C007C00LL;
  227. DECLARE_ALIGNED(8, const uint64_t, ff_M24A) = 0x00FF0000FF0000FFLL;
  228. DECLARE_ALIGNED(8, const uint64_t, ff_M24B) = 0xFF0000FF0000FF00LL;
  229. DECLARE_ALIGNED(8, const uint64_t, ff_M24C) = 0x0000FF0000FF0000LL;
  230. #ifdef FAST_BGR2YV12
  231. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000000210041000DULL;
  232. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000FFEEFFDC0038ULL;
  233. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00000038FFD2FFF8ULL;
  234. #else
  235. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000020E540830C8BULL;
  236. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000ED0FDAC23831ULL;
  237. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00003831D0E6F6EAULL;
  238. #endif /* FAST_BGR2YV12 */
  239. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset) = 0x1010101010101010ULL;
  240. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL;
  241. DECLARE_ALIGNED(8, const uint64_t, ff_w1111) = 0x0001000100010001ULL;
  242. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY1Coeff) = 0x0C88000040870C88ULL;
  243. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY2Coeff) = 0x20DE4087000020DEULL;
  244. DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY1Coeff) = 0x20DE0000408720DEULL;
  245. DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY2Coeff) = 0x0C88408700000C88ULL;
  246. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toYOffset) = 0x0008400000084000ULL;
  247. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUV[2][4]) = {
  248. {0x38380000DAC83838ULL, 0xECFFDAC80000ECFFULL, 0xF6E40000D0E3F6E4ULL, 0x3838D0E300003838ULL},
  249. {0xECFF0000DAC8ECFFULL, 0x3838DAC800003838ULL, 0x38380000D0E33838ULL, 0xF6E4D0E30000F6E4ULL},
  250. };
  251. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUVOffset)= 0x0040400000404000ULL;
  252. #endif /* ARCH_X86 && CONFIG_GPL */
  253. // clipping helper table for C implementations:
  254. static unsigned char clip_table[768];
  255. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
  256. DECLARE_ALIGNED(8, static const uint8_t, dither_2x2_4[2][8])={
  257. { 1, 3, 1, 3, 1, 3, 1, 3, },
  258. { 2, 0, 2, 0, 2, 0, 2, 0, },
  259. };
  260. DECLARE_ALIGNED(8, static const uint8_t, dither_2x2_8[2][8])={
  261. { 6, 2, 6, 2, 6, 2, 6, 2, },
  262. { 0, 4, 0, 4, 0, 4, 0, 4, },
  263. };
  264. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_32[8][8])={
  265. { 17, 9, 23, 15, 16, 8, 22, 14, },
  266. { 5, 29, 3, 27, 4, 28, 2, 26, },
  267. { 21, 13, 19, 11, 20, 12, 18, 10, },
  268. { 0, 24, 6, 30, 1, 25, 7, 31, },
  269. { 16, 8, 22, 14, 17, 9, 23, 15, },
  270. { 4, 28, 2, 26, 5, 29, 3, 27, },
  271. { 20, 12, 18, 10, 21, 13, 19, 11, },
  272. { 1, 25, 7, 31, 0, 24, 6, 30, },
  273. };
  274. #if 0
  275. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_64[8][8])={
  276. { 0, 48, 12, 60, 3, 51, 15, 63, },
  277. { 32, 16, 44, 28, 35, 19, 47, 31, },
  278. { 8, 56, 4, 52, 11, 59, 7, 55, },
  279. { 40, 24, 36, 20, 43, 27, 39, 23, },
  280. { 2, 50, 14, 62, 1, 49, 13, 61, },
  281. { 34, 18, 46, 30, 33, 17, 45, 29, },
  282. { 10, 58, 6, 54, 9, 57, 5, 53, },
  283. { 42, 26, 38, 22, 41, 25, 37, 21, },
  284. };
  285. #endif
  286. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_73[8][8])={
  287. { 0, 55, 14, 68, 3, 58, 17, 72, },
  288. { 37, 18, 50, 32, 40, 22, 54, 35, },
  289. { 9, 64, 5, 59, 13, 67, 8, 63, },
  290. { 46, 27, 41, 23, 49, 31, 44, 26, },
  291. { 2, 57, 16, 71, 1, 56, 15, 70, },
  292. { 39, 21, 52, 34, 38, 19, 51, 33, },
  293. { 11, 66, 7, 62, 10, 65, 6, 60, },
  294. { 48, 30, 43, 25, 47, 29, 42, 24, },
  295. };
  296. #if 0
  297. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_128[8][8])={
  298. { 68, 36, 92, 60, 66, 34, 90, 58, },
  299. { 20, 116, 12, 108, 18, 114, 10, 106, },
  300. { 84, 52, 76, 44, 82, 50, 74, 42, },
  301. { 0, 96, 24, 120, 6, 102, 30, 126, },
  302. { 64, 32, 88, 56, 70, 38, 94, 62, },
  303. { 16, 112, 8, 104, 22, 118, 14, 110, },
  304. { 80, 48, 72, 40, 86, 54, 78, 46, },
  305. { 4, 100, 28, 124, 2, 98, 26, 122, },
  306. };
  307. #endif
  308. #if 1
  309. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_220[8][8])={
  310. {117, 62, 158, 103, 113, 58, 155, 100, },
  311. { 34, 199, 21, 186, 31, 196, 17, 182, },
  312. {144, 89, 131, 76, 141, 86, 127, 72, },
  313. { 0, 165, 41, 206, 10, 175, 52, 217, },
  314. {110, 55, 151, 96, 120, 65, 162, 107, },
  315. { 28, 193, 14, 179, 38, 203, 24, 189, },
  316. {138, 83, 124, 69, 148, 93, 134, 79, },
  317. { 7, 172, 48, 213, 3, 168, 45, 210, },
  318. };
  319. #elif 1
  320. // tries to correct a gamma of 1.5
  321. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_220[8][8])={
  322. { 0, 143, 18, 200, 2, 156, 25, 215, },
  323. { 78, 28, 125, 64, 89, 36, 138, 74, },
  324. { 10, 180, 3, 161, 16, 195, 8, 175, },
  325. {109, 51, 93, 38, 121, 60, 105, 47, },
  326. { 1, 152, 23, 210, 0, 147, 20, 205, },
  327. { 85, 33, 134, 71, 81, 30, 130, 67, },
  328. { 14, 190, 6, 171, 12, 185, 5, 166, },
  329. {117, 57, 101, 44, 113, 54, 97, 41, },
  330. };
  331. #elif 1
  332. // tries to correct a gamma of 2.0
  333. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_220[8][8])={
  334. { 0, 124, 8, 193, 0, 140, 12, 213, },
  335. { 55, 14, 104, 42, 66, 19, 119, 52, },
  336. { 3, 168, 1, 145, 6, 187, 3, 162, },
  337. { 86, 31, 70, 21, 99, 39, 82, 28, },
  338. { 0, 134, 11, 206, 0, 129, 9, 200, },
  339. { 62, 17, 114, 48, 58, 16, 109, 45, },
  340. { 5, 181, 2, 157, 4, 175, 1, 151, },
  341. { 95, 36, 78, 26, 90, 34, 74, 24, },
  342. };
  343. #else
  344. // tries to correct a gamma of 2.5
  345. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_220[8][8])={
  346. { 0, 107, 3, 187, 0, 125, 6, 212, },
  347. { 39, 7, 86, 28, 49, 11, 102, 36, },
  348. { 1, 158, 0, 131, 3, 180, 1, 151, },
  349. { 68, 19, 52, 12, 81, 25, 64, 17, },
  350. { 0, 119, 5, 203, 0, 113, 4, 195, },
  351. { 45, 9, 96, 33, 42, 8, 91, 30, },
  352. { 2, 172, 1, 144, 2, 165, 0, 137, },
  353. { 77, 23, 60, 15, 72, 21, 56, 14, },
  354. };
  355. #endif
  356. const char *sws_format_name(enum PixelFormat format)
  357. {
  358. switch (format) {
  359. case PIX_FMT_YUV420P:
  360. return "yuv420p";
  361. case PIX_FMT_YUVA420P:
  362. return "yuva420p";
  363. case PIX_FMT_YUYV422:
  364. return "yuyv422";
  365. case PIX_FMT_RGB24:
  366. return "rgb24";
  367. case PIX_FMT_BGR24:
  368. return "bgr24";
  369. case PIX_FMT_YUV422P:
  370. return "yuv422p";
  371. case PIX_FMT_YUV444P:
  372. return "yuv444p";
  373. case PIX_FMT_RGB32:
  374. return "rgb32";
  375. case PIX_FMT_YUV410P:
  376. return "yuv410p";
  377. case PIX_FMT_YUV411P:
  378. return "yuv411p";
  379. case PIX_FMT_RGB565:
  380. return "rgb565";
  381. case PIX_FMT_RGB555:
  382. return "rgb555";
  383. case PIX_FMT_GRAY16BE:
  384. return "gray16be";
  385. case PIX_FMT_GRAY16LE:
  386. return "gray16le";
  387. case PIX_FMT_GRAY8:
  388. return "gray8";
  389. case PIX_FMT_MONOWHITE:
  390. return "mono white";
  391. case PIX_FMT_MONOBLACK:
  392. return "mono black";
  393. case PIX_FMT_PAL8:
  394. return "Palette";
  395. case PIX_FMT_YUVJ420P:
  396. return "yuvj420p";
  397. case PIX_FMT_YUVJ422P:
  398. return "yuvj422p";
  399. case PIX_FMT_YUVJ444P:
  400. return "yuvj444p";
  401. case PIX_FMT_XVMC_MPEG2_MC:
  402. return "xvmc_mpeg2_mc";
  403. case PIX_FMT_XVMC_MPEG2_IDCT:
  404. return "xvmc_mpeg2_idct";
  405. case PIX_FMT_UYVY422:
  406. return "uyvy422";
  407. case PIX_FMT_UYYVYY411:
  408. return "uyyvyy411";
  409. case PIX_FMT_RGB32_1:
  410. return "rgb32x";
  411. case PIX_FMT_BGR32_1:
  412. return "bgr32x";
  413. case PIX_FMT_BGR32:
  414. return "bgr32";
  415. case PIX_FMT_BGR565:
  416. return "bgr565";
  417. case PIX_FMT_BGR555:
  418. return "bgr555";
  419. case PIX_FMT_BGR8:
  420. return "bgr8";
  421. case PIX_FMT_BGR4:
  422. return "bgr4";
  423. case PIX_FMT_BGR4_BYTE:
  424. return "bgr4 byte";
  425. case PIX_FMT_RGB8:
  426. return "rgb8";
  427. case PIX_FMT_RGB4:
  428. return "rgb4";
  429. case PIX_FMT_RGB4_BYTE:
  430. return "rgb4 byte";
  431. case PIX_FMT_RGB48BE:
  432. return "rgb48be";
  433. case PIX_FMT_RGB48LE:
  434. return "rgb48le";
  435. case PIX_FMT_NV12:
  436. return "nv12";
  437. case PIX_FMT_NV21:
  438. return "nv21";
  439. case PIX_FMT_YUV440P:
  440. return "yuv440p";
  441. case PIX_FMT_VDPAU_H264:
  442. return "vdpau_h264";
  443. case PIX_FMT_VDPAU_MPEG1:
  444. return "vdpau_mpeg1";
  445. case PIX_FMT_VDPAU_MPEG2:
  446. return "vdpau_mpeg2";
  447. case PIX_FMT_VDPAU_WMV3:
  448. return "vdpau_wmv3";
  449. case PIX_FMT_VDPAU_VC1:
  450. return "vdpau_vc1";
  451. case PIX_FMT_YUV420PLE:
  452. return "yuv420ple";
  453. case PIX_FMT_YUV422PLE:
  454. return "yuv422ple";
  455. case PIX_FMT_YUV444PLE:
  456. return "yuv444ple";
  457. case PIX_FMT_YUV420PBE:
  458. return "yuv420pbe";
  459. case PIX_FMT_YUV422PBE:
  460. return "yuv422pbe";
  461. case PIX_FMT_YUV444PBE:
  462. return "yuv444pbe";
  463. default:
  464. return "Unknown format";
  465. }
  466. }
  467. static inline void yuv2yuvXinC(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  468. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  469. const int16_t **alpSrc, uint8_t *dest, uint8_t *uDest, uint8_t *vDest, uint8_t *aDest, int dstW, int chrDstW)
  470. {
  471. //FIXME Optimize (just quickly written not optimized..)
  472. int i;
  473. for (i=0; i<dstW; i++)
  474. {
  475. int val=1<<18;
  476. int j;
  477. for (j=0; j<lumFilterSize; j++)
  478. val += lumSrc[j][i] * lumFilter[j];
  479. dest[i]= av_clip_uint8(val>>19);
  480. }
  481. if (uDest)
  482. for (i=0; i<chrDstW; i++)
  483. {
  484. int u=1<<18;
  485. int v=1<<18;
  486. int j;
  487. for (j=0; j<chrFilterSize; j++)
  488. {
  489. u += chrSrc[j][i] * chrFilter[j];
  490. v += chrSrc[j][i + VOFW] * chrFilter[j];
  491. }
  492. uDest[i]= av_clip_uint8(u>>19);
  493. vDest[i]= av_clip_uint8(v>>19);
  494. }
  495. if (CONFIG_SWSCALE_ALPHA && aDest)
  496. for (i=0; i<dstW; i++){
  497. int val=1<<18;
  498. int j;
  499. for (j=0; j<lumFilterSize; j++)
  500. val += alpSrc[j][i] * lumFilter[j];
  501. aDest[i]= av_clip_uint8(val>>19);
  502. }
  503. }
  504. static inline void yuv2nv12XinC(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  505. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  506. uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
  507. {
  508. //FIXME Optimize (just quickly written not optimized..)
