You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1522 lines
54KB

  1. /*
  2. * RV30/40 decoder common data
  3. * Copyright (c) 2007 Mike Melanson, Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/rv34.c
  23. * RV30/40 decoder common data
  24. */
  25. #include "avcodec.h"
  26. #include "dsputil.h"
  27. #include "mpegvideo.h"
  28. #include "golomb.h"
  29. #include "mathops.h"
  30. #include "rectangle.h"
  31. #include "rv34vlc.h"
  32. #include "rv34data.h"
  33. #include "rv34.h"
  34. //#define DEBUG
  35. /** translation of RV30/40 macroblock types to lavc ones */
  36. static const int rv34_mb_type_to_lavc[12] = {
  37. MB_TYPE_INTRA,
  38. MB_TYPE_INTRA16x16 | MB_TYPE_SEPARATE_DC,
  39. MB_TYPE_16x16 | MB_TYPE_L0,
  40. MB_TYPE_8x8 | MB_TYPE_L0,
  41. MB_TYPE_16x16 | MB_TYPE_L0,
  42. MB_TYPE_16x16 | MB_TYPE_L1,
  43. MB_TYPE_SKIP,
  44. MB_TYPE_DIRECT2 | MB_TYPE_16x16,
  45. MB_TYPE_16x8 | MB_TYPE_L0,
  46. MB_TYPE_8x16 | MB_TYPE_L0,
  47. MB_TYPE_16x16 | MB_TYPE_L0L1,
  48. MB_TYPE_16x16 | MB_TYPE_L0 | MB_TYPE_SEPARATE_DC
  49. };
  50. static RV34VLC intra_vlcs[NUM_INTRA_TABLES], inter_vlcs[NUM_INTER_TABLES];
  51. /**
  52. * @defgroup vlc RV30/40 VLC generating functions
  53. * @{
  54. */
  55. static const int table_offs[] = {
  56. 0, 1818, 3622, 4144, 4698, 5234, 5804, 5868, 5900, 5932,
  57. 5996, 6252, 6316, 6348, 6380, 7674, 8944, 10274, 11668, 12250,
  58. 14060, 15846, 16372, 16962, 17512, 18148, 18180, 18212, 18244, 18308,
  59. 18564, 18628, 18660, 18692, 20036, 21314, 22648, 23968, 24614, 26384,
  60. 28190, 28736, 29366, 29938, 30608, 30640, 30672, 30704, 30768, 31024,
  61. 31088, 31120, 31184, 32570, 33898, 35236, 36644, 37286, 39020, 40802,
  62. 41368, 42052, 42692, 43348, 43380, 43412, 43444, 43476, 43604, 43668,
  63. 43700, 43732, 45100, 46430, 47778, 49160, 49802, 51550, 53340, 53972,
  64. 54648, 55348, 55994, 56122, 56154, 56186, 56218, 56346, 56410, 56442,
  65. 56474, 57878, 59290, 60636, 62036, 62682, 64460, 64524, 64588, 64716,
  66. 64844, 66076, 67466, 67978, 68542, 69064, 69648, 70296, 72010, 72074,
  67. 72138, 72202, 72330, 73572, 74936, 75454, 76030, 76566, 77176, 77822,
  68. 79582, 79646, 79678, 79742, 79870, 81180, 82536, 83064, 83672, 84242,
  69. 84934, 85576, 87384, 87448, 87480, 87544, 87672, 88982, 90340, 90902,
  70. 91598, 92182, 92846, 93488, 95246, 95278, 95310, 95374, 95502, 96878,
  71. 98266, 98848, 99542, 100234, 100884, 101524, 103320, 103352, 103384, 103416,
  72. 103480, 104874, 106222, 106910, 107584, 108258, 108902, 109544, 111366, 111398,
  73. 111430, 111462, 111494, 112878, 114320, 114988, 115660, 116310, 116950, 117592
  74. };
  75. static VLC_TYPE table_data[117592][2];
  76. /**
  77. * Generate VLC from codeword lengths.
  78. * @param bits codeword lengths (zeroes are accepted)
  79. * @param size length of input data
  80. * @param vlc output VLC
  81. * @param insyms symbols for input codes (NULL for default ones)
  82. * @param num VLC table number (for static initialization)
  83. */
  84. static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *insyms,
  85. const int num)
  86. {
  87. int i;
  88. int counts[17] = {0}, codes[17];
  89. uint16_t cw[size], syms[size];
  90. uint8_t bits2[size];
  91. int maxbits = 0, realsize = 0;
  92. for(i = 0; i < size; i++){
  93. if(bits[i]){
  94. bits2[realsize] = bits[i];
  95. syms[realsize] = insyms ? insyms[i] : i;
  96. realsize++;
  97. maxbits = FFMAX(maxbits, bits[i]);
  98. counts[bits[i]]++;
  99. }
  100. }
  101. codes[0] = 0;
  102. for(i = 0; i < 16; i++)
  103. codes[i+1] = (codes[i] + counts[i]) << 1;
  104. for(i = 0; i < realsize; i++)
  105. cw[i] = codes[bits2[i]]++;
  106. vlc->table = &table_data[table_offs[num]];
  107. vlc->table_allocated = table_offs[num + 1] - table_offs[num];
  108. init_vlc_sparse(vlc, FFMIN(maxbits, 9), realsize,
  109. bits2, 1, 1,
  110. cw, 2, 2,
  111. syms, 2, 2, INIT_VLC_USE_NEW_STATIC);
  112. }
  113. /**
  114. * Initialize all tables.
  115. */
  116. static av_cold void rv34_init_tables(void)
  117. {
  118. int i, j, k;
  119. for(i = 0; i < NUM_INTRA_TABLES; i++){
  120. for(j = 0; j < 2; j++){
  121. rv34_gen_vlc(rv34_table_intra_cbppat [i][j], CBPPAT_VLC_SIZE, &intra_vlcs[i].cbppattern[j], NULL, 19*i + 0 + j);
  122. rv34_gen_vlc(rv34_table_intra_secondpat[i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].second_pattern[j], NULL, 19*i + 2 + j);
  123. rv34_gen_vlc(rv34_table_intra_thirdpat [i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].third_pattern[j], NULL, 19*i + 4 + j);
  124. for(k = 0; k < 4; k++){
  125. rv34_gen_vlc(rv34_table_intra_cbp[i][j+k*2], CBP_VLC_SIZE, &intra_vlcs[i].cbp[j][k], rv34_cbp_code, 19*i + 6 + j*4 + k);
  126. }
  127. }
  128. for(j = 0; j < 4; j++){
  129. rv34_gen_vlc(rv34_table_intra_firstpat[i][j], FIRSTBLK_VLC_SIZE, &intra_vlcs[i].first_pattern[j], NULL, 19*i + 14 + j);
  130. }
  131. rv34_gen_vlc(rv34_intra_coeff[i], COEFF_VLC_SIZE, &intra_vlcs[i].coefficient, NULL, 19*i + 18);
  132. }
  133. for(i = 0; i < NUM_INTER_TABLES; i++){
  134. rv34_gen_vlc(rv34_inter_cbppat[i], CBPPAT_VLC_SIZE, &inter_vlcs[i].cbppattern[0], NULL, i*12 + 95);
  135. for(j = 0; j < 4; j++){
  136. rv34_gen_vlc(rv34_inter_cbp[i][j], CBP_VLC_SIZE, &inter_vlcs[i].cbp[0][j], rv34_cbp_code, i*12 + 96 + j);
  137. }
  138. for(j = 0; j < 2; j++){
  139. rv34_gen_vlc(rv34_table_inter_firstpat [i][j], FIRSTBLK_VLC_SIZE, &inter_vlcs[i].first_pattern[j], NULL, i*12 + 100 + j);
  140. rv34_gen_vlc(rv34_table_inter_secondpat[i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].second_pattern[j], NULL, i*12 + 102 + j);
  141. rv34_gen_vlc(rv34_table_inter_thirdpat [i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].third_pattern[j], NULL, i*12 + 104 + j);
  142. }
  143. rv34_gen_vlc(rv34_inter_coeff[i], COEFF_VLC_SIZE, &inter_vlcs[i].coefficient, NULL, i*12 + 106);
  144. }
  145. }
  146. /** @} */ // vlc group
  147. /**
  148. * @defgroup transform RV30/40 inverse transform functions
  149. * @{
  150. */
  151. static av_always_inline void rv34_row_transform(int temp[16], DCTELEM *block)
  152. {
  153. int i;
  154. for(i=0; i<4; i++){
  155. const int z0= 13*(block[i+8*0] + block[i+8*2]);
  156. const int z1= 13*(block[i+8*0] - block[i+8*2]);
  157. const int z2= 7* block[i+8*1] - 17*block[i+8*3];
  158. const int z3= 17* block[i+8*1] + 7*block[i+8*3];
  159. temp[4*i+0]= z0+z3;
  160. temp[4*i+1]= z1+z2;
  161. temp[4*i+2]= z1-z2;
  162. temp[4*i+3]= z0-z3;
  163. }
  164. }
  165. /**
  166. * Real Video 3.0/4.0 inverse transform
  167. * Code is almost the same as in SVQ3, only scaling is different.
