You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2052 lines
69KB

  1. /*
  2. * QDM2 compatible decoder
  3. * Copyright (c) 2003 Ewald Snel
  4. * Copyright (c) 2005 Benjamin Larsson
  5. * Copyright (c) 2005 Alex Beregszaszi
  6. * Copyright (c) 2005 Roberto Togni
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. /**
  25. * @file libavcodec/qdm2.c
  26. * QDM2 decoder
  27. * @author Ewald Snel, Benjamin Larsson, Alex Beregszaszi, Roberto Togni
  28. * The decoder is not perfect yet, there are still some distortions
  29. * especially on files encoded with 16 or 8 subbands.
  30. */
  31. #include <math.h>
  32. #include <stddef.h>
  33. #include <stdio.h>
  34. #define ALT_BITSTREAM_READER_LE
  35. #include "avcodec.h"
  36. #include "get_bits.h"
  37. #include "dsputil.h"
  38. #include "mpegaudio.h"
  39. #include "qdm2data.h"
  40. #undef NDEBUG
  41. #include <assert.h>
  42. #define SOFTCLIP_THRESHOLD 27600
  43. #define HARDCLIP_THRESHOLD 35716
  44. #define QDM2_LIST_ADD(list, size, packet) \
  45. do { \
  46. if (size > 0) { \
  47. list[size - 1].next = &list[size]; \
  48. } \
  49. list[size].packet = packet; \
  50. list[size].next = NULL; \
  51. size++; \
  52. } while(0)
  53. // Result is 8, 16 or 30
  54. #define QDM2_SB_USED(sub_sampling) (((sub_sampling) >= 2) ? 30 : 8 << (sub_sampling))
  55. #define FIX_NOISE_IDX(noise_idx) \
  56. if ((noise_idx) >= 3840) \
  57. (noise_idx) -= 3840; \
  58. #define SB_DITHERING_NOISE(sb,noise_idx) (noise_table[(noise_idx)++] * sb_noise_attenuation[(sb)])
  59. #define BITS_LEFT(length,gb) ((length) - get_bits_count ((gb)))
  60. #define SAMPLES_NEEDED \
  61. av_log (NULL,AV_LOG_INFO,"This file triggers some untested code. Please contact the developers.\n");
  62. #define SAMPLES_NEEDED_2(why) \
  63. av_log (NULL,AV_LOG_INFO,"This file triggers some missing code. Please contact the developers.\nPosition: %s\n",why);
  64. typedef int8_t sb_int8_array[2][30][64];
  65. /**
  66. * Subpacket
  67. */
  68. typedef struct {
  69. int type; ///< subpacket type
  70. unsigned int size; ///< subpacket size
  71. const uint8_t *data; ///< pointer to subpacket data (points to input data buffer, it's not a private copy)
  72. } QDM2SubPacket;
  73. /**
  74. * A node in the subpacket list
  75. */
  76. typedef struct QDM2SubPNode {
  77. QDM2SubPacket *packet; ///< packet
  78. struct QDM2SubPNode *next; ///< pointer to next packet in the list, NULL if leaf node
  79. } QDM2SubPNode;
  80. typedef struct {
  81. float re;
  82. float im;
  83. } QDM2Complex;
  84. typedef struct {
  85. float level;
  86. QDM2Complex *complex;
  87. const float *table;
  88. int phase;
  89. int phase_shift;
  90. int duration;
  91. short time_index;
  92. short cutoff;
  93. } FFTTone;
  94. typedef struct {
  95. int16_t sub_packet;
  96. uint8_t channel;
  97. int16_t offset;
  98. int16_t exp;
  99. uint8_t phase;
  100. } FFTCoefficient;
  101. typedef struct {
  102. DECLARE_ALIGNED_16(QDM2Complex, complex[MPA_MAX_CHANNELS][256]);
  103. } QDM2FFT;
  104. /**
  105. * QDM2 decoder context
  106. */
  107. typedef struct {
  108. /// Parameters from codec header, do not change during playback
  109. int nb_channels; ///< number of channels
  110. int channels; ///< number of channels
  111. int group_size; ///< size of frame group (16 frames per group)
  112. int fft_size; ///< size of FFT, in complex numbers
  113. int checksum_size; ///< size of data block, used also for checksum
  114. /// Parameters built from header parameters, do not change during playback
  115. int group_order; ///< order of frame group
  116. int fft_order; ///< order of FFT (actually fftorder+1)
  117. int fft_frame_size; ///< size of fft frame, in components (1 comples = re + im)
  118. int frame_size; ///< size of data frame
  119. int frequency_range;
  120. int sub_sampling; ///< subsampling: 0=25%, 1=50%, 2=100% */
  121. int coeff_per_sb_select; ///< selector for "num. of coeffs. per subband" tables. Can be 0, 1, 2
  122. int cm_table_select; ///< selector for "coding method" tables. Can be 0, 1 (from init: 0-4)