  509. int i;
  510. for (i=0; i<dstW; i++)
  511. {
  512. int val=1<<18;
  513. int j;
  514. for (j=0; j<lumFilterSize; j++)
  515. val += lumSrc[j][i] * lumFilter[j];
  516. dest[i]= av_clip_uint8(val>>19);
  517. }
  518. if (!uDest)
  519. return;
  520. if (dstFormat == PIX_FMT_NV12)
  521. for (i=0; i<chrDstW; i++)
  522. {
  523. int u=1<<18;
  524. int v=1<<18;
  525. int j;
  526. for (j=0; j<chrFilterSize; j++)
  527. {
  528. u += chrSrc[j][i] * chrFilter[j];
  529. v += chrSrc[j][i + VOFW] * chrFilter[j];
  530. }
  531. uDest[2*i]= av_clip_uint8(u>>19);
  532. uDest[2*i+1]= av_clip_uint8(v>>19);
  533. }
  534. else
  535. for (i=0; i<chrDstW; i++)
  536. {
  537. int u=1<<18;
  538. int v=1<<18;
  539. int j;
  540. for (j=0; j<chrFilterSize; j++)
  541. {
  542. u += chrSrc[j][i] * chrFilter[j];
  543. v += chrSrc[j][i + VOFW] * chrFilter[j];
  544. }
  545. uDest[2*i]= av_clip_uint8(v>>19);
  546. uDest[2*i+1]= av_clip_uint8(u>>19);
  547. }
  548. }
  549. #define YSCALE_YUV_2_PACKEDX_NOCLIP_C(type,alpha) \
  550. for (i=0; i<(dstW>>1); i++){\
  551. int j;\
  552. int Y1 = 1<<18;\
  553. int Y2 = 1<<18;\
  554. int U = 1<<18;\
  555. int V = 1<<18;\
  556. int av_unused A1, A2;\
  557. type av_unused *r, *b, *g;\
  558. const int i2= 2*i;\
  559. \
  560. for (j=0; j<lumFilterSize; j++)\
  561. {\
  562. Y1 += lumSrc[j][i2] * lumFilter[j];\
  563. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  564. }\
  565. for (j=0; j<chrFilterSize; j++)\
  566. {\
  567. U += chrSrc[j][i] * chrFilter[j];\
  568. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  569. }\
  570. Y1>>=19;\
  571. Y2>>=19;\
  572. U >>=19;\
  573. V >>=19;\
  574. if (alpha){\
  575. A1 = 1<<18;\
  576. A2 = 1<<18;\
  577. for (j=0; j<lumFilterSize; j++){\
  578. A1 += alpSrc[j][i2 ] * lumFilter[j];\
  579. A2 += alpSrc[j][i2+1] * lumFilter[j];\
  580. }\
  581. A1>>=19;\
  582. A2>>=19;\
  583. }\
  584. #define YSCALE_YUV_2_PACKEDX_C(type,alpha) \
  585. YSCALE_YUV_2_PACKEDX_NOCLIP_C(type,alpha)\
  586. if ((Y1|Y2|U|V)&256)\
  587. {\
  588. if (Y1>255) Y1=255; \
  589. else if (Y1<0)Y1=0; \
  590. if (Y2>255) Y2=255; \
  591. else if (Y2<0)Y2=0; \
  592. if (U>255) U=255; \
  593. else if (U<0) U=0; \
  594. if (V>255) V=255; \
  595. else if (V<0) V=0; \
  596. }\
  597. if (alpha && ((A1|A2)&256)){\
  598. A1=av_clip_uint8(A1);\
  599. A2=av_clip_uint8(A2);\
  600. }
  601. #define YSCALE_YUV_2_PACKEDX_FULL_C(rnd,alpha) \
  602. for (i=0; i<dstW; i++){\
  603. int j;\
  604. int Y = 0;\
  605. int U = -128<<19;\
  606. int V = -128<<19;\
  607. int av_unused A;\
  608. int R,G,B;\
  609. \
  610. for (j=0; j<lumFilterSize; j++){\
  611. Y += lumSrc[j][i ] * lumFilter[j];\
  612. }\
  613. for (j=0; j<chrFilterSize; j++){\
  614. U += chrSrc[j][i ] * chrFilter[j];\
  615. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  616. }\
  617. Y >>=10;\
  618. U >>=10;\
  619. V >>=10;\
  620. if (alpha){\
  621. A = rnd;\
  622. for (j=0; j<lumFilterSize; j++)\
  623. A += alpSrc[j][i ] * lumFilter[j];\
  624. A >>=19;\
  625. if (A&256)\
  626. A = av_clip_uint8(A);\
  627. }\
  628. #define YSCALE_YUV_2_RGBX_FULL_C(rnd,alpha) \
  629. YSCALE_YUV_2_PACKEDX_FULL_C(rnd>>3,alpha)\
  630. Y-= c->yuv2rgb_y_offset;\
  631. Y*= c->yuv2rgb_y_coeff;\
  632. Y+= rnd;\
  633. R= Y + V*c->yuv2rgb_v2r_coeff;\
  634. G= Y + V*c->yuv2rgb_v2g_coeff + U*c->yuv2rgb_u2g_coeff;\
  635. B= Y + U*c->yuv2rgb_u2b_coeff;\
  636. if ((R|G|B)&(0xC0000000)){\
  637. if (R>=(256<<22)) R=(256<<22)-1; \
  638. else if (R<0)R=0; \
  639. if (G>=(256<<22)) G=(256<<22)-1; \
  640. else if (G<0)G=0; \
  641. if (B>=(256<<22)) B=(256<<22)-1; \
  642. else if (B<0)B=0; \
  643. }\
  644. #define YSCALE_YUV_2_GRAY16_C \
  645. for (i=0; i<(dstW>>1); i++){\
  646. int j;\
  647. int Y1 = 1<<18;\
  648. int Y2 = 1<<18;\
  649. int U = 1<<18;\
  650. int V = 1<<18;\
  651. \
  652. const int i2= 2*i;\
  653. \
  654. for (j=0; j<lumFilterSize; j++)\
  655. {\
  656. Y1 += lumSrc[j][i2] * lumFilter[j];\
  657. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  658. }\
  659. Y1>>=11;\
  660. Y2>>=11;\
  661. if ((Y1|Y2|U|V)&65536)\
  662. {\
  663. if (Y1>65535) Y1=65535; \
  664. else if (Y1<0)Y1=0; \
  665. if (Y2>65535) Y2=65535; \
  666. else if (Y2<0)Y2=0; \
  667. }
  668. #define YSCALE_YUV_2_RGBX_C(type,alpha) \
  669. YSCALE_YUV_2_PACKEDX_C(type,alpha) /* FIXME fix tables so that clipping is not needed and then use _NOCLIP*/\
  670. r = (type *)c->table_rV[V]; \
  671. g = (type *)(c->table_gU[U] + c->table_gV[V]); \
  672. b = (type *)c->table_bU[U]; \
  673. #define YSCALE_YUV_2_PACKED2_C(type,alpha) \
  674. for (i=0; i<(dstW>>1); i++){ \
  675. const int i2= 2*i; \
  676. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \
  677. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \
  678. int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \
  679. int V= (uvbuf0[i+VOFW]*uvalpha1+uvbuf1[i+VOFW]*uvalpha)>>19; \
  680. type av_unused *r, *b, *g; \
  681. int av_unused A1, A2; \
  682. if (alpha){\
  683. A1= (abuf0[i2 ]*yalpha1+abuf1[i2 ]*yalpha)>>19; \
  684. A2= (abuf0[i2+1]*yalpha1+abuf1[i2+1]*yalpha)>>19; \
  685. }\
  686. #define YSCALE_YUV_2_GRAY16_2_C \
  687. for (i=0; i<(dstW>>1); i++){ \
  688. const int i2= 2*i; \
  689. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>11; \
  690. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>11; \
  691. #define YSCALE_YUV_2_RGB2_C(type,alpha) \
  692. YSCALE_YUV_2_PACKED2_C(type,alpha)\
  693. r = (type *)c->table_rV[V];\
  694. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  695. b = (type *)c->table_bU[U];\
  696. #define YSCALE_YUV_2_PACKED1_C(type,alpha) \
  697. for (i=0; i<(dstW>>1); i++){\
  698. const int i2= 2*i;\
  699. int Y1= buf0[i2 ]>>7;\
  700. int Y2= buf0[i2+1]>>7;\
  701. int U= (uvbuf1[i ])>>7;\
  702. int V= (uvbuf1[i+VOFW])>>7;\
  703. type av_unused *r, *b, *g;\
  704. int av_unused A1, A2;\
  705. if (alpha){\
  706. A1= abuf0[i2 ]>>7;\
  707. A2= abuf0[i2+1]>>7;\
  708. }\
  709. #define YSCALE_YUV_2_GRAY16_1_C \
  710. for (i=0; i<(dstW>>1); i++){\
  711. const int i2= 2*i;\
  712. int Y1= buf0[i2 ]<<1;\
  713. int Y2= buf0[i2+1]<<1;\
  714. #define YSCALE_YUV_2_RGB1_C(type,alpha) \
  715. YSCALE_YUV_2_PACKED1_C(type,alpha)\
  716. r = (type *)c->table_rV[V];\
  717. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  718. b = (type *)c->table_bU[U];\
  719. #define YSCALE_YUV_2_PACKED1B_C(type,alpha) \
  720. for (i=0; i<(dstW>>1); i++){\
  721. const int i2= 2*i;\
  722. int Y1= buf0[i2 ]>>7;\
  723. int Y2= buf0[i2+1]>>7;\
  724. int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
  725. int V= (uvbuf0[i+VOFW] + uvbuf1[i+VOFW])>>8;\
  726. type av_unused *r, *b, *g;\
  727. int av_unused A1, A2;\
  728. if (alpha){\
  729. A1= abuf0[i2 ]>>7;\
  730. A2= abuf0[i2+1]>>7;\
  731. }\
  732. #define YSCALE_YUV_2_RGB1B_C(type,alpha) \
  733. YSCALE_YUV_2_PACKED1B_C(type,alpha)\
  734. r = (type *)c->table_rV[V];\
  735. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  736. b = (type *)c->table_bU[U];\
  737. #define YSCALE_YUV_2_MONO2_C \
  738. const uint8_t * const d128=dither_8x8_220[y&7];\
  739. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  740. for (i=0; i<dstW-7; i+=8){\
  741. int acc;\
  742. acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
  743. acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
  744. acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
  745. acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
  746. acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
  747. acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
  748. acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
  749. acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
  750. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  751. dest++;\
  752. }\
  753. #define YSCALE_YUV_2_MONOX_C \
  754. const uint8_t * const d128=dither_8x8_220[y&7];\
  755. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  756. int acc=0;\
  757. for (i=0; i<dstW-1; i+=2){\
  758. int j;\
  759. int Y1=1<<18;\
  760. int Y2=1<<18;\
  761. \
  762. for (j=0; j<lumFilterSize; j++)\
  763. {\
  764. Y1 += lumSrc[j][i] * lumFilter[j];\
  765. Y2 += lumSrc[j][i+1] * lumFilter[j];\
  766. }\
  767. Y1>>=19;\
  768. Y2>>=19;\
  769. if ((Y1|Y2)&256)\
  770. {\
  771. if (Y1>255) Y1=255;\
  772. else if (Y1<0)Y1=0;\
  773. if (Y2>255) Y2=255;\
  774. else if (Y2<0)Y2=0;\
  775. }\
  776. acc+= acc + g[Y1+d128[(i+0)&7]];\
  777. acc+= acc + g[Y2+d128[(i+1)&7]];\
  778. if ((i&7)==6){\
  779. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  780. dest++;\
  781. }\
  782. }
  783. #define YSCALE_YUV_2_ANYRGB_C(func, func2, func_g16, func_monoblack)\
  784. switch(c->dstFormat)\
  785. {\
  786. case PIX_FMT_RGB48BE:\
  787. case PIX_FMT_RGB48LE:\
  788. func(uint8_t,0)\
  789. ((uint8_t*)dest)[ 0]= r[Y1];\
  790. ((uint8_t*)dest)[ 1]= r[Y1];\
  791. ((uint8_t*)dest)[ 2]= g[Y1];\
  792. ((uint8_t*)dest)[ 3]= g[Y1];\
  793. ((uint8_t*)dest)[ 4]= b[Y1];\
  794. ((uint8_t*)dest)[ 5]= b[Y1];\
  795. ((uint8_t*)dest)[ 6]= r[Y2];\
  796. ((uint8_t*)dest)[ 7]= r[Y2];\
  797. ((uint8_t*)dest)[ 8]= g[Y2];\
  798. ((uint8_t*)dest)[ 9]= g[Y2];\
  799. ((uint8_t*)dest)[10]= b[Y2];\
  800. ((uint8_t*)dest)[11]= b[Y2];\
  801. dest+=12;\
  802. }\
  803. break;\
  804. case PIX_FMT_RGBA:\
  805. case PIX_FMT_BGRA:\
  806. if (CONFIG_SMALL){\
  807. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;\
  808. func(uint32_t,needAlpha)\
  809. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (needAlpha ? (A1<<24) : 0);\
  810. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (needAlpha ? (A2<<24) : 0);\
  811. }\
  812. }else{\
  813. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){\
  814. func(uint32_t,1)\
  815. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (A1<<24);\
  816. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (A2<<24);\
  817. }\
  818. }else{\
  819. func(uint32_t,0)\
  820. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  821. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  822. }\
  823. }\
  824. }\
  825. break;\
  826. case PIX_FMT_ARGB:\
  827. case PIX_FMT_ABGR:\
  828. if (CONFIG_SMALL){\
  829. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;\
  830. func(uint32_t,needAlpha)\
  831. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (needAlpha ? A1 : 0);\
  832. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (needAlpha ? A2 : 0);\
  833. }\
  834. }else{\
  835. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){\
  836. func(uint32_t,1)\
  837. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + A1;\
  838. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + A2;\
  839. }\
  840. }else{\
  841. func(uint32_t,0)\
  842. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  843. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  844. }\
  845. }\
  846. } \
  847. break;\
  848. case PIX_FMT_RGB24:\
  849. func(uint8_t,0)\
  850. ((uint8_t*)dest)[0]= r[Y1];\
  851. ((uint8_t*)dest)[1]= g[Y1];\
  852. ((uint8_t*)dest)[2]= b[Y1];\
  853. ((uint8_t*)dest)[3]= r[Y2];\
  854. ((uint8_t*)dest)[4]= g[Y2];\
  855. ((uint8_t*)dest)[5]= b[Y2];\
  856. dest+=6;\
  857. }\
  858. break;\
  859. case PIX_FMT_BGR24:\
  860. func(uint8_t,0)\
  861. ((uint8_t*)dest)[0]= b[Y1];\
  862. ((uint8_t*)dest)[1]= g[Y1];\
  863. ((uint8_t*)dest)[2]= r[Y1];\
  864. ((uint8_t*)dest)[3]= b[Y2];\
  865. ((uint8_t*)dest)[4]= g[Y2];\
  866. ((uint8_t*)dest)[5]= r[Y2];\
  867. dest+=6;\