  168. */
  169. static void rv34_inv_transform(DCTELEM *block){
  170. int temp[16];
  171. int i;
  172. rv34_row_transform(temp, block);
  173. for(i=0; i<4; i++){
  174. const int z0= 13*(temp[4*0+i] + temp[4*2+i]) + 0x200;
  175. const int z1= 13*(temp[4*0+i] - temp[4*2+i]) + 0x200;
  176. const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
  177. const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
  178. block[i*8+0]= (z0 + z3)>>10;
  179. block[i*8+1]= (z1 + z2)>>10;
  180. block[i*8+2]= (z1 - z2)>>10;
  181. block[i*8+3]= (z0 - z3)>>10;
  182. }
  183. }
  184. /**
  185. * RealVideo 3.0/4.0 inverse transform for DC block
  186. *
  187. * Code is almost the same as rv34_inv_transform()
  188. * but final coefficients are multiplied by 1.5 and have no rounding.
  189. */
  190. static void rv34_inv_transform_noround(DCTELEM *block){
  191. int temp[16];
  192. int i;
  193. rv34_row_transform(temp, block);
  194. for(i=0; i<4; i++){
  195. const int z0= 13*(temp[4*0+i] + temp[4*2+i]);
  196. const int z1= 13*(temp[4*0+i] - temp[4*2+i]);
  197. const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
  198. const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
  199. block[i*8+0]= ((z0 + z3)*3)>>11;
  200. block[i*8+1]= ((z1 + z2)*3)>>11;
  201. block[i*8+2]= ((z1 - z2)*3)>>11;
  202. block[i*8+3]= ((z0 - z3)*3)>>11;
  203. }
  204. }
  205. /** @} */ // transform
  206. /**
  207. * @defgroup block RV30/40 4x4 block decoding functions
  208. * @{
  209. */
  210. /**
  211. * Decode coded block pattern.
  212. */
  213. static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table)
  214. {
  215. int pattern, code, cbp=0;
  216. int ones;
  217. static const int cbp_masks[3] = {0x100000, 0x010000, 0x110000};
  218. static const int shifts[4] = { 0, 2, 8, 10 };
  219. const int *curshift = shifts;
  220. int i, t, mask;
  221. code = get_vlc2(gb, vlc->cbppattern[table].table, 9, 2);
  222. pattern = code & 0xF;
  223. code >>= 4;
  224. ones = rv34_count_ones[pattern];
  225. for(mask = 8; mask; mask >>= 1, curshift++){
  226. if(pattern & mask)
  227. cbp |= get_vlc2(gb, vlc->cbp[table][ones].table, vlc->cbp[table][ones].bits, 1) << curshift[0];
  228. }
  229. for(i = 0; i < 4; i++){
  230. t = modulo_three_table[code][i];
  231. if(t == 1)
  232. cbp |= cbp_masks[get_bits1(gb)] << i;
  233. if(t == 2)
  234. cbp |= cbp_masks[2] << i;
  235. }
  236. return cbp;
  237. }
  238. /**
  239. * Get one coefficient value from the bistream and store it.
  240. */
  241. static inline void decode_coeff(DCTELEM *dst, int coef, int esc, GetBitContext *gb, VLC* vlc)
  242. {
  243. if(coef){
  244. if(coef == esc){
  245. coef = get_vlc2(gb, vlc->table, 9, 2);
  246. if(coef > 23){
  247. coef -= 23;
  248. coef = 22 + ((1 << coef) | get_bits(gb, coef));
  249. }
  250. coef += esc;
  251. }
  252. if(get_bits1(gb))
  253. coef = -coef;
  254. *dst = coef;
  255. }
  256. }
  257. /**
  258. * Decode 2x2 subblock of coefficients.
  259. */
  260. static inline void decode_subblock(DCTELEM *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc)
  261. {
  262. int coeffs[4];
  263. coeffs[0] = modulo_three_table[code][0];
  264. coeffs[1] = modulo_three_table[code][1];
  265. coeffs[2] = modulo_three_table[code][2];
  266. coeffs[3] = modulo_three_table[code][3];
  267. decode_coeff(dst , coeffs[0], 3, gb, vlc);
  268. if(is_block2){
  269. decode_coeff(dst+8, coeffs[1], 2, gb, vlc);
  270. decode_coeff(dst+1, coeffs[2], 2, gb, vlc);
  271. }else{
  272. decode_coeff(dst+1, coeffs[1], 2, gb, vlc);
  273. decode_coeff(dst+8, coeffs[2], 2, gb, vlc);
  274. }
  275. decode_coeff(dst+9, coeffs[3], 2, gb, vlc);
  276. }
  277. /**
  278. * Decode coefficients for 4x4 block.
  279. *
  280. * This is done by filling 2x2 subblocks with decoded coefficients
  281. * in this order (the same for subblocks and subblock coefficients):
  282. * o--o
  283. * /
  284. * /
  285. * o--o
  286. */
  287. static inline void rv34_decode_block(DCTELEM *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc)
  288. {
  289. int code, pattern;
  290. code = get_vlc2(gb, rvlc->first_pattern[fc].table, 9, 2);
  291. pattern = code & 0x7;
  292. code >>= 3;
  293. decode_subblock(dst, code, 0, gb, &rvlc->coefficient);
  294. if(pattern & 4){
  295. code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
  296. decode_subblock(dst + 2, code, 0, gb, &rvlc->coefficient);
  297. }
  298. if(pattern & 2){ // Looks like coefficients 1 and 2 are swapped for this block
  299. code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
  300. decode_subblock(dst + 8*2, code, 1, gb, &rvlc->coefficient);
  301. }
  302. if(pattern & 1){
  303. code = get_vlc2(gb, rvlc->third_pattern[sc].table, 9, 2);
  304. decode_subblock(dst + 8*2+2, code, 0, gb, &rvlc->coefficient);
  305. }
  306. }
  307. /**
  308. * Dequantize ordinary 4x4 block.
  309. * @todo optimize
  310. */
  311. static inline void rv34_dequant4x4(DCTELEM *block, int Qdc, int Q)
  312. {
  313. int i, j;
  314. block[0] = (block[0] * Qdc + 8) >> 4;
  315. for(i = 0; i < 4; i++)
  316. for(j = !i; j < 4; j++)
  317. block[j + i*8] = (block[j + i*8] * Q + 8) >> 4;
  318. }
  319. /**
  320. * Dequantize 4x4 block of DC values for 16x16 macroblock.
  321. * @todo optimize
  322. */
  323. static inline void rv34_dequant4x4_16x16(DCTELEM *block, int Qdc, int Q)
  324. {
  325. int i;
  326. for(i = 0; i < 3; i++)
  327. block[rv34_dezigzag[i]] = (block[rv34_dezigzag[i]] * Qdc + 8) >> 4;
  328. for(; i < 16; i++)
  329. block[rv34_dezigzag[i]] = (block[rv34_dezigzag[i]] * Q + 8) >> 4;
  330. }
  331. /** @} */ //block functions
  332. /**
  333. * @defgroup bitstream RV30/40 bitstream parsing
  334. * @{
  335. */
  336. /**
  337. * Decode starting slice position.
  338. * @todo Maybe replace with ff_h263_decode_mba() ?
  339. */
  340. int ff_rv34_get_start_offset(GetBitContext *gb, int mb_size)
  341. {
  342. int i;
  343. for(i = 0; i < 5; i++)
  344. if(rv34_mb_max_sizes[i] >= mb_size - 1)
  345. break;
  346. return rv34_mb_bits_sizes[i];
  347. }
  348. /**
  349. * Select VLC set for decoding from current quantizer, modifier and frame type.
