You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

887 lines
27KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/wmadec.c
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "avcodec.h"
  35. #include "wma.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define EXPVLCBITS 8
  39. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  40. #define HGAINVLCBITS 9
  41. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  42. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  43. #ifdef TRACE
  44. static void dump_shorts(WMACodecContext *s, const char *name, const short *tab, int n)
  45. {
  46. int i;
  47. tprintf(s->avctx, "%s[%d]:\n", name, n);
  48. for(i=0;i<n;i++) {
  49. if ((i & 7) == 0)
  50. tprintf(s->avctx, "%4d: ", i);
  51. tprintf(s->avctx, " %5d.0", tab[i]);
  52. if ((i & 7) == 7)
  53. tprintf(s->avctx, "\n");
  54. }
  55. }
  56. static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
  57. {
  58. int i;
  59. tprintf(s->avctx, "%s[%d]:\n", name, n);
  60. for(i=0;i<n;i++) {
  61. if ((i & 7) == 0)
  62. tprintf(s->avctx, "%4d: ", i);
  63. tprintf(s->avctx, " %8.*f", prec, tab[i]);
  64. if ((i & 7) == 7)
  65. tprintf(s->avctx, "\n");
  66. }
  67. if ((i & 7) != 0)
  68. tprintf(s->avctx, "\n");
  69. }
  70. #endif
  71. static int wma_decode_init(AVCodecContext * avctx)
  72. {
  73. WMACodecContext *s = avctx->priv_data;
  74. int i, flags1, flags2;
  75. uint8_t *extradata;
  76. s->avctx = avctx;
  77. /* extract flag infos */
  78. flags1 = 0;
  79. flags2 = 0;
  80. extradata = avctx->extradata;
  81. if (avctx->codec->id == CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  82. flags1 = AV_RL16(extradata);
  83. flags2 = AV_RL16(extradata+2);
  84. } else if (avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  85. flags1 = AV_RL32(extradata);
  86. flags2 = AV_RL16(extradata+4);
  87. }
  88. // for(i=0; i<avctx->extradata_size; i++)
  89. // av_log(NULL, AV_LOG_ERROR, "%02X ", extradata[i]);
  90. s->use_exp_vlc = flags2 & 0x0001;
  91. s->use_bit_reservoir = flags2 & 0x0002;
  92. s->use_variable_block_len = flags2 & 0x0004;
  93. if(ff_wma_init(avctx, flags2)<0)
  94. return -1;
  95. /* init MDCT */
  96. for(i = 0; i < s->nb_block_sizes; i++)
  97. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0);
  98. if (s->use_noise_coding) {
  99. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  100. ff_wma_hgain_huffbits, 1, 1,
  101. ff_wma_hgain_huffcodes, 2, 2, 0);
  102. }
  103. if (s->use_exp_vlc) {
  104. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_wma_scale_huffbits), //FIXME move out of context
  105. ff_wma_scale_huffbits, 1, 1,
  106. ff_wma_scale_huffcodes, 4, 4, 0);
  107. } else {
  108. wma_lsp_to_curve_init(s, s->frame_len);
  109. }
  110. avctx->sample_fmt = SAMPLE_FMT_S16;
  111. return 0;
  112. }
  113. /**
  114. * compute x^-0.25 with an exponent and mantissa table. We use linear
  115. * interpolation to reduce the mantissa table size at a small speed
  116. * expense (linear interpolation approximately doubles the number of
  117. * bits of precision).
