You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

683 lines
26KB

  1. /*
  2. * RV40 decoder
  3. * Copyright (c) 2007 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/rv40.c
  23. * RV40 decoder
  24. */
  25. #include "avcodec.h"
  26. #include "dsputil.h"
  27. #include "mpegvideo.h"
  28. #include "golomb.h"
  29. #include "rv34.h"
  30. #include "rv40vlc2.h"
  31. #include "rv40data.h"
  32. static VLC aic_top_vlc;
  33. static VLC aic_mode1_vlc[AIC_MODE1_NUM], aic_mode2_vlc[AIC_MODE2_NUM];
  34. static VLC ptype_vlc[NUM_PTYPE_VLCS], btype_vlc[NUM_BTYPE_VLCS];
  35. static const int16_t mode2_offs[] = {
  36. 0, 614, 1222, 1794, 2410, 3014, 3586, 4202, 4792, 5382, 5966, 6542,
  37. 7138, 7716, 8292, 8864, 9444, 10030, 10642, 11212, 11814
  38. };
  39. /**
  40. * Initialize all tables.
  41. */
  42. static av_cold void rv40_init_tables(void)
  43. {
  44. int i;
  45. static VLC_TYPE aic_table[1 << AIC_TOP_BITS][2];
  46. static VLC_TYPE aic_mode1_table[AIC_MODE1_NUM << AIC_MODE1_BITS][2];
  47. static VLC_TYPE aic_mode2_table[11814][2];
  48. static VLC_TYPE ptype_table[NUM_PTYPE_VLCS << PTYPE_VLC_BITS][2];
  49. static VLC_TYPE btype_table[NUM_BTYPE_VLCS << BTYPE_VLC_BITS][2];
  50. aic_top_vlc.table = aic_table;
  51. aic_top_vlc.table_allocated = 1 << AIC_TOP_BITS;
  52. init_vlc(&aic_top_vlc, AIC_TOP_BITS, AIC_TOP_SIZE,
  53. rv40_aic_top_vlc_bits, 1, 1,
  54. rv40_aic_top_vlc_codes, 1, 1, INIT_VLC_USE_NEW_STATIC);
  55. for(i = 0; i < AIC_MODE1_NUM; i++){
  56. // Every tenth VLC table is empty
  57. if((i % 10) == 9) continue;
  58. aic_mode1_vlc[i].table = &aic_mode1_table[i << AIC_MODE1_BITS];
  59. aic_mode1_vlc[i].table_allocated = 1 << AIC_MODE1_BITS;
  60. init_vlc(&aic_mode1_vlc[i], AIC_MODE1_BITS, AIC_MODE1_SIZE,
  61. aic_mode1_vlc_bits[i], 1, 1,
  62. aic_mode1_vlc_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  63. }
  64. for(i = 0; i < AIC_MODE2_NUM; i++){
  65. aic_mode2_vlc[i].table = &aic_mode2_table[mode2_offs[i]];
  66. aic_mode2_vlc[i].table_allocated = mode2_offs[i + 1] - mode2_offs[i];
  67. init_vlc(&aic_mode2_vlc[i], AIC_MODE2_BITS, AIC_MODE2_SIZE,
  68. aic_mode2_vlc_bits[i], 1, 1,
  69. aic_mode2_vlc_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  70. }
  71. for(i = 0; i < NUM_PTYPE_VLCS; i++){
  72. ptype_vlc[i].table = &ptype_table[i << PTYPE_VLC_BITS];
  73. ptype_vlc[i].table_allocated = 1 << PTYPE_VLC_BITS;
  74. init_vlc_sparse(&ptype_vlc[i], PTYPE_VLC_BITS, PTYPE_VLC_SIZE,
  75. ptype_vlc_bits[i], 1, 1,
  76. ptype_vlc_codes[i], 1, 1,
  77. ptype_vlc_syms, 1, 1, INIT_VLC_USE_NEW_STATIC);
  78. }
  79. for(i = 0; i < NUM_BTYPE_VLCS; i++){
  80. btype_vlc[i].table = &btype_table[i << BTYPE_VLC_BITS];
  81. btype_vlc[i].table_allocated = 1 << BTYPE_VLC_BITS;
  82. init_vlc_sparse(&btype_vlc[i], BTYPE_VLC_BITS, BTYPE_VLC_SIZE,
  83. btype_vlc_bits[i], 1, 1,
  84. btype_vlc_codes[i], 1, 1,
  85. btype_vlc_syms, 1, 1, INIT_VLC_USE_NEW_STATIC);
  86. }
  87. }
  88. /**
  89. * Get stored dimension from bitstream.