  350. */
  351. static inline RV34VLC* choose_vlc_set(int quant, int mod, int type)
  352. {
  353. if(mod == 2 && quant < 19) quant += 10;
  354. else if(mod && quant < 26) quant += 5;
  355. return type ? &inter_vlcs[rv34_quant_to_vlc_set[1][av_clip(quant, 0, 30)]]
  356. : &intra_vlcs[rv34_quant_to_vlc_set[0][av_clip(quant, 0, 30)]];
  357. }
  358. /**
  359. * Decode quantizer difference and return modified quantizer.
  360. */
  361. static inline int rv34_decode_dquant(GetBitContext *gb, int quant)
  362. {
  363. if(get_bits1(gb))
  364. return rv34_dquant_tab[get_bits1(gb)][quant];
  365. else
  366. return get_bits(gb, 5);
  367. }
  368. /** @} */ //bitstream functions
  369. /**
  370. * @defgroup mv motion vector related code (prediction, reconstruction, motion compensation)
  371. * @{
  372. */
  373. /** macroblock partition width in 8x8 blocks */
  374. static const uint8_t part_sizes_w[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2 };
  375. /** macroblock partition height in 8x8 blocks */
  376. static const uint8_t part_sizes_h[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2 };
  377. /** availability index for subblocks */
  378. static const uint8_t avail_indexes[4] = { 5, 6, 9, 10 };
  379. /**
  380. * motion vector prediction
  381. *
  382. * Motion prediction performed for the block by using median prediction of
  383. * motion vectors from the left, top and right top blocks but in corner cases
  384. * some other vectors may be used instead.
  385. */
  386. static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
  387. {
  388. MpegEncContext *s = &r->s;
  389. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  390. int A[2] = {0}, B[2], C[2];
  391. int i, j;
  392. int mx, my;
  393. int avail_index = avail_indexes[subblock_no];
  394. int c_off = part_sizes_w[block_type];
  395. mv_pos += (subblock_no & 1) + (subblock_no >> 1)*s->b8_stride;
  396. if(subblock_no == 3)
  397. c_off = -1;
  398. if(r->avail_cache[avail_index - 1]){
  399. A[0] = s->current_picture_ptr->motion_val[0][mv_pos-1][0];
  400. A[1] = s->current_picture_ptr->motion_val[0][mv_pos-1][1];
  401. }
  402. if(r->avail_cache[avail_index - 4]){
  403. B[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][0];
  404. B[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][1];
  405. }else{
  406. B[0] = A[0];
  407. B[1] = A[1];
  408. }
  409. if(!r->avail_cache[avail_index - 4 + c_off]){
  410. if(r->avail_cache[avail_index - 4] && (r->avail_cache[avail_index - 1] || r->rv30)){
  411. C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][0];
  412. C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][1];
  413. }else{
  414. C[0] = A[0];
  415. C[1] = A[1];
  416. }
  417. }else{
  418. C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][0];
  419. C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][1];
  420. }
  421. mx = mid_pred(A[0], B[0], C[0]);
  422. my = mid_pred(A[1], B[1], C[1]);
  423. mx += r->dmv[dmv_no][0];
  424. my += r->dmv[dmv_no][1];
  425. for(j = 0; j < part_sizes_h[block_type]; j++){
  426. for(i = 0; i < part_sizes_w[block_type]; i++){
  427. s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][0] = mx;
  428. s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][1] = my;
  429. }
  430. }
  431. }
  432. #define GET_PTS_DIFF(a, b) ((a - b + 8192) & 0x1FFF)
  433. /**
  434. * Calculate motion vector component that should be added for direct blocks.
  435. */
  436. static int calc_add_mv(RV34DecContext *r, int dir, int val)
  437. {
  438. int refdist = GET_PTS_DIFF(r->next_pts, r->last_pts);
  439. int dist = dir ? -GET_PTS_DIFF(r->next_pts, r->cur_pts) : GET_PTS_DIFF(r->cur_pts, r->last_pts);
  440. int mul;
  441. if(!refdist) return 0;
  442. mul = (dist << 14) / refdist;
  443. return (val * mul + 0x2000) >> 14;
  444. }
  445. /**
  446. * Predict motion vector for B-frame macroblock.
  447. */
  448. static inline void rv34_pred_b_vector(int A[2], int B[2], int C[2],
  449. int A_avail, int B_avail, int C_avail,
  450. int *mx, int *my)
  451. {
  452. if(A_avail + B_avail + C_avail != 3){
  453. *mx = A[0] + B[0] + C[0];
  454. *my = A[1] + B[1] + C[1];
  455. if(A_avail + B_avail + C_avail == 2){
  456. *mx /= 2;
  457. *my /= 2;
  458. }
  459. }else{
  460. *mx = mid_pred(A[0], B[0], C[0]);
  461. *my = mid_pred(A[1], B[1], C[1]);
  462. }
  463. }
  464. /**
  465. * motion vector prediction for B-frames
  466. */
  467. static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
  468. {
  469. MpegEncContext *s = &r->s;
  470. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  471. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  472. int A[2], B[2], C[2];
  473. int has_A = 0, has_B = 0, has_C = 0;
  474. int mx, my;
  475. int i, j;
  476. Picture *cur_pic = s->current_picture_ptr;
  477. const int mask = dir ? MB_TYPE_L1 : MB_TYPE_L0;
  478. int type = cur_pic->mb_type[mb_pos];
  479. memset(A, 0, sizeof(A));
  480. memset(B, 0, sizeof(B));
  481. memset(C, 0, sizeof(C));
  482. if((r->avail_cache[5-1] & type) & mask){
  483. A[0] = cur_pic->motion_val[dir][mv_pos - 1][0];
  484. A[1] = cur_pic->motion_val[dir][mv_pos - 1][1];
  485. has_A = 1;
  486. }
  487. if((r->avail_cache[5-4] & type) & mask){
  488. B[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][0];
  489. B[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][1];
  490. has_B = 1;
  491. }
  492. if(r->avail_cache[5-4] && (r->avail_cache[5-2] & type) & mask){
  493. C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][0];
  494. C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][1];
  495. has_C = 1;
  496. }else if((s->mb_x+1) == s->mb_width && (r->avail_cache[5-5] & type) & mask){
  497. C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][0];
  498. C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][1];
  499. has_C = 1;
  500. }
  501. rv34_pred_b_vector(A, B, C, has_A, has_B, has_C, &mx, &my);
  502. mx += r->dmv[dir][0];
  503. my += r->dmv[dir][1];
  504. for(j = 0; j < 2; j++){
  505. for(i = 0; i < 2; i++){
  506. cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][0] = mx;
  507. cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][1] = my;
  508. }
  509. }
  510. if(block_type == RV34_MB_B_BACKWARD || block_type == RV34_MB_B_FORWARD)
  511. fill_rectangle(cur_pic->motion_val[!dir][mv_pos], 2, 2, s->b8_stride, 0, 4);
  512. }
  513. /**
  514. * motion vector prediction - RV3 version
  515. */
  516. static void rv34_pred_mv_rv3(RV34DecContext *r, int block_type, int dir)
  517. {
  518. MpegEncContext *s = &r->s;
  519. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  520. int A[2] = {0}, B[2], C[2];
  521. int i, j, k;
  522. int mx, my;
  523. int avail_index = avail_indexes[0];
  524. if(r->avail_cache[avail_index - 1]){
  525. A[0] = s->current_picture_ptr->motion_val[0][mv_pos-1][0];
  526. A[1] = s->current_picture_ptr->motion_val[0][mv_pos-1][1];
  527. }
  528. if(r->avail_cache[avail_index - 4]){
  529. B[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][0];
  530. B[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][1];
  531. }else{
  532. B[0] = A[0];
  533. B[1] = A[1];
  534. }
  535. if(!r->avail_cache[avail_index - 4 + 2]){
  536. if(r->avail_cache[avail_index - 4] && (r->avail_cache[avail_index - 1])){
  537. C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][0];
  538. C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][1];
  539. }else{
  540. C[0] = A[0];
  541. C[1] = A[1];
  542. }
  543. }else{
  544. C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+2][0];