  118. */
  119. static inline float pow_m1_4(WMACodecContext *s, float x)
  120. {
  121. union {
  122. float f;
  123. unsigned int v;
  124. } u, t;
  125. unsigned int e, m;
  126. float a, b;
  127. u.f = x;
  128. e = u.v >> 23;
  129. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  130. /* build interpolation scale: 1 <= t < 2. */
  131. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  132. a = s->lsp_pow_m_table1[m];
  133. b = s->lsp_pow_m_table2[m];
  134. return s->lsp_pow_e_table[e] * (a + b * t.f);
  135. }
  136. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  137. {
  138. float wdel, a, b;
  139. int i, e, m;
  140. wdel = M_PI / frame_len;
  141. for(i=0;i<frame_len;i++)
  142. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  143. /* tables for x^-0.25 computation */
  144. for(i=0;i<256;i++) {
  145. e = i - 126;
  146. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  147. }
  148. /* NOTE: these two tables are needed to avoid two operations in
  149. pow_m1_4 */
  150. b = 1.0;
  151. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  152. m = (1 << LSP_POW_BITS) + i;
  153. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  154. a = pow(a, -0.25);
  155. s->lsp_pow_m_table1[i] = 2 * a - b;
  156. s->lsp_pow_m_table2[i] = b - a;
  157. b = a;
  158. }
  159. #if 0
  160. for(i=1;i<20;i++) {
  161. float v, r1, r2;
  162. v = 5.0 / i;
  163. r1 = pow_m1_4(s, v);
  164. r2 = pow(v,-0.25);
  165. printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1);
  166. }
  167. #endif
  168. }
  169. /**
  170. * NOTE: We use the same code as Vorbis here
  171. * @todo optimize it further with SSE/3Dnow
  172. */
  173. static void wma_lsp_to_curve(WMACodecContext *s,
  174. float *out, float *val_max_ptr,
  175. int n, float *lsp)
  176. {
  177. int i, j;
  178. float p, q, w, v, val_max;
  179. val_max = 0;
  180. for(i=0;i<n;i++) {
  181. p = 0.5f;
  182. q = 0.5f;
  183. w = s->lsp_cos_table[i];
  184. for(j=1;j<NB_LSP_COEFS;j+=2){
  185. q *= w - lsp[j - 1];
  186. p *= w - lsp[j];
  187. }
  188. p *= p * (2.0f - w);
  189. q *= q * (2.0f + w);
  190. v = p + q;
  191. v = pow_m1_4(s, v);
  192. if (v > val_max)
  193. val_max = v;
  194. out[i] = v;
  195. }
  196. *val_max_ptr = val_max;
  197. }
  198. /**
  199. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  200. */
  201. static void decode_exp_lsp(WMACodecContext *s, int ch)
  202. {
  203. float lsp_coefs[NB_LSP_COEFS];
  204. int val, i;
  205. for(i = 0; i < NB_LSP_COEFS; i++) {
  206. if (i == 0 || i >= 8)
  207. val = get_bits(&s->gb, 3);
  208. else
  209. val = get_bits(&s->gb, 4);
  210. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  211. }
  212. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  213. s->block_len, lsp_coefs);
  214. }
  215. /**
  216. * decode exponents coded with VLC codes
  217. */
  218. static int decode_exp_vlc(WMACodecContext *s, int ch)
  219. {
  220. int last_exp, n, code;
  221. const uint16_t *ptr, *band_ptr;
  222. float v, *q, max_scale, *q_end;
  223. band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  224. ptr = band_ptr;
  225. q = s->exponents[ch];
  226. q_end = q + s->block_len;
  227. max_scale = 0;
  228. if (s->version == 1) {
  229. last_exp = get_bits(&s->gb, 5) + 10;
  230. /* XXX: use a table */
  231. v = pow(10, last_exp * (1.0 / 16.0));
  232. max_scale = v;
  233. n = *ptr++;
  234. do {
  235. *q++ = v;
  236. } while (--n);
  237. }else
  238. last_exp = 36;
  239. while (q < q_end) {
  240. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  241. if (code < 0)
  242. return -1;
  243. /* NOTE: this offset is the same as MPEG4 AAC ! */
  244. last_exp += code - 60;
  245. /* XXX: use a table */
  246. v = pow(10, last_exp * (1.0 / 16.0));
  247. if (v > max_scale)
  248. max_scale = v;
  249. n = *ptr++;
  250. do {
  251. *q++ = v;
  252. } while (--n);
  253. }
  254. s->max_exponent[ch] = max_scale;
  255. return 0;
  256. }
  257. /**
  258. * Apply MDCT window and add into output.