  90. *
  91. * If the width/height is the standard one then it's coded as a 3-bit index.
  92. * Otherwise it is coded as escaped 8-bit portions.
  93. */
  94. static int get_dimension(GetBitContext *gb, const int *dim)
  95. {
  96. int t = get_bits(gb, 3);
  97. int val = dim[t];
  98. if(val < 0)
  99. val = dim[get_bits1(gb) - val];
  100. if(!val){
  101. do{
  102. t = get_bits(gb, 8);
  103. val += t << 2;
  104. }while(t == 0xFF);
  105. }
  106. return val;
  107. }
  108. /**
  109. * Get encoded picture size - usually this is called from rv40_parse_slice_header.
  110. */
  111. static void rv40_parse_picture_size(GetBitContext *gb, int *w, int *h)
  112. {
  113. *w = get_dimension(gb, rv40_standard_widths);
  114. *h = get_dimension(gb, rv40_standard_heights);
  115. }
  116. static int rv40_parse_slice_header(RV34DecContext *r, GetBitContext *gb, SliceInfo *si)
  117. {
  118. int mb_bits;
  119. int w = r->s.width, h = r->s.height;
  120. int mb_size;
  121. memset(si, 0, sizeof(SliceInfo));
  122. if(get_bits1(gb))
  123. return -1;
  124. si->type = get_bits(gb, 2);
  125. if(si->type == 1) si->type = 0;
  126. si->quant = get_bits(gb, 5);
  127. if(get_bits(gb, 2))
  128. return -1;
  129. si->vlc_set = get_bits(gb, 2);
  130. skip_bits1(gb);
  131. si->pts = get_bits(gb, 13);
  132. if(!si->type || !get_bits1(gb))
  133. rv40_parse_picture_size(gb, &w, &h);
  134. if(avcodec_check_dimensions(r->s.avctx, w, h) < 0)
  135. return -1;
  136. si->width = w;
  137. si->height = h;
  138. mb_size = ((w + 15) >> 4) * ((h + 15) >> 4);
  139. mb_bits = ff_rv34_get_start_offset(gb, mb_size);
  140. si->start = get_bits(gb, mb_bits);
  141. return 0;
  142. }
  143. /**
  144. * Decode 4x4 intra types array.
  145. */
  146. static int rv40_decode_intra_types(RV34DecContext *r, GetBitContext *gb, int8_t *dst)
  147. {
  148. MpegEncContext *s = &r->s;
  149. int i, j, k, v;
  150. int A, B, C;
  151. int pattern;
  152. int8_t *ptr;
  153. for(i = 0; i < 4; i++, dst += s->b4_stride){
  154. if(!i && s->first_slice_line){
  155. pattern = get_vlc2(gb, aic_top_vlc.table, AIC_TOP_BITS, 1);
  156. dst[0] = (pattern >> 2) & 2;
  157. dst[1] = (pattern >> 1) & 2;
  158. dst[2] = pattern & 2;
  159. dst[3] = (pattern << 1) & 2;
  160. continue;
  161. }
  162. ptr = dst;
  163. for(j = 0; j < 4; j++){
  164. /* Coefficients are read using VLC chosen by the prediction pattern
  165. * The first one (used for retrieving a pair of coefficients) is
  166. * constructed from the top, top right and left coefficients
  167. * The second one (used for retrieving only one coefficient) is
  168. * top + 10 * left.