  545. C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+2][1];
  546. }
  547. mx = mid_pred(A[0], B[0], C[0]);
  548. my = mid_pred(A[1], B[1], C[1]);
  549. mx += r->dmv[0][0];
  550. my += r->dmv[0][1];
  551. for(j = 0; j < 2; j++){
  552. for(i = 0; i < 2; i++){
  553. for(k = 0; k < 2; k++){
  554. s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][0] = mx;
  555. s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][1] = my;
  556. }
  557. }
  558. }
  559. }
  560. static const int chroma_coeffs[3] = { 0, 3, 5 };
  561. /**
  562. * generic motion compensation function
  563. *
  564. * @param r decoder context
  565. * @param block_type type of the current block
  566. * @param xoff horizontal offset from the start of the current block
  567. * @param yoff vertical offset from the start of the current block
  568. * @param mv_off offset to the motion vector information
  569. * @param width width of the current partition in 8x8 blocks
  570. * @param height height of the current partition in 8x8 blocks
  571. * @param dir motion compensation direction (i.e. from the last or the next reference frame)
  572. * @param thirdpel motion vectors are specified in 1/3 of pixel
  573. * @param qpel_mc a set of functions used to perform luma motion compensation
  574. * @param chroma_mc a set of functions used to perform chroma motion compensation
  575. */
  576. static inline void rv34_mc(RV34DecContext *r, const int block_type,
  577. const int xoff, const int yoff, int mv_off,
  578. const int width, const int height, int dir,
  579. const int thirdpel,
  580. qpel_mc_func (*qpel_mc)[16],
  581. h264_chroma_mc_func (*chroma_mc))
  582. {
  583. MpegEncContext *s = &r->s;
  584. uint8_t *Y, *U, *V, *srcY, *srcU, *srcV;
  585. int dxy, mx, my, umx, umy, lx, ly, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  586. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride + mv_off;
  587. int is16x16 = 1;
  588. if(thirdpel){
  589. int chroma_mx, chroma_my;
  590. mx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) / 3 - (1 << 24);
  591. my = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) / 3 - (1 << 24);
  592. lx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) % 3;
  593. ly = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) % 3;
  594. chroma_mx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + 1) >> 1;
  595. chroma_my = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + 1) >> 1;
  596. umx = (chroma_mx + (3 << 24)) / 3 - (1 << 24);
  597. umy = (chroma_my + (3 << 24)) / 3 - (1 << 24);
  598. uvmx = chroma_coeffs[(chroma_mx + (3 << 24)) % 3];
  599. uvmy = chroma_coeffs[(chroma_my + (3 << 24)) % 3];
  600. }else{
  601. int cx, cy;
  602. mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] >> 2;
  603. my = s->current_picture_ptr->motion_val[dir][mv_pos][1] >> 2;
  604. lx = s->current_picture_ptr->motion_val[dir][mv_pos][0] & 3;
  605. ly = s->current_picture_ptr->motion_val[dir][mv_pos][1] & 3;
  606. cx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
  607. cy = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
  608. umx = cx >> 2;
  609. umy = cy >> 2;
  610. uvmx = (cx & 3) << 1;
  611. uvmy = (cy & 3) << 1;
  612. //due to some flaw RV40 uses the same MC compensation routine for H2V2 and H3V3
  613. if(uvmx == 6 && uvmy == 6)
  614. uvmx = uvmy = 4;
  615. }
  616. dxy = ly*4 + lx;
  617. srcY = dir ? s->next_picture_ptr->data[0] : s->last_picture_ptr->data[0];
  618. srcU = dir ? s->next_picture_ptr->data[1] : s->last_picture_ptr->data[1];
  619. srcV = dir ? s->next_picture_ptr->data[2] : s->last_picture_ptr->data[2];
  620. src_x = s->mb_x * 16 + xoff + mx;
  621. src_y = s->mb_y * 16 + yoff + my;
  622. uvsrc_x = s->mb_x * 8 + (xoff >> 1) + umx;
  623. uvsrc_y = s->mb_y * 8 + (yoff >> 1) + umy;
  624. srcY += src_y * s->linesize + src_x;
  625. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  626. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  627. if( (unsigned)(src_x - !!lx*2) > s->h_edge_pos - !!lx*2 - (width <<3) - 4
  628. || (unsigned)(src_y - !!ly*2) > s->v_edge_pos - !!ly*2 - (height<<3) - 4){
  629. uint8_t *uvbuf= s->edge_emu_buffer + 22 * s->linesize;
  630. srcY -= 2 + 2*s->linesize;
  631. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, (width<<3)+6, (height<<3)+6,
  632. src_x - 2, src_y - 2, s->h_edge_pos, s->v_edge_pos);
  633. srcY = s->edge_emu_buffer + 2 + 2*s->linesize;
  634. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, (width<<2)+1, (height<<2)+1,
  635. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  636. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, (width<<2)+1, (height<<2)+1,
  637. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  638. srcU = uvbuf;
  639. srcV = uvbuf + 16;
  640. }
  641. Y = s->dest[0] + xoff + yoff *s->linesize;
  642. U = s->dest[1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  643. V = s->dest[2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  644. if(block_type == RV34_MB_P_16x8){
  645. qpel_mc[1][dxy](Y, srcY, s->linesize);
  646. Y += 8;
  647. srcY += 8;
  648. }else if(block_type == RV34_MB_P_8x16){
  649. qpel_mc[1][dxy](Y, srcY, s->linesize);
  650. Y += 8 * s->linesize;
  651. srcY += 8 * s->linesize;
  652. }
  653. is16x16 = (block_type != RV34_MB_P_8x8) && (block_type != RV34_MB_P_16x8) && (block_type != RV34_MB_P_8x16);
  654. qpel_mc[!is16x16][dxy](Y, srcY, s->linesize);
  655. chroma_mc[2-width] (U, srcU, s->uvlinesize, height*4, uvmx, uvmy);
  656. chroma_mc[2-width] (V, srcV, s->uvlinesize, height*4, uvmx, uvmy);
  657. }
  658. static void rv34_mc_1mv(RV34DecContext *r, const int block_type,
  659. const int xoff, const int yoff, int mv_off,
  660. const int width, const int height, int dir)
  661. {
  662. rv34_mc(r, block_type, xoff, yoff, mv_off, width, height, dir, r->rv30,
  663. r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
  664. : r->s.dsp.put_rv40_qpel_pixels_tab,
  665. r->rv30 ? r->s.dsp.put_h264_chroma_pixels_tab
  666. : r->s.dsp.put_rv40_chroma_pixels_tab);
  667. }
  668. static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
  669. {
  670. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 0, r->rv30,
  671. r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
  672. : r->s.dsp.put_rv40_qpel_pixels_tab,
  673. r->rv30 ? r->s.dsp.put_h264_chroma_pixels_tab
  674. : r->s.dsp.put_rv40_chroma_pixels_tab);
  675. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30,
  676. r->rv30 ? r->s.dsp.avg_rv30_tpel_pixels_tab
  677. : r->s.dsp.avg_rv40_qpel_pixels_tab,
  678. r->rv30 ? r->s.dsp.avg_h264_chroma_pixels_tab
  679. : r->s.dsp.avg_rv40_chroma_pixels_tab);
  680. }
  681. static void rv34_mc_2mv_skip(RV34DecContext *r)
  682. {
  683. int i, j;
  684. for(j = 0; j < 2; j++)
  685. for(i = 0; i < 2; i++){
  686. rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 0, r->rv30,
  687. r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
  688. : r->s.dsp.put_rv40_qpel_pixels_tab,
  689. r->rv30 ? r->s.dsp.put_h264_chroma_pixels_tab
  690. : r->s.dsp.put_rv40_chroma_pixels_tab);
  691. rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 1, r->rv30,
  692. r->rv30 ? r->s.dsp.avg_rv30_tpel_pixels_tab
  693. : r->s.dsp.avg_rv40_qpel_pixels_tab,
  694. r->rv30 ? r->s.dsp.avg_h264_chroma_pixels_tab
  695. : r->s.dsp.avg_rv40_chroma_pixels_tab);
  696. }
  697. }
  698. /** number of motion vectors in each macroblock type */
  699. static const int num_mvs[RV34_MB_TYPES] = { 0, 0, 1, 4, 1, 1, 0, 0, 2, 2, 2, 1 };
  700. /**
  701. * Decode motion vector differences
  702. * and perform motion vector reconstruction and motion compensation.