  259. *
  260. * We ensure that when the windows overlap their squared sum
  261. * is always 1 (MDCT reconstruction rule).
  262. */
  263. static void wma_window(WMACodecContext *s, float *out)
  264. {
  265. float *in = s->output;
  266. int block_len, bsize, n;
  267. /* left part */
  268. if (s->block_len_bits <= s->prev_block_len_bits) {
  269. block_len = s->block_len;
  270. bsize = s->frame_len_bits - s->block_len_bits;
  271. s->dsp.vector_fmul_add_add(out, in, s->windows[bsize],
  272. out, 0, block_len, 1);
  273. } else {
  274. block_len = 1 << s->prev_block_len_bits;
  275. n = (s->block_len - block_len) / 2;
  276. bsize = s->frame_len_bits - s->prev_block_len_bits;
  277. s->dsp.vector_fmul_add_add(out+n, in+n, s->windows[bsize],
  278. out+n, 0, block_len, 1);
  279. memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
  280. }
  281. out += s->block_len;
  282. in += s->block_len;
  283. /* right part */
  284. if (s->block_len_bits <= s->next_block_len_bits) {
  285. block_len = s->block_len;
  286. bsize = s->frame_len_bits - s->block_len_bits;
  287. s->dsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  288. } else {
  289. block_len = 1 << s->next_block_len_bits;
  290. n = (s->block_len - block_len) / 2;
  291. bsize = s->frame_len_bits - s->next_block_len_bits;
  292. memcpy(out, in, n*sizeof(float));
  293. s->dsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  294. memset(out+n+block_len, 0, n*sizeof(float));
  295. }
  296. }
  297. /**
  298. * @return 0 if OK. 1 if last block of frame. return -1 if
  299. * unrecorrable error.
  300. */
  301. static int wma_decode_block(WMACodecContext *s)
  302. {
  303. int n, v, a, ch, code, bsize;
  304. int coef_nb_bits, total_gain;
  305. int nb_coefs[MAX_CHANNELS];
  306. float mdct_norm;
  307. #ifdef TRACE
  308. tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  309. #endif
  310. /* compute current block length */
  311. if (s->use_variable_block_len) {
  312. n = av_log2(s->nb_block_sizes - 1) + 1;
  313. if (s->reset_block_lengths) {
  314. s->reset_block_lengths = 0;
  315. v = get_bits(&s->gb, n);
  316. if (v >= s->nb_block_sizes)
  317. return -1;
  318. s->prev_block_len_bits = s->frame_len_bits - v;
  319. v = get_bits(&s->gb, n);
  320. if (v >= s->nb_block_sizes)
  321. return -1;
  322. s->block_len_bits = s->frame_len_bits - v;
  323. } else {
  324. /* update block lengths */
  325. s->prev_block_len_bits = s->block_len_bits;
  326. s->block_len_bits = s->next_block_len_bits;
  327. }
  328. v = get_bits(&s->gb, n);
  329. if (v >= s->nb_block_sizes)
  330. return -1;
  331. s->next_block_len_bits = s->frame_len_bits - v;
  332. } else {
  333. /* fixed block len */
  334. s->next_block_len_bits = s->frame_len_bits;
  335. s->prev_block_len_bits = s->frame_len_bits;
  336. s->block_len_bits = s->frame_len_bits;
  337. }
  338. /* now check if the block length is coherent with the frame length */
  339. s->block_len = 1 << s->block_len_bits;
  340. if ((s->block_pos + s->block_len) > s->frame_len)
  341. return -1;
  342. if (s->nb_channels == 2) {
  343. s->ms_stereo = get_bits1(&s->gb);
  344. }
  345. v = 0;
  346. for(ch = 0; ch < s->nb_channels; ch++) {
  347. a = get_bits1(&s->gb);
  348. s->channel_coded[ch] = a;
  349. v |= a;
  350. }
  351. bsize = s->frame_len_bits - s->block_len_bits;
  352. /* if no channel coded, no need to go further */
  353. /* XXX: fix potential framing problems */