  169. */
  170. A = ptr[-s->b4_stride + 1]; // it won't be used for the last coefficient in a row
  171. B = ptr[-s->b4_stride];
  172. C = ptr[-1];
  173. pattern = A + (B << 4) + (C << 8);
  174. for(k = 0; k < MODE2_PATTERNS_NUM; k++)
  175. if(pattern == rv40_aic_table_index[k])
  176. break;
  177. if(j < 3 && k < MODE2_PATTERNS_NUM){ //pattern is found, decoding 2 coefficients
  178. v = get_vlc2(gb, aic_mode2_vlc[k].table, AIC_MODE2_BITS, 2);
  179. *ptr++ = v/9;
  180. *ptr++ = v%9;
  181. j++;
  182. }else{
  183. if(B != -1 && C != -1)
  184. v = get_vlc2(gb, aic_mode1_vlc[B + C*10].table, AIC_MODE1_BITS, 1);
  185. else{ // tricky decoding
  186. v = 0;
  187. switch(C){
  188. case -1: // code 0 -> 1, 1 -> 0
  189. if(B < 2)
  190. v = get_bits1(gb) ^ 1;
  191. break;
  192. case 0:
  193. case 2: // code 0 -> 2, 1 -> 0
  194. v = (get_bits1(gb) ^ 1) << 1;
  195. break;
  196. }
  197. }
  198. *ptr++ = v;
  199. }
  200. }
  201. }
  202. return 0;
  203. }
  204. /**
  205. * Decode macroblock information.
  206. */
  207. static int rv40_decode_mb_info(RV34DecContext *r)
  208. {
  209. MpegEncContext *s = &r->s;
  210. GetBitContext *gb = &s->gb;
  211. int q, i;
  212. int prev_type = 0;
  213. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  214. int blocks[RV34_MB_TYPES] = {0};
  215. int count = 0;
  216. if(!r->s.mb_skip_run)
  217. r->s.mb_skip_run = svq3_get_ue_golomb(gb) + 1;
  218. if(--r->s.mb_skip_run)
  219. return RV34_MB_SKIP;
  220. if(r->avail_cache[5-1])
  221. blocks[r->mb_type[mb_pos - 1]]++;
  222. if(r->avail_cache[5-4]){
  223. blocks[r->mb_type[mb_pos - s->mb_stride]]++;
  224. if(r->avail_cache[5-2])
  225. blocks[r->mb_type[mb_pos - s->mb_stride + 1]]++;
  226. if(r->avail_cache[5-5])
  227. blocks[r->mb_type[mb_pos - s->mb_stride - 1]]++;
  228. }
  229. for(i = 0; i < RV34_MB_TYPES; i++){
  230. if(blocks[i] > count){
  231. count = blocks[i];
  232. prev_type = i;
  233. }
  234. }
  235. if(s->pict_type == FF_P_TYPE){
  236. prev_type = block_num_to_ptype_vlc_num[prev_type];
  237. q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
  238. if(q < PBTYPE_ESCAPE)
  239. return q;
  240. q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
  241. av_log(s->avctx, AV_LOG_ERROR, "Dquant for P-frame\n");
  242. }else{
  243. prev_type = block_num_to_btype_vlc_num[prev_type];
  244. q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
  245. if(q < PBTYPE_ESCAPE)
  246. return q;
  247. q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
  248. av_log(s->avctx, AV_LOG_ERROR, "Dquant for B-frame\n");
  249. }
  250. return 0;
  251. }
  252. #define CLIP_SYMM(a, b) av_clip(a, -(b), b)
  253. /**
  254. * weaker deblocking very similar to the one described in 4.4.2 of JVT-A003r1
  255. */
  256. static inline void rv40_weak_loop_filter(uint8_t *src, const int step,
  257. const int filter_p1, const int filter_q1,
  258. const int alpha, const int beta,
  259. const int lim_p0q0,
  260. const int lim_q1, const int lim_p1,
  261. const int diff_p1p0, const int diff_q1q0,
  262. const int diff_p1p2, const int diff_q1q2)
  263. {
