You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4329 lines
154KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/vc1.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "internal.h"
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "vc1.h"
  32. #include "vc1data.h"
  33. #include "vc1acdata.h"
  34. #include "msmpeg4data.h"
  35. #include "unary.h"
  36. #include "simple_idct.h"
  37. #include "mathops.h"
  38. #include "vdpau_internal.h"
  39. #undef NDEBUG
  40. #include <assert.h>
  41. #define MB_INTRA_VLC_BITS 9
  42. #define DC_VLC_BITS 9
  43. #define AC_VLC_BITS 9
  44. static const uint16_t table_mb_intra[64][2];
  45. static const uint16_t vlc_offs[] = {
  46. 0, 520, 552, 616, 1128, 1160, 1224, 1740, 1772, 1836, 1900, 2436,
  47. 2986, 3050, 3610, 4154, 4218, 4746, 5326, 5390, 5902, 6554, 7658, 8620,
  48. 9262, 10202, 10756, 11310, 12228, 15078
  49. };
  50. /**
  51. * Init VC-1 specific tables and VC1Context members
  52. * @param v The VC1Context to initialize
  53. * @return Status
  54. */
  55. static int vc1_init_common(VC1Context *v)
  56. {
  57. static int done = 0;
  58. int i = 0;
  59. static VLC_TYPE vlc_table[15078][2];
  60. v->hrd_rate = v->hrd_buffer = NULL;
  61. /* VLC tables */
  62. if(!done)
  63. {
  64. INIT_VLC_STATIC(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  65. ff_vc1_bfraction_bits, 1, 1,
  66. ff_vc1_bfraction_codes, 1, 1, 1 << VC1_BFRACTION_VLC_BITS);
  67. INIT_VLC_STATIC(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  68. ff_vc1_norm2_bits, 1, 1,
  69. ff_vc1_norm2_codes, 1, 1, 1 << VC1_NORM2_VLC_BITS);
  70. INIT_VLC_STATIC(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  71. ff_vc1_norm6_bits, 1, 1,
  72. ff_vc1_norm6_codes, 2, 2, 556);
  73. INIT_VLC_STATIC(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  74. ff_vc1_imode_bits, 1, 1,
  75. ff_vc1_imode_codes, 1, 1, 1 << VC1_IMODE_VLC_BITS);
  76. for (i=0; i<3; i++)
  77. {
  78. ff_vc1_ttmb_vlc[i].table = &vlc_table[vlc_offs[i*3+0]];
  79. ff_vc1_ttmb_vlc[i].table_allocated = vlc_offs[i*3+1] - vlc_offs[i*3+0];
  80. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  81. ff_vc1_ttmb_bits[i], 1, 1,
  82. ff_vc1_ttmb_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  83. ff_vc1_ttblk_vlc[i].table = &vlc_table[vlc_offs[i*3+1]];
  84. ff_vc1_ttblk_vlc[i].table_allocated = vlc_offs[i*3+2] - vlc_offs[i*3+1];
  85. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  86. ff_vc1_ttblk_bits[i], 1, 1,
  87. ff_vc1_ttblk_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  88. ff_vc1_subblkpat_vlc[i].table = &vlc_table[vlc_offs[i*3+2]];
  89. ff_vc1_subblkpat_vlc[i].table_allocated = vlc_offs[i*3+3] - vlc_offs[i*3+2];
  90. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  91. ff_vc1_subblkpat_bits[i], 1, 1,
  92. ff_vc1_subblkpat_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  93. }
  94. for(i=0; i<4; i++)
  95. {
  96. ff_vc1_4mv_block_pattern_vlc[i].table = &vlc_table[vlc_offs[i*3+9]];
  97. ff_vc1_4mv_block_pattern_vlc[i].table_allocated = vlc_offs[i*3+10] - vlc_offs[i*3+9];
  98. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  99. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  100. ff_vc1_4mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  101. ff_vc1_cbpcy_p_vlc[i].table = &vlc_table[vlc_offs[i*3+10]];
  102. ff_vc1_cbpcy_p_vlc[i].table_allocated = vlc_offs[i*3+11] - vlc_offs[i*3+10];
  103. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  104. ff_vc1_cbpcy_p_bits[i], 1, 1,
  105. ff_vc1_cbpcy_p_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  106. ff_vc1_mv_diff_vlc[i].table = &vlc_table[vlc_offs[i*3+11]];
  107. ff_vc1_mv_diff_vlc[i].table_allocated = vlc_offs[i*3+12] - vlc_offs[i*3+11];
  108. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  109. ff_vc1_mv_diff_bits[i], 1, 1,
  110. ff_vc1_mv_diff_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  111. }
  112. for(i=0; i<8; i++){
  113. ff_vc1_ac_coeff_table[i].table = &vlc_table[vlc_offs[i+21]];
  114. ff_vc1_ac_coeff_table[i].table_allocated = vlc_offs[i+22] - vlc_offs[i+21];
  115. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  116. &vc1_ac_tables[i][0][1], 8, 4,
  117. &vc1_ac_tables[i][0][0], 8, 4, INIT_VLC_USE_NEW_STATIC);
  118. }
  119. //FIXME: switching to INIT_VLC_STATIC() results in incorrect decoding
  120. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  121. &ff_msmp4_mb_i_table[0][1], 4, 2,
  122. &ff_msmp4_mb_i_table[0][0], 4, 2, INIT_VLC_USE_STATIC);
  123. done = 1;
  124. }
  125. /* Other defaults */
  126. v->pq = -1;
  127. v->mvrange = 0; /* 7.1.1.18, p80 */
  128. return 0;
  129. }
  130. /***********************************************************************/
  131. /**
  132. * @defgroup vc1bitplane VC-1 Bitplane decoding
  133. * @see 8.7, p56
  134. * @{
  135. */
  136. /**
  137. * Imode types
  138. * @{
  139. */
  140. enum Imode {
  141. IMODE_RAW,
  142. IMODE_NORM2,
  143. IMODE_DIFF2,
  144. IMODE_NORM6,
  145. IMODE_DIFF6,
  146. IMODE_ROWSKIP,
  147. IMODE_COLSKIP
  148. };
  149. /** @} */ //imode defines
  150. /** Decode rows by checking if they are skipped
  151. * @param plane Buffer to store decoded bits
  152. * @param[in] width Width of this buffer
  153. * @param[in] height Height of this buffer
  154. * @param[in] stride of this buffer
  155. */
  156. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  157. int x, y;
  158. for (y=0; y<height; y++){
  159. if (!get_bits1(gb)) //rowskip
  160. memset(plane, 0, width);
  161. else
  162. for (x=0; x<width; x++)
  163. plane[x] = get_bits1(gb);
  164. plane += stride;
  165. }
  166. }
  167. /** Decode columns by checking if they are skipped
  168. * @param plane Buffer to store decoded bits
  169. * @param[in] width Width of this buffer
  170. * @param[in] height Height of this buffer
  171. * @param[in] stride of this buffer
  172. * @todo FIXME: Optimize
  173. */
  174. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  175. int x, y;
  176. for (x=0; x<width; x++){
  177. if (!get_bits1(gb)) //colskip
  178. for (y=0; y<height; y++)
  179. plane[y*stride] = 0;
  180. else
  181. for (y=0; y<height; y++)
  182. plane[y*stride] = get_bits1(gb);
  183. plane ++;
  184. }
  185. }
  186. /** Decode a bitplane's bits
  187. * @param data bitplane where to store the decode bits
  188. * @param[out] raw_flag pointer to the flag indicating that this bitplane is not coded explicitly
  189. * @param v VC-1 context for bit reading and logging
  190. * @return Status
  191. * @todo FIXME: Optimize
  192. */
  193. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  194. {
  195. GetBitContext *gb = &v->s.gb;
  196. int imode, x, y, code, offset;
  197. uint8_t invert, *planep = data;
  198. int width, height, stride;
  199. width = v->s.mb_width;
  200. height = v->s.mb_height;
  201. stride = v->s.mb_stride;
  202. invert = get_bits1(gb);
  203. imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  204. *raw_flag = 0;
  205. switch (imode)
  206. {
  207. case IMODE_RAW:
  208. //Data is actually read in the MB layer (same for all tests == "raw")
  209. *raw_flag = 1; //invert ignored
  210. return invert;
  211. case IMODE_DIFF2:
  212. case IMODE_NORM2:
  213. if ((height * width) & 1)
  214. {
  215. *planep++ = get_bits1(gb);
  216. offset = 1;
  217. }
  218. else offset = 0;
  219. // decode bitplane as one long line
  220. for (y = offset; y < height * width; y += 2) {
  221. code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  222. *planep++ = code & 1;
  223. offset++;
  224. if(offset == width) {
  225. offset = 0;
  226. planep += stride - width;
  227. }
  228. *planep++ = code >> 1;
  229. offset++;
  230. if(offset == width) {
  231. offset = 0;
  232. planep += stride - width;
  233. }
  234. }
  235. break;
  236. case IMODE_DIFF6:
  237. case IMODE_NORM6:
  238. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  239. for(y = 0; y < height; y+= 3) {
  240. for(x = width & 1; x < width; x += 2) {
  241. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  242. if(code < 0){
  243. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  244. return -1;
  245. }
  246. planep[x + 0] = (code >> 0) & 1;
  247. planep[x + 1] = (code >> 1) & 1;
  248. planep[x + 0 + stride] = (code >> 2) & 1;
  249. planep[x + 1 + stride] = (code >> 3) & 1;
  250. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  251. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  252. }
  253. planep += stride * 3;
  254. }
  255. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  256. } else { // 3x2
  257. planep += (height & 1) * stride;
  258. for(y = height & 1; y < height; y += 2) {
  259. for(x = width % 3; x < width; x += 3) {
  260. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  261. if(code < 0){
  262. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  263. return -1;
  264. }
  265. planep[x + 0] = (code >> 0) & 1;
  266. planep[x + 1] = (code >> 1) & 1;
  267. planep[x + 2] = (code >> 2) & 1;
  268. planep[x + 0 + stride] = (code >> 3) & 1;
  269. planep[x + 1 + stride] = (code >> 4) & 1;
  270. planep[x + 2 + stride] = (code >> 5) & 1;
  271. }
  272. planep += stride * 2;
  273. }
  274. x = width % 3;
  275. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  276. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  277. }
  278. break;
  279. case IMODE_ROWSKIP:
  280. decode_rowskip(data, width, height, stride, &v->s.gb);
  281. break;
  282. case IMODE_COLSKIP:
  283. decode_colskip(data, width, height, stride, &v->s.gb);
  284. break;
  285. default: break;
  286. }
  287. /* Applying diff operator */
  288. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  289. {
  290. planep = data;
  291. planep[0] ^= invert;
  292. for (x=1; x<width; x++)
  293. planep[x] ^= planep[x-1];
  294. for (y=1; y<height; y++)
  295. {
  296. planep += stride;
  297. planep[0] ^= planep[-stride];
  298. for (x=1; x<width; x++)
  299. {
  300. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  301. else planep[x] ^= planep[x-1];
  302. }
  303. }
  304. }
  305. else if (invert)
  306. {
  307. planep = data;
  308. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  309. }
  310. return (imode<<1) + invert;
  311. }
  312. /** @} */ //Bitplane group
  313. static void vc1_loop_filter_iblk(MpegEncContext *s, int pq)
  314. {
  315. int i, j;
  316. if(!s->first_slice_line)
  317. s->dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
  318. s->dsp.vc1_v_loop_filter16(s->dest[0] + 8*s->linesize, s->linesize, pq);
  319. for(i = !s->mb_x*8; i < 16; i += 8)
  320. s->dsp.vc1_h_loop_filter16(s->dest[0] + i, s->linesize, pq);
  321. for(j = 0; j < 2; j++){
  322. if(!s->first_slice_line)
  323. s->dsp.vc1_v_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
  324. if(s->mb_x)
  325. s->dsp.vc1_h_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
  326. }
  327. }
  328. /***********************************************************************/
  329. /** VOP Dquant decoding
  330. * @param v VC-1 Context
  331. */
  332. static int vop_dquant_decoding(VC1Context *v)
  333. {
  334. GetBitContext *gb = &v->s.gb;
  335. int pqdiff;
  336. //variable size
  337. if (v->dquant == 2)
  338. {
  339. pqdiff = get_bits(gb, 3);
  340. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  341. else v->altpq = v->pq + pqdiff + 1;
  342. }
  343. else
  344. {
  345. v->dquantfrm = get_bits1(gb);
  346. if ( v->dquantfrm )
  347. {
  348. v->dqprofile = get_bits(gb, 2);
  349. switch (v->dqprofile)
  350. {
  351. case DQPROFILE_SINGLE_EDGE:
  352. case DQPROFILE_DOUBLE_EDGES:
  353. v->dqsbedge = get_bits(gb, 2);
  354. break;
  355. case DQPROFILE_ALL_MBS:
  356. v->dqbilevel = get_bits1(gb);
  357. if(!v->dqbilevel)
  358. v->halfpq = 0;
  359. default: break; //Forbidden ?