  354. if (!v)
  355. goto next;
  356. /* read total gain and extract corresponding number of bits for
  357. coef escape coding */
  358. total_gain = 1;
  359. for(;;) {
  360. a = get_bits(&s->gb, 7);
  361. total_gain += a;
  362. if (a != 127)
  363. break;
  364. }
  365. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  366. /* compute number of coefficients */
  367. n = s->coefs_end[bsize] - s->coefs_start;
  368. for(ch = 0; ch < s->nb_channels; ch++)
  369. nb_coefs[ch] = n;
  370. /* complex coding */
  371. if (s->use_noise_coding) {
  372. for(ch = 0; ch < s->nb_channels; ch++) {
  373. if (s->channel_coded[ch]) {
  374. int i, n, a;
  375. n = s->exponent_high_sizes[bsize];
  376. for(i=0;i<n;i++) {
  377. a = get_bits1(&s->gb);
  378. s->high_band_coded[ch][i] = a;
  379. /* if noise coding, the coefficients are not transmitted */
  380. if (a)
  381. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  382. }
  383. }
  384. }
  385. for(ch = 0; ch < s->nb_channels; ch++) {
  386. if (s->channel_coded[ch]) {
  387. int i, n, val, code;
  388. n = s->exponent_high_sizes[bsize];
  389. val = (int)0x80000000;
  390. for(i=0;i<n;i++) {
  391. if (s->high_band_coded[ch][i]) {
  392. if (val == (int)0x80000000) {
  393. val = get_bits(&s->gb, 7) - 19;
  394. } else {
  395. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  396. if (code < 0)
  397. return -1;
  398. val += code - 18;
  399. }
  400. s->high_band_values[ch][i] = val;
  401. }
  402. }
  403. }
  404. }
  405. }
  406. /* exponents can be reused in short blocks. */
  407. if ((s->block_len_bits == s->frame_len_bits) ||
  408. get_bits1(&s->gb)) {
  409. for(ch = 0; ch < s->nb_channels; ch++) {
  410. if (s->channel_coded[ch]) {
  411. if (s->use_exp_vlc) {
  412. if (decode_exp_vlc(s, ch) < 0)
  413. return -1;
  414. } else {
  415. decode_exp_lsp(s, ch);
  416. }
  417. s->exponents_bsize[ch] = bsize;
  418. }
  419. }
  420. }
  421. /* parse spectral coefficients : just RLE encoding */
  422. for(ch = 0; ch < s->nb_channels; ch++) {
  423. if (s->channel_coded[ch]) {
  424. VLC *coef_vlc;
  425. int level, run, sign, tindex;
  426. int16_t *ptr, *eptr;
  427. const uint16_t *level_table, *run_table;
  428. /* special VLC tables are used for ms stereo because
  429. there is potentially less energy there */
  430. tindex = (ch == 1 && s->ms_stereo);
  431. coef_vlc = &s->coef_vlc[tindex];
  432. run_table = s->run_table[tindex];
  433. level_table = s->level_table[tindex];
  434. /* XXX: optimize */
  435. ptr = &s->coefs1[ch][0];
  436. eptr = ptr + nb_coefs[ch];
  437. memset(ptr, 0, s->block_len * sizeof(int16_t));
  438. for(;;) {
  439. code = get_vlc2(&s->gb, coef_vlc->table, VLCBITS, VLCMAX);
  440. if (code < 0)
  441. return -1;
  442. if (code == 1) {
  443. /* EOB */
  444. break;
  445. } else if (code == 0) {
  446. /* escape */
  447. level = get_bits(&s->gb, coef_nb_bits);
  448. /* NOTE: this is rather suboptimal. reading
  449. block_len_bits would be better */
  450. run = get_bits(&s->gb, s->frame_len_bits);
  451. } else {
  452. /* normal code */
  453. run = run_table[code];
  454. level = level_table[code];
  455. }
  456. sign = get_bits1(&s->gb);
  457. if (!sign)
  458. level = -level;
  459. ptr += run;
  460. if (ptr >= eptr)
  461. {
  462. av_log(NULL, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
  463. break;
  464. }
  465. *ptr++ = level;
  466. /* NOTE: EOB can be omitted */