  868. }\
  869. break;\
  870. case PIX_FMT_RGB565:\
  871. case PIX_FMT_BGR565:\
  872. {\
  873. const int dr1= dither_2x2_8[y&1 ][0];\
  874. const int dg1= dither_2x2_4[y&1 ][0];\
  875. const int db1= dither_2x2_8[(y&1)^1][0];\
  876. const int dr2= dither_2x2_8[y&1 ][1];\
  877. const int dg2= dither_2x2_4[y&1 ][1];\
  878. const int db2= dither_2x2_8[(y&1)^1][1];\
  879. func(uint16_t,0)\
  880. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  881. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  882. }\
  883. }\
  884. break;\
  885. case PIX_FMT_RGB555:\
  886. case PIX_FMT_BGR555:\
  887. {\
  888. const int dr1= dither_2x2_8[y&1 ][0];\
  889. const int dg1= dither_2x2_8[y&1 ][1];\
  890. const int db1= dither_2x2_8[(y&1)^1][0];\
  891. const int dr2= dither_2x2_8[y&1 ][1];\
  892. const int dg2= dither_2x2_8[y&1 ][0];\
  893. const int db2= dither_2x2_8[(y&1)^1][1];\
  894. func(uint16_t,0)\
  895. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  896. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  897. }\
  898. }\
  899. break;\
  900. case PIX_FMT_RGB8:\
  901. case PIX_FMT_BGR8:\
  902. {\
  903. const uint8_t * const d64= dither_8x8_73[y&7];\
  904. const uint8_t * const d32= dither_8x8_32[y&7];\
  905. func(uint8_t,0)\
  906. ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
  907. ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
  908. }\
  909. }\
  910. break;\
  911. case PIX_FMT_RGB4:\
  912. case PIX_FMT_BGR4:\
  913. {\
  914. const uint8_t * const d64= dither_8x8_73 [y&7];\
  915. const uint8_t * const d128=dither_8x8_220[y&7];\
  916. func(uint8_t,0)\
  917. ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
  918. + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
  919. }\
  920. }\
  921. break;\
  922. case PIX_FMT_RGB4_BYTE:\
  923. case PIX_FMT_BGR4_BYTE:\
  924. {\
  925. const uint8_t * const d64= dither_8x8_73 [y&7];\
  926. const uint8_t * const d128=dither_8x8_220[y&7];\
  927. func(uint8_t,0)\
  928. ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
  929. ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
  930. }\
  931. }\
  932. break;\
  933. case PIX_FMT_MONOBLACK:\
  934. case PIX_FMT_MONOWHITE:\
  935. {\
  936. func_monoblack\
  937. }\
  938. break;\
  939. case PIX_FMT_YUYV422:\
  940. func2\
  941. ((uint8_t*)dest)[2*i2+0]= Y1;\
  942. ((uint8_t*)dest)[2*i2+1]= U;\
  943. ((uint8_t*)dest)[2*i2+2]= Y2;\
  944. ((uint8_t*)dest)[2*i2+3]= V;\
  945. } \
  946. break;\
  947. case PIX_FMT_UYVY422:\
  948. func2\
  949. ((uint8_t*)dest)[2*i2+0]= U;\
  950. ((uint8_t*)dest)[2*i2+1]= Y1;\
  951. ((uint8_t*)dest)[2*i2+2]= V;\
  952. ((uint8_t*)dest)[2*i2+3]= Y2;\
  953. } \
  954. break;\
  955. case PIX_FMT_GRAY16BE:\
  956. func_g16\
  957. ((uint8_t*)dest)[2*i2+0]= Y1>>8;\
  958. ((uint8_t*)dest)[2*i2+1]= Y1;\
  959. ((uint8_t*)dest)[2*i2+2]= Y2>>8;\
  960. ((uint8_t*)dest)[2*i2+3]= Y2;\
  961. } \
  962. break;\
  963. case PIX_FMT_GRAY16LE:\
  964. func_g16\
  965. ((uint8_t*)dest)[2*i2+0]= Y1;\
  966. ((uint8_t*)dest)[2*i2+1]= Y1>>8;\
  967. ((uint8_t*)dest)[2*i2+2]= Y2;\
  968. ((uint8_t*)dest)[2*i2+3]= Y2>>8;\
  969. } \
  970. break;\
  971. }\
  972. static inline void yuv2packedXinC(SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  973. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  974. const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
  975. {
  976. int i;
  977. YSCALE_YUV_2_ANYRGB_C(YSCALE_YUV_2_RGBX_C, YSCALE_YUV_2_PACKEDX_C(void,0), YSCALE_YUV_2_GRAY16_C, YSCALE_YUV_2_MONOX_C)
  978. }
  979. static inline void yuv2rgbXinC_full(SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  980. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  981. const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
  982. {
  983. int i;
  984. int step= fmt_depth(c->dstFormat)/8;
  985. int aidx= 3;
  986. switch(c->dstFormat){
  987. case PIX_FMT_ARGB:
  988. dest++;
  989. aidx= 0;
  990. case PIX_FMT_RGB24:
  991. aidx--;
  992. case PIX_FMT_RGBA:
  993. if (CONFIG_SMALL){
  994. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;
  995. YSCALE_YUV_2_RGBX_FULL_C(1<<21, needAlpha)
  996. dest[aidx]= needAlpha ? A : 255;
  997. dest[0]= R>>22;
  998. dest[1]= G>>22;
  999. dest[2]= B>>22;
  1000. dest+= step;
  1001. }
  1002. }else{
  1003. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){
  1004. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 1)
  1005. dest[aidx]= A;
  1006. dest[0]= R>>22;
  1007. dest[1]= G>>22;
  1008. dest[2]= B>>22;
  1009. dest+= step;
  1010. }
  1011. }else{
  1012. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 0)
  1013. dest[aidx]= 255;
  1014. dest[0]= R>>22;
  1015. dest[1]= G>>22;
  1016. dest[2]= B>>22;
  1017. dest+= step;
  1018. }
  1019. }
  1020. }
  1021. break;
  1022. case PIX_FMT_ABGR:
  1023. dest++;
  1024. aidx= 0;
  1025. case PIX_FMT_BGR24:
  1026. aidx--;
  1027. case PIX_FMT_BGRA:
  1028. if (CONFIG_SMALL){
  1029. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;
  1030. YSCALE_YUV_2_RGBX_FULL_C(1<<21, needAlpha)
  1031. dest[aidx]= needAlpha ? A : 255;
  1032. dest[0]= B>>22;
  1033. dest[1]= G>>22;
  1034. dest[2]= R>>22;
  1035. dest+= step;
  1036. }
  1037. }else{
  1038. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){
  1039. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 1)
  1040. dest[aidx]= A;
  1041. dest[0]= B>>22;
  1042. dest[1]= G>>22;
  1043. dest[2]= R>>22;
  1044. dest+= step;
  1045. }
  1046. }else{
  1047. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 0)
  1048. dest[aidx]= 255;
  1049. dest[0]= B>>22;
  1050. dest[1]= G>>22;
  1051. dest[2]= R>>22;
  1052. dest+= step;
  1053. }
  1054. }
  1055. }
  1056. break;
  1057. default:
  1058. assert(0);
  1059. }
  1060. }
  1061. static void fillPlane(uint8_t* plane, int stride, int width, int height, int y, uint8_t val){
  1062. int i;
  1063. uint8_t *ptr = plane + stride*y;
  1064. for (i=0; i<height; i++){
  1065. memset(ptr, val, width);
  1066. ptr += stride;
  1067. }
  1068. }
  1069. static inline void rgb48ToY(uint8_t *dst, const uint8_t *src, int width)
  1070. {
  1071. int i;
  1072. for (i = 0; i < width; i++) {
  1073. int r = src[i*6+0];
  1074. int g = src[i*6+2];
  1075. int b = src[i*6+4];
  1076. dst[i] = (RY*r + GY*g + BY*b + (33<<(RGB2YUV_SHIFT-1))) >> RGB2YUV_SHIFT;
  1077. }
  1078. }
  1079. static inline void rgb48ToUV(uint8_t *dstU, uint8_t *dstV,
  1080. uint8_t *src1, uint8_t *src2, int width)
  1081. {
  1082. int i;
  1083. assert(src1==src2);
  1084. for (i = 0; i < width; i++) {
  1085. int r = src1[6*i + 0];
  1086. int g = src1[6*i + 2];
  1087. int b = src1[6*i + 4];
  1088. dstU[i] = (RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1))) >> RGB2YUV_SHIFT;
  1089. dstV[i] = (RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1))) >> RGB2YUV_SHIFT;
  1090. }
  1091. }
  1092. static inline void rgb48ToUV_half(uint8_t *dstU, uint8_t *dstV,
  1093. uint8_t *src1, uint8_t *src2, int width)
  1094. {
  1095. int i;
  1096. assert(src1==src2);
  1097. for (i = 0; i < width; i++) {
  1098. int r= src1[12*i + 0] + src1[12*i + 6];
  1099. int g= src1[12*i + 2] + src1[12*i + 8];
  1100. int b= src1[12*i + 4] + src1[12*i + 10];
  1101. dstU[i]= (RU*r + GU*g + BU*b + (257<<RGB2YUV_SHIFT)) >> (RGB2YUV_SHIFT+1);
  1102. dstV[i]= (RV*r + GV*g + BV*b + (257<<RGB2YUV_SHIFT)) >> (RGB2YUV_SHIFT+1);
  1103. }
  1104. }
  1105. #define BGR2Y(type, name, shr, shg, shb, maskr, maskg, maskb, RY, GY, BY, S)\
  1106. static inline void name(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused)\
  1107. {\
  1108. int i;\
  1109. for (i=0; i<width; i++)\
  1110. {\
  1111. int b= (((const type*)src)[i]>>shb)&maskb;\
  1112. int g= (((const type*)src)[i]>>shg)&maskg;\
  1113. int r= (((const type*)src)[i]>>shr)&maskr;\
  1114. \
  1115. dst[i]= (((RY)*r + (GY)*g + (BY)*b + (33<<((S)-1)))>>(S));\
  1116. }\
  1117. }
  1118. BGR2Y(uint32_t, bgr32ToY,16, 0, 0, 0x00FF, 0xFF00, 0x00FF, RY<< 8, GY , BY<< 8, RGB2YUV_SHIFT+8)
  1119. BGR2Y(uint32_t, rgb32ToY, 0, 0,16, 0x00FF, 0xFF00, 0x00FF, RY<< 8, GY , BY<< 8, RGB2YUV_SHIFT+8)
  1120. BGR2Y(uint16_t, bgr16ToY, 0, 0, 0, 0x001F, 0x07E0, 0xF800, RY<<11, GY<<5, BY , RGB2YUV_SHIFT+8)
  1121. BGR2Y(uint16_t, bgr15ToY, 0, 0, 0, 0x001F, 0x03E0, 0x7C00, RY<<10, GY<<5, BY , RGB2YUV_SHIFT+7)
  1122. BGR2Y(uint16_t, rgb16ToY, 0, 0, 0, 0xF800, 0x07E0, 0x001F, RY , GY<<5, BY<<11, RGB2YUV_SHIFT+8)
  1123. BGR2Y(uint16_t, rgb15ToY, 0, 0, 0, 0x7C00, 0x03E0, 0x001F, RY , GY<<5, BY<<10, RGB2YUV_SHIFT+7)
  1124. static inline void abgrToA(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused){
  1125. int i;
  1126. for (i=0; i<width; i++){
  1127. dst[i]= src[4*i];
  1128. }
  1129. }
  1130. #define BGR2UV(type, name, shr, shg, shb, maska, maskr, maskg, maskb, RU, GU, BU, RV, GV, BV, S)\
  1131. static inline void name(uint8_t *dstU, uint8_t *dstV, const uint8_t *src, const uint8_t *dummy, long width, uint32_t *unused)\
  1132. {\
  1133. int i;\
  1134. for (i=0; i<width; i++)\
  1135. {\
  1136. int b= (((const type*)src)[i]&maskb)>>shb;\
  1137. int g= (((const type*)src)[i]&maskg)>>shg;\
  1138. int r= (((const type*)src)[i]&maskr)>>shr;\
  1139. \
  1140. dstU[i]= ((RU)*r + (GU)*g + (BU)*b + (257<<((S)-1)))>>(S);\
  1141. dstV[i]= ((RV)*r + (GV)*g + (BV)*b + (257<<((S)-1)))>>(S);\
  1142. }\
  1143. }\
  1144. static inline void name ## _half(uint8_t *dstU, uint8_t *dstV, const uint8_t *src, const uint8_t *dummy, long width, uint32_t *unused)\
  1145. {\
  1146. int i;\
  1147. for (i=0; i<width; i++)\
  1148. {\
  1149. int pix0= ((const type*)src)[2*i+0];\
  1150. int pix1= ((const type*)src)[2*i+1];\
  1151. int g= (pix0&~(maskr|maskb))+(pix1&~(maskr|maskb));\
  1152. int b= ((pix0+pix1-g)&(maskb|(2*maskb)))>>shb;\
  1153. int r= ((pix0+pix1-g)&(maskr|(2*maskr)))>>shr;\
  1154. g&= maskg|(2*maskg);\
  1155. \
  1156. g>>=shg;\
  1157. \
  1158. dstU[i]= ((RU)*r + (GU)*g + (BU)*b + (257<<(S)))>>((S)+1);\
  1159. dstV[i]= ((RV)*r + (GV)*g + (BV)*b + (257<<(S)))>>((S)+1);\
  1160. }\
  1161. }
  1162. BGR2UV(uint32_t, bgr32ToUV,16, 0, 0, 0xFF000000, 0xFF0000, 0xFF00, 0x00FF, RU<< 8, GU , BU<< 8, RV<< 8, GV , BV<< 8, RGB2YUV_SHIFT+8)
  1163. BGR2UV(uint32_t, rgb32ToUV, 0, 0,16, 0xFF000000, 0x00FF, 0xFF00, 0xFF0000, RU<< 8, GU , BU<< 8, RV<< 8, GV , BV<< 8, RGB2YUV_SHIFT+8)
  1164. BGR2UV(uint16_t, bgr16ToUV, 0, 0, 0, 0, 0x001F, 0x07E0, 0xF800, RU<<11, GU<<5, BU , RV<<11, GV<<5, BV , RGB2YUV_SHIFT+8)
  1165. BGR2UV(uint16_t, bgr15ToUV, 0, 0, 0, 0, 0x001F, 0x03E0, 0x7C00, RU<<10, GU<<5, BU , RV<<10, GV<<5, BV , RGB2YUV_SHIFT+7)
  1166. BGR2UV(uint16_t, rgb16ToUV, 0, 0, 0, 0, 0xF800, 0x07E0, 0x001F, RU , GU<<5, BU<<11, RV , GV<<5, BV<<11, RGB2YUV_SHIFT+8)
  1167. BGR2UV(uint16_t, rgb15ToUV, 0, 0, 0, 0, 0x7C00, 0x03E0, 0x001F, RU , GU<<5, BU<<10, RV , GV<<5, BV<<10, RGB2YUV_SHIFT+7)
  1168. static inline void palToY(uint8_t *dst, const uint8_t *src, long width, uint32_t *pal)
  1169. {
  1170. int i;
  1171. for (i=0; i<width; i++)
  1172. {
  1173. int d= src[i];
  1174. dst[i]= pal[d] & 0xFF;
  1175. }
  1176. }
  1177. static inline void palToUV(uint8_t *dstU, uint8_t *dstV,
  1178. const uint8_t *src1, const uint8_t *src2,
  1179. long width, uint32_t *pal)
  1180. {
  1181. int i;
  1182. assert(src1 == src2);
  1183. for (i=0; i<width; i++)
  1184. {
  1185. int p= pal[src1[i]];
  1186. dstU[i]= p>>8;
  1187. dstV[i]= p>>16;
  1188. }
  1189. }
  1190. static inline void monowhite2Y(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused)
  1191. {