  360. }
  361. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  362. {
  363. pqdiff = get_bits(gb, 3);
  364. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  365. else v->altpq = v->pq + pqdiff + 1;
  366. }
  367. }
  368. }
  369. return 0;
  370. }
  371. /** Put block onto picture
  372. */
  373. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  374. {
  375. uint8_t *Y;
  376. int ys, us, vs;
  377. DSPContext *dsp = &v->s.dsp;
  378. if(v->rangeredfrm) {
  379. int i, j, k;
  380. for(k = 0; k < 6; k++)
  381. for(j = 0; j < 8; j++)
  382. for(i = 0; i < 8; i++)
  383. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  384. }
  385. ys = v->s.current_picture.linesize[0];
  386. us = v->s.current_picture.linesize[1];
  387. vs = v->s.current_picture.linesize[2];
  388. Y = v->s.dest[0];
  389. dsp->put_pixels_clamped(block[0], Y, ys);
  390. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  391. Y += ys * 8;
  392. dsp->put_pixels_clamped(block[2], Y, ys);
  393. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  394. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  395. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  396. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  397. }
  398. }
  399. /** Do motion compensation over 1 macroblock
  400. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  401. */
  402. static void vc1_mc_1mv(VC1Context *v, int dir)
  403. {
  404. MpegEncContext *s = &v->s;
  405. DSPContext *dsp = &v->s.dsp;
  406. uint8_t *srcY, *srcU, *srcV;
  407. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  408. if(!v->s.last_picture.data[0])return;
  409. mx = s->mv[dir][0][0];
  410. my = s->mv[dir][0][1];
  411. // store motion vectors for further use in B frames
  412. if(s->pict_type == FF_P_TYPE) {
  413. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  414. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  415. }
  416. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  417. uvmy = (my + ((my & 3) == 3)) >> 1;
  418. if(v->fastuvmc) {
  419. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  420. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  421. }
  422. if(!dir) {
  423. srcY = s->last_picture.data[0];
  424. srcU = s->last_picture.data[1];
  425. srcV = s->last_picture.data[2];
  426. } else {
  427. srcY = s->next_picture.data[0];
  428. srcU = s->next_picture.data[1];
  429. srcV = s->next_picture.data[2];
  430. }
  431. src_x = s->mb_x * 16 + (mx >> 2);
  432. src_y = s->mb_y * 16 + (my >> 2);
  433. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  434. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  435. if(v->profile != PROFILE_ADVANCED){
  436. src_x = av_clip( src_x, -16, s->mb_width * 16);
  437. src_y = av_clip( src_y, -16, s->mb_height * 16);
  438. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  439. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  440. }else{
  441. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  442. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  443. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  444. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  445. }
  446. srcY += src_y * s->linesize + src_x;
  447. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  448. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  449. /* for grayscale we should not try to read from unknown area */
  450. if(s->flags & CODEC_FLAG_GRAY) {
  451. srcU = s->edge_emu_buffer + 18 * s->linesize;
  452. srcV = s->edge_emu_buffer + 18 * s->linesize;
  453. }
  454. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  455. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  456. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  457. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  458. srcY -= s->mspel * (1 + s->linesize);
  459. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  460. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  461. srcY = s->edge_emu_buffer;
  462. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  463. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  464. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  465. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  466. srcU = uvbuf;
  467. srcV = uvbuf + 16;
  468. /* if we deal with range reduction we need to scale source blocks */
  469. if(v->rangeredfrm) {
  470. int i, j;
  471. uint8_t *src, *src2;
  472. src = srcY;
  473. for(j = 0; j < 17 + s->mspel*2; j++) {
  474. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  475. src += s->linesize;
  476. }
  477. src = srcU; src2 = srcV;
  478. for(j = 0; j < 9; j++) {
  479. for(i = 0; i < 9; i++) {
  480. src[i] = ((src[i] - 128) >> 1) + 128;
  481. src2[i] = ((src2[i] - 128) >> 1) + 128;
  482. }
  483. src += s->uvlinesize;
  484. src2 += s->uvlinesize;
  485. }
  486. }
  487. /* if we deal with intensity compensation we need to scale source blocks */
  488. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  489. int i, j;
  490. uint8_t *src, *src2;
  491. src = srcY;
  492. for(j = 0; j < 17 + s->mspel*2; j++) {
  493. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  494. src += s->linesize;
  495. }
  496. src = srcU; src2 = srcV;
  497. for(j = 0; j < 9; j++) {
  498. for(i = 0; i < 9; i++) {
  499. src[i] = v->lutuv[src[i]];
  500. src2[i] = v->lutuv[src2[i]];
  501. }
  502. src += s->uvlinesize;
  503. src2 += s->uvlinesize;
  504. }
  505. }
  506. srcY += s->mspel * (1 + s->linesize);
  507. }
  508. if(s->mspel) {
  509. dxy = ((my & 3) << 2) | (mx & 3);
  510. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  511. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  512. srcY += s->linesize * 8;
  513. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  514. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  515. } else { // hpel mc - always used for luma
  516. dxy = (my & 2) | ((mx & 2) >> 1);
  517. if(!v->rnd)
  518. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  519. else
  520. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  521. }
  522. if(s->flags & CODEC_FLAG_GRAY) return;
  523. /* Chroma MC always uses qpel bilinear */
  524. uvmx = (uvmx&3)<<1;
  525. uvmy = (uvmy&3)<<1;
  526. if(!v->rnd){
  527. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  528. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  529. }else{
  530. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  531. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  532. }
  533. }
  534. /** Do motion compensation for 4-MV macroblock - luminance block
  535. */
  536. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  537. {
  538. MpegEncContext *s = &v->s;
  539. DSPContext *dsp = &v->s.dsp;
  540. uint8_t *srcY;
  541. int dxy, mx, my, src_x, src_y;
  542. int off;
  543. if(!v->s.last_picture.data[0])return;
  544. mx = s->mv[0][n][0];
  545. my = s->mv[0][n][1];
  546. srcY = s->last_picture.data[0];
  547. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  548. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  549. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  550. if(v->profile != PROFILE_ADVANCED){
  551. src_x = av_clip( src_x, -16, s->mb_width * 16);
  552. src_y = av_clip( src_y, -16, s->mb_height * 16);
  553. }else{
  554. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  555. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  556. }
  557. srcY += src_y * s->linesize + src_x;
  558. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  559. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  560. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  561. srcY -= s->mspel * (1 + s->linesize);
  562. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  563. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  564. srcY = s->edge_emu_buffer;
  565. /* if we deal with range reduction we need to scale source blocks */
  566. if(v->rangeredfrm) {
  567. int i, j;
  568. uint8_t *src;
  569. src = srcY;
  570. for(j = 0; j < 9 + s->mspel*2; j++) {
  571. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  572. src += s->linesize;
  573. }
  574. }
  575. /* if we deal with intensity compensation we need to scale source blocks */
  576. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  577. int i, j;
  578. uint8_t *src;
  579. src = srcY;
  580. for(j = 0; j < 9 + s->mspel*2; j++) {
  581. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  582. src += s->linesize;
  583. }
  584. }
  585. srcY += s->mspel * (1 + s->linesize);
  586. }
  587. if(s->mspel) {
  588. dxy = ((my & 3) << 2) | (mx & 3);
  589. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  590. } else { // hpel mc - always used for luma
  591. dxy = (my & 2) | ((mx & 2) >> 1);
  592. if(!v->rnd)
  593. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  594. else
  595. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  596. }
  597. }
  598. static inline int median4(int a, int b, int c, int d)
  599. {
  600. if(a < b) {
  601. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  602. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  603. } else {
  604. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  605. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  606. }
  607. }
  608. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  609. */
  610. static void vc1_mc_4mv_chroma(VC1Context *v)
  611. {
  612. MpegEncContext *s = &v->s;
  613. DSPContext *dsp = &v->s.dsp;
  614. uint8_t *srcU, *srcV;
  615. int uvmx, uvmy, uvsrc_x, uvsrc_y;
  616. int i, idx, tx = 0, ty = 0;
  617. int mvx[4], mvy[4], intra[4];
  618. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  619. if(!v->s.last_picture.data[0])return;
  620. if(s->flags & CODEC_FLAG_GRAY) return;
  621. for(i = 0; i < 4; i++) {
  622. mvx[i] = s->mv[0][i][0];
  623. mvy[i] = s->mv[0][i][1];
  624. intra[i] = v->mb_type[0][s->block_index[i]];
  625. }
  626. /* calculate chroma MV vector from four luma MVs */
  627. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  628. if(!idx) { // all blocks are inter
  629. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  630. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  631. } else if(count[idx] == 1) { // 3 inter blocks
  632. switch(idx) {
  633. case 0x1:
  634. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  635. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  636. break;
  637. case 0x2:
  638. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  639. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  640. break;
  641. case 0x4:
  642. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  643. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  644. break;
  645. case 0x8:
  646. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  647. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  648. break;
  649. }
  650. } else if(count[idx] == 2) {
  651. int t1 = 0, t2 = 0;
  652. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  653. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  654. tx = (mvx[t1] + mvx[t2]) / 2;
  655. ty = (mvy[t1] + mvy[t2]) / 2;
  656. } else {
  657. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  658. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  659. return; //no need to do MC for inter blocks
  660. }
  661. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  662. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  663. uvmx = (tx + ((tx&3) == 3)) >> 1;
  664. uvmy = (ty + ((ty&3) == 3)) >> 1;
  665. if(v->fastuvmc) {
  666. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  667. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  668. }
  669. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  670. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  671. if(v->profile != PROFILE_ADVANCED){
  672. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  673. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  674. }else{
  675. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  676. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  677. }
  678. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  679. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  680. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  681. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  682. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  683. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  684. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  685. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  686. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  687. srcU = s->edge_emu_buffer;
  688. srcV = s->edge_emu_buffer + 16;
  689. /* if we deal with range reduction we need to scale source blocks */
  690. if(v->rangeredfrm) {
  691. int i, j;
  692. uint8_t *src, *src2;
  693. src = srcU; src2 = srcV;
  694. for(j = 0; j < 9; j++) {
  695. for(i = 0; i < 9; i++) {
  696. src[i] = ((src[i] - 128) >> 1) + 128;
  697. src2[i] = ((src2[i] - 128) >> 1) + 128;
  698. }
  699. src += s->uvlinesize;
  700. src2 += s->uvlinesize;
  701. }
  702. }
  703. /* if we deal with intensity compensation we need to scale source blocks */
  704. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  705. int i, j;
  706. uint8_t *src, *src2;
  707. src = srcU; src2 = srcV;
  708. for(j = 0; j < 9; j++) {
  709. for(i = 0; i < 9; i++) {
  710. src[i] = v->lutuv[src[i]];
  711. src2[i] = v->lutuv[src2[i]];
  712. }
  713. src += s->uvlinesize;
  714. src2 += s->uvlinesize;
  715. }
  716. }
  717. }
  718. /* Chroma MC always uses qpel bilinear */
  719. uvmx = (uvmx&3)<<1;
  720. uvmy = (uvmy&3)<<1;
  721. if(!v->rnd){
  722. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  723. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  724. }else{
  725. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  726. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  727. }
  728. }
  729. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  730. /**
  731. * Decode Simple/Main Profiles sequence header
  732. * @see Figure 7-8, p16-17
  733. * @param avctx Codec context
  734. * @param gb GetBit context initialized from Codec context extra_data
  735. * @return Status
  736. */
  737. int vc1_decode_sequence_header(AVCodecContext *avctx, VC1Context *v, GetBitContext *gb)
  738. {
  739. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  740. v->profile = get_bits(gb, 2);
  741. if (v->profile == PROFILE_COMPLEX)
  742. {
  743. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  744. }
  745. if (v->profile == PROFILE_ADVANCED)
  746. {
  747. v->zz_8x4 = ff_vc1_adv_progressive_8x4_zz;
  748. v->zz_4x8 = ff_vc1_adv_progressive_4x8_zz;
  749. return decode_sequence_header_adv(v, gb);
  750. }
  751. else
  752. {
  753. v->zz_8x4 = wmv2_scantableA;
  754. v->zz_4x8 = wmv2_scantableB;
  755. v->res_sm = get_bits(gb, 2); //reserved
  756. if (v->res_sm)
  757. {
  758. av_log(avctx, AV_LOG_ERROR,
  759. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  760. return -1;
  761. }
  762. }
  763. // (fps-2)/4 (->30)
  764. v->frmrtq_postproc = get_bits(gb, 3); //common
  765. // (bitrate-32kbps)/64kbps
  766. v->bitrtq_postproc = get_bits(gb, 5); //common
  767. v->s.loop_filter = get_bits1(gb); //common
  768. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  769. {
  770. av_log(avctx, AV_LOG_ERROR,
  771. "LOOPFILTER shell not be enabled in simple profile\n");
  772. }
  773. if(v->s.avctx->skip_loop_filter >= AVDISCARD_ALL)
  774. v->s.loop_filter = 0;
  775. v->res_x8 = get_bits1(gb); //reserved
  776. v->multires = get_bits1(gb);
  777. v->res_fasttx = get_bits1(gb);
  778. if (!v->res_fasttx)
  779. {
  780. v->s.dsp.vc1_inv_trans_8x8 = ff_simple_idct;
  781. v->s.dsp.vc1_inv_trans_8x4 = ff_simple_idct84_add;
  782. v->s.dsp.vc1_inv_trans_4x8 = ff_simple_idct48_add;
  783. v->s.dsp.vc1_inv_trans_4x4 = ff_simple_idct44_add;
  784. }
  785. v->fastuvmc = get_bits1(gb); //common
  786. if (!v->profile && !v->fastuvmc)
  787. {
  788. av_log(avctx, AV_LOG_ERROR,
  789. "FASTUVMC unavailable in Simple Profile\n");
  790. return -1;
  791. }
  792. v->extended_mv = get_bits1(gb); //common
  793. if (!v->profile && v->extended_mv)
  794. {
  795. av_log(avctx, AV_LOG_ERROR,
  796. "Extended MVs unavailable in Simple Profile\n");
  797. return -1;
  798. }
  799. v->dquant = get_bits(gb, 2); //common
  800. v->vstransform = get_bits1(gb); //common
  801. v->res_transtab = get_bits1(gb);
  802. if (v->res_transtab)
  803. {
  804. av_log(avctx, AV_LOG_ERROR,
  805. "1 for reserved RES_TRANSTAB is forbidden\n");
  806. return -1;
  807. }
  808. v->overlap = get_bits1(gb); //common
  809. v->s.resync_marker = get_bits1(gb);
  810. v->rangered = get_bits1(gb);
  811. if (v->rangered && v->profile == PROFILE_SIMPLE)
  812. {
  813. av_log(avctx, AV_LOG_INFO,
  814. "RANGERED should be set to 0 in simple profile\n");
  815. }
  816. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  817. v->quantizer_mode = get_bits(gb, 2); //common
  818. v->finterpflag = get_bits1(gb); //common
  819. v->res_rtm_flag = get_bits1(gb); //reserved
  820. if (!v->res_rtm_flag)
  821. {
  822. // av_log(avctx, AV_LOG_ERROR,
  823. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  824. av_log(avctx, AV_LOG_ERROR,
  825. "Old WMV3 version detected, only I-frames will be decoded\n");
  826. //return -1;
  827. }
  828. //TODO: figure out what they mean (always 0x402F)
  829. if(!v->res_fasttx) skip_bits(gb, 16);
  830. av_log(avctx, AV_LOG_DEBUG,
  831. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  832. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  833. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  834. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  835. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  836. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  837. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  838. v->dquant, v->quantizer_mode, avctx->max_b_frames
  839. );
  840. return 0;
  841. }