  264. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  265. int t, u, diff;
  266. t = src[0*step] - src[-1*step];
  267. if(!t)
  268. return;
  269. u = (alpha * FFABS(t)) >> 7;
  270. if(u > 3 - (filter_p1 && filter_q1))
  271. return;
  272. t <<= 2;
  273. if(filter_p1 && filter_q1)
  274. t += src[-2*step] - src[1*step];
  275. diff = CLIP_SYMM((t + 4) >> 3, lim_p0q0);
  276. src[-1*step] = cm[src[-1*step] + diff];
  277. src[ 0*step] = cm[src[ 0*step] - diff];
  278. if(FFABS(diff_p1p2) <= beta && filter_p1){
  279. t = (diff_p1p0 + diff_p1p2 - diff) >> 1;
  280. src[-2*step] = cm[src[-2*step] - CLIP_SYMM(t, lim_p1)];
  281. }
  282. if(FFABS(diff_q1q2) <= beta && filter_q1){
  283. t = (diff_q1q0 + diff_q1q2 + diff) >> 1;
  284. src[ 1*step] = cm[src[ 1*step] - CLIP_SYMM(t, lim_q1)];
  285. }
  286. }
  287. static inline void rv40_adaptive_loop_filter(uint8_t *src, const int step,
  288. const int stride, const int dmode,
  289. const int lim_q1, const int lim_p1,
  290. const int alpha,
  291. const int beta, const int beta2,
  292. const int chroma, const int edge)
  293. {
  294. int diff_p1p0[4], diff_q1q0[4], diff_p1p2[4], diff_q1q2[4];
  295. int sum_p1p0 = 0, sum_q1q0 = 0, sum_p1p2 = 0, sum_q1q2 = 0;
  296. uint8_t *ptr;
  297. int flag_strong0 = 1, flag_strong1 = 1;
  298. int filter_p1, filter_q1;
  299. int i;
  300. int lims;
  301. for(i = 0, ptr = src; i < 4; i++, ptr += stride){
  302. diff_p1p0[i] = ptr[-2*step] - ptr[-1*step];
  303. diff_q1q0[i] = ptr[ 1*step] - ptr[ 0*step];
  304. sum_p1p0 += diff_p1p0[i];
  305. sum_q1q0 += diff_q1q0[i];
  306. }
  307. filter_p1 = FFABS(sum_p1p0) < (beta<<2);
  308. filter_q1 = FFABS(sum_q1q0) < (beta<<2);
  309. if(!filter_p1 && !filter_q1)
  310. return;
  311. for(i = 0, ptr = src; i < 4; i++, ptr += stride){
  312. diff_p1p2[i] = ptr[-2*step] - ptr[-3*step];
  313. diff_q1q2[i] = ptr[ 1*step] - ptr[ 2*step];
  314. sum_p1p2 += diff_p1p2[i];
  315. sum_q1q2 += diff_q1q2[i];
  316. }
  317. if(edge){
  318. flag_strong0 = filter_p1 && (FFABS(sum_p1p2) < beta2);
  319. flag_strong1 = filter_q1 && (FFABS(sum_q1q2) < beta2);
  320. }else{
  321. flag_strong0 = flag_strong1 = 0;
  322. }
  323. lims = filter_p1 + filter_q1 + ((lim_q1 + lim_p1) >> 1) + 1;
  324. if(flag_strong0 && flag_strong1){ /* strong filtering */
  325. for(i = 0; i < 4; i++, src += stride){
  326. int sflag, p0, q0, p1, q1;
  327. int t = src[0*step] - src[-1*step];
  328. if(!t) continue;
  329. sflag = (alpha * FFABS(t)) >> 7;
  330. if(sflag > 1) continue;
  331. p0 = (25*src[-3*step] + 26*src[-2*step]
  332. + 26*src[-1*step]
  333. + 26*src[ 0*step] + 25*src[ 1*step] + rv40_dither_l[dmode + i]) >> 7;
  334. q0 = (25*src[-2*step] + 26*src[-1*step]
  335. + 26*src[ 0*step]
  336. + 26*src[ 1*step] + 25*src[ 2*step] + rv40_dither_r[dmode + i]) >> 7;
  337. if(sflag){
  338. p0 = av_clip(p0, src[-1*step] - lims, src[-1*step] + lims);
  339. q0 = av_clip(q0, src[ 0*step] - lims, src[ 0*step] + lims);
  340. }
  341. p1 = (25*src[-4*step] + 26*src[-3*step]
  342. + 26*src[-2*step]
  343. + 26*p0 + 25*src[ 0*step] + rv40_dither_l[dmode + i]) >> 7;
  344. q1 = (25*src[-1*step] + 26*q0
  345. + 26*src[ 1*step]