  1192. int i, j;
  1193. for (i=0; i<width/8; i++){
  1194. int d= ~src[i];
  1195. for(j=0; j<8; j++)
  1196. dst[8*i+j]= ((d>>(7-j))&1)*255;
  1197. }
  1198. }
  1199. static inline void monoblack2Y(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused)
  1200. {
  1201. int i, j;
  1202. for (i=0; i<width/8; i++){
  1203. int d= src[i];
  1204. for(j=0; j<8; j++)
  1205. dst[8*i+j]= ((d>>(7-j))&1)*255;
  1206. }
  1207. }
  1208. //Note: we have C, MMX, MMX2, 3DNOW versions, there is no 3DNOW+MMX2 one
  1209. //Plain C versions
  1210. #if !HAVE_MMX || CONFIG_RUNTIME_CPUDETECT || !CONFIG_GPL
  1211. #define COMPILE_C
  1212. #endif
  1213. #if ARCH_PPC
  1214. #if (HAVE_ALTIVEC || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1215. #undef COMPILE_C
  1216. #define COMPILE_ALTIVEC
  1217. #endif
  1218. #endif //ARCH_PPC
  1219. #if ARCH_X86
  1220. #if ((HAVE_MMX && !HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1221. #define COMPILE_MMX
  1222. #endif
  1223. #if (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1224. #define COMPILE_MMX2
  1225. #endif
  1226. #if ((HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1227. #define COMPILE_3DNOW
  1228. #endif
  1229. #endif //ARCH_X86
  1230. #undef HAVE_MMX
  1231. #undef HAVE_MMX2
  1232. #undef HAVE_AMD3DNOW
  1233. #undef HAVE_ALTIVEC
  1234. #define HAVE_MMX 0
  1235. #define HAVE_MMX2 0
  1236. #define HAVE_AMD3DNOW 0
  1237. #define HAVE_ALTIVEC 0
  1238. #ifdef COMPILE_C
  1239. #define RENAME(a) a ## _C
  1240. #include "swscale_template.c"
  1241. #endif
  1242. #ifdef COMPILE_ALTIVEC
  1243. #undef RENAME
  1244. #undef HAVE_ALTIVEC
  1245. #define HAVE_ALTIVEC 1
  1246. #define RENAME(a) a ## _altivec
  1247. #include "swscale_template.c"
  1248. #endif
  1249. #if ARCH_X86
  1250. //MMX versions
  1251. #ifdef COMPILE_MMX
  1252. #undef RENAME
  1253. #undef HAVE_MMX
  1254. #undef HAVE_MMX2
  1255. #undef HAVE_AMD3DNOW
  1256. #define HAVE_MMX 1
  1257. #define HAVE_MMX2 0
  1258. #define HAVE_AMD3DNOW 0
  1259. #define RENAME(a) a ## _MMX
  1260. #include "swscale_template.c"
  1261. #endif
  1262. //MMX2 versions
  1263. #ifdef COMPILE_MMX2
  1264. #undef RENAME
  1265. #undef HAVE_MMX
  1266. #undef HAVE_MMX2
  1267. #undef HAVE_AMD3DNOW
  1268. #define HAVE_MMX 1
  1269. #define HAVE_MMX2 1
  1270. #define HAVE_AMD3DNOW 0
  1271. #define RENAME(a) a ## _MMX2
  1272. #include "swscale_template.c"
  1273. #endif
  1274. //3DNOW versions
  1275. #ifdef COMPILE_3DNOW
  1276. #undef RENAME
  1277. #undef HAVE_MMX
  1278. #undef HAVE_MMX2
  1279. #undef HAVE_AMD3DNOW
  1280. #define HAVE_MMX 1
  1281. #define HAVE_MMX2 0
  1282. #define HAVE_AMD3DNOW 1
  1283. #define RENAME(a) a ## _3DNow
  1284. #include "swscale_template.c"
  1285. #endif
  1286. #endif //ARCH_X86
  1287. // minor note: the HAVE_xyz are messed up after this line so don't use them
  1288. static double getSplineCoeff(double a, double b, double c, double d, double dist)
  1289. {
  1290. // printf("%f %f %f %f %f\n", a,b,c,d,dist);
  1291. if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
  1292. else return getSplineCoeff( 0.0,
  1293. b+ 2.0*c + 3.0*d,
  1294. c + 3.0*d,
  1295. -b- 3.0*c - 6.0*d,
  1296. dist-1.0);
  1297. }
  1298. static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
  1299. int srcW, int dstW, int filterAlign, int one, int flags,
  1300. SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
  1301. {
  1302. int i;
  1303. int filterSize;
  1304. int filter2Size;
  1305. int minFilterSize;
  1306. int64_t *filter=NULL;
  1307. int64_t *filter2=NULL;
  1308. const int64_t fone= 1LL<<54;
  1309. int ret= -1;
  1310. #if ARCH_X86
  1311. if (flags & SWS_CPU_CAPS_MMX)
  1312. __asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
  1313. #endif
  1314. // NOTE: the +1 is for the MMX scaler which reads over the end
  1315. *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
  1316. if (FFABS(xInc - 0x10000) <10) // unscaled
  1317. {
  1318. int i;
  1319. filterSize= 1;
  1320. filter= av_mallocz(dstW*sizeof(*filter)*filterSize);
  1321. for (i=0; i<dstW; i++)
  1322. {
  1323. filter[i*filterSize]= fone;
  1324. (*filterPos)[i]=i;
  1325. }
  1326. }
  1327. else if (flags&SWS_POINT) // lame looking point sampling mode
  1328. {
  1329. int i;
  1330. int xDstInSrc;
  1331. filterSize= 1;
  1332. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1333. xDstInSrc= xInc/2 - 0x8000;
  1334. for (i=0; i<dstW; i++)
  1335. {
  1336. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  1337. (*filterPos)[i]= xx;
  1338. filter[i]= fone;
  1339. xDstInSrc+= xInc;
  1340. }
  1341. }
  1342. else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
  1343. {
  1344. int i;
  1345. int xDstInSrc;
  1346. if (flags&SWS_BICUBIC) filterSize= 4;
  1347. else if (flags&SWS_X ) filterSize= 4;
  1348. else filterSize= 2; // SWS_BILINEAR / SWS_AREA
  1349. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1350. xDstInSrc= xInc/2 - 0x8000;
  1351. for (i=0; i<dstW; i++)
  1352. {
  1353. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  1354. int j;
  1355. (*filterPos)[i]= xx;
  1356. //bilinear upscale / linear interpolate / area averaging
  1357. for (j=0; j<filterSize; j++)
  1358. {
  1359. int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
  1360. if (coeff<0) coeff=0;
  1361. filter[i*filterSize + j]= coeff;
  1362. xx++;
  1363. }
  1364. xDstInSrc+= xInc;
  1365. }
  1366. }
  1367. else
  1368. {
  1369. int xDstInSrc;
  1370. int sizeFactor;
  1371. if (flags&SWS_BICUBIC) sizeFactor= 4;
  1372. else if (flags&SWS_X) sizeFactor= 8;
  1373. else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
  1374. else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
  1375. else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
  1376. else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
  1377. else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
  1378. else if (flags&SWS_BILINEAR) sizeFactor= 2;
  1379. else {
  1380. sizeFactor= 0; //GCC warning killer
  1381. assert(0);
  1382. }
  1383. if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
  1384. else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
  1385. if (filterSize > srcW-2) filterSize=srcW-2;
  1386. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1387. xDstInSrc= xInc - 0x10000;
  1388. for (i=0; i<dstW; i++)
  1389. {
  1390. int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
  1391. int j;
  1392. (*filterPos)[i]= xx;
  1393. for (j=0; j<filterSize; j++)
  1394. {
  1395. int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
  1396. double floatd;
  1397. int64_t coeff;
  1398. if (xInc > 1<<16)
  1399. d= d*dstW/srcW;
  1400. floatd= d * (1.0/(1<<30));
  1401. if (flags & SWS_BICUBIC)
  1402. {
  1403. int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
  1404. int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
  1405. int64_t dd = ( d*d)>>30;
  1406. int64_t ddd= (dd*d)>>30;
  1407. if (d < 1LL<<30)
  1408. coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
  1409. else if (d < 1LL<<31)
  1410. coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
  1411. else
  1412. coeff=0.0;
  1413. coeff *= fone>>(30+24);
  1414. }
  1415. /* else if (flags & SWS_X)
  1416. {
  1417. double p= param ? param*0.01 : 0.3;
  1418. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  1419. coeff*= pow(2.0, - p*d*d);
  1420. }*/
  1421. else if (flags & SWS_X)
  1422. {
  1423. double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  1424. double c;
  1425. if (floatd<1.0)
  1426. c = cos(floatd*PI);
  1427. else
  1428. c=-1.0;
  1429. if (c<0.0) c= -pow(-c, A);
  1430. else c= pow( c, A);
  1431. coeff= (c*0.5 + 0.5)*fone;
  1432. }
  1433. else if (flags & SWS_AREA)
  1434. {
  1435. int64_t d2= d - (1<<29);
  1436. if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
  1437. else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
  1438. else coeff=0.0;
  1439. coeff *= fone>>(30+16);
  1440. }
  1441. else if (flags & SWS_GAUSS)
  1442. {
  1443. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1444. coeff = (pow(2.0, - p*floatd*floatd))*fone;
  1445. }
  1446. else if (flags & SWS_SINC)
  1447. {
  1448. coeff = (d ? sin(floatd*PI)/(floatd*PI) : 1.0)*fone;
  1449. }
  1450. else if (flags & SWS_LANCZOS)
  1451. {
  1452. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1453. coeff = (d ? sin(floatd*PI)*sin(floatd*PI/p)/(floatd*floatd*PI*PI/p) : 1.0)*fone;
  1454. if (floatd>p) coeff=0;
  1455. }
  1456. else if (flags & SWS_BILINEAR)
  1457. {
  1458. coeff= (1<<30) - d;
  1459. if (coeff<0) coeff=0;
  1460. coeff *= fone >> 30;
  1461. }
  1462. else if (flags & SWS_SPLINE)
  1463. {
  1464. double p=-2.196152422706632;
  1465. coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
  1466. }
  1467. else {
  1468. coeff= 0.0; //GCC warning killer
  1469. assert(0);
  1470. }
  1471. filter[i*filterSize + j]= coeff;
  1472. xx++;
  1473. }
  1474. xDstInSrc+= 2*xInc;
  1475. }
  1476. }
  1477. /* apply src & dst Filter to filter -> filter2
  1478. av_free(filter);
  1479. */
  1480. assert(filterSize>0);
  1481. filter2Size= filterSize;
  1482. if (srcFilter) filter2Size+= srcFilter->length - 1;
  1483. if (dstFilter) filter2Size+= dstFilter->length - 1;
  1484. assert(filter2Size>0);
  1485. filter2= av_mallocz(filter2Size*dstW*sizeof(*filter2));
  1486. for (i=0; i<dstW; i++)
  1487. {
  1488. int j, k;
  1489. if(srcFilter){
  1490. for (k=0; k<srcFilter->length; k++){
  1491. for (j=0; j<filterSize; j++)
  1492. filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
  1493. }
  1494. }else{
  1495. for (j=0; j<filterSize; j++)
  1496. filter2[i*filter2Size + j]= filter[i*filterSize + j];
  1497. }
  1498. //FIXME dstFilter
  1499. (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
  1500. }
  1501. av_freep(&filter);
  1502. /* try to reduce the filter-size (step1 find size and shift left) */
  1503. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  1504. minFilterSize= 0;
  1505. for (i=dstW-1; i>=0; i--)
  1506. {
  1507. int min= filter2Size;
  1508. int j;
  1509. int64_t cutOff=0.0;
  1510. /* get rid off near zero elements on the left by shifting left */
  1511. for (j=0; j<filter2Size; j++)
  1512. {
  1513. int k;
  1514. cutOff += FFABS(filter2[i*filter2Size]);
  1515. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  1516. /* preserve monotonicity because the core can't handle the filter otherwise */
  1517. if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
  1518. // move filter coefficients left
  1519. for (k=1; k<filter2Size; k++)
  1520. filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
  1521. filter2[i*filter2Size + k - 1]= 0;
  1522. (*filterPos)[i]++;
  1523. }
  1524. cutOff=0;
  1525. /* count near zeros on the right */
  1526. for (j=filter2Size-1; j>0; j--)
  1527. {
  1528. cutOff += FFABS(filter2[i*filter2Size + j]);
  1529. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  1530. min--;
  1531. }
  1532. if (min>minFilterSize) minFilterSize= min;
  1533. }
  1534. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  1535. // we can handle the special case 4,
  1536. // so we don't want to go to the full 8
  1537. if (minFilterSize < 5)
  1538. filterAlign = 4;
  1539. // We really don't want to waste our time
  1540. // doing useless computation, so fall back on
  1541. // the scalar C code for very small filters.
  1542. // Vectorizing is worth it only if you have a
  1543. // decent-sized vector.