  842. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  843. {
  844. v->res_rtm_flag = 1;
  845. v->level = get_bits(gb, 3);
  846. if(v->level >= 5)
  847. {
  848. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  849. }
  850. v->chromaformat = get_bits(gb, 2);
  851. if (v->chromaformat != 1)
  852. {
  853. av_log(v->s.avctx, AV_LOG_ERROR,
  854. "Only 4:2:0 chroma format supported\n");
  855. return -1;
  856. }
  857. // (fps-2)/4 (->30)
  858. v->frmrtq_postproc = get_bits(gb, 3); //common
  859. // (bitrate-32kbps)/64kbps
  860. v->bitrtq_postproc = get_bits(gb, 5); //common
  861. v->postprocflag = get_bits1(gb); //common
  862. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  863. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  864. v->s.avctx->width = v->s.avctx->coded_width;
  865. v->s.avctx->height = v->s.avctx->coded_height;
  866. v->broadcast = get_bits1(gb);
  867. v->interlace = get_bits1(gb);
  868. v->tfcntrflag = get_bits1(gb);
  869. v->finterpflag = get_bits1(gb);
  870. skip_bits1(gb); // reserved
  871. v->s.h_edge_pos = v->s.avctx->coded_width;
  872. v->s.v_edge_pos = v->s.avctx->coded_height;
  873. av_log(v->s.avctx, AV_LOG_DEBUG,
  874. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  875. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  876. "TFCTRflag=%i, FINTERPflag=%i\n",
  877. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  878. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  879. v->tfcntrflag, v->finterpflag
  880. );
  881. v->psf = get_bits1(gb);
  882. if(v->psf) { //PsF, 6.1.13
  883. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  884. return -1;
  885. }
  886. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  887. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  888. int w, h, ar = 0;
  889. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  890. v->s.avctx->width = w = get_bits(gb, 14) + 1;
  891. v->s.avctx->height = h = get_bits(gb, 14) + 1;
  892. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  893. if(get_bits1(gb))
  894. ar = get_bits(gb, 4);
  895. if(ar && ar < 14){
  896. v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
  897. }else if(ar == 15){
  898. w = get_bits(gb, 8);
  899. h = get_bits(gb, 8);
  900. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  901. }
  902. av_log(v->s.avctx, AV_LOG_DEBUG, "Aspect: %i:%i\n", v->s.avctx->sample_aspect_ratio.num, v->s.avctx->sample_aspect_ratio.den);
  903. if(get_bits1(gb)){ //framerate stuff
  904. if(get_bits1(gb)) {
  905. v->s.avctx->time_base.num = 32;
  906. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  907. } else {
  908. int nr, dr;
  909. nr = get_bits(gb, 8);
  910. dr = get_bits(gb, 4);
  911. if(nr && nr < 8 && dr && dr < 3){
  912. v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
  913. v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
  914. }
  915. }
  916. }
  917. if(get_bits1(gb)){
  918. v->color_prim = get_bits(gb, 8);
  919. v->transfer_char = get_bits(gb, 8);
  920. v->matrix_coef = get_bits(gb, 8);
  921. }
  922. }
  923. v->hrd_param_flag = get_bits1(gb);
  924. if(v->hrd_param_flag) {
  925. int i;
  926. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  927. skip_bits(gb, 4); //bitrate exponent
  928. skip_bits(gb, 4); //buffer size exponent
  929. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  930. skip_bits(gb, 16); //hrd_rate[n]
  931. skip_bits(gb, 16); //hrd_buffer[n]
  932. }
  933. }
  934. return 0;
  935. }
  936. int vc1_decode_entry_point(AVCodecContext *avctx, VC1Context *v, GetBitContext *gb)
  937. {
  938. int i;
  939. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  940. v->broken_link = get_bits1(gb);
  941. v->closed_entry = get_bits1(gb);
  942. v->panscanflag = get_bits1(gb);
  943. v->refdist_flag = get_bits1(gb);
  944. v->s.loop_filter = get_bits1(gb);
  945. v->fastuvmc = get_bits1(gb);
  946. v->extended_mv = get_bits1(gb);
  947. v->dquant = get_bits(gb, 2);
  948. v->vstransform = get_bits1(gb);
  949. v->overlap = get_bits1(gb);
  950. v->quantizer_mode = get_bits(gb, 2);
  951. if(v->hrd_param_flag){
  952. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  953. skip_bits(gb, 8); //hrd_full[n]
  954. }
  955. }
  956. if(get_bits1(gb)){
  957. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  958. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  959. }
  960. if(v->extended_mv)
  961. v->extended_dmv = get_bits1(gb);
  962. if((v->range_mapy_flag = get_bits1(gb))) {
  963. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  964. v->range_mapy = get_bits(gb, 3);
  965. }
  966. if((v->range_mapuv_flag = get_bits1(gb))) {
  967. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  968. v->range_mapuv = get_bits(gb, 3);
  969. }
  970. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  971. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  972. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  973. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  974. v->broken_link, v->closed_entry, v->panscanflag, v->refdist_flag, v->s.loop_filter,
  975. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  976. return 0;
  977. }
  978. int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  979. {
  980. int pqindex, lowquant, status;
  981. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  982. skip_bits(gb, 2); //framecnt unused
  983. v->rangeredfrm = 0;
  984. if (v->rangered) v->rangeredfrm = get_bits1(gb);
  985. v->s.pict_type = get_bits1(gb);
  986. if (v->s.avctx->max_b_frames) {
  987. if (!v->s.pict_type) {
  988. if (get_bits1(gb)) v->s.pict_type = FF_I_TYPE;
  989. else v->s.pict_type = FF_B_TYPE;
  990. } else v->s.pict_type = FF_P_TYPE;
  991. } else v->s.pict_type = v->s.pict_type ? FF_P_TYPE : FF_I_TYPE;
  992. v->bi_type = 0;
  993. if(v->s.pict_type == FF_B_TYPE) {
  994. v->bfraction_lut_index = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  995. v->bfraction = ff_vc1_bfraction_lut[v->bfraction_lut_index];
  996. if(v->bfraction == 0) {
  997. v->s.pict_type = FF_BI_TYPE;
  998. }
  999. }
  1000. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1001. skip_bits(gb, 7); // skip buffer fullness
  1002. if(v->parse_only)
  1003. return 0;
  1004. /* calculate RND */
  1005. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1006. v->rnd = 1;
  1007. if(v->s.pict_type == FF_P_TYPE)
  1008. v->rnd ^= 1;
  1009. /* Quantizer stuff */
  1010. pqindex = get_bits(gb, 5);
  1011. if(!pqindex) return -1;
  1012. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1013. v->pq = ff_vc1_pquant_table[0][pqindex];
  1014. else
  1015. v->pq = ff_vc1_pquant_table[1][pqindex];
  1016. v->pquantizer = 1;
  1017. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1018. v->pquantizer = pqindex < 9;
  1019. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1020. v->pquantizer = 0;
  1021. v->pqindex = pqindex;
  1022. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1023. else v->halfpq = 0;
  1024. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1025. v->pquantizer = get_bits1(gb);
  1026. v->dquantfrm = 0;
  1027. if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
  1028. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1029. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1030. v->range_x = 1 << (v->k_x - 1);
  1031. v->range_y = 1 << (v->k_y - 1);
  1032. if (v->multires && v->s.pict_type != FF_B_TYPE) v->respic = get_bits(gb, 2);
  1033. if(v->res_x8 && (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)){
  1034. v->x8_type = get_bits1(gb);
  1035. }else v->x8_type = 0;
  1036. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1037. // (v->s.pict_type == FF_P_TYPE) ? 'P' : ((v->s.pict_type == FF_I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1038. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
  1039. switch(v->s.pict_type) {
  1040. case FF_P_TYPE:
  1041. if (v->pq < 5) v->tt_index = 0;
  1042. else if(v->pq < 13) v->tt_index = 1;
  1043. else v->tt_index = 2;
  1044. lowquant = (v->pq > 12) ? 0 : 1;
  1045. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1046. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1047. {
  1048. int scale, shift, i;
  1049. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1050. v->lumscale = get_bits(gb, 6);
  1051. v->lumshift = get_bits(gb, 6);
  1052. v->use_ic = 1;
  1053. /* fill lookup tables for intensity compensation */
  1054. if(!v->lumscale) {
  1055. scale = -64;
  1056. shift = (255 - v->lumshift * 2) << 6;
  1057. if(v->lumshift > 31)
  1058. shift += 128 << 6;
  1059. } else {
  1060. scale = v->lumscale + 32;
  1061. if(v->lumshift > 31)
  1062. shift = (v->lumshift - 64) << 6;
  1063. else
  1064. shift = v->lumshift << 6;
  1065. }
  1066. for(i = 0; i < 256; i++) {
  1067. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1068. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1069. }
  1070. }
  1071. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1072. v->s.quarter_sample = 0;
  1073. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1074. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1075. v->s.quarter_sample = 0;
  1076. else
  1077. v->s.quarter_sample = 1;
  1078. } else
  1079. v->s.quarter_sample = 1;
  1080. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1081. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1082. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1083. || v->mv_mode == MV_PMODE_MIXED_MV)
  1084. {
  1085. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1086. if (status < 0) return -1;
  1087. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1088. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1089. } else {
  1090. v->mv_type_is_raw = 0;
  1091. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1092. }
  1093. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1094. if (status < 0) return -1;
  1095. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1096. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1097. /* Hopefully this is correct for P frames */
  1098. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1099. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1100. if (v->dquant)
  1101. {
  1102. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1103. vop_dquant_decoding(v);
  1104. }
  1105. v->ttfrm = 0; //FIXME Is that so ?
  1106. if (v->vstransform)
  1107. {
  1108. v->ttmbf = get_bits1(gb);
  1109. if (v->ttmbf)
  1110. {
  1111. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1112. }
  1113. } else {
  1114. v->ttmbf = 1;
  1115. v->ttfrm = TT_8X8;
  1116. }
  1117. break;
  1118. case FF_B_TYPE:
  1119. if (v->pq < 5) v->tt_index = 0;
  1120. else if(v->pq < 13) v->tt_index = 1;
  1121. else v->tt_index = 2;
  1122. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1123. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1124. v->s.mspel = v->s.quarter_sample;
  1125. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1126. if (status < 0) return -1;
  1127. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1128. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1129. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1130. if (status < 0) return -1;
  1131. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1132. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1133. v->s.mv_table_index = get_bits(gb, 2);
  1134. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1135. if (v->dquant)
  1136. {
  1137. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1138. vop_dquant_decoding(v);
  1139. }
  1140. v->ttfrm = 0;
  1141. if (v->vstransform)
  1142. {
  1143. v->ttmbf = get_bits1(gb);
  1144. if (v->ttmbf)
  1145. {
  1146. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1147. }
  1148. } else {
  1149. v->ttmbf = 1;
  1150. v->ttfrm = TT_8X8;
  1151. }
  1152. break;
  1153. }
  1154. if(!v->x8_type)
  1155. {
  1156. /* AC Syntax */
  1157. v->c_ac_table_index = decode012(gb);
  1158. if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1159. {
  1160. v->y_ac_table_index = decode012(gb);
  1161. }
  1162. /* DC Syntax */
  1163. v->s.dc_table_index = get_bits1(gb);
  1164. }
  1165. if(v->s.pict_type == FF_BI_TYPE) {
  1166. v->s.pict_type = FF_B_TYPE;
  1167. v->bi_type = 1;
  1168. }
  1169. return 0;
  1170. }
  1171. int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1172. {
  1173. int pqindex, lowquant;
  1174. int status;
  1175. v->p_frame_skipped = 0;
  1176. if(v->interlace){
  1177. v->fcm = decode012(gb);
  1178. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1179. }
  1180. switch(get_unary(gb, 0, 4)) {
  1181. case 0:
  1182. v->s.pict_type = FF_P_TYPE;
  1183. break;
  1184. case 1:
  1185. v->s.pict_type = FF_B_TYPE;
  1186. break;
  1187. case 2:
  1188. v->s.pict_type = FF_I_TYPE;
  1189. break;
  1190. case 3:
  1191. v->s.pict_type = FF_BI_TYPE;
  1192. break;
  1193. case 4:
  1194. v->s.pict_type = FF_P_TYPE; // skipped pic
  1195. v->p_frame_skipped = 1;
  1196. return 0;
  1197. }
  1198. if(v->tfcntrflag)
  1199. skip_bits(gb, 8);
  1200. if(v->broadcast) {
  1201. if(!v->interlace || v->psf) {
  1202. v->rptfrm = get_bits(gb, 2);
  1203. } else {
  1204. v->tff = get_bits1(gb);
  1205. v->rptfrm = get_bits1(gb);
  1206. }
  1207. }
  1208. if(v->panscanflag) {
  1209. //...
  1210. }
  1211. v->rnd = get_bits1(gb);
  1212. if(v->interlace)
  1213. v->uvsamp = get_bits1(gb);
  1214. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1215. if(v->s.pict_type == FF_B_TYPE) {
  1216. v->bfraction_lut_index = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1217. v->bfraction = ff_vc1_bfraction_lut[v->bfraction_lut_index];
  1218. if(v->bfraction == 0) {
  1219. v->s.pict_type = FF_BI_TYPE; /* XXX: should not happen here */
  1220. }
  1221. }
  1222. pqindex = get_bits(gb, 5);
  1223. if(!pqindex) return -1;
  1224. v->pqindex = pqindex;
  1225. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1226. v->pq = ff_vc1_pquant_table[0][pqindex];
  1227. else
  1228. v->pq = ff_vc1_pquant_table[1][pqindex];
  1229. v->pquantizer = 1;
  1230. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1231. v->pquantizer = pqindex < 9;
  1232. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1233. v->pquantizer = 0;
  1234. v->pqindex = pqindex;
  1235. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1236. else v->halfpq = 0;
  1237. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1238. v->pquantizer = get_bits1(gb);
  1239. if(v->postprocflag)
  1240. v->postproc = get_bits(gb, 2);
  1241. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
  1242. if(v->parse_only)
  1243. return 0;
  1244. switch(v->s.pict_type) {
  1245. case FF_I_TYPE:
  1246. case FF_BI_TYPE:
  1247. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1248. if (status < 0) return -1;
  1249. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1250. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1251. v->condover = CONDOVER_NONE;
  1252. if(v->overlap && v->pq <= 8) {
  1253. v->condover = decode012(gb);
  1254. if(v->condover == CONDOVER_SELECT) {
  1255. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1256. if (status < 0) return -1;
  1257. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1258. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1259. }
  1260. }
  1261. break;
  1262. case FF_P_TYPE:
  1263. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1264. else v->mvrange = 0;
  1265. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1266. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1267. v->range_x = 1 << (v->k_x - 1);
  1268. v->range_y = 1 << (v->k_y - 1);
  1269. if (v->pq < 5) v->tt_index = 0;
  1270. else if(v->pq < 13) v->tt_index = 1;
  1271. else v->tt_index = 2;
  1272. lowquant = (v->pq > 12) ? 0 : 1;
  1273. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1274. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1275. {
  1276. int scale, shift, i;
  1277. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1278. v->lumscale = get_bits(gb, 6);
  1279. v->lumshift = get_bits(gb, 6);
  1280. /* fill lookup tables for intensity compensation */
  1281. if(!v->lumscale) {
  1282. scale = -64;
  1283. shift = (255 - v->lumshift * 2) << 6;
  1284. if(v->lumshift > 31)
  1285. shift += 128 << 6;
  1286. } else {
  1287. scale = v->lumscale + 32;
  1288. if(v->lumshift > 31)
  1289. shift = (v->lumshift - 64) << 6;
  1290. else
  1291. shift = v->lumshift << 6;
  1292. }
  1293. for(i = 0; i < 256; i++) {
  1294. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1295. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1296. }
  1297. v->use_ic = 1;
  1298. }
  1299. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1300. v->s.quarter_sample = 0;
  1301. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1302. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1303. v->s.quarter_sample = 0;
  1304. else
  1305. v->s.quarter_sample = 1;
  1306. } else
  1307. v->s.quarter_sample = 1;
  1308. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1309. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1310. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1311. || v->mv_mode == MV_PMODE_MIXED_MV)
  1312. {
  1313. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1314. if (status < 0) return -1;
  1315. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1316. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1317. } else {
  1318. v->mv_type_is_raw = 0;
  1319. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1320. }
  1321. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1322. if (status < 0) return -1;
  1323. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1324. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1325. /* Hopefully this is correct for P frames */
  1326. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1327. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1328. if (v->dquant)
  1329. {
  1330. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1331. vop_dquant_decoding(v);
  1332. }
  1333. v->ttfrm = 0; //FIXME Is that so ?