  346. + 26*src[ 2*step] + 25*src[ 3*step] + rv40_dither_r[dmode + i]) >> 7;
  347. if(sflag){
  348. p1 = av_clip(p1, src[-2*step] - lims, src[-2*step] + lims);
  349. q1 = av_clip(q1, src[ 1*step] - lims, src[ 1*step] + lims);
  350. }
  351. src[-2*step] = p1;
  352. src[-1*step] = p0;
  353. src[ 0*step] = q0;
  354. src[ 1*step] = q1;
  355. if(!chroma){
  356. src[-3*step] = (25*src[-1*step] + 26*src[-2*step] + 51*src[-3*step] + 26*src[-4*step] + 64) >> 7;
  357. src[ 2*step] = (25*src[ 0*step] + 26*src[ 1*step] + 51*src[ 2*step] + 26*src[ 3*step] + 64) >> 7;
  358. }
  359. }
  360. }else if(filter_p1 && filter_q1){
  361. for(i = 0; i < 4; i++, src += stride)
  362. rv40_weak_loop_filter(src, step, 1, 1, alpha, beta, lims, lim_q1, lim_p1,
  363. diff_p1p0[i], diff_q1q0[i], diff_p1p2[i], diff_q1q2[i]);
  364. }else{
  365. for(i = 0; i < 4; i++, src += stride)
  366. rv40_weak_loop_filter(src, step, filter_p1, filter_q1,
  367. alpha, beta, lims>>1, lim_q1>>1, lim_p1>>1,
  368. diff_p1p0[i], diff_q1q0[i], diff_p1p2[i], diff_q1q2[i]);
  369. }
  370. }
  371. static void rv40_v_loop_filter(uint8_t *src, int stride, int dmode,
  372. int lim_q1, int lim_p1,
  373. int alpha, int beta, int beta2, int chroma, int edge){
  374. rv40_adaptive_loop_filter(src, 1, stride, dmode, lim_q1, lim_p1,
  375. alpha, beta, beta2, chroma, edge);
  376. }
  377. static void rv40_h_loop_filter(uint8_t *src, int stride, int dmode,
  378. int lim_q1, int lim_p1,
  379. int alpha, int beta, int beta2, int chroma, int edge){
  380. rv40_adaptive_loop_filter(src, stride, 1, dmode, lim_q1, lim_p1,
  381. alpha, beta, beta2, chroma, edge);
  382. }
  383. enum RV40BlockPos{
  384. POS_CUR,
  385. POS_TOP,
  386. POS_LEFT,
  387. POS_BOTTOM,
  388. };
  389. #define MASK_CUR 0x0001
  390. #define MASK_RIGHT 0x0008
  391. #define MASK_BOTTOM 0x0010
  392. #define MASK_TOP 0x1000
  393. #define MASK_Y_TOP_ROW 0x000F
  394. #define MASK_Y_LAST_ROW 0xF000
  395. #define MASK_Y_LEFT_COL 0x1111
  396. #define MASK_Y_RIGHT_COL 0x8888
  397. #define MASK_C_TOP_ROW 0x0003
  398. #define MASK_C_LAST_ROW 0x000C
  399. #define MASK_C_LEFT_COL 0x0005
  400. #define MASK_C_RIGHT_COL 0x000A
  401. static const int neighbour_offs_x[4] = { 0, 0, -1, 0 };
  402. static const int neighbour_offs_y[4] = { 0, -1, 0, 1 };
  403. /**
  404. * RV40 loop filtering function
  405. */
  406. static void rv40_loop_filter(RV34DecContext *r, int row)
  407. {
  408. MpegEncContext *s = &r->s;
  409. int mb_pos, mb_x;
  410. int i, j, k;
  411. uint8_t *Y, *C;
  412. int alpha, beta, betaY, betaC;
  413. int q;
  414. int mbtype[4]; ///< current macroblock and its neighbours types
  415. /**
  416. * flags indicating that macroblock can be filtered with strong filter
  417. * it is set only for intra coded MB and MB with DCs coded separately
  418. */
  419. int mb_strong[4];
  420. int clip[4]; ///< MB filter clipping value calculated from filtering strength
  421. /**
  422. * coded block patterns for luma part of current macroblock and its neighbours
  423. * Format:
  424. * LSB corresponds to the top left block,
  425. * each nibble represents one row of subblocks.