  467. if (ptr >= eptr)
  468. break;
  469. }
  470. }
  471. if (s->version == 1 && s->nb_channels >= 2) {
  472. align_get_bits(&s->gb);
  473. }
  474. }
  475. /* normalize */
  476. {
  477. int n4 = s->block_len / 2;
  478. mdct_norm = 1.0 / (float)n4;
  479. if (s->version == 1) {
  480. mdct_norm *= sqrt(n4);
  481. }
  482. }
  483. /* finally compute the MDCT coefficients */
  484. for(ch = 0; ch < s->nb_channels; ch++) {
  485. if (s->channel_coded[ch]) {
  486. int16_t *coefs1;
  487. float *coefs, *exponents, mult, mult1, noise;
  488. int i, j, n, n1, last_high_band, esize;
  489. float exp_power[HIGH_BAND_MAX_SIZE];
  490. coefs1 = s->coefs1[ch];
  491. exponents = s->exponents[ch];
  492. esize = s->exponents_bsize[ch];
  493. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  494. mult *= mdct_norm;
  495. coefs = s->coefs[ch];
  496. if (s->use_noise_coding) {
  497. mult1 = mult;
  498. /* very low freqs : noise */
  499. for(i = 0;i < s->coefs_start; i++) {
  500. *coefs++ = s->noise_table[s->noise_index] *
  501. exponents[i<<bsize>>esize] * mult1;
  502. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  503. }
  504. n1 = s->exponent_high_sizes[bsize];
  505. /* compute power of high bands */
  506. exponents = s->exponents[ch] +
  507. (s->high_band_start[bsize]<<bsize);
  508. last_high_band = 0; /* avoid warning */
  509. for(j=0;j<n1;j++) {
  510. n = s->exponent_high_bands[s->frame_len_bits -
  511. s->block_len_bits][j];
  512. if (s->high_band_coded[ch][j]) {
  513. float e2, v;
  514. e2 = 0;
  515. for(i = 0;i < n; i++) {
  516. v = exponents[i<<bsize>>esize];
  517. e2 += v * v;
  518. }
  519. exp_power[j] = e2 / n;
  520. last_high_band = j;
  521. tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  522. }
  523. exponents += n<<bsize;
  524. }
  525. /* main freqs and high freqs */
  526. exponents = s->exponents[ch] + (s->coefs_start<<bsize);
  527. for(j=-1;j<n1;j++) {
  528. if (j < 0) {
  529. n = s->high_band_start[bsize] -
  530. s->coefs_start;
  531. } else {
  532. n = s->exponent_high_bands[s->frame_len_bits -
  533. s->block_len_bits][j];
  534. }
  535. if (j >= 0 && s->high_band_coded[ch][j]) {
  536. /* use noise with specified power */
  537. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  538. /* XXX: use a table */
  539. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  540. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  541. mult1 *= mdct_norm;
  542. for(i = 0;i < n; i++) {
  543. noise = s->noise_table[s->noise_index];
  544. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  545. *coefs++ = noise *
  546. exponents[i<<bsize>>esize] * mult1;
  547. }
  548. exponents += n<<bsize;
  549. } else {
  550. /* coded values + small noise */
  551. for(i = 0;i < n; i++) {
  552. noise = s->noise_table[s->noise_index];
  553. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  554. *coefs++ = ((*coefs1++) + noise) *
  555. exponents[i<<bsize>>esize] * mult;
  556. }
  557. exponents += n<<bsize;
  558. }
  559. }
  560. /* very high freqs : noise */
  561. n = s->block_len - s->coefs_end[bsize];
  562. mult1 = mult * exponents[((-1<<bsize))>>esize];
  563. for(i = 0; i < n; i++) {
  564. *coefs++ = s->noise_table[s->noise_index] * mult1;
  565. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  566. }
  567. } else {
  568. /* XXX: optimize more */
  569. for(i = 0;i < s->coefs_start; i++)
  570. *coefs++ = 0.0;