  1334. if (v->vstransform)
  1335. {
  1336. v->ttmbf = get_bits1(gb);
  1337. if (v->ttmbf)
  1338. {
  1339. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1340. }
  1341. } else {
  1342. v->ttmbf = 1;
  1343. v->ttfrm = TT_8X8;
  1344. }
  1345. break;
  1346. case FF_B_TYPE:
  1347. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1348. else v->mvrange = 0;
  1349. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1350. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1351. v->range_x = 1 << (v->k_x - 1);
  1352. v->range_y = 1 << (v->k_y - 1);
  1353. if (v->pq < 5) v->tt_index = 0;
  1354. else if(v->pq < 13) v->tt_index = 1;
  1355. else v->tt_index = 2;
  1356. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1357. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1358. v->s.mspel = v->s.quarter_sample;
  1359. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1360. if (status < 0) return -1;
  1361. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1362. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1363. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1364. if (status < 0) return -1;
  1365. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1366. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1367. v->s.mv_table_index = get_bits(gb, 2);
  1368. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1369. if (v->dquant)
  1370. {
  1371. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1372. vop_dquant_decoding(v);
  1373. }
  1374. v->ttfrm = 0;
  1375. if (v->vstransform)
  1376. {
  1377. v->ttmbf = get_bits1(gb);
  1378. if (v->ttmbf)
  1379. {
  1380. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1381. }
  1382. } else {
  1383. v->ttmbf = 1;
  1384. v->ttfrm = TT_8X8;
  1385. }
  1386. break;
  1387. }
  1388. /* AC Syntax */
  1389. v->c_ac_table_index = decode012(gb);
  1390. if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1391. {
  1392. v->y_ac_table_index = decode012(gb);
  1393. }
  1394. /* DC Syntax */
  1395. v->s.dc_table_index = get_bits1(gb);
  1396. if ((v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE) && v->dquant) {
  1397. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1398. vop_dquant_decoding(v);
  1399. }
  1400. v->bi_type = 0;
  1401. if(v->s.pict_type == FF_BI_TYPE) {
  1402. v->s.pict_type = FF_B_TYPE;
  1403. v->bi_type = 1;
  1404. }
  1405. return 0;
  1406. }
  1407. /***********************************************************************/
  1408. /**
  1409. * @defgroup vc1block VC-1 Block-level functions
  1410. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1411. * @{
  1412. */
  1413. /**
  1414. * @def GET_MQUANT
  1415. * @brief Get macroblock-level quantizer scale
  1416. */
  1417. #define GET_MQUANT() \
  1418. if (v->dquantfrm) \
  1419. { \
  1420. int edges = 0; \
  1421. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1422. { \
  1423. if (v->dqbilevel) \
  1424. { \
  1425. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  1426. } \
  1427. else \
  1428. { \
  1429. mqdiff = get_bits(gb, 3); \
  1430. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1431. else mquant = get_bits(gb, 5); \
  1432. } \
  1433. } \
  1434. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1435. edges = 1 << v->dqsbedge; \
  1436. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1437. edges = (3 << v->dqsbedge) % 15; \
  1438. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1439. edges = 15; \
  1440. if((edges&1) && !s->mb_x) \
  1441. mquant = v->altpq; \
  1442. if((edges&2) && s->first_slice_line) \
  1443. mquant = v->altpq; \
  1444. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1445. mquant = v->altpq; \
  1446. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1447. mquant = v->altpq; \
  1448. }
  1449. /**
  1450. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1451. * @brief Get MV differentials
  1452. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1453. * @param _dmv_x Horizontal differential for decoded MV
  1454. * @param _dmv_y Vertical differential for decoded MV
  1455. */
  1456. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1457. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  1458. VC1_MV_DIFF_VLC_BITS, 2); \
  1459. if (index > 36) \
  1460. { \
  1461. mb_has_coeffs = 1; \
  1462. index -= 37; \
  1463. } \
  1464. else mb_has_coeffs = 0; \
  1465. s->mb_intra = 0; \
  1466. if (!index) { _dmv_x = _dmv_y = 0; } \
  1467. else if (index == 35) \
  1468. { \
  1469. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1470. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1471. } \
  1472. else if (index == 36) \
  1473. { \
  1474. _dmv_x = 0; \
  1475. _dmv_y = 0; \
  1476. s->mb_intra = 1; \
  1477. } \
  1478. else \
  1479. { \
  1480. index1 = index%6; \
  1481. if (!s->quarter_sample && index1 == 5) val = 1; \
  1482. else val = 0; \
  1483. if(size_table[index1] - val > 0) \
  1484. val = get_bits(gb, size_table[index1] - val); \
  1485. else val = 0; \
  1486. sign = 0 - (val&1); \
  1487. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1488. \
  1489. index1 = index/6; \
  1490. if (!s->quarter_sample && index1 == 5) val = 1; \
  1491. else val = 0; \
  1492. if(size_table[index1] - val > 0) \
  1493. val = get_bits(gb, size_table[index1] - val); \
  1494. else val = 0; \
  1495. sign = 0 - (val&1); \
  1496. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1497. }
  1498. /** Predict and set motion vector
  1499. */
  1500. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1501. {
  1502. int xy, wrap, off = 0;
  1503. int16_t *A, *B, *C;
  1504. int px, py;
  1505. int sum;
  1506. /* scale MV difference to be quad-pel */
  1507. dmv_x <<= 1 - s->quarter_sample;
  1508. dmv_y <<= 1 - s->quarter_sample;
  1509. wrap = s->b8_stride;
  1510. xy = s->block_index[n];
  1511. if(s->mb_intra){
  1512. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1513. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1514. s->current_picture.motion_val[1][xy][0] = 0;
  1515. s->current_picture.motion_val[1][xy][1] = 0;
  1516. if(mv1) { /* duplicate motion data for 1-MV block */
  1517. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1518. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1519. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1520. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1521. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1522. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1523. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1524. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1525. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1526. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1527. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1528. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1529. }
  1530. return;
  1531. }
  1532. C = s->current_picture.motion_val[0][xy - 1];
  1533. A = s->current_picture.motion_val[0][xy - wrap];
  1534. if(mv1)
  1535. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1536. else {
  1537. //in 4-MV mode different blocks have different B predictor position
  1538. switch(n){
  1539. case 0:
  1540. off = (s->mb_x > 0) ? -1 : 1;
  1541. break;
  1542. case 1:
  1543. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1544. break;
  1545. case 2:
  1546. off = 1;
  1547. break;
  1548. case 3:
  1549. off = -1;
  1550. }
  1551. }
  1552. B = s->current_picture.motion_val[0][xy - wrap + off];
  1553. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1554. if(s->mb_width == 1) {
  1555. px = A[0];
  1556. py = A[1];
  1557. } else {
  1558. px = mid_pred(A[0], B[0], C[0]);
  1559. py = mid_pred(A[1], B[1], C[1]);
  1560. }
  1561. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1562. px = C[0];
  1563. py = C[1];
  1564. } else {
  1565. px = py = 0;
  1566. }
  1567. /* Pullback MV as specified in 8.3.5.3.4 */
  1568. {
  1569. int qx, qy, X, Y;
  1570. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1571. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1572. X = (s->mb_width << 6) - 4;
  1573. Y = (s->mb_height << 6) - 4;
  1574. if(mv1) {
  1575. if(qx + px < -60) px = -60 - qx;
  1576. if(qy + py < -60) py = -60 - qy;
  1577. } else {
  1578. if(qx + px < -28) px = -28 - qx;
  1579. if(qy + py < -28) py = -28 - qy;
  1580. }
  1581. if(qx + px > X) px = X - qx;
  1582. if(qy + py > Y) py = Y - qy;
  1583. }
  1584. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1585. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1586. if(is_intra[xy - wrap])
  1587. sum = FFABS(px) + FFABS(py);
  1588. else
  1589. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1590. if(sum > 32) {
  1591. if(get_bits1(&s->gb)) {
  1592. px = A[0];
  1593. py = A[1];
  1594. } else {
  1595. px = C[0];
  1596. py = C[1];
  1597. }
  1598. } else {
  1599. if(is_intra[xy - 1])
  1600. sum = FFABS(px) + FFABS(py);
  1601. else
  1602. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1603. if(sum > 32) {
  1604. if(get_bits1(&s->gb)) {
  1605. px = A[0];
  1606. py = A[1];
  1607. } else {
  1608. px = C[0];
  1609. py = C[1];
  1610. }
  1611. }
  1612. }
  1613. }
  1614. /* store MV using signed modulus of MV range defined in 4.11 */
  1615. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1616. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1617. if(mv1) { /* duplicate motion data for 1-MV block */
  1618. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1619. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1620. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1621. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1622. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1623. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1624. }
  1625. }
  1626. /** Motion compensation for direct or interpolated blocks in B-frames
  1627. */
  1628. static void vc1_interp_mc(VC1Context *v)
  1629. {
  1630. MpegEncContext *s = &v->s;
  1631. DSPContext *dsp = &v->s.dsp;
  1632. uint8_t *srcY, *srcU, *srcV;
  1633. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1634. if(!v->s.next_picture.data[0])return;
  1635. mx = s->mv[1][0][0];
  1636. my = s->mv[1][0][1];
  1637. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1638. uvmy = (my + ((my & 3) == 3)) >> 1;
  1639. if(v->fastuvmc) {
  1640. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1641. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1642. }
  1643. srcY = s->next_picture.data[0];
  1644. srcU = s->next_picture.data[1];
  1645. srcV = s->next_picture.data[2];
  1646. src_x = s->mb_x * 16 + (mx >> 2);
  1647. src_y = s->mb_y * 16 + (my >> 2);
  1648. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1649. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1650. if(v->profile != PROFILE_ADVANCED){
  1651. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1652. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1653. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1654. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1655. }else{
  1656. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1657. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1658. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1659. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1660. }
  1661. srcY += src_y * s->linesize + src_x;
  1662. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1663. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1664. /* for grayscale we should not try to read from unknown area */
  1665. if(s->flags & CODEC_FLAG_GRAY) {
  1666. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1667. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1668. }
  1669. if(v->rangeredfrm
  1670. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  1671. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  1672. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1673. srcY -= s->mspel * (1 + s->linesize);
  1674. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1675. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1676. srcY = s->edge_emu_buffer;
  1677. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1678. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1679. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1680. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1681. srcU = uvbuf;
  1682. srcV = uvbuf + 16;
  1683. /* if we deal with range reduction we need to scale source blocks */
  1684. if(v->rangeredfrm) {
  1685. int i, j;
  1686. uint8_t *src, *src2;
  1687. src = srcY;
  1688. for(j = 0; j < 17 + s->mspel*2; j++) {
  1689. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1690. src += s->linesize;
  1691. }
  1692. src = srcU; src2 = srcV;
  1693. for(j = 0; j < 9; j++) {
  1694. for(i = 0; i < 9; i++) {
  1695. src[i] = ((src[i] - 128) >> 1) + 128;
  1696. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1697. }
  1698. src += s->uvlinesize;
  1699. src2 += s->uvlinesize;
  1700. }
  1701. }
  1702. srcY += s->mspel * (1 + s->linesize);
  1703. }
  1704. if(s->mspel) {
  1705. dxy = ((my & 3) << 2) | (mx & 3);
  1706. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  1707. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  1708. srcY += s->linesize * 8;
  1709. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  1710. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  1711. } else { // hpel mc
  1712. dxy = (my & 2) | ((mx & 2) >> 1);
  1713. if(!v->rnd)
  1714. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1715. else
  1716. dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1717. }
  1718. if(s->flags & CODEC_FLAG_GRAY) return;
  1719. /* Chroma MC always uses qpel blilinear */
  1720. uvmx = (uvmx&3)<<1;
  1721. uvmy = (uvmy&3)<<1;
  1722. if(!v->rnd){
  1723. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1724. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1725. }else{
  1726. dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1727. dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1728. }
  1729. }
  1730. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1731. {
  1732. int n = bfrac;
  1733. #if B_FRACTION_DEN==256
  1734. if(inv)
  1735. n -= 256;
  1736. if(!qs)
  1737. return 2 * ((value * n + 255) >> 9);
  1738. return (value * n + 128) >> 8;
  1739. #else
  1740. if(inv)
  1741. n -= B_FRACTION_DEN;
  1742. if(!qs)
  1743. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1744. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1745. #endif
  1746. }
  1747. /** Reconstruct motion vector for B-frame and do motion compensation
  1748. */
  1749. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1750. {
  1751. if(v->use_ic) {
  1752. v->mv_mode2 = v->mv_mode;
  1753. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1754. }
  1755. if(direct) {
  1756. vc1_mc_1mv(v, 0);
  1757. vc1_interp_mc(v);
  1758. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1759. return;
  1760. }
  1761. if(mode == BMV_TYPE_INTERPOLATED) {
  1762. vc1_mc_1mv(v, 0);
  1763. vc1_interp_mc(v);
  1764. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1765. return;
  1766. }
  1767. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1768. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1769. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1770. }
  1771. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1772. {
  1773. MpegEncContext *s = &v->s;
  1774. int xy, wrap, off = 0;
  1775. int16_t *A, *B, *C;
  1776. int px, py;
  1777. int sum;
  1778. int r_x, r_y;
  1779. const uint8_t *is_intra = v->mb_type[0];
  1780. r_x = v->range_x;
  1781. r_y = v->range_y;
  1782. /* scale MV difference to be quad-pel */
  1783. dmv_x[0] <<= 1 - s->quarter_sample;
  1784. dmv_y[0] <<= 1 - s->quarter_sample;
  1785. dmv_x[1] <<= 1 - s->quarter_sample;
  1786. dmv_y[1] <<= 1 - s->quarter_sample;
  1787. wrap = s->b8_stride;
  1788. xy = s->block_index[0];
  1789. if(s->mb_intra) {
  1790. s->current_picture.motion_val[0][xy][0] =
  1791. s->current_picture.motion_val[0][xy][1] =
  1792. s->current_picture.motion_val[1][xy][0] =
  1793. s->current_picture.motion_val[1][xy][1] = 0;
  1794. return;
  1795. }
  1796. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1797. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1798. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1799. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1800. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1801. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1802. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1803. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1804. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1805. if(direct) {
  1806. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1807. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1808. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1809. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1810. return;
  1811. }
  1812. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1813. C = s->current_picture.motion_val[0][xy - 2];
  1814. A = s->current_picture.motion_val[0][xy - wrap*2];
  1815. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1816. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1817. if(!s->mb_x) C[0] = C[1] = 0;
  1818. if(!s->first_slice_line) { // predictor A is not out of bounds
  1819. if(s->mb_width == 1) {
  1820. px = A[0];
  1821. py = A[1];
  1822. } else {
  1823. px = mid_pred(A[0], B[0], C[0]);
  1824. py = mid_pred(A[1], B[1], C[1]);
  1825. }
  1826. } else if(s->mb_x) { // predictor C is not out of bounds
  1827. px = C[0];
  1828. py = C[1];
  1829. } else {
  1830. px = py = 0;
  1831. }
  1832. /* Pullback MV as specified in 8.3.5.3.4 */
  1833. {
  1834. int qx, qy, X, Y;
  1835. if(v->profile < PROFILE_ADVANCED) {
  1836. qx = (s->mb_x << 5);
  1837. qy = (s->mb_y << 5);
  1838. X = (s->mb_width << 5) - 4;
  1839. Y = (s->mb_height << 5) - 4;
  1840. if(qx + px < -28) px = -28 - qx;