  426. */
  427. int cbp[4];
  428. /**
  429. * coded block patterns for chroma part of current macroblock and its neighbours
  430. * Format is the same as for luma with two subblocks in a row.
  431. */
  432. int uvcbp[4][2];
  433. /**
  434. * This mask represents the pattern of luma subblocks that should be filtered
  435. * in addition to the coded ones because because they lie at the edge of
  436. * 8x8 block with different enough motion vectors
  437. */
  438. int mvmasks[4];
  439. mb_pos = row * s->mb_stride;
  440. for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
  441. int mbtype = s->current_picture_ptr->mb_type[mb_pos];
  442. if(IS_INTRA(mbtype) || IS_SEPARATE_DC(mbtype))
  443. r->cbp_luma [mb_pos] = r->deblock_coefs[mb_pos] = 0xFFFF;
  444. if(IS_INTRA(mbtype))
  445. r->cbp_chroma[mb_pos] = 0xFF;
  446. }
  447. mb_pos = row * s->mb_stride;
  448. for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
  449. int y_h_deblock, y_v_deblock;
  450. int c_v_deblock[2], c_h_deblock[2];
  451. int clip_left;
  452. int avail[4];
  453. int y_to_deblock, c_to_deblock[2];
  454. q = s->current_picture_ptr->qscale_table[mb_pos];
  455. alpha = rv40_alpha_tab[q];
  456. beta = rv40_beta_tab [q];
  457. betaY = betaC = beta * 3;
  458. if(s->width * s->height <= 176*144)
  459. betaY += beta;
  460. avail[0] = 1;
  461. avail[1] = row;
  462. avail[2] = mb_x;
  463. avail[3] = row < s->mb_height - 1;
  464. for(i = 0; i < 4; i++){
  465. if(avail[i]){
  466. int pos = mb_pos + neighbour_offs_x[i] + neighbour_offs_y[i]*s->mb_stride;
  467. mvmasks[i] = r->deblock_coefs[pos];
  468. mbtype [i] = s->current_picture_ptr->mb_type[pos];
  469. cbp [i] = r->cbp_luma[pos];
  470. uvcbp[i][0] = r->cbp_chroma[pos] & 0xF;
  471. uvcbp[i][1] = r->cbp_chroma[pos] >> 4;
  472. }else{
  473. mvmasks[i] = 0;
  474. mbtype [i] = mbtype[0];
  475. cbp [i] = 0;
  476. uvcbp[i][0] = uvcbp[i][1] = 0;
  477. }
  478. mb_strong[i] = IS_INTRA(mbtype[i]) || IS_SEPARATE_DC(mbtype[i]);
  479. clip[i] = rv40_filter_clip_tbl[mb_strong[i] + 1][q];
  480. }
  481. y_to_deblock = mvmasks[POS_CUR]
  482. | (mvmasks[POS_BOTTOM] << 16);
  483. /* This pattern contains bits signalling that horizontal edges of
  484. * the current block can be filtered.
  485. * That happens when either of adjacent subblocks is coded or lies on
  486. * the edge of 8x8 blocks with motion vectors differing by more than
  487. * 3/4 pel in any component (any edge orientation for some reason).