  1544. if (minFilterSize < 3)
  1545. filterAlign = 1;
  1546. }
  1547. if (flags & SWS_CPU_CAPS_MMX) {
  1548. // special case for unscaled vertical filtering
  1549. if (minFilterSize == 1 && filterAlign == 2)
  1550. filterAlign= 1;
  1551. }
  1552. assert(minFilterSize > 0);
  1553. filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
  1554. assert(filterSize > 0);
  1555. filter= av_malloc(filterSize*dstW*sizeof(*filter));
  1556. if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  1557. goto error;
  1558. *outFilterSize= filterSize;
  1559. if (flags&SWS_PRINT_INFO)
  1560. av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
  1561. /* try to reduce the filter-size (step2 reduce it) */
  1562. for (i=0; i<dstW; i++)
  1563. {
  1564. int j;
  1565. for (j=0; j<filterSize; j++)
  1566. {
  1567. if (j>=filter2Size) filter[i*filterSize + j]= 0;
  1568. else filter[i*filterSize + j]= filter2[i*filter2Size + j];
  1569. if((flags & SWS_BITEXACT) && j>=minFilterSize)
  1570. filter[i*filterSize + j]= 0;
  1571. }
  1572. }
  1573. //FIXME try to align filterPos if possible
  1574. //fix borders
  1575. for (i=0; i<dstW; i++)
  1576. {
  1577. int j;
  1578. if ((*filterPos)[i] < 0)
  1579. {
  1580. // move filter coefficients left to compensate for filterPos
  1581. for (j=1; j<filterSize; j++)
  1582. {
  1583. int left= FFMAX(j + (*filterPos)[i], 0);
  1584. filter[i*filterSize + left] += filter[i*filterSize + j];
  1585. filter[i*filterSize + j]=0;
  1586. }
  1587. (*filterPos)[i]= 0;
  1588. }
  1589. if ((*filterPos)[i] + filterSize > srcW)
  1590. {
  1591. int shift= (*filterPos)[i] + filterSize - srcW;
  1592. // move filter coefficients right to compensate for filterPos
  1593. for (j=filterSize-2; j>=0; j--)
  1594. {
  1595. int right= FFMIN(j + shift, filterSize-1);
  1596. filter[i*filterSize +right] += filter[i*filterSize +j];
  1597. filter[i*filterSize +j]=0;
  1598. }
  1599. (*filterPos)[i]= srcW - filterSize;
  1600. }
  1601. }
  1602. // Note the +1 is for the MMX scaler which reads over the end
  1603. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  1604. *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
  1605. /* normalize & store in outFilter */
  1606. for (i=0; i<dstW; i++)
  1607. {
  1608. int j;
  1609. int64_t error=0;
  1610. int64_t sum=0;
  1611. for (j=0; j<filterSize; j++)
  1612. {
  1613. sum+= filter[i*filterSize + j];
  1614. }
  1615. sum= (sum + one/2)/ one;
  1616. for (j=0; j<*outFilterSize; j++)
  1617. {
  1618. int64_t v= filter[i*filterSize + j] + error;
  1619. int intV= ROUNDED_DIV(v, sum);
  1620. (*outFilter)[i*(*outFilterSize) + j]= intV;
  1621. error= v - intV*sum;
  1622. }
  1623. }
  1624. (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
  1625. for (i=0; i<*outFilterSize; i++)
  1626. {
  1627. int j= dstW*(*outFilterSize);
  1628. (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
  1629. }
  1630. ret=0;
  1631. error:
  1632. av_free(filter);
  1633. av_free(filter2);
  1634. return ret;
  1635. }
  1636. #ifdef COMPILE_MMX2
  1637. static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
  1638. {
  1639. uint8_t *fragmentA;
  1640. x86_reg imm8OfPShufW1A;
  1641. x86_reg imm8OfPShufW2A;
  1642. x86_reg fragmentLengthA;
  1643. uint8_t *fragmentB;
  1644. x86_reg imm8OfPShufW1B;
  1645. x86_reg imm8OfPShufW2B;
  1646. x86_reg fragmentLengthB;
  1647. int fragmentPos;
  1648. int xpos, i;
  1649. // create an optimized horizontal scaling routine
  1650. //code fragment
  1651. __asm__ volatile(
  1652. "jmp 9f \n\t"
  1653. // Begin
  1654. "0: \n\t"
  1655. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1656. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1657. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  1658. "punpcklbw %%mm7, %%mm1 \n\t"
  1659. "punpcklbw %%mm7, %%mm0 \n\t"
  1660. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  1661. "1: \n\t"
  1662. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1663. "2: \n\t"
  1664. "psubw %%mm1, %%mm0 \n\t"
  1665. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1666. "pmullw %%mm3, %%mm0 \n\t"
  1667. "psllw $7, %%mm1 \n\t"
  1668. "paddw %%mm1, %%mm0 \n\t"
  1669. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1670. "add $8, %%"REG_a" \n\t"
  1671. // End
  1672. "9: \n\t"
  1673. // "int $3 \n\t"
  1674. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1675. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1676. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1677. "dec %1 \n\t"
  1678. "dec %2 \n\t"
  1679. "sub %0, %1 \n\t"
  1680. "sub %0, %2 \n\t"
  1681. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1682. "sub %0, %3 \n\t"
  1683. :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  1684. "=r" (fragmentLengthA)
  1685. );
  1686. __asm__ volatile(
  1687. "jmp 9f \n\t"
  1688. // Begin
  1689. "0: \n\t"
  1690. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1691. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1692. "punpcklbw %%mm7, %%mm0 \n\t"
  1693. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  1694. "1: \n\t"
  1695. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1696. "2: \n\t"
  1697. "psubw %%mm1, %%mm0 \n\t"
  1698. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1699. "pmullw %%mm3, %%mm0 \n\t"
  1700. "psllw $7, %%mm1 \n\t"
  1701. "paddw %%mm1, %%mm0 \n\t"
  1702. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1703. "add $8, %%"REG_a" \n\t"
  1704. // End
  1705. "9: \n\t"
  1706. // "int $3 \n\t"
  1707. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1708. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1709. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1710. "dec %1 \n\t"
  1711. "dec %2 \n\t"
  1712. "sub %0, %1 \n\t"
  1713. "sub %0, %2 \n\t"
  1714. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1715. "sub %0, %3 \n\t"
  1716. :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  1717. "=r" (fragmentLengthB)
  1718. );
  1719. xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
  1720. fragmentPos=0;
  1721. for (i=0; i<dstW/numSplits; i++)
  1722. {
  1723. int xx=xpos>>16;
  1724. if ((i&3) == 0)
  1725. {
  1726. int a=0;
  1727. int b=((xpos+xInc)>>16) - xx;
  1728. int c=((xpos+xInc*2)>>16) - xx;
  1729. int d=((xpos+xInc*3)>>16) - xx;
  1730. filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
  1731. filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
  1732. filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
  1733. filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
  1734. filterPos[i/2]= xx;
  1735. if (d+1<4)
  1736. {
  1737. int maxShift= 3-(d+1);
  1738. int shift=0;
  1739. memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
  1740. funnyCode[fragmentPos + imm8OfPShufW1B]=
  1741. (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
  1742. funnyCode[fragmentPos + imm8OfPShufW2B]=
  1743. a | (b<<2) | (c<<4) | (d<<6);
  1744. if (i+3>=dstW) shift=maxShift; //avoid overread
  1745. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
  1746. if (shift && i>=shift)
  1747. {
  1748. funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
  1749. funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
  1750. filterPos[i/2]-=shift;
  1751. }
  1752. fragmentPos+= fragmentLengthB;
  1753. }
  1754. else
  1755. {
  1756. int maxShift= 3-d;
  1757. int shift=0;
  1758. memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
  1759. funnyCode[fragmentPos + imm8OfPShufW1A]=
  1760. funnyCode[fragmentPos + imm8OfPShufW2A]=
  1761. a | (b<<2) | (c<<4) | (d<<6);
  1762. if (i+4>=dstW) shift=maxShift; //avoid overread
  1763. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
  1764. if (shift && i>=shift)
  1765. {
  1766. funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
  1767. funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
  1768. filterPos[i/2]-=shift;
  1769. }
  1770. fragmentPos+= fragmentLengthA;
  1771. }
  1772. funnyCode[fragmentPos]= RET;
  1773. }
  1774. xpos+=xInc;
  1775. }
  1776. filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
  1777. }
  1778. #endif /* COMPILE_MMX2 */
  1779. static void globalInit(void){
  1780. // generating tables:
  1781. int i;
  1782. for (i=0; i<768; i++){
  1783. int c= av_clip_uint8(i-256);
  1784. clip_table[i]=c;
  1785. }
  1786. }
  1787. static SwsFunc getSwsFunc(SwsContext *c)
  1788. {
  1789. #if CONFIG_RUNTIME_CPUDETECT && CONFIG_GPL
  1790. int flags = c->flags;
  1791. #if ARCH_X86
  1792. // ordered per speed fastest first
  1793. if (flags & SWS_CPU_CAPS_MMX2) {
  1794. sws_init_swScale_MMX2(c);
  1795. return swScale_MMX2;
  1796. } else if (flags & SWS_CPU_CAPS_3DNOW) {
  1797. sws_init_swScale_3DNow(c);
  1798. return swScale_3DNow;
  1799. } else if (flags & SWS_CPU_CAPS_MMX) {
  1800. sws_init_swScale_MMX(c);
  1801. return swScale_MMX;
  1802. } else {
  1803. sws_init_swScale_C(c);
  1804. return swScale_C;
  1805. }
  1806. #else
  1807. #if ARCH_PPC
  1808. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  1809. sws_init_swScale_altivec(c);
  1810. return swScale_altivec;
  1811. } else {
  1812. sws_init_swScale_C(c);
  1813. return swScale_C;
  1814. }
  1815. #endif
  1816. sws_init_swScale_C(c);
  1817. return swScale_C;
  1818. #endif /* ARCH_X86 */
  1819. #else //CONFIG_RUNTIME_CPUDETECT
  1820. #if HAVE_MMX2
  1821. sws_init_swScale_MMX2(c);
  1822. return swScale_MMX2;
  1823. #elif HAVE_AMD3DNOW
  1824. sws_init_swScale_3DNow(c);
  1825. return swScale_3DNow;
  1826. #elif HAVE_MMX
  1827. sws_init_swScale_MMX(c);
  1828. return swScale_MMX;
  1829. #elif HAVE_ALTIVEC
  1830. sws_init_swScale_altivec(c);
  1831. return swScale_altivec;
  1832. #else
  1833. sws_init_swScale_C(c);
  1834. return swScale_C;
  1835. #endif
  1836. #endif //!CONFIG_RUNTIME_CPUDETECT
  1837. }
  1838. static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1839. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1840. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1841. /* Copy Y plane */
  1842. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1843. memcpy(dst, src[0], srcSliceH*dstStride[0]);
  1844. else
  1845. {
  1846. int i;
  1847. const uint8_t *srcPtr= src[0];
  1848. uint8_t *dstPtr= dst;
  1849. for (i=0; i<srcSliceH; i++)
  1850. {
  1851. memcpy(dstPtr, srcPtr, c->srcW);
  1852. srcPtr+= srcStride[0];
  1853. dstPtr+= dstStride[0];
  1854. }
  1855. }
  1856. dst = dstParam[1] + dstStride[1]*srcSliceY/2;
  1857. if (c->dstFormat == PIX_FMT_NV12)
  1858. interleaveBytes(src[1], src[2], dst, c->srcW/2, srcSliceH/2, srcStride[1], srcStride[2], dstStride[0]);
  1859. else
  1860. interleaveBytes(src[2], src[1], dst, c->srcW/2, srcSliceH/2, srcStride[2], srcStride[1], dstStride[0]);
  1861. return srcSliceH;
  1862. }
  1863. static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1864. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1865. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1866. yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1867. return srcSliceH;
  1868. }
  1869. static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1870. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1871. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1872. yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1873. return srcSliceH;
  1874. }
  1875. static int YUV422PToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1876. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1877. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1878. yuv422ptoyuy2(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1879. return srcSliceH;
  1880. }
  1881. static int YUV422PToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1882. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1883. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1884. yuv422ptouyvy(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1885. return srcSliceH;
  1886. }
  1887. static int YUYV2YUV420Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1888. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1889. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1890. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2;
  1891. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2;
  1892. yuyvtoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1893. if (dstParam[3])
  1894. fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  1895. return srcSliceH;
  1896. }
  1897. static int YUYV2YUV422Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1898. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1899. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1900. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY;
  1901. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY;
  1902. yuyvtoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1903. return srcSliceH;
  1904. }
  1905. static int UYVY2YUV420Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1906. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1907. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1908. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2;
  1909. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2;
  1910. uyvytoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1911. if (dstParam[3])
  1912. fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  1913. return srcSliceH;
  1914. }
  1915. static int UYVY2YUV422Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1916. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1917. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1918. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY;
  1919. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY;
  1920. uyvytoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1921. return srcSliceH;
  1922. }
  1923. static int pal2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1924. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1925. const enum PixelFormat srcFormat= c->srcFormat;
  1926. const enum PixelFormat dstFormat= c->dstFormat;
  1927. void (*conv)(const uint8_t *src, uint8_t *dst, long num_pixels,
  1928. const uint8_t *palette)=NULL;
  1929. int i;
  1930. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1931. uint8_t *srcPtr= src[0];
  1932. if (!usePal(srcFormat))
  1933. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1934. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1935. switch(dstFormat){
  1936. case PIX_FMT_RGB32 : conv = palette8topacked32; break;
  1937. case PIX_FMT_BGR32 : conv = palette8topacked32; break;
  1938. case PIX_FMT_BGR32_1: conv = palette8topacked32; break;
  1939. case PIX_FMT_RGB32_1: conv = palette8topacked32; break;
  1940. case PIX_FMT_RGB24 : conv = palette8topacked24; break;
  1941. case PIX_FMT_BGR24 : conv = palette8topacked24; break;
  1942. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1943. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1944. }
  1945. for (i=0; i<srcSliceH; i++) {
  1946. conv(srcPtr, dstPtr, c->srcW, (uint8_t *) c->pal_rgb);
  1947. srcPtr+= srcStride[0];
  1948. dstPtr+= dstStride[0];
  1949. }
  1950. return srcSliceH;
  1951. }
  1952. /* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
  1953. static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1954. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1955. const enum PixelFormat srcFormat= c->srcFormat;
  1956. const enum PixelFormat dstFormat= c->dstFormat;
  1957. const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
  1958. const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
  1959. const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
  1960. const int dstId= fmt_depth(dstFormat) >> 2;
  1961. void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
  1962. /* BGR -> BGR */
  1963. if ( (isBGR(srcFormat) && isBGR(dstFormat))
  1964. || (isRGB(srcFormat) && isRGB(dstFormat))){
  1965. switch(srcId | (dstId<<4)){
  1966. case 0x34: conv= rgb16to15; break;
  1967. case 0x36: conv= rgb24to15; break;
  1968. case 0x38: conv= rgb32to15; break;
  1969. case 0x43: conv= rgb15to16; break;
  1970. case 0x46: conv= rgb24to16; break;
  1971. case 0x48: conv= rgb32to16; break;
  1972. case 0x63: conv= rgb15to24; break;