  703. */
  704. static int rv34_decode_mv(RV34DecContext *r, int block_type)
  705. {
  706. MpegEncContext *s = &r->s;
  707. GetBitContext *gb = &s->gb;
  708. int i, j, k, l;
  709. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  710. int next_bt;
  711. memset(r->dmv, 0, sizeof(r->dmv));
  712. for(i = 0; i < num_mvs[block_type]; i++){
  713. r->dmv[i][0] = svq3_get_se_golomb(gb);
  714. r->dmv[i][1] = svq3_get_se_golomb(gb);
  715. }
  716. switch(block_type){
  717. case RV34_MB_TYPE_INTRA:
  718. case RV34_MB_TYPE_INTRA16x16:
  719. fill_rectangle(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
  720. return 0;
  721. case RV34_MB_SKIP:
  722. if(s->pict_type == FF_P_TYPE){
  723. fill_rectangle(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
  724. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
  725. break;
  726. }
  727. case RV34_MB_B_DIRECT:
  728. //surprisingly, it uses motion scheme from next reference frame
  729. next_bt = s->next_picture_ptr->mb_type[s->mb_x + s->mb_y * s->mb_stride];
  730. if(IS_INTRA(next_bt) || IS_SKIP(next_bt)){
  731. fill_rectangle(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
  732. fill_rectangle(s->current_picture_ptr->motion_val[1][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
  733. }else
  734. for(j = 0; j < 2; j++)
  735. for(i = 0; i < 2; i++)
  736. for(k = 0; k < 2; k++)
  737. for(l = 0; l < 2; l++)
  738. s->current_picture_ptr->motion_val[l][mv_pos + i + j*s->b8_stride][k] = calc_add_mv(r, l, s->next_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][k]);
  739. if(!(IS_16X8(next_bt) || IS_8X16(next_bt) || IS_8X8(next_bt))) //we can use whole macroblock MC
  740. rv34_mc_2mv(r, block_type);
  741. else
  742. rv34_mc_2mv_skip(r);
  743. fill_rectangle(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
  744. break;
  745. case RV34_MB_P_16x16:
  746. case RV34_MB_P_MIX16x16:
  747. rv34_pred_mv(r, block_type, 0, 0);
  748. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
  749. break;
  750. case RV34_MB_B_FORWARD:
  751. case RV34_MB_B_BACKWARD:
  752. r->dmv[1][0] = r->dmv[0][0];
  753. r->dmv[1][1] = r->dmv[0][1];
  754. if(r->rv30)
  755. rv34_pred_mv_rv3(r, block_type, block_type == RV34_MB_B_BACKWARD);
  756. else
  757. rv34_pred_mv_b (r, block_type, block_type == RV34_MB_B_BACKWARD);
  758. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, block_type == RV34_MB_B_BACKWARD);
  759. break;
  760. case RV34_MB_P_16x8:
  761. case RV34_MB_P_8x16:
  762. rv34_pred_mv(r, block_type, 0, 0);
  763. rv34_pred_mv(r, block_type, 1 + (block_type == RV34_MB_P_16x8), 1);
  764. if(block_type == RV34_MB_P_16x8){
  765. rv34_mc_1mv(r, block_type, 0, 0, 0, 2, 1, 0);
  766. rv34_mc_1mv(r, block_type, 0, 8, s->b8_stride, 2, 1, 0);
  767. }
  768. if(block_type == RV34_MB_P_8x16){
  769. rv34_mc_1mv(r, block_type, 0, 0, 0, 1, 2, 0);
  770. rv34_mc_1mv(r, block_type, 8, 0, 1, 1, 2, 0);
  771. }
  772. break;
  773. case RV34_MB_B_BIDIR:
  774. rv34_pred_mv_b (r, block_type, 0);
  775. rv34_pred_mv_b (r, block_type, 1);
  776. rv34_mc_2mv (r, block_type);
  777. break;
  778. case RV34_MB_P_8x8:
  779. for(i=0;i< 4;i++){
  780. rv34_pred_mv(r, block_type, i, i);
  781. rv34_mc_1mv (r, block_type, (i&1)<<3, (i&2)<<2, (i&1)+(i>>1)*s->b8_stride, 1, 1, 0);
  782. }
  783. break;
  784. }
  785. return 0;
  786. }
  787. /** @} */ // mv group
  788. /**
  789. * @defgroup recons Macroblock reconstruction functions
  790. * @{
  791. */
  792. /** mapping of RV30/40 intra prediction types to standard H.264 types */
  793. static const int ittrans[9] = {
  794. DC_PRED, VERT_PRED, HOR_PRED, DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_LEFT_PRED,
  795. VERT_RIGHT_PRED, VERT_LEFT_PRED, HOR_UP_PRED, HOR_DOWN_PRED,
  796. };
  797. /** mapping of RV30/40 intra 16x16 prediction types to standard H.264 types */
  798. static const int ittrans16[4] = {
  799. DC_PRED8x8, VERT_PRED8x8, HOR_PRED8x8, PLANE_PRED8x8,
  800. };
  801. /**
  802. * Perform 4x4 intra prediction.
  803. */
  804. static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
  805. {
  806. uint8_t *prev = dst - stride + 4;
  807. uint32_t topleft;
  808. if(!up && !left)
  809. itype = DC_128_PRED;
  810. else if(!up){
  811. if(itype == VERT_PRED) itype = HOR_PRED;
  812. if(itype == DC_PRED) itype = LEFT_DC_PRED;
  813. }else if(!left){
  814. if(itype == HOR_PRED) itype = VERT_PRED;
  815. if(itype == DC_PRED) itype = TOP_DC_PRED;
  816. if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
  817. }
  818. if(!down){
  819. if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
  820. if(itype == HOR_UP_PRED) itype = HOR_UP_PRED_RV40_NODOWN;
  821. if(itype == VERT_LEFT_PRED) itype = VERT_LEFT_PRED_RV40_NODOWN;
  822. }
  823. if(!right && up){
  824. topleft = dst[-stride + 3] * 0x01010101;
  825. prev = (uint8_t*)&topleft;
  826. }
  827. r->h.pred4x4[itype](dst, prev, stride);
  828. }
  829. /** add_pixels_clamped for 4x4 block */
  830. static void rv34_add_4x4_block(uint8_t *dst, int stride, DCTELEM block[64], int off)
  831. {
  832. int x, y;
  833. for(y = 0; y < 4; y++)
  834. for(x = 0; x < 4; x++)
  835. dst[x + y*stride] = av_clip_uint8(dst[x + y*stride] + block[off + x+y*8]);
  836. }
  837. static inline int adjust_pred16(int itype, int up, int left)
  838. {
  839. if(!up && !left)
  840. itype = DC_128_PRED8x8;
  841. else if(!up){
  842. if(itype == PLANE_PRED8x8)itype = HOR_PRED8x8;
  843. if(itype == VERT_PRED8x8) itype = HOR_PRED8x8;
  844. if(itype == DC_PRED8x8) itype = LEFT_DC_PRED8x8;
  845. }else if(!left){
  846. if(itype == PLANE_PRED8x8)itype = VERT_PRED8x8;
  847. if(itype == HOR_PRED8x8) itype = VERT_PRED8x8;
  848. if(itype == DC_PRED8x8) itype = TOP_DC_PRED8x8;
  849. }
  850. return itype;
  851. }
  852. static void rv34_output_macroblock(RV34DecContext *r, int8_t *intra_types, int cbp, int is16)
  853. {
  854. MpegEncContext *s = &r->s;
  855. DSPContext *dsp = &s->dsp;
  856. int i, j;
  857. uint8_t *Y, *U, *V;
  858. int itype;
  859. int avail[6*8] = {0};
  860. int idx;
  861. // Set neighbour information.