  488. */
  489. y_h_deblock = y_to_deblock
  490. | ((cbp[POS_CUR] << 4) & ~MASK_Y_TOP_ROW)
  491. | ((cbp[POS_TOP] & MASK_Y_LAST_ROW) >> 12);
  492. /* This pattern contains bits signalling that vertical edges of
  493. * the current block can be filtered.
  494. * That happens when either of adjacent subblocks is coded or lies on
  495. * the edge of 8x8 blocks with motion vectors differing by more than
  496. * 3/4 pel in any component (any edge orientation for some reason).
  497. */
  498. y_v_deblock = y_to_deblock
  499. | ((cbp[POS_CUR] << 1) & ~MASK_Y_LEFT_COL)
  500. | ((cbp[POS_LEFT] & MASK_Y_RIGHT_COL) >> 3);
  501. if(!mb_x)
  502. y_v_deblock &= ~MASK_Y_LEFT_COL;
  503. if(!row)
  504. y_h_deblock &= ~MASK_Y_TOP_ROW;
  505. if(row == s->mb_height - 1 || (mb_strong[POS_CUR] || mb_strong[POS_BOTTOM]))
  506. y_h_deblock &= ~(MASK_Y_TOP_ROW << 16);
  507. /* Calculating chroma patterns is similar and easier since there is
  508. * no motion vector pattern for them.
  509. */
  510. for(i = 0; i < 2; i++){
  511. c_to_deblock[i] = (uvcbp[POS_BOTTOM][i] << 4) | uvcbp[POS_CUR][i];
  512. c_v_deblock[i] = c_to_deblock[i]
  513. | ((uvcbp[POS_CUR] [i] << 1) & ~MASK_C_LEFT_COL)
  514. | ((uvcbp[POS_LEFT][i] & MASK_C_RIGHT_COL) >> 1);
  515. c_h_deblock[i] = c_to_deblock[i]
  516. | ((uvcbp[POS_TOP][i] & MASK_C_LAST_ROW) >> 2)
  517. | (uvcbp[POS_CUR][i] << 2);
  518. if(!mb_x)
  519. c_v_deblock[i] &= ~MASK_C_LEFT_COL;
  520. if(!row)
  521. c_h_deblock[i] &= ~MASK_C_TOP_ROW;
  522. if(row == s->mb_height - 1 || mb_strong[POS_CUR] || mb_strong[POS_BOTTOM])
  523. c_h_deblock[i] &= ~(MASK_C_TOP_ROW << 4);
  524. }
  525. for(j = 0; j < 16; j += 4){
  526. Y = s->current_picture_ptr->data[0] + mb_x*16 + (row*16 + j) * s->linesize;
  527. for(i = 0; i < 4; i++, Y += 4){
  528. int ij = i + j;
  529. int clip_cur = y_to_deblock & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
  530. int dither = j ? ij : i*4;
  531. // if bottom block is coded then we can filter its top edge
  532. // (or bottom edge of this block, which is the same)
  533. if(y_h_deblock & (MASK_BOTTOM << ij)){
  534. rv40_h_loop_filter(Y+4*s->linesize, s->linesize, dither,
  535. y_to_deblock & (MASK_BOTTOM << ij) ? clip[POS_CUR] : 0,
  536. clip_cur,
  537. alpha, beta, betaY, 0, 0);
  538. }
  539. // filter left block edge in ordinary mode (with low filtering strength)
  540. if(y_v_deblock & (MASK_CUR << ij) && (i || !(mb_strong[POS_CUR] || mb_strong[POS_LEFT]))){
  541. if(!i)
  542. clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
  543. else
  544. clip_left = y_to_deblock & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
  545. rv40_v_loop_filter(Y, s->linesize, dither,
  546. clip_cur,
  547. clip_left,
  548. alpha, beta, betaY, 0, 0);
  549. }
  550. // filter top edge of the current macroblock when filtering strength is high
  551. if(!j && y_h_deblock & (MASK_CUR << i) && (mb_strong[POS_CUR] || mb_strong[POS_TOP])){
  552. rv40_h_loop_filter(Y, s->linesize, dither,
  553. clip_cur,
  554. mvmasks[POS_TOP] & (MASK_TOP << i) ? clip[POS_TOP] : 0,