  1841. if(qy + py < -28) py = -28 - qy;
  1842. if(qx + px > X) px = X - qx;
  1843. if(qy + py > Y) py = Y - qy;
  1844. } else {
  1845. qx = (s->mb_x << 6);
  1846. qy = (s->mb_y << 6);
  1847. X = (s->mb_width << 6) - 4;
  1848. Y = (s->mb_height << 6) - 4;
  1849. if(qx + px < -60) px = -60 - qx;
  1850. if(qy + py < -60) py = -60 - qy;
  1851. if(qx + px > X) px = X - qx;
  1852. if(qy + py > Y) py = Y - qy;
  1853. }
  1854. }
  1855. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1856. if(0 && !s->first_slice_line && s->mb_x) {
  1857. if(is_intra[xy - wrap])
  1858. sum = FFABS(px) + FFABS(py);
  1859. else
  1860. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1861. if(sum > 32) {
  1862. if(get_bits1(&s->gb)) {
  1863. px = A[0];
  1864. py = A[1];
  1865. } else {
  1866. px = C[0];
  1867. py = C[1];
  1868. }
  1869. } else {
  1870. if(is_intra[xy - 2])
  1871. sum = FFABS(px) + FFABS(py);
  1872. else
  1873. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1874. if(sum > 32) {
  1875. if(get_bits1(&s->gb)) {
  1876. px = A[0];
  1877. py = A[1];
  1878. } else {
  1879. px = C[0];
  1880. py = C[1];
  1881. }
  1882. }
  1883. }
  1884. }
  1885. /* store MV using signed modulus of MV range defined in 4.11 */
  1886. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1887. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1888. }
  1889. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1890. C = s->current_picture.motion_val[1][xy - 2];
  1891. A = s->current_picture.motion_val[1][xy - wrap*2];
  1892. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1893. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1894. if(!s->mb_x) C[0] = C[1] = 0;
  1895. if(!s->first_slice_line) { // predictor A is not out of bounds
  1896. if(s->mb_width == 1) {
  1897. px = A[0];
  1898. py = A[1];
  1899. } else {
  1900. px = mid_pred(A[0], B[0], C[0]);
  1901. py = mid_pred(A[1], B[1], C[1]);
  1902. }
  1903. } else if(s->mb_x) { // predictor C is not out of bounds
  1904. px = C[0];
  1905. py = C[1];
  1906. } else {
  1907. px = py = 0;
  1908. }
  1909. /* Pullback MV as specified in 8.3.5.3.4 */
  1910. {
  1911. int qx, qy, X, Y;
  1912. if(v->profile < PROFILE_ADVANCED) {
  1913. qx = (s->mb_x << 5);
  1914. qy = (s->mb_y << 5);
  1915. X = (s->mb_width << 5) - 4;
  1916. Y = (s->mb_height << 5) - 4;
  1917. if(qx + px < -28) px = -28 - qx;
  1918. if(qy + py < -28) py = -28 - qy;
  1919. if(qx + px > X) px = X - qx;
  1920. if(qy + py > Y) py = Y - qy;
  1921. } else {
  1922. qx = (s->mb_x << 6);
  1923. qy = (s->mb_y << 6);
  1924. X = (s->mb_width << 6) - 4;
  1925. Y = (s->mb_height << 6) - 4;
  1926. if(qx + px < -60) px = -60 - qx;
  1927. if(qy + py < -60) py = -60 - qy;
  1928. if(qx + px > X) px = X - qx;
  1929. if(qy + py > Y) py = Y - qy;
  1930. }
  1931. }
  1932. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1933. if(0 && !s->first_slice_line && s->mb_x) {
  1934. if(is_intra[xy - wrap])
  1935. sum = FFABS(px) + FFABS(py);
  1936. else
  1937. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1938. if(sum > 32) {
  1939. if(get_bits1(&s->gb)) {
  1940. px = A[0];
  1941. py = A[1];
  1942. } else {
  1943. px = C[0];
  1944. py = C[1];
  1945. }
  1946. } else {
  1947. if(is_intra[xy - 2])
  1948. sum = FFABS(px) + FFABS(py);
  1949. else
  1950. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1951. if(sum > 32) {
  1952. if(get_bits1(&s->gb)) {
  1953. px = A[0];
  1954. py = A[1];
  1955. } else {
  1956. px = C[0];
  1957. py = C[1];
  1958. }
  1959. }
  1960. }
  1961. }
  1962. /* store MV using signed modulus of MV range defined in 4.11 */
  1963. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1964. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1965. }
  1966. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1967. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1968. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1969. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1970. }
  1971. /** Get predicted DC value for I-frames only
  1972. * prediction dir: left=0, top=1
  1973. * @param s MpegEncContext
  1974. * @param overlap flag indicating that overlap filtering is used
  1975. * @param pq integer part of picture quantizer
  1976. * @param[in] n block index in the current MB
  1977. * @param dc_val_ptr Pointer to DC predictor
  1978. * @param dir_ptr Prediction direction for use in AC prediction
  1979. */
  1980. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1981. int16_t **dc_val_ptr, int *dir_ptr)
  1982. {
  1983. int a, b, c, wrap, pred, scale;
  1984. int16_t *dc_val;
  1985. static const uint16_t dcpred[32] = {
  1986. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1987. 114, 102, 93, 85, 79, 73, 68, 64,
  1988. 60, 57, 54, 51, 49, 47, 45, 43,
  1989. 41, 39, 38, 37, 35, 34, 33
  1990. };
  1991. /* find prediction - wmv3_dc_scale always used here in fact */
  1992. if (n < 4) scale = s->y_dc_scale;
  1993. else scale = s->c_dc_scale;
  1994. wrap = s->block_wrap[n];
  1995. dc_val= s->dc_val[0] + s->block_index[n];
  1996. /* B A
  1997. * C X
  1998. */
  1999. c = dc_val[ - 1];
  2000. b = dc_val[ - 1 - wrap];
  2001. a = dc_val[ - wrap];
  2002. if (pq < 9 || !overlap)
  2003. {
  2004. /* Set outer values */
  2005. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2006. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2007. }
  2008. else
  2009. {
  2010. /* Set outer values */
  2011. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2012. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2013. }
  2014. if (abs(a - b) <= abs(b - c)) {
  2015. pred = c;
  2016. *dir_ptr = 1;//left
  2017. } else {
  2018. pred = a;
  2019. *dir_ptr = 0;//top
  2020. }
  2021. /* update predictor */
  2022. *dc_val_ptr = &dc_val[0];
  2023. return pred;
  2024. }
  2025. /** Get predicted DC value
  2026. * prediction dir: left=0, top=1
  2027. * @param s MpegEncContext
  2028. * @param overlap flag indicating that overlap filtering is used
  2029. * @param pq integer part of picture quantizer
  2030. * @param[in] n block index in the current MB
  2031. * @param a_avail flag indicating top block availability
  2032. * @param c_avail flag indicating left block availability
  2033. * @param dc_val_ptr Pointer to DC predictor
  2034. * @param dir_ptr Prediction direction for use in AC prediction
  2035. */
  2036. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2037. int a_avail, int c_avail,
  2038. int16_t **dc_val_ptr, int *dir_ptr)
  2039. {
  2040. int a, b, c, wrap, pred;
  2041. int16_t *dc_val;
  2042. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2043. int q1, q2 = 0;
  2044. wrap = s->block_wrap[n];
  2045. dc_val= s->dc_val[0] + s->block_index[n];
  2046. /* B A
  2047. * C X
  2048. */
  2049. c = dc_val[ - 1];
  2050. b = dc_val[ - 1 - wrap];
  2051. a = dc_val[ - wrap];
  2052. /* scale predictors if needed */
  2053. q1 = s->current_picture.qscale_table[mb_pos];
  2054. if(c_avail && (n!= 1 && n!=3)) {
  2055. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2056. if(q2 && q2 != q1)
  2057. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2058. }
  2059. if(a_avail && (n!= 2 && n!=3)) {
  2060. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2061. if(q2 && q2 != q1)
  2062. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2063. }
  2064. if(a_avail && c_avail && (n!=3)) {
  2065. int off = mb_pos;
  2066. if(n != 1) off--;
  2067. if(n != 2) off -= s->mb_stride;
  2068. q2 = s->current_picture.qscale_table[off];
  2069. if(q2 && q2 != q1)
  2070. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2071. }
  2072. if(a_avail && c_avail) {
  2073. if(abs(a - b) <= abs(b - c)) {
  2074. pred = c;
  2075. *dir_ptr = 1;//left
  2076. } else {
  2077. pred = a;
  2078. *dir_ptr = 0;//top
  2079. }
  2080. } else if(a_avail) {
  2081. pred = a;
  2082. *dir_ptr = 0;//top
  2083. } else if(c_avail) {
  2084. pred = c;
  2085. *dir_ptr = 1;//left
  2086. } else {
  2087. pred = 0;
  2088. *dir_ptr = 1;//left
  2089. }
  2090. /* update predictor */
  2091. *dc_val_ptr = &dc_val[0];
  2092. return pred;
  2093. }
  2094. /** @} */ // Block group
  2095. /**
  2096. * @defgroup vc1_std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2097. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2098. * @{
  2099. */
  2100. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2101. {
  2102. int xy, wrap, pred, a, b, c;
  2103. xy = s->block_index[n];
  2104. wrap = s->b8_stride;
  2105. /* B C
  2106. * A X
  2107. */
  2108. a = s->coded_block[xy - 1 ];
  2109. b = s->coded_block[xy - 1 - wrap];
  2110. c = s->coded_block[xy - wrap];
  2111. if (b == c) {
  2112. pred = a;
  2113. } else {
  2114. pred = c;
  2115. }
  2116. /* store value */
  2117. *coded_block_ptr = &s->coded_block[xy];
  2118. return pred;
  2119. }
  2120. /**
  2121. * Decode one AC coefficient
  2122. * @param v The VC1 context
  2123. * @param last Last coefficient
  2124. * @param skip How much zero coefficients to skip
  2125. * @param value Decoded AC coefficient value
  2126. * @param codingset set of VLC to decode data
  2127. * @see 8.1.3.4
  2128. */
  2129. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2130. {
  2131. GetBitContext *gb = &v->s.gb;
  2132. int index, escape, run = 0, level = 0, lst = 0;
  2133. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2134. if (index != vc1_ac_sizes[codingset] - 1) {
  2135. run = vc1_index_decode_table[codingset][index][0];
  2136. level = vc1_index_decode_table[codingset][index][1];
  2137. lst = index >= vc1_last_decode_table[codingset];
  2138. if(get_bits1(gb))
  2139. level = -level;
  2140. } else {
  2141. escape = decode210(gb);
  2142. if (escape != 2) {
  2143. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2144. run = vc1_index_decode_table[codingset][index][0];
  2145. level = vc1_index_decode_table[codingset][index][1];
  2146. lst = index >= vc1_last_decode_table[codingset];
  2147. if(escape == 0) {
  2148. if(lst)
  2149. level += vc1_last_delta_level_table[codingset][run];
  2150. else
  2151. level += vc1_delta_level_table[codingset][run];
  2152. } else {
  2153. if(lst)
  2154. run += vc1_last_delta_run_table[codingset][level] + 1;
  2155. else
  2156. run += vc1_delta_run_table[codingset][level] + 1;
  2157. }
  2158. if(get_bits1(gb))
  2159. level = -level;
  2160. } else {
  2161. int sign;
  2162. lst = get_bits1(gb);
  2163. if(v->s.esc3_level_length == 0) {
  2164. if(v->pq < 8 || v->dquantfrm) { // table 59
  2165. v->s.esc3_level_length = get_bits(gb, 3);
  2166. if(!v->s.esc3_level_length)
  2167. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2168. } else { //table 60
  2169. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2170. }
  2171. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2172. }
  2173. run = get_bits(gb, v->s.esc3_run_length);
  2174. sign = get_bits1(gb);
  2175. level = get_bits(gb, v->s.esc3_level_length);
  2176. if(sign)
  2177. level = -level;
  2178. }
  2179. }
  2180. *last = lst;
  2181. *skip = run;
  2182. *value = level;
  2183. }
  2184. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2185. * @param v VC1Context
  2186. * @param block block to decode
  2187. * @param[in] n subblock index
  2188. * @param coded are AC coeffs present or not
  2189. * @param codingset set of VLC to decode data
  2190. */
  2191. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2192. {
  2193. GetBitContext *gb = &v->s.gb;
  2194. MpegEncContext *s = &v->s;
  2195. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2196. int i;
  2197. int16_t *dc_val;
  2198. int16_t *ac_val, *ac_val2;
  2199. int dcdiff;
  2200. /* Get DC differential */
  2201. if (n < 4) {
  2202. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2203. } else {
  2204. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2205. }
  2206. if (dcdiff < 0){
  2207. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2208. return -1;
  2209. }
  2210. if (dcdiff)
  2211. {
  2212. if (dcdiff == 119 /* ESC index value */)
  2213. {
  2214. /* TODO: Optimize */
  2215. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2216. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2217. else dcdiff = get_bits(gb, 8);
  2218. }
  2219. else
  2220. {
  2221. if (v->pq == 1)
  2222. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2223. else if (v->pq == 2)
  2224. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2225. }
  2226. if (get_bits1(gb))
  2227. dcdiff = -dcdiff;
  2228. }
  2229. /* Prediction */
  2230. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2231. *dc_val = dcdiff;
  2232. /* Store the quantized DC coeff, used for prediction */
  2233. if (n < 4) {
  2234. block[0] = dcdiff * s->y_dc_scale;
  2235. } else {
  2236. block[0] = dcdiff * s->c_dc_scale;
  2237. }
  2238. /* Skip ? */
  2239. if (!coded) {
  2240. goto not_coded;
  2241. }
  2242. //AC Decoding
  2243. i = 1;
  2244. {
  2245. int last = 0, skip, value;
  2246. const int8_t *zz_table;
  2247. int scale;
  2248. int k;
  2249. scale = v->pq * 2 + v->halfpq;
  2250. if(v->s.ac_pred) {
  2251. if(!dc_pred_dir)
  2252. zz_table = wmv1_scantable[2];
  2253. else
  2254. zz_table = wmv1_scantable[3];
  2255. } else
  2256. zz_table = wmv1_scantable[1];
  2257. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2258. ac_val2 = ac_val;
  2259. if(dc_pred_dir) //left
  2260. ac_val -= 16;
  2261. else //top
  2262. ac_val -= 16 * s->block_wrap[n];
  2263. while (!last) {
  2264. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2265. i += skip;
  2266. if(i > 63)
  2267. break;
  2268. block[zz_table[i++]] = value;
  2269. }
  2270. /* apply AC prediction if needed */
  2271. if(s->ac_pred) {
  2272. if(dc_pred_dir) { //left
  2273. for(k = 1; k < 8; k++)
  2274. block[k << 3] += ac_val[k];
  2275. } else { //top
  2276. for(k = 1; k < 8; k++)
  2277. block[k] += ac_val[k + 8];
  2278. }
  2279. }
  2280. /* save AC coeffs for further prediction */
  2281. for(k = 1; k < 8; k++) {
  2282. ac_val2[k] = block[k << 3];
  2283. ac_val2[k + 8] = block[k];
  2284. }
  2285. /* scale AC coeffs */
  2286. for(k = 1; k < 64; k++)
  2287. if(block[k]) {
  2288. block[k] *= scale;
  2289. if(!v->pquantizer)
  2290. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2291. }
  2292. if(s->ac_pred) i = 63;
  2293. }
  2294. not_coded:
  2295. if(!coded) {
  2296. int k, scale;
  2297. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2298. ac_val2 = ac_val;
  2299. i = 0;
  2300. scale = v->pq * 2 + v->halfpq;
  2301. memset(ac_val2, 0, 16 * 2);
  2302. if(dc_pred_dir) {//left
  2303. ac_val -= 16;
  2304. if(s->ac_pred)
  2305. memcpy(ac_val2, ac_val, 8 * 2);
  2306. } else {//top
  2307. ac_val -= 16 * s->block_wrap[n];
  2308. if(s->ac_pred)
  2309. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2310. }
  2311. /* apply AC prediction if needed */
  2312. if(s->ac_pred) {
  2313. if(dc_pred_dir) { //left
  2314. for(k = 1; k < 8; k++) {
  2315. block[k << 3] = ac_val[k] * scale;
  2316. if(!v->pquantizer && block[k << 3])
  2317. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2318. }
  2319. } else { //top
  2320. for(k = 1; k < 8; k++) {
  2321. block[k] = ac_val[k + 8] * scale;
  2322. if(!v->pquantizer && block[k])
  2323. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2324. }
  2325. }
  2326. i = 63;
  2327. }
  2328. }
  2329. s->block_last_index[n] = i;
  2330. return 0;
  2331. }
  2332. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2333. * @param v VC1Context
  2334. * @param block block to decode
  2335. * @param[in] n subblock number
  2336. * @param coded are AC coeffs present or not
  2337. * @param codingset set of VLC to decode data
  2338. * @param mquant quantizer value for this macroblock
  2339. */
  2340. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2341. {
  2342. GetBitContext *gb = &v->s.gb;
  2343. MpegEncContext *s = &v->s;
  2344. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2345. int i;
  2346. int16_t *dc_val;
  2347. int16_t *ac_val, *ac_val2;
  2348. int dcdiff;
  2349. int a_avail = v->a_avail, c_avail = v->c_avail;
  2350. int use_pred = s->ac_pred;
  2351. int scale;
  2352. int q1, q2 = 0;
  2353. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2354. /* Get DC differential */
  2355. if (n < 4) {
  2356. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2357. } else {
  2358. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2359. }
  2360. if (dcdiff < 0){
  2361. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2362. return -1;
  2363. }
  2364. if (dcdiff)
  2365. {
  2366. if (dcdiff == 119 /* ESC index value */)
  2367. {
  2368. /* TODO: Optimize */
  2369. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2370. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2371. else dcdiff = get_bits(gb, 8);
  2372. }
  2373. else
  2374. {
  2375. if (mquant == 1)
  2376. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2377. else if (mquant == 2)
  2378. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2379. }
  2380. if (get_bits1(gb))
  2381. dcdiff = -dcdiff;
  2382. }
  2383. /* Prediction */
  2384. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2385. *dc_val = dcdiff;
  2386. /* Store the quantized DC coeff, used for prediction */
  2387. if (n < 4) {
  2388. block[0] = dcdiff * s->y_dc_scale;
  2389. } else {
  2390. block[0] = dcdiff * s->c_dc_scale;
  2391. }
  2392. //AC Decoding
  2393. i = 1;
  2394. /* check if AC is needed at all */
  2395. if(!a_avail && !c_avail) use_pred = 0;
  2396. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2397. ac_val2 = ac_val;
  2398. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  2399. if(dc_pred_dir) //left
  2400. ac_val -= 16;
  2401. else //top
  2402. ac_val -= 16 * s->block_wrap[n];
  2403. q1 = s->current_picture.qscale_table[mb_pos];
  2404. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2405. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2406. if(dc_pred_dir && n==1) q2 = q1;