  571. n = nb_coefs[ch];
  572. for(i = 0;i < n; i++) {
  573. *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
  574. }
  575. n = s->block_len - s->coefs_end[bsize];
  576. for(i = 0;i < n; i++)
  577. *coefs++ = 0.0;
  578. }
  579. }
  580. }
  581. #ifdef TRACE
  582. for(ch = 0; ch < s->nb_channels; ch++) {
  583. if (s->channel_coded[ch]) {
  584. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  585. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  586. }
  587. }
  588. #endif
  589. if (s->ms_stereo && s->channel_coded[1]) {
  590. float a, b;
  591. int i;
  592. /* nominal case for ms stereo: we do it before mdct */
  593. /* no need to optimize this case because it should almost
  594. never happen */
  595. if (!s->channel_coded[0]) {
  596. tprintf(s->avctx, "rare ms-stereo case happened\n");
  597. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  598. s->channel_coded[0] = 1;
  599. }
  600. for(i = 0; i < s->block_len; i++) {
  601. a = s->coefs[0][i];
  602. b = s->coefs[1][i];
  603. s->coefs[0][i] = a + b;
  604. s->coefs[1][i] = a - b;
  605. }
  606. }
  607. next:
  608. for(ch = 0; ch < s->nb_channels; ch++) {
  609. int n4, index;
  610. n4 = s->block_len / 2;
  611. if(s->channel_coded[ch]){
  612. ff_imdct_calc(&s->mdct_ctx[bsize], s->output, s->coefs[ch]);
  613. }else if(!(s->ms_stereo && ch==1))
  614. memset(s->output, 0, sizeof(s->output));
  615. /* multiply by the window and add in the frame */
  616. index = (s->frame_len / 2) + s->block_pos - n4;
  617. wma_window(s, &s->frame_out[ch][index]);
  618. }
  619. /* update block number */
  620. s->block_num++;
  621. s->block_pos += s->block_len;
  622. if (s->block_pos >= s->frame_len)
  623. return 1;
  624. else
  625. return 0;
  626. }
  627. /* decode a frame of frame_len samples */
  628. static int wma_decode_frame(WMACodecContext *s, int16_t *samples)
  629. {
  630. int ret, i, n, ch, incr;
  631. int16_t *ptr;
  632. float *iptr;
  633. #ifdef TRACE
  634. tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  635. #endif
  636. /* read each block */
  637. s->block_num = 0;
  638. s->block_pos = 0;
  639. for(;;) {
  640. ret = wma_decode_block(s);
  641. if (ret < 0)
  642. return -1;
  643. if (ret)
  644. break;
  645. }
  646. /* convert frame to integer */
  647. n = s->frame_len;
  648. incr = s->nb_channels;
  649. for(ch = 0; ch < s->nb_channels; ch++) {
  650. ptr = samples + ch;
  651. iptr = s->frame_out[ch];
  652. for(i=0;i<n;i++) {
  653. *ptr = av_clip_int16(lrintf(*iptr++));
  654. ptr += incr;
  655. }
  656. /* prepare for next block */
  657. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  658. s->frame_len * sizeof(float));
  659. }
  660. #ifdef TRACE
  661. dump_shorts(s, "samples", samples, n * s->nb_channels);
  662. #endif
  663. return 0;
  664. }
  665. static int wma_decode_superframe(AVCodecContext *avctx,
  666. void *data, int *data_size,
  667. AVPacket *avpkt)
  668. {
  669. const uint8_t *buf = avpkt->data;
  670. int buf_size = avpkt->size;
  671. WMACodecContext *s = avctx->priv_data;
  672. int nb_frames, bit_offset, i, pos, len;
  673. uint8_t *q;
  674. int16_t *samples;
  675. tprintf(avctx, "***decode_superframe:\n");
  676. if(buf_size==0){
  677. s->last_superframe_len = 0;
  678. return 0;
  679. }
  680. if (buf_size < s->block_align)
  681. return 0;
  682. buf_size = s->block_align;
  683. samples = data;
  684. init_get_bits(&s->gb, buf, buf_size*8);