  555. alpha, beta, betaY, 0, 1);
  556. }
  557. // filter left block edge in edge mode (with high filtering strength)
  558. if(y_v_deblock & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] || mb_strong[POS_LEFT])){
  559. clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
  560. rv40_v_loop_filter(Y, s->linesize, dither,
  561. clip_cur,
  562. clip_left,
  563. alpha, beta, betaY, 0, 1);
  564. }
  565. }
  566. }
  567. for(k = 0; k < 2; k++){
  568. for(j = 0; j < 2; j++){
  569. C = s->current_picture_ptr->data[k+1] + mb_x*8 + (row*8 + j*4) * s->uvlinesize;
  570. for(i = 0; i < 2; i++, C += 4){
  571. int ij = i + j*2;
  572. int clip_cur = c_to_deblock[k] & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
  573. if(c_h_deblock[k] & (MASK_CUR << (ij+2))){
  574. int clip_bot = c_to_deblock[k] & (MASK_CUR << (ij+2)) ? clip[POS_CUR] : 0;
  575. rv40_h_loop_filter(C+4*s->uvlinesize, s->uvlinesize, i*8,
  576. clip_bot,
  577. clip_cur,
  578. alpha, beta, betaC, 1, 0);
  579. }
  580. if((c_v_deblock[k] & (MASK_CUR << ij)) && (i || !(mb_strong[POS_CUR] || mb_strong[POS_LEFT]))){
  581. if(!i)
  582. clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
  583. else
  584. clip_left = c_to_deblock[k] & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
  585. rv40_v_loop_filter(C, s->uvlinesize, j*8,
  586. clip_cur,
  587. clip_left,
  588. alpha, beta, betaC, 1, 0);
  589. }
  590. if(!j && c_h_deblock[k] & (MASK_CUR << ij) && (mb_strong[POS_CUR] || mb_strong[POS_TOP])){
  591. int clip_top = uvcbp[POS_TOP][k] & (MASK_CUR << (ij+2)) ? clip[POS_TOP] : 0;
  592. rv40_h_loop_filter(C, s->uvlinesize, i*8,
  593. clip_cur,
  594. clip_top,
  595. alpha, beta, betaC, 1, 1);
  596. }
  597. if(c_v_deblock[k] & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] || mb_strong[POS_LEFT])){
  598. clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
  599. rv40_v_loop_filter(C, s->uvlinesize, j*8,
  600. clip_cur,
  601. clip_left,
  602. alpha, beta, betaC, 1, 1);
  603. }
  604. }
  605. }
  606. }
  607. }
  608. }
  609. /**
  610. * Initialize decoder.
  611. */
  612. static av_cold int rv40_decode_init(AVCodecContext *avctx)
  613. {
  614. RV34DecContext *r = avctx->priv_data;
  615. r->rv30 = 0;
  616. ff_rv34_decode_init(avctx);
  617. if(!aic_top_vlc.bits)
  618. rv40_init_tables();
  619. r->parse_slice_header = rv40_parse_slice_header;
  620. r->decode_intra_types = rv40_decode_intra_types;
  621. r->decode_mb_info = rv40_decode_mb_info;
  622. r->loop_filter = rv40_loop_filter;
  623. r->luma_dc_quant_i = rv40_luma_dc_quant[0];
  624. r->luma_dc_quant_p = rv40_luma_dc_quant[1];
  625. return 0;
  626. }
  627. AVCodec rv40_decoder = {
  628. "rv40",
  629. CODEC_TYPE_VIDEO,
  630. CODEC_ID_RV40,
  631. sizeof(RV34DecContext),
  632. rv40_decode_init,
  633. NULL,
  634. ff_rv34_decode_end,
  635. ff_rv34_decode_frame,
  636. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  637. .flush = ff_mpeg_flush,
  638. .long_name = NULL_IF_CONFIG_SMALL("RealVideo 4.0"),
  639. .pix_fmts= ff_pixfmt_list_420,
  640. };