  862. if(r->avail_cache[0])
  863. avail[0] = 1;
  864. if(r->avail_cache[1])
  865. avail[1] = avail[2] = 1;
  866. if(r->avail_cache[2])
  867. avail[3] = avail[4] = 1;
  868. if(r->avail_cache[3])
  869. avail[5] = 1;
  870. if(r->avail_cache[4])
  871. avail[8] = avail[16] = 1;
  872. if(r->avail_cache[8])
  873. avail[24] = avail[32] = 1;
  874. Y = s->dest[0];
  875. U = s->dest[1];
  876. V = s->dest[2];
  877. if(!is16){
  878. for(j = 0; j < 4; j++){
  879. idx = 9 + j*8;
  880. for(i = 0; i < 4; i++, cbp >>= 1, Y += 4, idx++){
  881. rv34_pred_4x4_block(r, Y, s->linesize, ittrans[intra_types[i]], avail[idx-8], avail[idx-1], avail[idx+7], avail[idx-7]);
  882. avail[idx] = 1;
  883. if(cbp & 1)
  884. rv34_add_4x4_block(Y, s->linesize, s->block[(i>>1)+(j&2)], (i&1)*4+(j&1)*32);
  885. }
  886. Y += s->linesize * 4 - 4*4;
  887. intra_types += s->b4_stride;
  888. }
  889. intra_types -= s->b4_stride * 4;
  890. fill_rectangle(r->avail_cache + 5, 2, 2, 4, 0, 4);
  891. for(j = 0; j < 2; j++){
  892. idx = 5 + j*4;
  893. for(i = 0; i < 2; i++, cbp >>= 1, idx++){
  894. rv34_pred_4x4_block(r, U + i*4 + j*4*s->uvlinesize, s->uvlinesize, ittrans[intra_types[i*2+j*2*s->b4_stride]], r->avail_cache[idx-4], r->avail_cache[idx-1], !i && !j, r->avail_cache[idx-3]);
  895. rv34_pred_4x4_block(r, V + i*4 + j*4*s->uvlinesize, s->uvlinesize, ittrans[intra_types[i*2+j*2*s->b4_stride]], r->avail_cache[idx-4], r->avail_cache[idx-1], !i && !j, r->avail_cache[idx-3]);
  896. r->avail_cache[idx] = 1;
  897. if(cbp & 0x01)
  898. rv34_add_4x4_block(U + i*4 + j*4*s->uvlinesize, s->uvlinesize, s->block[4], i*4+j*32);
  899. if(cbp & 0x10)
  900. rv34_add_4x4_block(V + i*4 + j*4*s->uvlinesize, s->uvlinesize, s->block[5], i*4+j*32);
  901. }
  902. }
  903. }else{
  904. itype = ittrans16[intra_types[0]];
  905. itype = adjust_pred16(itype, r->avail_cache[5-4], r->avail_cache[5-1]);
  906. r->h.pred16x16[itype](Y, s->linesize);
  907. dsp->add_pixels_clamped(s->block[0], Y, s->linesize);
  908. dsp->add_pixels_clamped(s->block[1], Y + 8, s->linesize);
  909. Y += s->linesize * 8;
  910. dsp->add_pixels_clamped(s->block[2], Y, s->linesize);
  911. dsp->add_pixels_clamped(s->block[3], Y + 8, s->linesize);
  912. itype = ittrans16[intra_types[0]];
  913. if(itype == PLANE_PRED8x8) itype = DC_PRED8x8;
  914. itype = adjust_pred16(itype, r->avail_cache[5-4], r->avail_cache[5-1]);
  915. r->h.pred8x8[itype](U, s->uvlinesize);
  916. dsp->add_pixels_clamped(s->block[4], U, s->uvlinesize);
  917. r->h.pred8x8[itype](V, s->uvlinesize);
  918. dsp->add_pixels_clamped(s->block[5], V, s->uvlinesize);
  919. }
  920. }
  921. /** @} */ // recons group
  922. /**
  923. * @addtogroup bitstream
  924. * Decode macroblock header and return CBP in case of success, -1 otherwise.
  925. */
  926. static int rv34_decode_mb_header(RV34DecContext *r, int8_t *intra_types)
  927. {
  928. MpegEncContext *s = &r->s;
  929. GetBitContext *gb = &s->gb;
  930. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  931. int i, t;
  932. if(!r->si.type){
  933. r->is16 = get_bits1(gb);
  934. if(!r->is16 && !r->rv30){
  935. if(!get_bits1(gb))
  936. av_log(s->avctx, AV_LOG_ERROR, "Need DQUANT\n");
  937. }
  938. s->current_picture_ptr->mb_type[mb_pos] = r->is16 ? MB_TYPE_INTRA16x16 : MB_TYPE_INTRA;
  939. r->block_type = r->is16 ? RV34_MB_TYPE_INTRA16x16 : RV34_MB_TYPE_INTRA;
  940. }else{
  941. r->block_type = r->decode_mb_info(r);
  942. if(r->block_type == -1)
  943. return -1;
  944. s->current_picture_ptr->mb_type[mb_pos] = rv34_mb_type_to_lavc[r->block_type];
  945. r->mb_type[mb_pos] = r->block_type;
  946. if(r->block_type == RV34_MB_SKIP){
  947. if(s->pict_type == FF_P_TYPE)
  948. r->mb_type[mb_pos] = RV34_MB_P_16x16;
  949. if(s->pict_type == FF_B_TYPE)
  950. r->mb_type[mb_pos] = RV34_MB_B_DIRECT;
  951. }
  952. r->is16 = !!IS_INTRA16x16(s->current_picture_ptr->mb_type[mb_pos]);
  953. rv34_decode_mv(r, r->block_type);
  954. if(r->block_type == RV34_MB_SKIP){
  955. fill_rectangle(intra_types, 4, 4, s->b4_stride, 0, sizeof(intra_types[0]));
  956. return 0;
  957. }
  958. r->chroma_vlc = 1;
  959. r->luma_vlc = 0;
  960. }
  961. if(IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
  962. if(r->is16){
  963. t = get_bits(gb, 2);
  964. fill_rectangle(intra_types, 4, 4, s->b4_stride, t, sizeof(intra_types[0]));
  965. r->luma_vlc = 2;
  966. }else{
  967. if(r->decode_intra_types(r, gb, intra_types) < 0)
  968. return -1;
  969. r->luma_vlc = 1;
  970. }
  971. r->chroma_vlc = 0;
  972. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  973. }else{
  974. for(i = 0; i < 16; i++)
  975. intra_types[(i & 3) + (i>>2) * s->b4_stride] = 0;
  976. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
  977. if(r->mb_type[mb_pos] == RV34_MB_P_MIX16x16){
  978. r->is16 = 1;
  979. r->chroma_vlc = 1;
  980. r->luma_vlc = 2;
  981. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  982. }
  983. }
  984. return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
  985. }
  986. /**
  987. * @addtogroup recons
  988. * @{
  989. */
  990. /**
  991. * mask for retrieving all bits in coded block pattern
  992. * corresponding to one 8x8 block
  993. */
  994. #define LUMA_CBP_BLOCK_MASK 0x33
  995. #define U_CBP_MASK 0x0F0000
  996. #define V_CBP_MASK 0xF00000
  997. static void rv34_apply_differences(RV34DecContext *r, int cbp)
  998. {
  999. static const int shifts[4] = { 0, 2, 8, 10 };
  1000. MpegEncContext *s = &r->s;
  1001. int i;
  1002. for(i = 0; i < 4; i++)
  1003. if((cbp & (LUMA_CBP_BLOCK_MASK << shifts[i])) || r->block_type == RV34_MB_P_MIX16x16)
  1004. s->dsp.add_pixels_clamped(s->block[i], s->dest[0] + (i & 1)*8 + (i&2)*4*s->linesize, s->linesize);
  1005. if(cbp & U_CBP_MASK)
  1006. s->dsp.add_pixels_clamped(s->block[4], s->dest[1], s->uvlinesize);
  1007. if(cbp & V_CBP_MASK)
  1008. s->dsp.add_pixels_clamped(s->block[5], s->dest[2], s->uvlinesize);
  1009. }
  1010. static int is_mv_diff_gt_3(int16_t (*motion_val)[2], int step)
  1011. {
  1012. int d;
  1013. d = motion_val[0][0] - motion_val[-step][0];
  1014. if(d < -3 || d > 3)
  1015. return 1;
  1016. d = motion_val[0][1] - motion_val[-step][1];
  1017. if(d < -3 || d > 3)
  1018. return 1;
  1019. return 0;
  1020. }
  1021. static int rv34_set_deblock_coef(RV34DecContext *r)
  1022. {
  1023. MpegEncContext *s = &r->s;
  1024. int hmvmask = 0, vmvmask = 0, i, j;
  1025. int midx = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  1026. int16_t (*motion_val)[2] = s->current_picture_ptr->motion_val[0][midx];
  1027. for(j = 0; j < 16; j += 8){
  1028. for(i = 0; i < 2; i++){
  1029. if(is_mv_diff_gt_3(motion_val + i, 1))
  1030. vmvmask |= 0x11 << (j + i*2);
  1031. if((j || s->mb_y) && is_mv_diff_gt_3(motion_val + i, s->b8_stride))
  1032. hmvmask |= 0x03 << (j + i*2);
  1033. }
  1034. motion_val += s->b8_stride;
  1035. }
  1036. if(s->first_slice_line)
  1037. hmvmask &= ~0x000F;
  1038. if(!s->mb_x)
  1039. vmvmask &= ~0x1111;
  1040. if(r->rv30){ //RV30 marks both subblocks on the edge for filtering
  1041. vmvmask |= (vmvmask & 0x4444) >> 1;
  1042. hmvmask |= (hmvmask & 0x0F00) >> 4;
  1043. if(s->mb_x)
  1044. r->deblock_coefs[s->mb_x - 1 + s->mb_y*s->mb_stride] |= (vmvmask & 0x1111) << 3;
  1045. if(!s->first_slice_line)
  1046. r->deblock_coefs[s->mb_x + (s->mb_y - 1)*s->mb_stride] |= (hmvmask & 0xF) << 12;
  1047. }
  1048. return hmvmask | vmvmask;
  1049. }
  1050. static int rv34_decode_macroblock(RV34DecContext *r, int8_t *intra_types)
  1051. {
  1052. MpegEncContext *s = &r->s;
  1053. GetBitContext *gb = &s->gb;
  1054. int cbp, cbp2;
  1055. int i, blknum, blkoff;
  1056. DCTELEM block16[64];
  1057. int luma_dc_quant;
  1058. int dist;
  1059. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1060. // Calculate which neighbours are available. Maybe it's worth optimizing too.