  1973. case 0x64: conv= rgb16to24; break;
  1974. case 0x68: conv= rgb32to24; break;
  1975. case 0x83: conv= rgb15to32; break;
  1976. case 0x84: conv= rgb16to32; break;
  1977. case 0x86: conv= rgb24to32; break;
  1978. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1979. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1980. }
  1981. }else if ( (isBGR(srcFormat) && isRGB(dstFormat))
  1982. || (isRGB(srcFormat) && isBGR(dstFormat))){
  1983. switch(srcId | (dstId<<4)){
  1984. case 0x33: conv= rgb15tobgr15; break;
  1985. case 0x34: conv= rgb16tobgr15; break;
  1986. case 0x36: conv= rgb24tobgr15; break;
  1987. case 0x38: conv= rgb32tobgr15; break;
  1988. case 0x43: conv= rgb15tobgr16; break;
  1989. case 0x44: conv= rgb16tobgr16; break;
  1990. case 0x46: conv= rgb24tobgr16; break;
  1991. case 0x48: conv= rgb32tobgr16; break;
  1992. case 0x63: conv= rgb15tobgr24; break;
  1993. case 0x64: conv= rgb16tobgr24; break;
  1994. case 0x66: conv= rgb24tobgr24; break;
  1995. case 0x68: conv= rgb32tobgr24; break;
  1996. case 0x83: conv= rgb15tobgr32; break;
  1997. case 0x84: conv= rgb16tobgr32; break;
  1998. case 0x86: conv= rgb24tobgr32; break;
  1999. case 0x88: conv= rgb32tobgr32; break;
  2000. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  2001. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  2002. }
  2003. }else{
  2004. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  2005. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2006. }
  2007. if(conv)
  2008. {
  2009. uint8_t *srcPtr= src[0];
  2010. if(srcFormat == PIX_FMT_RGB32_1 || srcFormat == PIX_FMT_BGR32_1)
  2011. srcPtr += ALT32_CORR;
  2012. if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0)
  2013. conv(srcPtr, dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
  2014. else
  2015. {
  2016. int i;
  2017. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  2018. for (i=0; i<srcSliceH; i++)
  2019. {
  2020. conv(srcPtr, dstPtr, c->srcW*srcBpp);
  2021. srcPtr+= srcStride[0];
  2022. dstPtr+= dstStride[0];
  2023. }
  2024. }
  2025. }
  2026. return srcSliceH;
  2027. }
  2028. static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2029. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2030. rgb24toyv12(
  2031. src[0],
  2032. dst[0]+ srcSliceY *dstStride[0],
  2033. dst[1]+(srcSliceY>>1)*dstStride[1],
  2034. dst[2]+(srcSliceY>>1)*dstStride[2],
  2035. c->srcW, srcSliceH,
  2036. dstStride[0], dstStride[1], srcStride[0]);
  2037. if (dst[3])
  2038. fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  2039. return srcSliceH;
  2040. }
  2041. static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2042. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2043. int i;
  2044. /* copy Y */
  2045. if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
  2046. memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
  2047. else{
  2048. uint8_t *srcPtr= src[0];
  2049. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  2050. for (i=0; i<srcSliceH; i++)
  2051. {
  2052. memcpy(dstPtr, srcPtr, c->srcW);
  2053. srcPtr+= srcStride[0];
  2054. dstPtr+= dstStride[0];
  2055. }
  2056. }
  2057. if (c->dstFormat==PIX_FMT_YUV420P || c->dstFormat==PIX_FMT_YUVA420P){
  2058. planar2x(src[1], dst[1] + dstStride[1]*(srcSliceY >> 1), c->chrSrcW,
  2059. srcSliceH >> 2, srcStride[1], dstStride[1]);
  2060. planar2x(src[2], dst[2] + dstStride[2]*(srcSliceY >> 1), c->chrSrcW,
  2061. srcSliceH >> 2, srcStride[2], dstStride[2]);
  2062. }else{
  2063. planar2x(src[1], dst[2] + dstStride[2]*(srcSliceY >> 1), c->chrSrcW,
  2064. srcSliceH >> 2, srcStride[1], dstStride[2]);
  2065. planar2x(src[2], dst[1] + dstStride[1]*(srcSliceY >> 1), c->chrSrcW,
  2066. srcSliceH >> 2, srcStride[2], dstStride[1]);
  2067. }
  2068. if (dst[3])
  2069. fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  2070. return srcSliceH;
  2071. }
  2072. /* unscaled copy like stuff (assumes nearly identical formats) */
  2073. static int packedCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2074. int srcSliceH, uint8_t* dst[], int dstStride[])
  2075. {
  2076. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  2077. memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
  2078. else
  2079. {
  2080. int i;
  2081. uint8_t *srcPtr= src[0];
  2082. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  2083. int length=0;
  2084. /* universal length finder */
  2085. while(length+c->srcW <= FFABS(dstStride[0])
  2086. && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
  2087. assert(length!=0);
  2088. for (i=0; i<srcSliceH; i++)
  2089. {
  2090. memcpy(dstPtr, srcPtr, length);
  2091. srcPtr+= srcStride[0];
  2092. dstPtr+= dstStride[0];
  2093. }
  2094. }
  2095. return srcSliceH;
  2096. }
  2097. static int planarCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2098. int srcSliceH, uint8_t* dst[], int dstStride[])
  2099. {
  2100. int plane, i, j;
  2101. for (plane=0; plane<4; plane++)
  2102. {
  2103. int length= (plane==0 || plane==3) ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
  2104. int y= (plane==0 || plane==3) ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
  2105. int height= (plane==0 || plane==3) ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
  2106. uint8_t *srcPtr= src[plane];
  2107. uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
  2108. if (!dst[plane]) continue;
  2109. // ignore palette for GRAY8
  2110. if (plane == 1 && !dst[2]) continue;
  2111. if (!src[plane] || (plane == 1 && !src[2])){
  2112. if(is16BPS(c->dstFormat))
  2113. length*=2;
  2114. fillPlane(dst[plane], dstStride[plane], length, height, y, (plane==3) ? 255 : 128);
  2115. }else
  2116. {
  2117. if(is16BPS(c->srcFormat) && !is16BPS(c->dstFormat)){
  2118. if (!isBE(c->srcFormat)) srcPtr++;
  2119. for (i=0; i<height; i++){
  2120. for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
  2121. srcPtr+= srcStride[plane];
  2122. dstPtr+= dstStride[plane];
  2123. }
  2124. }else if(!is16BPS(c->srcFormat) && is16BPS(c->dstFormat)){
  2125. for (i=0; i<height; i++){
  2126. for (j=0; j<length; j++){
  2127. dstPtr[ j<<1 ] = srcPtr[j];
  2128. dstPtr[(j<<1)+1] = srcPtr[j];
  2129. }
  2130. srcPtr+= srcStride[plane];
  2131. dstPtr+= dstStride[plane];
  2132. }
  2133. }else if(is16BPS(c->srcFormat) && is16BPS(c->dstFormat)
  2134. && isBE(c->srcFormat) != isBE(c->dstFormat)){
  2135. for (i=0; i<height; i++){
  2136. for (j=0; j<length; j++)
  2137. ((uint16_t*)dstPtr)[j] = bswap_16(((uint16_t*)srcPtr)[j]);
  2138. srcPtr+= srcStride[plane];
  2139. dstPtr+= dstStride[plane];
  2140. }
  2141. } else if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
  2142. memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
  2143. else
  2144. {
  2145. if(is16BPS(c->srcFormat) && is16BPS(c->dstFormat))
  2146. length*=2;
  2147. for (i=0; i<height; i++)
  2148. {
  2149. memcpy(dstPtr, srcPtr, length);
  2150. srcPtr+= srcStride[plane];
  2151. dstPtr+= dstStride[plane];
  2152. }
  2153. }
  2154. }
  2155. }
  2156. return srcSliceH;
  2157. }
  2158. static void getSubSampleFactors(int *h, int *v, int format){
  2159. switch(format){
  2160. case PIX_FMT_UYVY422:
  2161. case PIX_FMT_YUYV422:
  2162. *h=1;
  2163. *v=0;
  2164. break;
  2165. case PIX_FMT_YUV420P:
  2166. case PIX_FMT_YUV420PLE:
  2167. case PIX_FMT_YUV420PBE:
  2168. case PIX_FMT_YUVA420P:
  2169. case PIX_FMT_GRAY16BE:
  2170. case PIX_FMT_GRAY16LE:
  2171. case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
  2172. case PIX_FMT_NV12:
  2173. case PIX_FMT_NV21:
  2174. *h=1;
  2175. *v=1;
  2176. break;
  2177. case PIX_FMT_YUV440P:
  2178. *h=0;
  2179. *v=1;
  2180. break;
  2181. case PIX_FMT_YUV410P:
  2182. *h=2;
  2183. *v=2;
  2184. break;
  2185. case PIX_FMT_YUV444P:
  2186. case PIX_FMT_YUV444PLE:
  2187. case PIX_FMT_YUV444PBE:
  2188. *h=0;
  2189. *v=0;
  2190. break;
  2191. case PIX_FMT_YUV422P:
  2192. case PIX_FMT_YUV422PLE:
  2193. case PIX_FMT_YUV422PBE:
  2194. *h=1;
  2195. *v=0;
  2196. break;
  2197. case PIX_FMT_YUV411P:
  2198. *h=2;
  2199. *v=0;
  2200. break;
  2201. default:
  2202. *h=0;
  2203. *v=0;
  2204. break;
  2205. }
  2206. }
  2207. static uint16_t roundToInt16(int64_t f){
  2208. int r= (f + (1<<15))>>16;
  2209. if (r<-0x7FFF) return 0x8000;
  2210. else if (r> 0x7FFF) return 0x7FFF;
  2211. else return r;
  2212. }
  2213. int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
  2214. int64_t crv = inv_table[0];
  2215. int64_t cbu = inv_table[1];
  2216. int64_t cgu = -inv_table[2];
  2217. int64_t cgv = -inv_table[3];
  2218. int64_t cy = 1<<16;
  2219. int64_t oy = 0;
  2220. memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
  2221. memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
  2222. c->brightness= brightness;
  2223. c->contrast = contrast;
  2224. c->saturation= saturation;
  2225. c->srcRange = srcRange;
  2226. c->dstRange = dstRange;
  2227. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  2228. c->uOffset= 0x0400040004000400LL;
  2229. c->vOffset= 0x0400040004000400LL;
  2230. if (!srcRange){
  2231. cy= (cy*255) / 219;
  2232. oy= 16<<16;
  2233. }else{
  2234. crv= (crv*224) / 255;
  2235. cbu= (cbu*224) / 255;
  2236. cgu= (cgu*224) / 255;
  2237. cgv= (cgv*224) / 255;
  2238. }
  2239. cy = (cy *contrast )>>16;
  2240. crv= (crv*contrast * saturation)>>32;
  2241. cbu= (cbu*contrast * saturation)>>32;
  2242. cgu= (cgu*contrast * saturation)>>32;
  2243. cgv= (cgv*contrast * saturation)>>32;
  2244. oy -= 256*brightness;
  2245. c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
  2246. c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
  2247. c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
  2248. c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
  2249. c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
  2250. c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
  2251. c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy <<13);
  2252. c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
  2253. c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
  2254. c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
  2255. c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
  2256. c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);
  2257. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
  2258. //FIXME factorize
  2259. #ifdef COMPILE_ALTIVEC
  2260. if (c->flags & SWS_CPU_CAPS_ALTIVEC)
  2261. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
  2262. #endif
  2263. return 0;
  2264. }
  2265. int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
  2266. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  2267. *inv_table = c->srcColorspaceTable;
  2268. *table = c->dstColorspaceTable;
  2269. *srcRange = c->srcRange;
  2270. *dstRange = c->dstRange;
  2271. *brightness= c->brightness;
  2272. *contrast = c->contrast;
  2273. *saturation= c->saturation;
  2274. return 0;
  2275. }
  2276. static int handle_jpeg(enum PixelFormat *format)
  2277. {
  2278. switch (*format) {
  2279. case PIX_FMT_YUVJ420P:
  2280. *format = PIX_FMT_YUV420P;
  2281. return 1;
  2282. case PIX_FMT_YUVJ422P:
  2283. *format = PIX_FMT_YUV422P;
  2284. return 1;
  2285. case PIX_FMT_YUVJ444P:
  2286. *format = PIX_FMT_YUV444P;
  2287. return 1;
  2288. case PIX_FMT_YUVJ440P:
  2289. *format = PIX_FMT_YUV440P;
  2290. return 1;
  2291. default:
  2292. return 0;
  2293. }
  2294. }
  2295. SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat, int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  2296. SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
  2297. {
  2298. SwsContext *c;
  2299. int i;
  2300. int usesVFilter, usesHFilter;
  2301. int unscaled, needsDither;
  2302. int srcRange, dstRange;
  2303. SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
  2304. #if ARCH_X86
  2305. if (flags & SWS_CPU_CAPS_MMX)
  2306. __asm__ volatile("emms\n\t"::: "memory");
  2307. #endif
  2308. #if !CONFIG_RUNTIME_CPUDETECT || !CONFIG_GPL //ensure that the flags match the compiled variant if cpudetect is off
  2309. flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
  2310. #if HAVE_MMX2
  2311. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
  2312. #elif HAVE_AMD3DNOW
  2313. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
  2314. #elif HAVE_MMX
  2315. flags |= SWS_CPU_CAPS_MMX;
  2316. #elif HAVE_ALTIVEC
  2317. flags |= SWS_CPU_CAPS_ALTIVEC;
  2318. #elif ARCH_BFIN
  2319. flags |= SWS_CPU_CAPS_BFIN;
  2320. #endif
  2321. #endif /* CONFIG_RUNTIME_CPUDETECT */
  2322. if (clip_table[512] != 255) globalInit();
  2323. if (!rgb15to16) sws_rgb2rgb_init(flags);
  2324. unscaled = (srcW == dstW && srcH == dstH);
  2325. needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
  2326. && (fmt_depth(dstFormat))<24
  2327. && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
  2328. srcRange = handle_jpeg(&srcFormat);
  2329. dstRange = handle_jpeg(&dstFormat);
  2330. if (!isSupportedIn(srcFormat))
  2331. {
  2332. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
  2333. return NULL;
  2334. }
  2335. if (!isSupportedOut(dstFormat))
  2336. {
  2337. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
  2338. return NULL;
  2339. }
  2340. i= flags & ( SWS_POINT
  2341. |SWS_AREA
  2342. |SWS_BILINEAR
  2343. |SWS_FAST_BILINEAR
  2344. |SWS_BICUBIC
  2345. |SWS_X
  2346. |SWS_GAUSS
  2347. |SWS_LANCZOS
  2348. |SWS_SINC
  2349. |SWS_SPLINE
  2350. |SWS_BICUBLIN);
  2351. if(!i || (i & (i-1)))
  2352. {
  2353. av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
  2354. return NULL;
  2355. }
  2356. /* sanity check */
  2357. if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
  2358. {
  2359. av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
  2360. srcW, srcH, dstW, dstH);
  2361. return NULL;
  2362. }
  2363. if(srcW > VOFW || dstW > VOFW){
  2364. av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
  2365. return NULL;
  2366. }
  2367. if (!dstFilter) dstFilter= &dummyFilter;
  2368. if (!srcFilter) srcFilter= &dummyFilter;
  2369. c= av_mallocz(sizeof(SwsContext));
  2370. c->av_class = &sws_context_class;
  2371. c->srcW= srcW;
  2372. c->srcH= srcH;
  2373. c->dstW= dstW;
  2374. c->dstH= dstH;
  2375. c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
  2376. c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
  2377. c->flags= flags;
  2378. c->dstFormat= dstFormat;
  2379. c->srcFormat= srcFormat;
  2380. c->vRounder= 4* 0x0001000100010001ULL;
  2381. usesHFilter= usesVFilter= 0;
  2382. if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
  2383. if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
  2384. if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
  2385. if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
  2386. if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
  2387. if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
  2388. if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
  2389. if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;
  2390. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  2391. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  2392. // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
  2393. if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
  2394. // drop some chroma lines if the user wants it
  2395. c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
  2396. c->chrSrcVSubSample+= c->vChrDrop;
  2397. // drop every other pixel for chroma calculation unless user wants full chroma
  2398. if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
  2399. && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
  2400. && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
  2401. && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
  2402. && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  2403. c->chrSrcHSubSample=1;
  2404. if (param){
  2405. c->param[0] = param[0];
  2406. c->param[1] = param[1];
  2407. }else{
  2408. c->param[0] =
  2409. c->param[1] = SWS_PARAM_DEFAULT;
  2410. }
  2411. c->chrIntHSubSample= c->chrDstHSubSample;
  2412. c->chrIntVSubSample= c->chrSrcVSubSample;
  2413. // Note the -((-x)>>y) is so that we always round toward +inf.