  685. if (s->use_bit_reservoir) {
  686. /* read super frame header */
  687. skip_bits(&s->gb, 4); /* super frame index */
  688. nb_frames = get_bits(&s->gb, 4) - 1;
  689. if((nb_frames+1) * s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
  690. av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
  691. goto fail;
  692. }
  693. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  694. if (s->last_superframe_len > 0) {
  695. // printf("skip=%d\n", s->last_bitoffset);
  696. /* add bit_offset bits to last frame */
  697. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  698. MAX_CODED_SUPERFRAME_SIZE)
  699. goto fail;
  700. q = s->last_superframe + s->last_superframe_len;
  701. len = bit_offset;
  702. while (len > 7) {
  703. *q++ = (get_bits)(&s->gb, 8);
  704. len -= 8;
  705. }
  706. if (len > 0) {
  707. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  708. }
  709. /* XXX: bit_offset bits into last frame */
  710. init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
  711. /* skip unused bits */
  712. if (s->last_bitoffset > 0)
  713. skip_bits(&s->gb, s->last_bitoffset);
  714. /* this frame is stored in the last superframe and in the
  715. current one */
  716. if (wma_decode_frame(s, samples) < 0)
  717. goto fail;
  718. samples += s->nb_channels * s->frame_len;
  719. }
  720. /* read each frame starting from bit_offset */
  721. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  722. init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
  723. len = pos & 7;
  724. if (len > 0)
  725. skip_bits(&s->gb, len);
  726. s->reset_block_lengths = 1;
  727. for(i=0;i<nb_frames;i++) {
  728. if (wma_decode_frame(s, samples) < 0)
  729. goto fail;
  730. samples += s->nb_channels * s->frame_len;
  731. }
  732. /* we copy the end of the frame in the last frame buffer */
  733. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  734. s->last_bitoffset = pos & 7;
  735. pos >>= 3;
  736. len = buf_size - pos;
  737. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  738. goto fail;
  739. }
  740. s->last_superframe_len = len;
  741. memcpy(s->last_superframe, buf + pos, len);
  742. } else {
  743. if(s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
  744. av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
  745. goto fail;
  746. }
  747. /* single frame decode */
  748. if (wma_decode_frame(s, samples) < 0)
  749. goto fail;
  750. samples += s->nb_channels * s->frame_len;
  751. }
  752. //av_log(NULL, AV_LOG_ERROR, "%d %d %d %d outbytes:%d eaten:%d\n", s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len, (int8_t *)samples - (int8_t *)data, s->block_align);
  753. *data_size = (int8_t *)samples - (int8_t *)data;
  754. return s->block_align;
  755. fail:
  756. /* when error, we reset the bit reservoir */
  757. s->last_superframe_len = 0;
  758. return -1;
  759. }
  760. AVCodec wmav1_decoder =
  761. {
  762. "wmav1",
  763. CODEC_TYPE_AUDIO,
  764. CODEC_ID_WMAV1,
  765. sizeof(WMACodecContext),
  766. wma_decode_init,
  767. NULL,
  768. ff_wma_end,
  769. wma_decode_superframe,
  770. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  771. };
  772. AVCodec wmav2_decoder =
  773. {
  774. "wmav2",
  775. CODEC_TYPE_AUDIO,
  776. CODEC_ID_WMAV2,
  777. sizeof(WMACodecContext),
  778. wma_decode_init,
  779. NULL,
  780. ff_wma_end,
  781. wma_decode_superframe,
  782. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  783. };