  2407. if(!dc_pred_dir && n==2) q2 = q1;
  2408. if(n==3) q2 = q1;
  2409. if(coded) {
  2410. int last = 0, skip, value;
  2411. const int8_t *zz_table;
  2412. int k;
  2413. if(v->s.ac_pred) {
  2414. if(!dc_pred_dir)
  2415. zz_table = wmv1_scantable[2];
  2416. else
  2417. zz_table = wmv1_scantable[3];
  2418. } else
  2419. zz_table = wmv1_scantable[1];
  2420. while (!last) {
  2421. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2422. i += skip;
  2423. if(i > 63)
  2424. break;
  2425. block[zz_table[i++]] = value;
  2426. }
  2427. /* apply AC prediction if needed */
  2428. if(use_pred) {
  2429. /* scale predictors if needed*/
  2430. if(q2 && q1!=q2) {
  2431. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2432. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2433. if(dc_pred_dir) { //left
  2434. for(k = 1; k < 8; k++)
  2435. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2436. } else { //top
  2437. for(k = 1; k < 8; k++)
  2438. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2439. }
  2440. } else {
  2441. if(dc_pred_dir) { //left
  2442. for(k = 1; k < 8; k++)
  2443. block[k << 3] += ac_val[k];
  2444. } else { //top
  2445. for(k = 1; k < 8; k++)
  2446. block[k] += ac_val[k + 8];
  2447. }
  2448. }
  2449. }
  2450. /* save AC coeffs for further prediction */
  2451. for(k = 1; k < 8; k++) {
  2452. ac_val2[k] = block[k << 3];
  2453. ac_val2[k + 8] = block[k];
  2454. }
  2455. /* scale AC coeffs */
  2456. for(k = 1; k < 64; k++)
  2457. if(block[k]) {
  2458. block[k] *= scale;
  2459. if(!v->pquantizer)
  2460. block[k] += (block[k] < 0) ? -mquant : mquant;
  2461. }
  2462. if(use_pred) i = 63;
  2463. } else { // no AC coeffs
  2464. int k;
  2465. memset(ac_val2, 0, 16 * 2);
  2466. if(dc_pred_dir) {//left
  2467. if(use_pred) {
  2468. memcpy(ac_val2, ac_val, 8 * 2);
  2469. if(q2 && q1!=q2) {
  2470. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2471. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2472. for(k = 1; k < 8; k++)
  2473. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2474. }
  2475. }
  2476. } else {//top
  2477. if(use_pred) {
  2478. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2479. if(q2 && q1!=q2) {
  2480. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2481. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2482. for(k = 1; k < 8; k++)
  2483. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2484. }
  2485. }
  2486. }
  2487. /* apply AC prediction if needed */
  2488. if(use_pred) {
  2489. if(dc_pred_dir) { //left
  2490. for(k = 1; k < 8; k++) {
  2491. block[k << 3] = ac_val2[k] * scale;
  2492. if(!v->pquantizer && block[k << 3])
  2493. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2494. }
  2495. } else { //top
  2496. for(k = 1; k < 8; k++) {
  2497. block[k] = ac_val2[k + 8] * scale;
  2498. if(!v->pquantizer && block[k])
  2499. block[k] += (block[k] < 0) ? -mquant : mquant;
  2500. }
  2501. }
  2502. i = 63;
  2503. }
  2504. }
  2505. s->block_last_index[n] = i;
  2506. return 0;
  2507. }
  2508. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2509. * @param v VC1Context
  2510. * @param block block to decode
  2511. * @param[in] n subblock index
  2512. * @param coded are AC coeffs present or not
  2513. * @param mquant block quantizer
  2514. * @param codingset set of VLC to decode data
  2515. */
  2516. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2517. {
  2518. GetBitContext *gb = &v->s.gb;
  2519. MpegEncContext *s = &v->s;
  2520. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2521. int i;
  2522. int16_t *dc_val;
  2523. int16_t *ac_val, *ac_val2;
  2524. int dcdiff;
  2525. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2526. int a_avail = v->a_avail, c_avail = v->c_avail;
  2527. int use_pred = s->ac_pred;
  2528. int scale;
  2529. int q1, q2 = 0;
  2530. /* XXX: Guard against dumb values of mquant */
  2531. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2532. /* Set DC scale - y and c use the same */
  2533. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2534. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2535. /* Get DC differential */
  2536. if (n < 4) {
  2537. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2538. } else {
  2539. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2540. }
  2541. if (dcdiff < 0){
  2542. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2543. return -1;
  2544. }
  2545. if (dcdiff)
  2546. {
  2547. if (dcdiff == 119 /* ESC index value */)
  2548. {
  2549. /* TODO: Optimize */
  2550. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2551. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2552. else dcdiff = get_bits(gb, 8);
  2553. }
  2554. else
  2555. {
  2556. if (mquant == 1)
  2557. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2558. else if (mquant == 2)
  2559. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2560. }
  2561. if (get_bits1(gb))
  2562. dcdiff = -dcdiff;
  2563. }
  2564. /* Prediction */
  2565. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2566. *dc_val = dcdiff;
  2567. /* Store the quantized DC coeff, used for prediction */
  2568. if (n < 4) {
  2569. block[0] = dcdiff * s->y_dc_scale;
  2570. } else {
  2571. block[0] = dcdiff * s->c_dc_scale;
  2572. }
  2573. //AC Decoding
  2574. i = 1;
  2575. /* check if AC is needed at all and adjust direction if needed */
  2576. if(!a_avail) dc_pred_dir = 1;
  2577. if(!c_avail) dc_pred_dir = 0;
  2578. if(!a_avail && !c_avail) use_pred = 0;
  2579. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2580. ac_val2 = ac_val;
  2581. scale = mquant * 2 + v->halfpq;
  2582. if(dc_pred_dir) //left
  2583. ac_val -= 16;
  2584. else //top
  2585. ac_val -= 16 * s->block_wrap[n];
  2586. q1 = s->current_picture.qscale_table[mb_pos];
  2587. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2588. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2589. if(dc_pred_dir && n==1) q2 = q1;
  2590. if(!dc_pred_dir && n==2) q2 = q1;
  2591. if(n==3) q2 = q1;
  2592. if(coded) {
  2593. int last = 0, skip, value;
  2594. const int8_t *zz_table;
  2595. int k;
  2596. zz_table = wmv1_scantable[0];
  2597. while (!last) {
  2598. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2599. i += skip;
  2600. if(i > 63)
  2601. break;
  2602. block[zz_table[i++]] = value;
  2603. }
  2604. /* apply AC prediction if needed */
  2605. if(use_pred) {
  2606. /* scale predictors if needed*/
  2607. if(q2 && q1!=q2) {
  2608. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2609. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2610. if(dc_pred_dir) { //left
  2611. for(k = 1; k < 8; k++)
  2612. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2613. } else { //top
  2614. for(k = 1; k < 8; k++)
  2615. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2616. }
  2617. } else {
  2618. if(dc_pred_dir) { //left
  2619. for(k = 1; k < 8; k++)
  2620. block[k << 3] += ac_val[k];
  2621. } else { //top
  2622. for(k = 1; k < 8; k++)
  2623. block[k] += ac_val[k + 8];
  2624. }
  2625. }
  2626. }
  2627. /* save AC coeffs for further prediction */
  2628. for(k = 1; k < 8; k++) {
  2629. ac_val2[k] = block[k << 3];
  2630. ac_val2[k + 8] = block[k];
  2631. }
  2632. /* scale AC coeffs */
  2633. for(k = 1; k < 64; k++)
  2634. if(block[k]) {
  2635. block[k] *= scale;
  2636. if(!v->pquantizer)
  2637. block[k] += (block[k] < 0) ? -mquant : mquant;
  2638. }
  2639. if(use_pred) i = 63;
  2640. } else { // no AC coeffs
  2641. int k;
  2642. memset(ac_val2, 0, 16 * 2);
  2643. if(dc_pred_dir) {//left
  2644. if(use_pred) {
  2645. memcpy(ac_val2, ac_val, 8 * 2);
  2646. if(q2 && q1!=q2) {
  2647. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2648. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2649. for(k = 1; k < 8; k++)
  2650. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2651. }
  2652. }
  2653. } else {//top
  2654. if(use_pred) {
  2655. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2656. if(q2 && q1!=q2) {
  2657. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2658. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2659. for(k = 1; k < 8; k++)
  2660. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2661. }
  2662. }
  2663. }
  2664. /* apply AC prediction if needed */
  2665. if(use_pred) {
  2666. if(dc_pred_dir) { //left
  2667. for(k = 1; k < 8; k++) {
  2668. block[k << 3] = ac_val2[k] * scale;
  2669. if(!v->pquantizer && block[k << 3])
  2670. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2671. }
  2672. } else { //top
  2673. for(k = 1; k < 8; k++) {
  2674. block[k] = ac_val2[k + 8] * scale;
  2675. if(!v->pquantizer && block[k])
  2676. block[k] += (block[k] < 0) ? -mquant : mquant;
  2677. }
  2678. }
  2679. i = 63;
  2680. }
  2681. }
  2682. s->block_last_index[n] = i;
  2683. return 0;
  2684. }
  2685. /** Decode P block
  2686. */
  2687. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
  2688. uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
  2689. {
  2690. MpegEncContext *s = &v->s;
  2691. GetBitContext *gb = &s->gb;
  2692. int i, j;
  2693. int subblkpat = 0;
  2694. int scale, off, idx, last, skip, value;
  2695. int ttblk = ttmb & 7;
  2696. int pat = 0;
  2697. if(ttmb == -1) {
  2698. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2699. }
  2700. if(ttblk == TT_4X4) {
  2701. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2702. }
  2703. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2704. subblkpat = decode012(gb);
  2705. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2706. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2707. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2708. }
  2709. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2710. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2711. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2712. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2713. ttblk = TT_8X4;
  2714. }
  2715. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2716. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2717. ttblk = TT_4X8;
  2718. }
  2719. switch(ttblk) {
  2720. case TT_8X8:
  2721. pat = 0xF;
  2722. i = 0;
  2723. last = 0;
  2724. while (!last) {
  2725. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2726. i += skip;
  2727. if(i > 63)
  2728. break;
  2729. idx = wmv1_scantable[0][i++];
  2730. block[idx] = value * scale;
  2731. if(!v->pquantizer)
  2732. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2733. }
  2734. if(!skip_block){
  2735. s->dsp.vc1_inv_trans_8x8(block);
  2736. s->dsp.add_pixels_clamped(block, dst, linesize);
  2737. if(apply_filter && cbp_top & 0xC)
  2738. s->dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  2739. if(apply_filter && cbp_left & 0xA)
  2740. s->dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  2741. }
  2742. break;
  2743. case TT_4X4:
  2744. pat = ~subblkpat & 0xF;
  2745. for(j = 0; j < 4; j++) {
  2746. last = subblkpat & (1 << (3 - j));
  2747. i = 0;
  2748. off = (j & 1) * 4 + (j & 2) * 16;
  2749. while (!last) {
  2750. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2751. i += skip;
  2752. if(i > 15)
  2753. break;
  2754. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2755. block[idx + off] = value * scale;
  2756. if(!v->pquantizer)
  2757. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2758. }
  2759. if(!(subblkpat & (1 << (3 - j))) && !skip_block){
  2760. s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  2761. if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
  2762. s->dsp.vc1_v_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
  2763. if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
  2764. s->dsp.vc1_h_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
  2765. }
  2766. }
  2767. break;
  2768. case TT_8X4:
  2769. pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
  2770. for(j = 0; j < 2; j++) {
  2771. last = subblkpat & (1 << (1 - j));
  2772. i = 0;
  2773. off = j * 32;
  2774. while (!last) {
  2775. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2776. i += skip;
  2777. if(i > 31)
  2778. break;
  2779. idx = v->zz_8x4[i++]+off;
  2780. block[idx] = value * scale;
  2781. if(!v->pquantizer)
  2782. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2783. }
  2784. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2785. s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
  2786. if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
  2787. s->dsp.vc1_v_loop_filter8(dst + j*4*linesize, linesize, v->pq);
  2788. if(apply_filter && cbp_left & (2 << j))
  2789. s->dsp.vc1_h_loop_filter4(dst + j*4*linesize, linesize, v->pq);
  2790. }
  2791. }
  2792. break;
  2793. case TT_4X8:
  2794. pat = ~(subblkpat*5) & 0xF;
  2795. for(j = 0; j < 2; j++) {
  2796. last = subblkpat & (1 << (1 - j));
  2797. i = 0;
  2798. off = j * 4;
  2799. while (!last) {
  2800. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2801. i += skip;
  2802. if(i > 31)
  2803. break;
  2804. idx = v->zz_4x8[i++]+off;
  2805. block[idx] = value * scale;
  2806. if(!v->pquantizer)
  2807. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2808. }
  2809. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2810. s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  2811. if(apply_filter && cbp_top & (2 << j))
  2812. s->dsp.vc1_v_loop_filter4(dst + j*4, linesize, v->pq);
  2813. if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
  2814. s->dsp.vc1_h_loop_filter8(dst + j*4, linesize, v->pq);
  2815. }
  2816. }
  2817. break;
  2818. }
  2819. return pat;
  2820. }
  2821. /** @} */ // Macroblock group
  2822. static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
  2823. static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2824. /** Decode one P-frame MB (in Simple/Main profile)
  2825. */
  2826. static int vc1_decode_p_mb(VC1Context *v)
  2827. {
  2828. MpegEncContext *s = &v->s;
  2829. GetBitContext *gb = &s->gb;
  2830. int i, j;
  2831. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2832. int cbp; /* cbp decoding stuff */
  2833. int mqdiff, mquant; /* MB quantization */
  2834. int ttmb = v->ttfrm; /* MB Transform type */
  2835. int mb_has_coeffs = 1; /* last_flag */
  2836. int dmv_x, dmv_y; /* Differential MV components */
  2837. int index, index1; /* LUT indexes */
  2838. int val, sign; /* temp values */
  2839. int first_block = 1;
  2840. int dst_idx, off;
  2841. int skipped, fourmv;
  2842. int block_cbp = 0, pat;
  2843. int apply_loop_filter;
  2844. mquant = v->pq; /* Loosy initialization */
  2845. if (v->mv_type_is_raw)
  2846. fourmv = get_bits1(gb);
  2847. else
  2848. fourmv = v->mv_type_mb_plane[mb_pos];
  2849. if (v->skip_is_raw)
  2850. skipped = get_bits1(gb);
  2851. else
  2852. skipped = v->s.mbskip_table[mb_pos];
  2853. s->dsp.clear_blocks(s->block[0]);
  2854. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  2855. if (!fourmv) /* 1MV mode */
  2856. {
  2857. if (!skipped)
  2858. {
  2859. GET_MVDATA(dmv_x, dmv_y);
  2860. if (s->mb_intra) {
  2861. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2862. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2863. }
  2864. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2865. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2866. /* FIXME Set DC val for inter block ? */
  2867. if (s->mb_intra && !mb_has_coeffs)
  2868. {
  2869. GET_MQUANT();
  2870. s->ac_pred = get_bits1(gb);
  2871. cbp = 0;
  2872. }
  2873. else if (mb_has_coeffs)
  2874. {
  2875. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2876. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2877. GET_MQUANT();
  2878. }
  2879. else
  2880. {
  2881. mquant = v->pq;
  2882. cbp = 0;
  2883. }
  2884. s->current_picture.qscale_table[mb_pos] = mquant;
  2885. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2886. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2887. VC1_TTMB_VLC_BITS, 2);
  2888. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2889. dst_idx = 0;
  2890. for (i=0; i<6; i++)
  2891. {
  2892. s->dc_val[0][s->block_index[i]] = 0;
  2893. dst_idx += i >> 2;
  2894. val = ((cbp >> (5 - i)) & 1);
  2895. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2896. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2897. if(s->mb_intra) {
  2898. /* check if prediction blocks A and C are available */
  2899. v->a_avail = v->c_avail = 0;
  2900. if(i == 2 || i == 3 || !s->first_slice_line)
  2901. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2902. if(i == 1 || i == 3 || s->mb_x)
  2903. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2904. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2905. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2906. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2907. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2908. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2909. if(v->pq >= 9 && v->overlap) {
  2910. if(v->c_avail)
  2911. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2912. if(v->a_avail)
  2913. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2914. }
  2915. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2916. int left_cbp, top_cbp;
  2917. if(i & 4){
  2918. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2919. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2920. }else{
  2921. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2922. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2923. }
  2924. if(left_cbp & 0xC)
  2925. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2926. if(top_cbp & 0xA)
  2927. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2928. }
  2929. block_cbp |= 0xF << (i << 2);
  2930. } else if(val) {
  2931. int left_cbp = 0, top_cbp = 0, filter = 0;
  2932. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2933. filter = 1;
  2934. if(i & 4){
  2935. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2936. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2937. }else{