  1061. memset(r->avail_cache, 0, sizeof(r->avail_cache));
  1062. fill_rectangle(r->avail_cache + 5, 2, 2, 4, 1, 4);
  1063. dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
  1064. if(s->mb_x && dist)
  1065. r->avail_cache[4] =
  1066. r->avail_cache[8] = s->current_picture_ptr->mb_type[mb_pos - 1];
  1067. if(dist >= s->mb_width)
  1068. r->avail_cache[1] =
  1069. r->avail_cache[2] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
  1070. if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
  1071. r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
  1072. if(s->mb_x && dist > s->mb_width)
  1073. r->avail_cache[0] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
  1074. s->qscale = r->si.quant;
  1075. cbp = cbp2 = rv34_decode_mb_header(r, intra_types);
  1076. r->cbp_luma [mb_pos] = cbp;
  1077. r->cbp_chroma[mb_pos] = cbp >> 16;
  1078. if(s->pict_type == FF_I_TYPE)
  1079. r->deblock_coefs[mb_pos] = 0xFFFF;
  1080. else
  1081. r->deblock_coefs[mb_pos] = rv34_set_deblock_coef(r) | r->cbp_luma[mb_pos];
  1082. s->current_picture_ptr->qscale_table[mb_pos] = s->qscale;
  1083. if(cbp == -1)
  1084. return -1;
  1085. luma_dc_quant = r->block_type == RV34_MB_P_MIX16x16 ? r->luma_dc_quant_p[s->qscale] : r->luma_dc_quant_i[s->qscale];
  1086. if(r->is16){
  1087. memset(block16, 0, sizeof(block16));
  1088. rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0);
  1089. rv34_dequant4x4_16x16(block16, rv34_qscale_tab[luma_dc_quant],rv34_qscale_tab[s->qscale]);
  1090. rv34_inv_transform_noround(block16);
  1091. }
  1092. for(i = 0; i < 16; i++, cbp >>= 1){
  1093. if(!r->is16 && !(cbp & 1)) continue;
  1094. blknum = ((i & 2) >> 1) + ((i & 8) >> 2);
  1095. blkoff = ((i & 1) << 2) + ((i & 4) << 3);
  1096. if(cbp & 1)
  1097. rv34_decode_block(s->block[blknum] + blkoff, gb, r->cur_vlcs, r->luma_vlc, 0);
  1098. rv34_dequant4x4(s->block[blknum] + blkoff, rv34_qscale_tab[s->qscale],rv34_qscale_tab[s->qscale]);
  1099. if(r->is16) //FIXME: optimize
  1100. s->block[blknum][blkoff] = block16[(i & 3) | ((i & 0xC) << 1)];
  1101. rv34_inv_transform(s->block[blknum] + blkoff);
  1102. }
  1103. if(r->block_type == RV34_MB_P_MIX16x16)
  1104. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
  1105. for(; i < 24; i++, cbp >>= 1){
  1106. if(!(cbp & 1)) continue;
  1107. blknum = ((i & 4) >> 2) + 4;
  1108. blkoff = ((i & 1) << 2) + ((i & 2) << 4);
  1109. rv34_decode_block(s->block[blknum] + blkoff, gb, r->cur_vlcs, r->chroma_vlc, 1);
  1110. rv34_dequant4x4(s->block[blknum] + blkoff, rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]],rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]]);
  1111. rv34_inv_transform(s->block[blknum] + blkoff);
  1112. }
  1113. if(IS_INTRA(s->current_picture_ptr->mb_type[mb_pos]))
  1114. rv34_output_macroblock(r, intra_types, cbp2, r->is16);
  1115. else
  1116. rv34_apply_differences(r, cbp2);
  1117. return 0;
  1118. }
  1119. static int check_slice_end(RV34DecContext *r, MpegEncContext *s)
  1120. {
  1121. int bits;
  1122. if(s->mb_y >= s->mb_height)
  1123. return 1;
  1124. if(!s->mb_num_left)
  1125. return 1;
  1126. if(r->s.mb_skip_run > 1)
  1127. return 0;
  1128. bits = r->bits - get_bits_count(&s->gb);
  1129. if(bits < 0 || (bits < 8 && !show_bits(&s->gb, bits)))
  1130. return 1;
  1131. return 0;
  1132. }
  1133. static inline int slice_compare(SliceInfo *si1, SliceInfo *si2)
  1134. {
  1135. return si1->type != si2->type ||
  1136. si1->start >= si2->start ||
  1137. si1->width != si2->width ||
  1138. si1->height != si2->height||
  1139. si1->pts != si2->pts;
  1140. }
  1141. static int rv34_decode_slice(RV34DecContext *r, int end, const uint8_t* buf, int buf_size)
  1142. {
  1143. MpegEncContext *s = &r->s;
  1144. GetBitContext *gb = &s->gb;
  1145. int mb_pos;
  1146. int res;
  1147. init_get_bits(&r->s.gb, buf, buf_size*8);
  1148. res = r->parse_slice_header(r, gb, &r->si);
  1149. if(res < 0){
  1150. av_log(s->avctx, AV_LOG_ERROR, "Incorrect or unknown slice header\n");
  1151. return -1;
  1152. }
  1153. if ((s->mb_x == 0 && s->mb_y == 0) || s->current_picture_ptr==NULL) {
  1154. if(s->width != r->si.width || s->height != r->si.height){
  1155. av_log(s->avctx, AV_LOG_DEBUG, "Changing dimensions to %dx%d\n", r->si.width,r->si.height);
  1156. MPV_common_end(s);
  1157. s->width = r->si.width;
  1158. s->height = r->si.height;
  1159. if(MPV_common_init(s) < 0)
  1160. return -1;
  1161. r->intra_types_hist = av_realloc(r->intra_types_hist, s->b4_stride * 4 * 2 * sizeof(*r->intra_types_hist));
  1162. r->intra_types = r->intra_types_hist + s->b4_stride * 4;
  1163. r->mb_type = av_realloc(r->mb_type, r->s.mb_stride * r->s.mb_height * sizeof(*r->mb_type));
  1164. r->cbp_luma = av_realloc(r->cbp_luma, r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_luma));
  1165. r->cbp_chroma = av_realloc(r->cbp_chroma, r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_chroma));
  1166. r->deblock_coefs = av_realloc(r->deblock_coefs, r->s.mb_stride * r->s.mb_height * sizeof(*r->deblock_coefs));
  1167. }
  1168. s->pict_type = r->si.type ? r->si.type : FF_I_TYPE;
  1169. if(MPV_frame_start(s, s->avctx) < 0)
  1170. return -1;
  1171. ff_er_frame_start(s);
  1172. r->cur_pts = r->si.pts;
  1173. if(s->pict_type != FF_B_TYPE){
  1174. r->last_pts = r->next_pts;
  1175. r->next_pts = r->cur_pts;
  1176. }
  1177. s->mb_x = s->mb_y = 0;
  1178. }
  1179. r->si.end = end;
  1180. s->qscale = r->si.quant;
  1181. r->bits = buf_size*8;
  1182. s->mb_num_left = r->si.end - r->si.start;
  1183. r->s.mb_skip_run = 0;
  1184. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  1185. if(r->si.start != mb_pos){
  1186. av_log(s->avctx, AV_LOG_ERROR, "Slice indicates MB offset %d, got %d\n", r->si.start, mb_pos);
  1187. s->mb_x = r->si.start % s->mb_width;
  1188. s->mb_y = r->si.start / s->mb_width;
  1189. }
  1190. memset(r->intra_types_hist, -1, s->b4_stride * 4 * 2 * sizeof(*r->intra_types_hist));
  1191. s->first_slice_line = 1;
  1192. s->resync_mb_x= s->mb_x;
  1193. s->resync_mb_y= s->mb_y;
  1194. ff_init_block_index(s);
  1195. while(!check_slice_end(r, s)) {
  1196. ff_update_block_index(s);
  1197. s->dsp.clear_blocks(s->block[0]);
  1198. if(rv34_decode_macroblock(r, r->intra_types + s->mb_x * 4 + 1) < 0){
  1199. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, AC_ERROR|DC_ERROR|MV_ERROR);
  1200. return -1;
  1201. }
  1202. if (++s->mb_x == s->mb_width) {
  1203. s->mb_x = 0;
  1204. s->mb_y++;
  1205. ff_init_block_index(s);
  1206. memmove(r->intra_types_hist, r->intra_types, s->b4_stride * 4 * sizeof(*r->intra_types_hist));
  1207. memset(r->intra_types, -1, s->b4_stride * 4 * sizeof(*r->intra_types_hist));
  1208. if(r->loop_filter && s->mb_y >= 2)
  1209. r->loop_filter(r, s->mb_y - 2);
  1210. }
  1211. if(s->mb_x == s->resync_mb_x)
  1212. s->first_slice_line=0;
  1213. s->mb_num_left--;
  1214. }
  1215. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, AC_END|DC_END|MV_END);
  1216. return s->mb_y == s->mb_height;
  1217. }
  1218. /** @} */ // recons group end
  1219. /**
  1220. * Initialize decoder.