  2414. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
  2415. c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
  2416. c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
  2417. c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
  2418. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
  2419. /* unscaled special cases */
  2420. if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isBGR(dstFormat) || isRGB(dstFormat)))
  2421. {
  2422. /* yv12_to_nv12 */
  2423. if ((srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P) && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
  2424. {
  2425. c->swScale= PlanarToNV12Wrapper;
  2426. }
  2427. /* yuv2bgr */
  2428. if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P || srcFormat==PIX_FMT_YUVA420P) && (isBGR(dstFormat) || isRGB(dstFormat))
  2429. && !(flags & SWS_ACCURATE_RND) && !(dstH&1))
  2430. {
  2431. c->swScale= ff_yuv2rgb_get_func_ptr(c);
  2432. }
  2433. if (srcFormat==PIX_FMT_YUV410P && (dstFormat==PIX_FMT_YUV420P || dstFormat==PIX_FMT_YUVA420P) && !(flags & SWS_BITEXACT))
  2434. {
  2435. c->swScale= yvu9toyv12Wrapper;
  2436. }
  2437. /* bgr24toYV12 */
  2438. if (srcFormat==PIX_FMT_BGR24 && (dstFormat==PIX_FMT_YUV420P || dstFormat==PIX_FMT_YUVA420P) && !(flags & SWS_ACCURATE_RND))
  2439. c->swScale= bgr24toyv12Wrapper;
  2440. /* RGB/BGR -> RGB/BGR (no dither needed forms) */
  2441. if ( (isBGR(srcFormat) || isRGB(srcFormat))
  2442. && (isBGR(dstFormat) || isRGB(dstFormat))
  2443. && srcFormat != PIX_FMT_BGR8 && dstFormat != PIX_FMT_BGR8
  2444. && srcFormat != PIX_FMT_RGB8 && dstFormat != PIX_FMT_RGB8
  2445. && srcFormat != PIX_FMT_BGR4 && dstFormat != PIX_FMT_BGR4
  2446. && srcFormat != PIX_FMT_RGB4 && dstFormat != PIX_FMT_RGB4
  2447. && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
  2448. && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
  2449. && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
  2450. && srcFormat != PIX_FMT_MONOWHITE && dstFormat != PIX_FMT_MONOWHITE
  2451. && dstFormat != PIX_FMT_RGB32_1
  2452. && dstFormat != PIX_FMT_BGR32_1
  2453. && (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  2454. c->swScale= rgb2rgbWrapper;
  2455. if ((usePal(srcFormat) && (
  2456. dstFormat == PIX_FMT_RGB32 ||
  2457. dstFormat == PIX_FMT_RGB32_1 ||
  2458. dstFormat == PIX_FMT_RGB24 ||
  2459. dstFormat == PIX_FMT_BGR32 ||
  2460. dstFormat == PIX_FMT_BGR32_1 ||
  2461. dstFormat == PIX_FMT_BGR24)))
  2462. c->swScale= pal2rgbWrapper;
  2463. if (srcFormat == PIX_FMT_YUV422P)
  2464. {
  2465. if (dstFormat == PIX_FMT_YUYV422)
  2466. c->swScale= YUV422PToYuy2Wrapper;
  2467. else if (dstFormat == PIX_FMT_UYVY422)
  2468. c->swScale= YUV422PToUyvyWrapper;
  2469. }
  2470. /* LQ converters if -sws 0 or -sws 4*/
  2471. if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
  2472. /* yv12_to_yuy2 */
  2473. if (srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P)
  2474. {
  2475. if (dstFormat == PIX_FMT_YUYV422)
  2476. c->swScale= PlanarToYuy2Wrapper;
  2477. else if (dstFormat == PIX_FMT_UYVY422)
  2478. c->swScale= PlanarToUyvyWrapper;
  2479. }
  2480. }
  2481. if(srcFormat == PIX_FMT_YUYV422 && (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P))
  2482. c->swScale= YUYV2YUV420Wrapper;
  2483. if(srcFormat == PIX_FMT_UYVY422 && (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P))
  2484. c->swScale= UYVY2YUV420Wrapper;
  2485. if(srcFormat == PIX_FMT_YUYV422 && dstFormat == PIX_FMT_YUV422P)
  2486. c->swScale= YUYV2YUV422Wrapper;
  2487. if(srcFormat == PIX_FMT_UYVY422 && dstFormat == PIX_FMT_YUV422P)
  2488. c->swScale= UYVY2YUV422Wrapper;
  2489. #ifdef COMPILE_ALTIVEC
  2490. if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
  2491. !(c->flags & SWS_BITEXACT) &&
  2492. srcFormat == PIX_FMT_YUV420P) {
  2493. // unscaled YV12 -> packed YUV, we want speed
  2494. if (dstFormat == PIX_FMT_YUYV422)
  2495. c->swScale= yv12toyuy2_unscaled_altivec;
  2496. else if (dstFormat == PIX_FMT_UYVY422)
  2497. c->swScale= yv12touyvy_unscaled_altivec;
  2498. }
  2499. #endif
  2500. /* simple copy */
  2501. if ( srcFormat == dstFormat
  2502. || (srcFormat == PIX_FMT_YUVA420P && dstFormat == PIX_FMT_YUV420P)
  2503. || (srcFormat == PIX_FMT_YUV420P && dstFormat == PIX_FMT_YUVA420P)
  2504. || (isPlanarYUV(srcFormat) && isGray(dstFormat))
  2505. || (isPlanarYUV(dstFormat) && isGray(srcFormat))
  2506. || (isGray(dstFormat) && isGray(srcFormat))
  2507. || (isPlanarYUV(srcFormat) && isPlanarYUV(dstFormat)
  2508. && c->chrDstHSubSample == c->chrSrcHSubSample
  2509. && c->chrDstVSubSample == c->chrSrcVSubSample))
  2510. {
  2511. if (isPacked(c->srcFormat))
  2512. c->swScale= packedCopy;
  2513. else /* Planar YUV or gray */
  2514. c->swScale= planarCopy;
  2515. }
  2516. #if ARCH_BFIN
  2517. if (flags & SWS_CPU_CAPS_BFIN)
  2518. ff_bfin_get_unscaled_swscale (c);
  2519. #endif
  2520. if (c->swScale){
  2521. if (flags&SWS_PRINT_INFO)
  2522. av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
  2523. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2524. return c;
  2525. }
  2526. }
  2527. if (flags & SWS_CPU_CAPS_MMX2)
  2528. {
  2529. c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
  2530. if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
  2531. {
  2532. if (flags&SWS_PRINT_INFO)
  2533. av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
  2534. }
  2535. if (usesHFilter) c->canMMX2BeUsed=0;
  2536. }
  2537. else
  2538. c->canMMX2BeUsed=0;
  2539. c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
  2540. c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
  2541. // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
  2542. // but only for the FAST_BILINEAR mode otherwise do correct scaling
  2543. // n-2 is the last chrominance sample available
  2544. // this is not perfect, but no one should notice the difference, the more correct variant
  2545. // would be like the vertical one, but that would require some special code for the
  2546. // first and last pixel
  2547. if (flags&SWS_FAST_BILINEAR)
  2548. {
  2549. if (c->canMMX2BeUsed)
  2550. {
  2551. c->lumXInc+= 20;
  2552. c->chrXInc+= 20;
  2553. }
  2554. //we don't use the x86 asm scaler if MMX is available
  2555. else if (flags & SWS_CPU_CAPS_MMX)
  2556. {
  2557. c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
  2558. c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
  2559. }
  2560. }
  2561. /* precalculate horizontal scaler filter coefficients */
  2562. {
  2563. const int filterAlign=
  2564. (flags & SWS_CPU_CAPS_MMX) ? 4 :
  2565. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2566. 1;
  2567. initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
  2568. srcW , dstW, filterAlign, 1<<14,
  2569. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2570. srcFilter->lumH, dstFilter->lumH, c->param);
  2571. initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
  2572. c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
  2573. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2574. srcFilter->chrH, dstFilter->chrH, c->param);
  2575. #define MAX_FUNNY_CODE_SIZE 10000
  2576. #if defined(COMPILE_MMX2)
  2577. // can't downscale !!!
  2578. if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
  2579. {
  2580. #ifdef MAP_ANONYMOUS
  2581. c->funnyYCode = mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2582. c->funnyUVCode = mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2583. #elif HAVE_VIRTUALALLOC
  2584. c->funnyYCode = VirtualAlloc(NULL, MAX_FUNNY_CODE_SIZE, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  2585. c->funnyUVCode = VirtualAlloc(NULL, MAX_FUNNY_CODE_SIZE, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  2586. #else
  2587. c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2588. c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2589. #endif
  2590. c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
  2591. c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
  2592. c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
  2593. c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
  2594. initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
  2595. initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
  2596. }
  2597. #endif /* defined(COMPILE_MMX2) */
  2598. } // initialize horizontal stuff
  2599. /* precalculate vertical scaler filter coefficients */
  2600. {
  2601. const int filterAlign=
  2602. (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
  2603. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2604. 1;
  2605. initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
  2606. srcH , dstH, filterAlign, (1<<12),
  2607. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2608. srcFilter->lumV, dstFilter->lumV, c->param);
  2609. initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
  2610. c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
  2611. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2612. srcFilter->chrV, dstFilter->chrV, c->param);
  2613. #if HAVE_ALTIVEC
  2614. c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
  2615. c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
  2616. for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
  2617. int j;
  2618. short *p = (short *)&c->vYCoeffsBank[i];
  2619. for (j=0;j<8;j++)
  2620. p[j] = c->vLumFilter[i];
  2621. }
  2622. for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
  2623. int j;
  2624. short *p = (short *)&c->vCCoeffsBank[i];
  2625. for (j=0;j<8;j++)
  2626. p[j] = c->vChrFilter[i];
  2627. }
  2628. #endif
  2629. }
  2630. // calculate buffer sizes so that they won't run out while handling these damn slices
  2631. c->vLumBufSize= c->vLumFilterSize;
  2632. c->vChrBufSize= c->vChrFilterSize;
  2633. for (i=0; i<dstH; i++)
  2634. {
  2635. int chrI= i*c->chrDstH / dstH;
  2636. int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
  2637. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
  2638. nextSlice>>= c->chrSrcVSubSample;
  2639. nextSlice<<= c->chrSrcVSubSample;
  2640. if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
  2641. c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
  2642. if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
  2643. c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
  2644. }
  2645. // allocate pixbufs (we use dynamic allocation because otherwise we would need to
  2646. c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
  2647. c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
  2648. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  2649. c->alpPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
  2650. //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
  2651. /* align at 16 bytes for AltiVec */
  2652. for (i=0; i<c->vLumBufSize; i++)
  2653. c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
  2654. for (i=0; i<c->vChrBufSize; i++)
  2655. c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc((VOF+1)*2);
  2656. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  2657. for (i=0; i<c->vLumBufSize; i++)
  2658. c->alpPixBuf[i]= c->alpPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
  2659. //try to avoid drawing green stuff between the right end and the stride end
  2660. for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
  2661. assert(2*VOFW == VOF);
  2662. assert(c->chrDstH <= dstH);
  2663. if (flags&SWS_PRINT_INFO)
  2664. {
  2665. #ifdef DITHER1XBPP
  2666. const char *dither= " dithered";
  2667. #else
  2668. const char *dither= "";
  2669. #endif
  2670. if (flags&SWS_FAST_BILINEAR)
  2671. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  2672. else if (flags&SWS_BILINEAR)
  2673. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  2674. else if (flags&SWS_BICUBIC)
  2675. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  2676. else if (flags&SWS_X)
  2677. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  2678. else if (flags&SWS_POINT)
  2679. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  2680. else if (flags&SWS_AREA)
  2681. av_log(c, AV_LOG_INFO, "Area Averageing scaler, ");
  2682. else if (flags&SWS_BICUBLIN)
  2683. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  2684. else if (flags&SWS_GAUSS)
  2685. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  2686. else if (flags&SWS_SINC)
  2687. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  2688. else if (flags&SWS_LANCZOS)
  2689. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  2690. else if (flags&SWS_SPLINE)
  2691. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  2692. else
  2693. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  2694. if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
  2695. av_log(c, AV_LOG_INFO, "from %s to%s %s ",
  2696. sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
  2697. else
  2698. av_log(c, AV_LOG_INFO, "from %s to %s ",
  2699. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2700. if (flags & SWS_CPU_CAPS_MMX2)
  2701. av_log(c, AV_LOG_INFO, "using MMX2\n");
  2702. else if (flags & SWS_CPU_CAPS_3DNOW)
  2703. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  2704. else if (flags & SWS_CPU_CAPS_MMX)
  2705. av_log(c, AV_LOG_INFO, "using MMX\n");
  2706. else if (flags & SWS_CPU_CAPS_ALTIVEC)
  2707. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  2708. else
  2709. av_log(c, AV_LOG_INFO, "using C\n");
  2710. }
  2711. if (flags & SWS_PRINT_INFO)
  2712. {
  2713. if (flags & SWS_CPU_CAPS_MMX)
  2714. {
  2715. if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
  2716. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
  2717. else
  2718. {
  2719. if (c->hLumFilterSize==4)
  2720. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
  2721. else if (c->hLumFilterSize==8)
  2722. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
  2723. else
  2724. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
  2725. if (c->hChrFilterSize==4)
  2726. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
  2727. else if (c->hChrFilterSize==8)
  2728. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
  2729. else
  2730. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
  2731. }
  2732. }
  2733. else
  2734. {
  2735. #if ARCH_X86
  2736. av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
  2737. #else
  2738. if (flags & SWS_FAST_BILINEAR)
  2739. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
  2740. else
  2741. av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
  2742. #endif
  2743. }
  2744. if (isPlanarYUV(dstFormat))
  2745. {
  2746. if (c->vLumFilterSize==1)
  2747. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2748. else
  2749. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2750. }
  2751. else
  2752. {
  2753. if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
  2754. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
  2755. " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2756. else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
  2757. av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2758. else
  2759. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2760. }
  2761. if (dstFormat==PIX_FMT_BGR24)
  2762. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
  2763. (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
  2764. else if (dstFormat==PIX_FMT_RGB32)
  2765. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2766. else if (dstFormat==PIX_FMT_BGR565)
  2767. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2768. else if (dstFormat==PIX_FMT_BGR555)
  2769. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2770. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  2771. }
  2772. if (flags & SWS_PRINT_INFO)
  2773. {
  2774. av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2775. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  2776. av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2777. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
  2778. }
  2779. c->swScale= getSwsFunc(c);
  2780. return c;
  2781. }
  2782. static void reset_ptr(uint8_t* src[], int format){
  2783. if(!isALPHA(format))
  2784. src[3]=NULL;
  2785. if(!isPlanarYUV(format)){
  2786. src[3]=src[2]=NULL;
  2787. if( format != PIX_FMT_PAL8
  2788. && format != PIX_FMT_RGB8
  2789. && format != PIX_FMT_BGR8
  2790. && format != PIX_FMT_RGB4_BYTE
  2791. && format != PIX_FMT_BGR4_BYTE
  2792. )
  2793. src[1]= NULL;
  2794. }
  2795. }
  2796. /**
  2797. * swscale wrapper, so we don't need to export the SwsContext.
  2798. * Assumes planar YUV to be in YUV order instead of YVU.