  2938. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2939. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2940. }
  2941. if(left_cbp & 0xC)
  2942. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2943. if(top_cbp & 0xA)
  2944. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2945. }
  2946. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2947. block_cbp |= pat << (i << 2);
  2948. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2949. first_block = 0;
  2950. }
  2951. }
  2952. }
  2953. else //Skipped
  2954. {
  2955. s->mb_intra = 0;
  2956. for(i = 0; i < 6; i++) {
  2957. v->mb_type[0][s->block_index[i]] = 0;
  2958. s->dc_val[0][s->block_index[i]] = 0;
  2959. }
  2960. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2961. s->current_picture.qscale_table[mb_pos] = 0;
  2962. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2963. vc1_mc_1mv(v, 0);
  2964. return 0;
  2965. }
  2966. } //1MV mode
  2967. else //4MV mode
  2968. {
  2969. if (!skipped /* unskipped MB */)
  2970. {
  2971. int intra_count = 0, coded_inter = 0;
  2972. int is_intra[6], is_coded[6];
  2973. /* Get CBPCY */
  2974. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2975. for (i=0; i<6; i++)
  2976. {
  2977. val = ((cbp >> (5 - i)) & 1);
  2978. s->dc_val[0][s->block_index[i]] = 0;
  2979. s->mb_intra = 0;
  2980. if(i < 4) {
  2981. dmv_x = dmv_y = 0;
  2982. s->mb_intra = 0;
  2983. mb_has_coeffs = 0;
  2984. if(val) {
  2985. GET_MVDATA(dmv_x, dmv_y);
  2986. }
  2987. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2988. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2989. intra_count += s->mb_intra;
  2990. is_intra[i] = s->mb_intra;
  2991. is_coded[i] = mb_has_coeffs;
  2992. }
  2993. if(i&4){
  2994. is_intra[i] = (intra_count >= 3);
  2995. is_coded[i] = val;
  2996. }
  2997. if(i == 4) vc1_mc_4mv_chroma(v);
  2998. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2999. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  3000. }
  3001. // if there are no coded blocks then don't do anything more
  3002. if(!intra_count && !coded_inter) return 0;
  3003. dst_idx = 0;
  3004. GET_MQUANT();
  3005. s->current_picture.qscale_table[mb_pos] = mquant;
  3006. /* test if block is intra and has pred */
  3007. {
  3008. int intrapred = 0;
  3009. for(i=0; i<6; i++)
  3010. if(is_intra[i]) {
  3011. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3012. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3013. intrapred = 1;
  3014. break;
  3015. }
  3016. }
  3017. if(intrapred)s->ac_pred = get_bits1(gb);
  3018. else s->ac_pred = 0;
  3019. }
  3020. if (!v->ttmbf && coded_inter)
  3021. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3022. for (i=0; i<6; i++)
  3023. {
  3024. dst_idx += i >> 2;
  3025. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3026. s->mb_intra = is_intra[i];
  3027. if (is_intra[i]) {
  3028. /* check if prediction blocks A and C are available */
  3029. v->a_avail = v->c_avail = 0;
  3030. if(i == 2 || i == 3 || !s->first_slice_line)
  3031. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3032. if(i == 1 || i == 3 || s->mb_x)
  3033. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3034. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3035. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3036. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3037. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3038. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3039. if(v->pq >= 9 && v->overlap) {
  3040. if(v->c_avail)
  3041. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3042. if(v->a_avail)
  3043. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3044. }
  3045. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  3046. int left_cbp, top_cbp;
  3047. if(i & 4){
  3048. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  3049. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  3050. }else{
  3051. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  3052. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  3053. }
  3054. if(left_cbp & 0xC)
  3055. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  3056. if(top_cbp & 0xA)
  3057. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  3058. }
  3059. block_cbp |= 0xF << (i << 2);
  3060. } else if(is_coded[i]) {
  3061. int left_cbp = 0, top_cbp = 0, filter = 0;
  3062. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  3063. filter = 1;
  3064. if(i & 4){
  3065. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  3066. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  3067. }else{
  3068. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  3069. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  3070. }
  3071. if(left_cbp & 0xC)
  3072. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  3073. if(top_cbp & 0xA)
  3074. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  3075. }
  3076. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  3077. block_cbp |= pat << (i << 2);
  3078. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3079. first_block = 0;
  3080. }
  3081. }
  3082. return 0;
  3083. }
  3084. else //Skipped MB
  3085. {
  3086. s->mb_intra = 0;
  3087. s->current_picture.qscale_table[mb_pos] = 0;
  3088. for (i=0; i<6; i++) {
  3089. v->mb_type[0][s->block_index[i]] = 0;
  3090. s->dc_val[0][s->block_index[i]] = 0;
  3091. }
  3092. for (i=0; i<4; i++)
  3093. {
  3094. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3095. vc1_mc_4mv_luma(v, i);
  3096. }
  3097. vc1_mc_4mv_chroma(v);
  3098. s->current_picture.qscale_table[mb_pos] = 0;
  3099. return 0;
  3100. }
  3101. }
  3102. v->cbp[s->mb_x] = block_cbp;
  3103. /* Should never happen */
  3104. return -1;
  3105. }
  3106. /** Decode one B-frame MB (in Main profile)
  3107. */
  3108. static void vc1_decode_b_mb(VC1Context *v)
  3109. {
  3110. MpegEncContext *s = &v->s;
  3111. GetBitContext *gb = &s->gb;
  3112. int i, j;
  3113. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3114. int cbp = 0; /* cbp decoding stuff */
  3115. int mqdiff, mquant; /* MB quantization */
  3116. int ttmb = v->ttfrm; /* MB Transform type */
  3117. int mb_has_coeffs = 0; /* last_flag */
  3118. int index, index1; /* LUT indexes */
  3119. int val, sign; /* temp values */
  3120. int first_block = 1;
  3121. int dst_idx, off;
  3122. int skipped, direct;
  3123. int dmv_x[2], dmv_y[2];
  3124. int bmvtype = BMV_TYPE_BACKWARD;
  3125. mquant = v->pq; /* Loosy initialization */
  3126. s->mb_intra = 0;
  3127. if (v->dmb_is_raw)
  3128. direct = get_bits1(gb);
  3129. else
  3130. direct = v->direct_mb_plane[mb_pos];
  3131. if (v->skip_is_raw)
  3132. skipped = get_bits1(gb);
  3133. else
  3134. skipped = v->s.mbskip_table[mb_pos];
  3135. s->dsp.clear_blocks(s->block[0]);
  3136. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3137. for(i = 0; i < 6; i++) {
  3138. v->mb_type[0][s->block_index[i]] = 0;
  3139. s->dc_val[0][s->block_index[i]] = 0;
  3140. }
  3141. s->current_picture.qscale_table[mb_pos] = 0;
  3142. if (!direct) {
  3143. if (!skipped) {
  3144. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3145. dmv_x[1] = dmv_x[0];
  3146. dmv_y[1] = dmv_y[0];
  3147. }
  3148. if(skipped || !s->mb_intra) {
  3149. bmvtype = decode012(gb);
  3150. switch(bmvtype) {
  3151. case 0:
  3152. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3153. break;
  3154. case 1:
  3155. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3156. break;
  3157. case 2:
  3158. bmvtype = BMV_TYPE_INTERPOLATED;
  3159. dmv_x[0] = dmv_y[0] = 0;
  3160. }
  3161. }
  3162. }
  3163. for(i = 0; i < 6; i++)
  3164. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3165. if (skipped) {
  3166. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3167. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3168. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3169. return;
  3170. }
  3171. if (direct) {
  3172. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3173. GET_MQUANT();
  3174. s->mb_intra = 0;
  3175. s->current_picture.qscale_table[mb_pos] = mquant;
  3176. if(!v->ttmbf)
  3177. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3178. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3179. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3180. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3181. } else {
  3182. if(!mb_has_coeffs && !s->mb_intra) {
  3183. /* no coded blocks - effectively skipped */
  3184. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3185. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3186. return;
  3187. }
  3188. if(s->mb_intra && !mb_has_coeffs) {
  3189. GET_MQUANT();
  3190. s->current_picture.qscale_table[mb_pos] = mquant;
  3191. s->ac_pred = get_bits1(gb);
  3192. cbp = 0;
  3193. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3194. } else {
  3195. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3196. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3197. if(!mb_has_coeffs) {
  3198. /* interpolated skipped block */
  3199. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3200. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3201. return;
  3202. }
  3203. }
  3204. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3205. if(!s->mb_intra) {
  3206. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3207. }
  3208. if(s->mb_intra)
  3209. s->ac_pred = get_bits1(gb);
  3210. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3211. GET_MQUANT();
  3212. s->current_picture.qscale_table[mb_pos] = mquant;
  3213. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3214. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3215. }
  3216. }
  3217. dst_idx = 0;
  3218. for (i=0; i<6; i++)
  3219. {
  3220. s->dc_val[0][s->block_index[i]] = 0;
  3221. dst_idx += i >> 2;
  3222. val = ((cbp >> (5 - i)) & 1);
  3223. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3224. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3225. if(s->mb_intra) {
  3226. /* check if prediction blocks A and C are available */
  3227. v->a_avail = v->c_avail = 0;
  3228. if(i == 2 || i == 3 || !s->first_slice_line)
  3229. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3230. if(i == 1 || i == 3 || s->mb_x)
  3231. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3232. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3233. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3234. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3235. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3236. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3237. } else if(val) {
  3238. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
  3239. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3240. first_block = 0;
  3241. }
  3242. }
  3243. }
  3244. /** Decode blocks of I-frame
  3245. */
  3246. static void vc1_decode_i_blocks(VC1Context *v)
  3247. {
  3248. int k, j;
  3249. MpegEncContext *s = &v->s;
  3250. int cbp, val;
  3251. uint8_t *coded_val;
  3252. int mb_pos;
  3253. /* select codingmode used for VLC tables selection */
  3254. switch(v->y_ac_table_index){
  3255. case 0:
  3256. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3257. break;
  3258. case 1:
  3259. v->codingset = CS_HIGH_MOT_INTRA;
  3260. break;
  3261. case 2:
  3262. v->codingset = CS_MID_RATE_INTRA;
  3263. break;
  3264. }
  3265. switch(v->c_ac_table_index){
  3266. case 0:
  3267. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3268. break;
  3269. case 1:
  3270. v->codingset2 = CS_HIGH_MOT_INTER;
  3271. break;
  3272. case 2:
  3273. v->codingset2 = CS_MID_RATE_INTER;
  3274. break;
  3275. }
  3276. /* Set DC scale - y and c use the same */
  3277. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3278. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3279. //do frame decode
  3280. s->mb_x = s->mb_y = 0;
  3281. s->mb_intra = 1;
  3282. s->first_slice_line = 1;
  3283. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3284. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3285. ff_init_block_index(s);
  3286. ff_update_block_index(s);
  3287. s->dsp.clear_blocks(s->block[0]);
  3288. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3289. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3290. s->current_picture.qscale_table[mb_pos] = v->pq;
  3291. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3292. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3293. // do actual MB decoding and displaying
  3294. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3295. v->s.ac_pred = get_bits1(&v->s.gb);
  3296. for(k = 0; k < 6; k++) {
  3297. val = ((cbp >> (5 - k)) & 1);
  3298. if (k < 4) {
  3299. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3300. val = val ^ pred;
  3301. *coded_val = val;
  3302. }
  3303. cbp |= val << (5 - k);
  3304. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3305. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3306. if(v->pq >= 9 && v->overlap) {
  3307. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3308. }
  3309. }
  3310. vc1_put_block(v, s->block);
  3311. if(v->pq >= 9 && v->overlap) {
  3312. if(s->mb_x) {
  3313. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3314. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3315. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3316. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3317. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3318. }
  3319. }
  3320. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3321. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3322. if(!s->first_slice_line) {
  3323. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3324. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3325. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3326. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3327. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3328. }
  3329. }
  3330. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3331. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3332. }
  3333. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  3334. if(get_bits_count(&s->gb) > v->bits) {
  3335. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3336. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3337. return;
  3338. }
  3339. }
  3340. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3341. s->first_slice_line = 0;
  3342. }
  3343. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3344. }
  3345. /** Decode blocks of I-frame for advanced profile
  3346. */
  3347. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3348. {
  3349. int k, j;
  3350. MpegEncContext *s = &v->s;
  3351. int cbp, val;
  3352. uint8_t *coded_val;
  3353. int mb_pos;
  3354. int mquant = v->pq;
  3355. int mqdiff;
  3356. int overlap;
  3357. GetBitContext *gb = &s->gb;
  3358. /* select codingmode used for VLC tables selection */
  3359. switch(v->y_ac_table_index){
  3360. case 0:
  3361. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3362. break;
  3363. case 1:
  3364. v->codingset = CS_HIGH_MOT_INTRA;
  3365. break;
  3366. case 2:
  3367. v->codingset = CS_MID_RATE_INTRA;
  3368. break;
  3369. }
  3370. switch(v->c_ac_table_index){
  3371. case 0:
  3372. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3373. break;
  3374. case 1:
  3375. v->codingset2 = CS_HIGH_MOT_INTER;
  3376. break;
  3377. case 2:
  3378. v->codingset2 = CS_MID_RATE_INTER;
  3379. break;
  3380. }
  3381. //do frame decode
  3382. s->mb_x = s->mb_y = 0;
  3383. s->mb_intra = 1;
  3384. s->first_slice_line = 1;
  3385. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3386. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3387. ff_init_block_index(s);
  3388. ff_update_block_index(s);
  3389. s->dsp.clear_blocks(s->block[0]);
  3390. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3391. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3392. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3393. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3394. // do actual MB decoding and displaying
  3395. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3396. if(v->acpred_is_raw)
  3397. v->s.ac_pred = get_bits1(&v->s.gb);
  3398. else
  3399. v->s.ac_pred = v->acpred_plane[mb_pos];
  3400. if(v->condover == CONDOVER_SELECT) {
  3401. if(v->overflg_is_raw)
  3402. overlap = get_bits1(&v->s.gb);
  3403. else
  3404. overlap = v->over_flags_plane[mb_pos];
  3405. } else
  3406. overlap = (v->condover == CONDOVER_ALL);
  3407. GET_MQUANT();
  3408. s->current_picture.qscale_table[mb_pos] = mquant;
  3409. /* Set DC scale - y and c use the same */
  3410. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3411. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3412. for(k = 0; k < 6; k++) {
  3413. val = ((cbp >> (5 - k)) & 1);
  3414. if (k < 4) {
  3415. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3416. val = val ^ pred;
  3417. *coded_val = val;
  3418. }
  3419. cbp |= val << (5 - k);
  3420. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3421. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3422. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3423. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3424. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3425. }
  3426. vc1_put_block(v, s->block);
  3427. if(overlap) {
  3428. if(s->mb_x) {
  3429. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3430. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3431. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3432. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3433. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3434. }
  3435. }
  3436. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3437. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3438. if(!s->first_slice_line) {