  1221. */
  1222. av_cold int ff_rv34_decode_init(AVCodecContext *avctx)
  1223. {
  1224. RV34DecContext *r = avctx->priv_data;
  1225. MpegEncContext *s = &r->s;
  1226. MPV_decode_defaults(s);
  1227. s->avctx= avctx;
  1228. s->out_format = FMT_H263;
  1229. s->codec_id= avctx->codec_id;
  1230. s->width = avctx->width;
  1231. s->height = avctx->height;
  1232. r->s.avctx = avctx;
  1233. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  1234. r->s.flags |= CODEC_FLAG_EMU_EDGE;
  1235. avctx->pix_fmt = PIX_FMT_YUV420P;
  1236. avctx->has_b_frames = 1;
  1237. s->low_delay = 0;
  1238. if (MPV_common_init(s) < 0)
  1239. return -1;
  1240. ff_h264_pred_init(&r->h, CODEC_ID_RV40);
  1241. r->intra_types_hist = av_malloc(s->b4_stride * 4 * 2 * sizeof(*r->intra_types_hist));
  1242. r->intra_types = r->intra_types_hist + s->b4_stride * 4;
  1243. r->mb_type = av_mallocz(r->s.mb_stride * r->s.mb_height * sizeof(*r->mb_type));
  1244. r->cbp_luma = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_luma));
  1245. r->cbp_chroma = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_chroma));
  1246. r->deblock_coefs = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->deblock_coefs));
  1247. if(!intra_vlcs[0].cbppattern[0].bits)
  1248. rv34_init_tables();
  1249. return 0;
  1250. }
  1251. static int get_slice_offset(AVCodecContext *avctx, const uint8_t *buf, int n)
  1252. {
  1253. if(avctx->slice_count) return avctx->slice_offset[n];
  1254. else return AV_RL32(buf + n*8 - 4) == 1 ? AV_RL32(buf + n*8) : AV_RB32(buf + n*8);
  1255. }
  1256. int ff_rv34_decode_frame(AVCodecContext *avctx,
  1257. void *data, int *data_size,
  1258. AVPacket *avpkt)
  1259. {
  1260. const uint8_t *buf = avpkt->data;
  1261. int buf_size = avpkt->size;
  1262. RV34DecContext *r = avctx->priv_data;
  1263. MpegEncContext *s = &r->s;
  1264. AVFrame *pict = data;
  1265. SliceInfo si;
  1266. int i;
  1267. int slice_count;
  1268. const uint8_t *slices_hdr = NULL;
  1269. int last = 0;
  1270. /* no supplementary picture */
  1271. if (buf_size == 0) {
  1272. /* special case for last picture */
  1273. if (s->low_delay==0 && s->next_picture_ptr) {
  1274. *pict= *(AVFrame*)s->next_picture_ptr;
  1275. s->next_picture_ptr= NULL;
  1276. *data_size = sizeof(AVFrame);
  1277. }
  1278. return 0;
  1279. }
  1280. if(!avctx->slice_count){
  1281. slice_count = (*buf++) + 1;
  1282. slices_hdr = buf + 4;
  1283. buf += 8 * slice_count;
  1284. }else
  1285. slice_count = avctx->slice_count;
  1286. //parse first slice header to check whether this frame can be decoded
  1287. if(get_slice_offset(avctx, slices_hdr, 0) > buf_size){
  1288. av_log(avctx, AV_LOG_ERROR, "Slice offset is greater than frame size\n");
  1289. return -1;
  1290. }
  1291. init_get_bits(&s->gb, buf+get_slice_offset(avctx, slices_hdr, 0), buf_size-get_slice_offset(avctx, slices_hdr, 0));
  1292. if(r->parse_slice_header(r, &r->s.gb, &si) < 0 || si.start){
  1293. av_log(avctx, AV_LOG_ERROR, "First slice header is incorrect\n");
  1294. return -1;
  1295. }
  1296. if((!s->last_picture_ptr || !s->last_picture_ptr->data[0]) && si.type == FF_B_TYPE)
  1297. return -1;
  1298. /* skip b frames if we are in a hurry */
  1299. if(avctx->hurry_up && si.type==FF_B_TYPE) return buf_size;
  1300. if( (avctx->skip_frame >= AVDISCARD_NONREF && si.type==FF_B_TYPE)
  1301. || (avctx->skip_frame >= AVDISCARD_NONKEY && si.type!=FF_I_TYPE)
  1302. || avctx->skip_frame >= AVDISCARD_ALL)
  1303. return buf_size;
  1304. /* skip everything if we are in a hurry>=5 */
  1305. if(avctx->hurry_up>=5)
  1306. return buf_size;
  1307. for(i=0; i<slice_count; i++){
  1308. int offset= get_slice_offset(avctx, slices_hdr, i);
  1309. int size;
  1310. if(i+1 == slice_count)
  1311. size= buf_size - offset;
  1312. else
  1313. size= get_slice_offset(avctx, slices_hdr, i+1) - offset;
  1314. if(offset > buf_size){
  1315. av_log(avctx, AV_LOG_ERROR, "Slice offset is greater than frame size\n");
  1316. break;
  1317. }
  1318. r->si.end = s->mb_width * s->mb_height;
  1319. if(i+1 < slice_count){
  1320. init_get_bits(&s->gb, buf+get_slice_offset(avctx, slices_hdr, i+1), (buf_size-get_slice_offset(avctx, slices_hdr, i+1))*8);
  1321. if(r->parse_slice_header(r, &r->s.gb, &si) < 0){
  1322. if(i+2 < slice_count)
  1323. size = get_slice_offset(avctx, slices_hdr, i+2) - offset;
  1324. else
  1325. size = buf_size - offset;
  1326. }else
  1327. r->si.end = si.start;
  1328. }
  1329. last = rv34_decode_slice(r, r->si.end, buf + offset, size);
  1330. s->mb_num_left = r->s.mb_x + r->s.mb_y*r->s.mb_width - r->si.start;
  1331. if(last)
  1332. break;
  1333. }
  1334. if(last){
  1335. if(r->loop_filter)
  1336. r->loop_filter(r, s->mb_height - 1);
  1337. ff_er_frame_end(s);
  1338. MPV_frame_end(s);
  1339. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  1340. *pict= *(AVFrame*)s->current_picture_ptr;
  1341. } else if (s->last_picture_ptr != NULL) {
  1342. *pict= *(AVFrame*)s->last_picture_ptr;
  1343. }
  1344. if(s->last_picture_ptr || s->low_delay){
  1345. *data_size = sizeof(AVFrame);
  1346. ff_print_debug_info(s, pict);
  1347. }
  1348. s->current_picture_ptr= NULL; //so we can detect if frame_end wasnt called (find some nicer solution...)
  1349. }
  1350. return buf_size;
  1351. }
  1352. av_cold int ff_rv34_decode_end(AVCodecContext *avctx)
  1353. {
  1354. RV34DecContext *r = avctx->priv_data;
  1355. MPV_common_end(&r->s);
  1356. av_freep(&r->intra_types_hist);
  1357. r->intra_types = NULL;
  1358. av_freep(&r->mb_type);
  1359. av_freep(&r->cbp_luma);
  1360. av_freep(&r->cbp_chroma);
  1361. av_freep(&r->deblock_coefs);
  1362. return 0;
  1363. }