  2799. */
  2800. int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2801. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2802. int i;
  2803. uint8_t* src2[4]= {src[0], src[1], src[2], src[3]};
  2804. uint8_t* dst2[4]= {dst[0], dst[1], dst[2], dst[3]};
  2805. if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
  2806. av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
  2807. return 0;
  2808. }
  2809. if (c->sliceDir == 0) {
  2810. if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
  2811. }
  2812. if (usePal(c->srcFormat)){
  2813. for (i=0; i<256; i++){
  2814. int p, r, g, b,y,u,v;
  2815. if(c->srcFormat == PIX_FMT_PAL8){
  2816. p=((uint32_t*)(src[1]))[i];
  2817. r= (p>>16)&0xFF;
  2818. g= (p>> 8)&0xFF;
  2819. b= p &0xFF;
  2820. }else if(c->srcFormat == PIX_FMT_RGB8){
  2821. r= (i>>5 )*36;
  2822. g= ((i>>2)&7)*36;
  2823. b= (i&3 )*85;
  2824. }else if(c->srcFormat == PIX_FMT_BGR8){
  2825. b= (i>>6 )*85;
  2826. g= ((i>>3)&7)*36;
  2827. r= (i&7 )*36;
  2828. }else if(c->srcFormat == PIX_FMT_RGB4_BYTE){
  2829. r= (i>>3 )*255;
  2830. g= ((i>>1)&3)*85;
  2831. b= (i&1 )*255;
  2832. }else {
  2833. assert(c->srcFormat == PIX_FMT_BGR4_BYTE);
  2834. b= (i>>3 )*255;
  2835. g= ((i>>1)&3)*85;
  2836. r= (i&1 )*255;
  2837. }
  2838. y= av_clip_uint8((RY*r + GY*g + BY*b + ( 33<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2839. u= av_clip_uint8((RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2840. v= av_clip_uint8((RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2841. c->pal_yuv[i]= y + (u<<8) + (v<<16);
  2842. switch(c->dstFormat) {
  2843. case PIX_FMT_BGR32:
  2844. #ifndef WORDS_BIGENDIAN
  2845. case PIX_FMT_RGB24:
  2846. #endif
  2847. c->pal_rgb[i]= r + (g<<8) + (b<<16);
  2848. break;
  2849. case PIX_FMT_BGR32_1:
  2850. #ifdef WORDS_BIGENDIAN
  2851. case PIX_FMT_BGR24:
  2852. #endif
  2853. c->pal_rgb[i]= (r + (g<<8) + (b<<16)) << 8;
  2854. break;
  2855. case PIX_FMT_RGB32_1:
  2856. #ifdef WORDS_BIGENDIAN
  2857. case PIX_FMT_RGB24:
  2858. #endif
  2859. c->pal_rgb[i]= (b + (g<<8) + (r<<16)) << 8;
  2860. break;
  2861. case PIX_FMT_RGB32:
  2862. #ifndef WORDS_BIGENDIAN
  2863. case PIX_FMT_BGR24:
  2864. #endif
  2865. default:
  2866. c->pal_rgb[i]= b + (g<<8) + (r<<16);
  2867. }
  2868. }
  2869. }
  2870. // copy strides, so they can safely be modified
  2871. if (c->sliceDir == 1) {
  2872. // slices go from top to bottom
  2873. int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2], srcStride[3]};
  2874. int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2], dstStride[3]};
  2875. reset_ptr(src2, c->srcFormat);
  2876. reset_ptr(dst2, c->dstFormat);
  2877. return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst2, dstStride2);
  2878. } else {
  2879. // slices go from bottom to top => we flip the image internally
  2880. int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2], -srcStride[3]};
  2881. int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2], -dstStride[3]};
  2882. src2[0] += (srcSliceH-1)*srcStride[0];
  2883. if (!usePal(c->srcFormat))
  2884. src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
  2885. src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];
  2886. src2[3] += (srcSliceH-1)*srcStride[3];
  2887. dst2[0] += ( c->dstH -1)*dstStride[0];
  2888. dst2[1] += ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1];
  2889. dst2[2] += ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2];
  2890. dst2[3] += ( c->dstH -1)*dstStride[3];
  2891. reset_ptr(src2, c->srcFormat);
  2892. reset_ptr(dst2, c->dstFormat);
  2893. return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
  2894. }
  2895. }
  2896. #if LIBSWSCALE_VERSION_MAJOR < 1
  2897. int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2898. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2899. return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
  2900. }
  2901. #endif
  2902. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  2903. float lumaSharpen, float chromaSharpen,
  2904. float chromaHShift, float chromaVShift,
  2905. int verbose)
  2906. {
  2907. SwsFilter *filter= av_malloc(sizeof(SwsFilter));
  2908. if (lumaGBlur!=0.0){
  2909. filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
  2910. filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
  2911. }else{
  2912. filter->lumH= sws_getIdentityVec();
  2913. filter->lumV= sws_getIdentityVec();
  2914. }
  2915. if (chromaGBlur!=0.0){
  2916. filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
  2917. filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
  2918. }else{
  2919. filter->chrH= sws_getIdentityVec();
  2920. filter->chrV= sws_getIdentityVec();
  2921. }
  2922. if (chromaSharpen!=0.0){
  2923. SwsVector *id= sws_getIdentityVec();
  2924. sws_scaleVec(filter->chrH, -chromaSharpen);
  2925. sws_scaleVec(filter->chrV, -chromaSharpen);
  2926. sws_addVec(filter->chrH, id);
  2927. sws_addVec(filter->chrV, id);
  2928. sws_freeVec(id);
  2929. }
  2930. if (lumaSharpen!=0.0){
  2931. SwsVector *id= sws_getIdentityVec();
  2932. sws_scaleVec(filter->lumH, -lumaSharpen);
  2933. sws_scaleVec(filter->lumV, -lumaSharpen);
  2934. sws_addVec(filter->lumH, id);
  2935. sws_addVec(filter->lumV, id);
  2936. sws_freeVec(id);
  2937. }
  2938. if (chromaHShift != 0.0)
  2939. sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
  2940. if (chromaVShift != 0.0)
  2941. sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
  2942. sws_normalizeVec(filter->chrH, 1.0);
  2943. sws_normalizeVec(filter->chrV, 1.0);
  2944. sws_normalizeVec(filter->lumH, 1.0);
  2945. sws_normalizeVec(filter->lumV, 1.0);
  2946. if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  2947. if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  2948. return filter;
  2949. }
  2950. SwsVector *sws_getGaussianVec(double variance, double quality){
  2951. const int length= (int)(variance*quality + 0.5) | 1;
  2952. int i;
  2953. double *coeff= av_malloc(length*sizeof(double));
  2954. double middle= (length-1)*0.5;
  2955. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2956. vec->coeff= coeff;
  2957. vec->length= length;
  2958. for (i=0; i<length; i++)
  2959. {
  2960. double dist= i-middle;
  2961. coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*PI);
  2962. }
  2963. sws_normalizeVec(vec, 1.0);
  2964. return vec;
  2965. }
  2966. SwsVector *sws_getConstVec(double c, int length){
  2967. int i;
  2968. double *coeff= av_malloc(length*sizeof(double));
  2969. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2970. vec->coeff= coeff;
  2971. vec->length= length;
  2972. for (i=0; i<length; i++)
  2973. coeff[i]= c;
  2974. return vec;
  2975. }
  2976. SwsVector *sws_getIdentityVec(void){
  2977. return sws_getConstVec(1.0, 1);
  2978. }
  2979. double sws_dcVec(SwsVector *a){
  2980. int i;
  2981. double sum=0;
  2982. for (i=0; i<a->length; i++)
  2983. sum+= a->coeff[i];
  2984. return sum;
  2985. }
  2986. void sws_scaleVec(SwsVector *a, double scalar){
  2987. int i;
  2988. for (i=0; i<a->length; i++)
  2989. a->coeff[i]*= scalar;
  2990. }
  2991. void sws_normalizeVec(SwsVector *a, double height){
  2992. sws_scaleVec(a, height/sws_dcVec(a));
  2993. }
  2994. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
  2995. int length= a->length + b->length - 1;
  2996. double *coeff= av_malloc(length*sizeof(double));
  2997. int i, j;
  2998. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2999. vec->coeff= coeff;
  3000. vec->length= length;
  3001. for (i=0; i<length; i++) coeff[i]= 0.0;
  3002. for (i=0; i<a->length; i++)
  3003. {
  3004. for (j=0; j<b->length; j++)
  3005. {
  3006. coeff[i+j]+= a->coeff[i]*b->coeff[j];
  3007. }
  3008. }
  3009. return vec;
  3010. }
  3011. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
  3012. int length= FFMAX(a->length, b->length);
  3013. double *coeff= av_malloc(length*sizeof(double));
  3014. int i;
  3015. SwsVector *vec= av_malloc(sizeof(SwsVector));
  3016. vec->coeff= coeff;
  3017. vec->length= length;
  3018. for (i=0; i<length; i++) coeff[i]= 0.0;
  3019. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  3020. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
  3021. return vec;
  3022. }
  3023. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
  3024. int length= FFMAX(a->length, b->length);
  3025. double *coeff= av_malloc(length*sizeof(double));
  3026. int i;
  3027. SwsVector *vec= av_malloc(sizeof(SwsVector));
  3028. vec->coeff= coeff;
  3029. vec->length= length;
  3030. for (i=0; i<length; i++) coeff[i]= 0.0;
  3031. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  3032. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
  3033. return vec;
  3034. }
  3035. /* shift left / or right if "shift" is negative */
  3036. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
  3037. int length= a->length + FFABS(shift)*2;
  3038. double *coeff= av_malloc(length*sizeof(double));
  3039. int i;
  3040. SwsVector *vec= av_malloc(sizeof(SwsVector));
  3041. vec->coeff= coeff;
  3042. vec->length= length;
  3043. for (i=0; i<length; i++) coeff[i]= 0.0;
  3044. for (i=0; i<a->length; i++)
  3045. {
  3046. coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
  3047. }
  3048. return vec;
  3049. }
  3050. void sws_shiftVec(SwsVector *a, int shift){
  3051. SwsVector *shifted= sws_getShiftedVec(a, shift);
  3052. av_free(a->coeff);
  3053. a->coeff= shifted->coeff;
  3054. a->length= shifted->length;
  3055. av_free(shifted);
  3056. }
  3057. void sws_addVec(SwsVector *a, SwsVector *b){
  3058. SwsVector *sum= sws_sumVec(a, b);
  3059. av_free(a->coeff);
  3060. a->coeff= sum->coeff;
  3061. a->length= sum->length;
  3062. av_free(sum);
  3063. }
  3064. void sws_subVec(SwsVector *a, SwsVector *b){
  3065. SwsVector *diff= sws_diffVec(a, b);
  3066. av_free(a->coeff);
  3067. a->coeff= diff->coeff;
  3068. a->length= diff->length;
  3069. av_free(diff);
  3070. }
  3071. void sws_convVec(SwsVector *a, SwsVector *b){
  3072. SwsVector *conv= sws_getConvVec(a, b);
  3073. av_free(a->coeff);
  3074. a->coeff= conv->coeff;
  3075. a->length= conv->length;
  3076. av_free(conv);
  3077. }
  3078. SwsVector *sws_cloneVec(SwsVector *a){
  3079. double *coeff= av_malloc(a->length*sizeof(double));
  3080. int i;
  3081. SwsVector *vec= av_malloc(sizeof(SwsVector));
  3082. vec->coeff= coeff;
  3083. vec->length= a->length;
  3084. for (i=0; i<a->length; i++) coeff[i]= a->coeff[i];
  3085. return vec;
  3086. }
  3087. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level){
  3088. int i;
  3089. double max=0;
  3090. double min=0;
  3091. double range;
  3092. for (i=0; i<a->length; i++)
  3093. if (a->coeff[i]>max) max= a->coeff[i];
  3094. for (i=0; i<a->length; i++)
  3095. if (a->coeff[i]<min) min= a->coeff[i];
  3096. range= max - min;
  3097. for (i=0; i<a->length; i++)
  3098. {
  3099. int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
  3100. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  3101. for (;x>0; x--) av_log(log_ctx, log_level, " ");
  3102. av_log(log_ctx, log_level, "|\n");
  3103. }
  3104. }
  3105. #if LIBSWSCALE_VERSION_MAJOR < 1
  3106. void sws_printVec(SwsVector *a){
  3107. sws_printVec2(a, NULL, AV_LOG_DEBUG);
  3108. }
  3109. #endif
  3110. void sws_freeVec(SwsVector *a){
  3111. if (!a) return;
  3112. av_freep(&a->coeff);
  3113. a->length=0;
  3114. av_free(a);
  3115. }
  3116. void sws_freeFilter(SwsFilter *filter){
  3117. if (!filter) return;
  3118. if (filter->lumH) sws_freeVec(filter->lumH);
  3119. if (filter->lumV) sws_freeVec(filter->lumV);
  3120. if (filter->chrH) sws_freeVec(filter->chrH);
  3121. if (filter->chrV) sws_freeVec(filter->chrV);
  3122. av_free(filter);
  3123. }
  3124. void sws_freeContext(SwsContext *c){
  3125. int i;
  3126. if (!c) return;
  3127. if (c->lumPixBuf)
  3128. {
  3129. for (i=0; i<c->vLumBufSize; i++)
  3130. av_freep(&c->lumPixBuf[i]);
  3131. av_freep(&c->lumPixBuf);
  3132. }
  3133. if (c->chrPixBuf)
  3134. {
  3135. for (i=0; i<c->vChrBufSize; i++)
  3136. av_freep(&c->chrPixBuf[i]);
  3137. av_freep(&c->chrPixBuf);
  3138. }
  3139. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){
  3140. for (i=0; i<c->vLumBufSize; i++)
  3141. av_freep(&c->alpPixBuf[i]);
  3142. av_freep(&c->alpPixBuf);
  3143. }
  3144. av_freep(&c->vLumFilter);
  3145. av_freep(&c->vChrFilter);
  3146. av_freep(&c->hLumFilter);
  3147. av_freep(&c->hChrFilter);
  3148. #if HAVE_ALTIVEC
  3149. av_freep(&c->vYCoeffsBank);
  3150. av_freep(&c->vCCoeffsBank);
  3151. #endif
  3152. av_freep(&c->vLumFilterPos);
  3153. av_freep(&c->vChrFilterPos);
  3154. av_freep(&c->hLumFilterPos);
  3155. av_freep(&c->hChrFilterPos);
  3156. #if ARCH_X86 && CONFIG_GPL
  3157. #ifdef MAP_ANONYMOUS
  3158. if (c->funnyYCode ) munmap(c->funnyYCode , MAX_FUNNY_CODE_SIZE);
  3159. if (c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
  3160. #elif HAVE_VIRTUALALLOC
  3161. if (c->funnyYCode ) VirtualFree(c->funnyYCode , MAX_FUNNY_CODE_SIZE, MEM_RELEASE);
  3162. if (c->funnyUVCode) VirtualFree(c->funnyUVCode, MAX_FUNNY_CODE_SIZE, MEM_RELEASE);
  3163. #else
  3164. av_free(c->funnyYCode );
  3165. av_free(c->funnyUVCode);
  3166. #endif
  3167. c->funnyYCode=NULL;
  3168. c->funnyUVCode=NULL;
  3169. #endif /* ARCH_X86 && CONFIG_GPL */
  3170. av_freep(&c->lumMmx2Filter);
  3171. av_freep(&c->chrMmx2Filter);
  3172. av_freep(&c->lumMmx2FilterPos);
  3173. av_freep(&c->chrMmx2FilterPos);
  3174. av_freep(&c->yuvTable);
  3175. av_free(c);
  3176. }
  3177. struct SwsContext *sws_getCachedContext(struct SwsContext *context,
  3178. int srcW, int srcH, enum PixelFormat srcFormat,
  3179. int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  3180. SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
  3181. {
  3182. static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
  3183. if (!param)
  3184. param = default_param;
  3185. if (context) {
  3186. if (context->srcW != srcW || context->srcH != srcH ||
  3187. context->srcFormat != srcFormat ||
  3188. context->dstW != dstW || context->dstH != dstH ||
  3189. context->dstFormat != dstFormat || context->flags != flags ||
  3190. context->param[0] != param[0] || context->param[1] != param[1])
  3191. {
  3192. sws_freeContext(context);
  3193. context = NULL;
  3194. }
  3195. }
  3196. if (!context) {
  3197. return sws_getContext(srcW, srcH, srcFormat,
  3198. dstW, dstH, dstFormat, flags,
  3199. srcFilter, dstFilter, param);
  3200. }
  3201. return context;
  3202. }