  3439. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3440. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3441. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3442. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3443. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3444. }
  3445. }
  3446. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3447. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3448. }
  3449. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  3450. if(get_bits_count(&s->gb) > v->bits) {
  3451. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3452. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3453. return;
  3454. }
  3455. }
  3456. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3457. s->first_slice_line = 0;
  3458. }
  3459. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3460. }
  3461. static void vc1_decode_p_blocks(VC1Context *v)
  3462. {
  3463. MpegEncContext *s = &v->s;
  3464. /* select codingmode used for VLC tables selection */
  3465. switch(v->c_ac_table_index){
  3466. case 0:
  3467. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3468. break;
  3469. case 1:
  3470. v->codingset = CS_HIGH_MOT_INTRA;
  3471. break;
  3472. case 2:
  3473. v->codingset = CS_MID_RATE_INTRA;
  3474. break;
  3475. }
  3476. switch(v->c_ac_table_index){
  3477. case 0:
  3478. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3479. break;
  3480. case 1:
  3481. v->codingset2 = CS_HIGH_MOT_INTER;
  3482. break;
  3483. case 2:
  3484. v->codingset2 = CS_MID_RATE_INTER;
  3485. break;
  3486. }
  3487. s->first_slice_line = 1;
  3488. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  3489. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3490. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3491. ff_init_block_index(s);
  3492. ff_update_block_index(s);
  3493. s->dsp.clear_blocks(s->block[0]);
  3494. vc1_decode_p_mb(v);
  3495. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3496. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3497. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3498. return;
  3499. }
  3500. }
  3501. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
  3502. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3503. s->first_slice_line = 0;
  3504. }
  3505. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3506. }
  3507. static void vc1_decode_b_blocks(VC1Context *v)
  3508. {
  3509. MpegEncContext *s = &v->s;
  3510. /* select codingmode used for VLC tables selection */
  3511. switch(v->c_ac_table_index){
  3512. case 0:
  3513. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3514. break;
  3515. case 1:
  3516. v->codingset = CS_HIGH_MOT_INTRA;
  3517. break;
  3518. case 2:
  3519. v->codingset = CS_MID_RATE_INTRA;
  3520. break;
  3521. }
  3522. switch(v->c_ac_table_index){
  3523. case 0:
  3524. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3525. break;
  3526. case 1:
  3527. v->codingset2 = CS_HIGH_MOT_INTER;
  3528. break;
  3529. case 2:
  3530. v->codingset2 = CS_MID_RATE_INTER;
  3531. break;
  3532. }
  3533. s->first_slice_line = 1;
  3534. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3535. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3536. ff_init_block_index(s);
  3537. ff_update_block_index(s);
  3538. s->dsp.clear_blocks(s->block[0]);
  3539. vc1_decode_b_mb(v);
  3540. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3541. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3542. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3543. return;
  3544. }
  3545. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  3546. }
  3547. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3548. s->first_slice_line = 0;
  3549. }
  3550. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3551. }
  3552. static void vc1_decode_skip_blocks(VC1Context *v)
  3553. {
  3554. MpegEncContext *s = &v->s;
  3555. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3556. s->first_slice_line = 1;
  3557. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3558. s->mb_x = 0;
  3559. ff_init_block_index(s);
  3560. ff_update_block_index(s);
  3561. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3562. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3563. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3564. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3565. s->first_slice_line = 0;
  3566. }
  3567. s->pict_type = FF_P_TYPE;
  3568. }
  3569. static void vc1_decode_blocks(VC1Context *v)
  3570. {
  3571. v->s.esc3_level_length = 0;
  3572. if(v->x8_type){
  3573. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  3574. }else{
  3575. switch(v->s.pict_type) {
  3576. case FF_I_TYPE:
  3577. if(v->profile == PROFILE_ADVANCED)
  3578. vc1_decode_i_blocks_adv(v);
  3579. else
  3580. vc1_decode_i_blocks(v);
  3581. break;
  3582. case FF_P_TYPE:
  3583. if(v->p_frame_skipped)
  3584. vc1_decode_skip_blocks(v);
  3585. else
  3586. vc1_decode_p_blocks(v);
  3587. break;
  3588. case FF_B_TYPE:
  3589. if(v->bi_type){
  3590. if(v->profile == PROFILE_ADVANCED)
  3591. vc1_decode_i_blocks_adv(v);
  3592. else
  3593. vc1_decode_i_blocks(v);
  3594. }else
  3595. vc1_decode_b_blocks(v);
  3596. break;
  3597. }
  3598. }
  3599. }
  3600. /** Initialize a VC1/WMV3 decoder
  3601. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3602. * @todo TODO: Decypher remaining bits in extra_data
  3603. */
  3604. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  3605. {
  3606. VC1Context *v = avctx->priv_data;
  3607. MpegEncContext *s = &v->s;
  3608. GetBitContext gb;
  3609. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3610. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3611. avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts);
  3612. else
  3613. avctx->pix_fmt = PIX_FMT_GRAY8;
  3614. avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
  3615. v->s.avctx = avctx;
  3616. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3617. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3618. if(avctx->idct_algo==FF_IDCT_AUTO){
  3619. avctx->idct_algo=FF_IDCT_WMV2;
  3620. }
  3621. if(ff_h263_decode_init(avctx) < 0)
  3622. return -1;
  3623. if (vc1_init_common(v) < 0) return -1;
  3624. avctx->coded_width = avctx->width;
  3625. avctx->coded_height = avctx->height;
  3626. if (avctx->codec_id == CODEC_ID_WMV3)
  3627. {
  3628. int count = 0;
  3629. // looks like WMV3 has a sequence header stored in the extradata
  3630. // advanced sequence header may be before the first frame
  3631. // the last byte of the extradata is a version number, 1 for the
  3632. // samples we can decode
  3633. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3634. if (vc1_decode_sequence_header(avctx, v, &gb) < 0)
  3635. return -1;
  3636. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3637. if (count>0)
  3638. {
  3639. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3640. count, get_bits(&gb, count));
  3641. }
  3642. else if (count < 0)
  3643. {
  3644. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3645. }
  3646. } else { // VC1/WVC1
  3647. const uint8_t *start = avctx->extradata;
  3648. uint8_t *end = avctx->extradata + avctx->extradata_size;
  3649. const uint8_t *next;
  3650. int size, buf2_size;
  3651. uint8_t *buf2 = NULL;
  3652. int seq_initialized = 0, ep_initialized = 0;
  3653. if(avctx->extradata_size < 16) {
  3654. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3655. return -1;
  3656. }
  3657. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3658. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3659. next = start;
  3660. for(; next < end; start = next){
  3661. next = find_next_marker(start + 4, end);
  3662. size = next - start - 4;
  3663. if(size <= 0) continue;
  3664. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3665. init_get_bits(&gb, buf2, buf2_size * 8);
  3666. switch(AV_RB32(start)){
  3667. case VC1_CODE_SEQHDR:
  3668. if(vc1_decode_sequence_header(avctx, v, &gb) < 0){
  3669. av_free(buf2);
  3670. return -1;
  3671. }
  3672. seq_initialized = 1;
  3673. break;
  3674. case VC1_CODE_ENTRYPOINT:
  3675. if(vc1_decode_entry_point(avctx, v, &gb) < 0){
  3676. av_free(buf2);
  3677. return -1;
  3678. }
  3679. ep_initialized = 1;
  3680. break;
  3681. }
  3682. }
  3683. av_free(buf2);
  3684. if(!seq_initialized || !ep_initialized){
  3685. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3686. return -1;
  3687. }
  3688. }
  3689. avctx->has_b_frames= !!(avctx->max_b_frames);
  3690. s->low_delay = !avctx->has_b_frames;
  3691. s->mb_width = (avctx->coded_width+15)>>4;
  3692. s->mb_height = (avctx->coded_height+15)>>4;
  3693. /* Allocate mb bitplanes */
  3694. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3695. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3696. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3697. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3698. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  3699. v->cbp = v->cbp_base + s->mb_stride;
  3700. /* allocate block type info in that way so it could be used with s->block_index[] */
  3701. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3702. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3703. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3704. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3705. /* Init coded blocks info */
  3706. if (v->profile == PROFILE_ADVANCED)
  3707. {
  3708. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3709. // return -1;
  3710. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3711. // return -1;
  3712. }
  3713. ff_intrax8_common_init(&v->x8,s);
  3714. return 0;
  3715. }
  3716. /** Decode a VC1/WMV3 frame
  3717. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3718. */
  3719. static int vc1_decode_frame(AVCodecContext *avctx,
  3720. void *data, int *data_size,
  3721. AVPacket *avpkt)
  3722. {
  3723. const uint8_t *buf = avpkt->data;
  3724. int buf_size = avpkt->size;
  3725. VC1Context *v = avctx->priv_data;
  3726. MpegEncContext *s = &v->s;
  3727. AVFrame *pict = data;
  3728. uint8_t *buf2 = NULL;
  3729. const uint8_t *buf_start = buf;
  3730. /* no supplementary picture */
  3731. if (buf_size == 0) {
  3732. /* special case for last picture */
  3733. if (s->low_delay==0 && s->next_picture_ptr) {
  3734. *pict= *(AVFrame*)s->next_picture_ptr;
  3735. s->next_picture_ptr= NULL;
  3736. *data_size = sizeof(AVFrame);
  3737. }
  3738. return 0;
  3739. }
  3740. /* We need to set current_picture_ptr before reading the header,
  3741. * otherwise we cannot store anything in there. */
  3742. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3743. int i= ff_find_unused_picture(s, 0);
  3744. s->current_picture_ptr= &s->picture[i];
  3745. }
  3746. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  3747. if (v->profile < PROFILE_ADVANCED)
  3748. avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
  3749. else
  3750. avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
  3751. }
  3752. //for advanced profile we may need to parse and unescape data
  3753. if (avctx->codec_id == CODEC_ID_VC1) {
  3754. int buf_size2 = 0;
  3755. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3756. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3757. const uint8_t *start, *end, *next;
  3758. int size;
  3759. next = buf;
  3760. for(start = buf, end = buf + buf_size; next < end; start = next){
  3761. next = find_next_marker(start + 4, end);
  3762. size = next - start - 4;
  3763. if(size <= 0) continue;
  3764. switch(AV_RB32(start)){
  3765. case VC1_CODE_FRAME:
  3766. if (avctx->hwaccel ||
  3767. s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3768. buf_start = start;
  3769. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3770. break;
  3771. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3772. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3773. init_get_bits(&s->gb, buf2, buf_size2*8);
  3774. vc1_decode_entry_point(avctx, v, &s->gb);
  3775. break;
  3776. case VC1_CODE_SLICE:
  3777. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3778. av_free(buf2);
  3779. return -1;
  3780. }
  3781. }
  3782. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3783. const uint8_t *divider;
  3784. divider = find_next_marker(buf, buf + buf_size);
  3785. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3786. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3787. av_free(buf2);
  3788. return -1;
  3789. }
  3790. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3791. // TODO
  3792. av_free(buf2);return -1;
  3793. }else{
  3794. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3795. }
  3796. init_get_bits(&s->gb, buf2, buf_size2*8);
  3797. } else
  3798. init_get_bits(&s->gb, buf, buf_size*8);
  3799. // do parse frame header
  3800. if(v->profile < PROFILE_ADVANCED) {
  3801. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3802. av_free(buf2);
  3803. return -1;
  3804. }
  3805. } else {
  3806. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3807. av_free(buf2);
  3808. return -1;
  3809. }
  3810. }
  3811. if(s->pict_type != FF_I_TYPE && !v->res_rtm_flag){
  3812. av_free(buf2);
  3813. return -1;
  3814. }
  3815. // for hurry_up==5
  3816. s->current_picture.pict_type= s->pict_type;
  3817. s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
  3818. /* skip B-frames if we don't have reference frames */
  3819. if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
  3820. av_free(buf2);
  3821. return -1;//buf_size;
  3822. }
  3823. /* skip b frames if we are in a hurry */
  3824. if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
  3825. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
  3826. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
  3827. || avctx->skip_frame >= AVDISCARD_ALL) {
  3828. av_free(buf2);
  3829. return buf_size;
  3830. }
  3831. /* skip everything if we are in a hurry>=5 */
  3832. if(avctx->hurry_up>=5) {
  3833. av_free(buf2);
  3834. return -1;//buf_size;
  3835. }
  3836. if(s->next_p_frame_damaged){
  3837. if(s->pict_type==FF_B_TYPE)
  3838. return buf_size;
  3839. else
  3840. s->next_p_frame_damaged=0;
  3841. }
  3842. if(MPV_frame_start(s, avctx) < 0) {
  3843. av_free(buf2);
  3844. return -1;
  3845. }
  3846. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  3847. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  3848. if ((CONFIG_VC1_VDPAU_DECODER || CONFIG_WMV3_VDPAU_DECODER)
  3849. &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3850. ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
  3851. else if (avctx->hwaccel) {
  3852. if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
  3853. return -1;
  3854. if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
  3855. return -1;
  3856. if (avctx->hwaccel->end_frame(avctx) < 0)
  3857. return -1;
  3858. } else {
  3859. ff_er_frame_start(s);
  3860. v->bits = buf_size * 8;
  3861. vc1_decode_blocks(v);
  3862. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3863. // if(get_bits_count(&s->gb) > buf_size * 8)
  3864. // return -1;
  3865. ff_er_frame_end(s);
  3866. }
  3867. MPV_frame_end(s);
  3868. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3869. assert(s->current_picture.pict_type == s->pict_type);
  3870. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  3871. *pict= *(AVFrame*)s->current_picture_ptr;
  3872. } else if (s->last_picture_ptr != NULL) {
  3873. *pict= *(AVFrame*)s->last_picture_ptr;
  3874. }
  3875. if(s->last_picture_ptr || s->low_delay){
  3876. *data_size = sizeof(AVFrame);
  3877. ff_print_debug_info(s, pict);
  3878. }
  3879. av_free(buf2);
  3880. return buf_size;
  3881. }
  3882. /** Close a VC1/WMV3 decoder
  3883. * @warning Initial try at using MpegEncContext stuff
  3884. */
  3885. static av_cold int vc1_decode_end(AVCodecContext *avctx)
  3886. {
  3887. VC1Context *v = avctx->priv_data;
  3888. av_freep(&v->hrd_rate);
  3889. av_freep(&v->hrd_buffer);
  3890. MPV_common_end(&v->s);
  3891. av_freep(&v->mv_type_mb_plane);
  3892. av_freep(&v->direct_mb_plane);
  3893. av_freep(&v->acpred_plane);
  3894. av_freep(&v->over_flags_plane);
  3895. av_freep(&v->mb_type_base);
  3896. av_freep(&v->cbp_base);
  3897. ff_intrax8_common_end(&v->x8);
  3898. return 0;
  3899. }
  3900. AVCodec vc1_decoder = {
  3901. "vc1",
  3902. CODEC_TYPE_VIDEO,
  3903. CODEC_ID_VC1,
  3904. sizeof(VC1Context),
  3905. vc1_decode_init,
  3906. NULL,
  3907. vc1_decode_end,
  3908. vc1_decode_frame,
  3909. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  3910. NULL,
  3911. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  3912. .pix_fmts = ff_hwaccel_pixfmt_list_420
  3913. };
  3914. AVCodec wmv3_decoder = {
  3915. "wmv3",
  3916. CODEC_TYPE_VIDEO,
  3917. CODEC_ID_WMV3,
  3918. sizeof(VC1Context),
  3919. vc1_decode_init,
  3920. NULL,
  3921. vc1_decode_end,
  3922. vc1_decode_frame,
  3923. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  3924. NULL,
  3925. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  3926. .pix_fmts = ff_hwaccel_pixfmt_list_420
  3927. };
  3928. #if CONFIG_WMV3_VDPAU_DECODER
  3929. AVCodec wmv3_vdpau_decoder = {
  3930. "wmv3_vdpau",
  3931. CODEC_TYPE_VIDEO,
  3932. CODEC_ID_WMV3,
  3933. sizeof(VC1Context),
  3934. vc1_decode_init,
  3935. NULL,
  3936. vc1_decode_end,
  3937. vc1_decode_frame,
  3938. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3939. NULL,
  3940. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
  3941. .pix_fmts = (enum PixelFormat[]){PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE}
  3942. };
  3943. #endif
  3944. #if CONFIG_VC1_VDPAU_DECODER
  3945. AVCodec vc1_vdpau_decoder = {
  3946. "vc1_vdpau",
  3947. CODEC_TYPE_VIDEO,
  3948. CODEC_ID_VC1,
  3949. sizeof(VC1Context),
  3950. vc1_decode_init,
  3951. NULL,
  3952. vc1_decode_end,
  3953. vc1_decode_frame,
  3954. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3955. NULL,
  3956. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
  3957. .pix_fmts = (enum PixelFormat[]){PIX_FMT_VDPAU_VC1, PIX_FMT_NONE}
  3958. };
  3959. #endif