  123. /// Packets and packet lists
  124. QDM2SubPacket sub_packets[16]; ///< the packets themselves
  125. QDM2SubPNode sub_packet_list_A[16]; ///< list of all packets
  126. QDM2SubPNode sub_packet_list_B[16]; ///< FFT packets B are on list
  127. int sub_packets_B; ///< number of packets on 'B' list
  128. QDM2SubPNode sub_packet_list_C[16]; ///< packets with errors?
  129. QDM2SubPNode sub_packet_list_D[16]; ///< DCT packets
  130. /// FFT and tones
  131. FFTTone fft_tones[1000];
  132. int fft_tone_start;
  133. int fft_tone_end;
  134. FFTCoefficient fft_coefs[1000];
  135. int fft_coefs_index;
  136. int fft_coefs_min_index[5];
  137. int fft_coefs_max_index[5];
  138. int fft_level_exp[6];
  139. RDFTContext rdft_ctx;
  140. QDM2FFT fft;
  141. /// I/O data
  142. const uint8_t *compressed_data;
  143. int compressed_size;
  144. float output_buffer[1024];
  145. /// Synthesis filter
  146. DECLARE_ALIGNED_16(MPA_INT, synth_buf[MPA_MAX_CHANNELS][512*2]);
  147. int synth_buf_offset[MPA_MAX_CHANNELS];
  148. DECLARE_ALIGNED_16(int32_t, sb_samples[MPA_MAX_CHANNELS][128][SBLIMIT]);
  149. /// Mixed temporary data used in decoding
  150. float tone_level[MPA_MAX_CHANNELS][30][64];
  151. int8_t coding_method[MPA_MAX_CHANNELS][30][64];
  152. int8_t quantized_coeffs[MPA_MAX_CHANNELS][10][8];
  153. int8_t tone_level_idx_base[MPA_MAX_CHANNELS][30][8];
  154. int8_t tone_level_idx_hi1[MPA_MAX_CHANNELS][3][8][8];
  155. int8_t tone_level_idx_mid[MPA_MAX_CHANNELS][26][8];
  156. int8_t tone_level_idx_hi2[MPA_MAX_CHANNELS][26];
  157. int8_t tone_level_idx[MPA_MAX_CHANNELS][30][64];
  158. int8_t tone_level_idx_temp[MPA_MAX_CHANNELS][30][64];
  159. // Flags
  160. int has_errors; ///< packet has errors
  161. int superblocktype_2_3; ///< select fft tables and some algorithm based on superblock type
  162. int do_synth_filter; ///< used to perform or skip synthesis filter
  163. int sub_packet;
  164. int noise_idx; ///< index for dithering noise table
  165. } QDM2Context;
  166. static uint8_t empty_buffer[FF_INPUT_BUFFER_PADDING_SIZE];
  167. static VLC vlc_tab_level;
  168. static VLC vlc_tab_diff;
  169. static VLC vlc_tab_run;
  170. static VLC fft_level_exp_alt_vlc;
  171. static VLC fft_level_exp_vlc;
  172. static VLC fft_stereo_exp_vlc;
  173. static VLC fft_stereo_phase_vlc;
  174. static VLC vlc_tab_tone_level_idx_hi1;
  175. static VLC vlc_tab_tone_level_idx_mid;
  176. static VLC vlc_tab_tone_level_idx_hi2;
  177. static VLC vlc_tab_type30;
  178. static VLC vlc_tab_type34;
  179. static VLC vlc_tab_fft_tone_offset[5];
  180. static uint16_t softclip_table[HARDCLIP_THRESHOLD - SOFTCLIP_THRESHOLD + 1];
  181. static float noise_table[4096];
  182. static uint8_t random_dequant_index[256][5];
  183. static uint8_t random_dequant_type24[128][3];
  184. static float noise_samples[128];
  185. static DECLARE_ALIGNED_16(MPA_INT, mpa_window[512]);
  186. static av_cold void softclip_table_init(void) {
  187. int i;
  188. double dfl = SOFTCLIP_THRESHOLD - 32767;
  189. float delta = 1.0 / -dfl;
  190. for (i = 0; i < HARDCLIP_THRESHOLD - SOFTCLIP_THRESHOLD + 1; i++)
  191. softclip_table[i] = SOFTCLIP_THRESHOLD - ((int)(sin((float)i * delta) * dfl) & 0x0000FFFF);
  192. }
  193. // random generated table
  194. static av_cold void rnd_table_init(void) {
  195. int i,j;
  196. uint32_t ldw,hdw;
  197. uint64_t tmp64_1;
  198. uint64_t random_seed = 0;
  199. float delta = 1.0 / 16384.0;
  200. for(i = 0; i < 4096 ;i++) {
  201. random_seed = random_seed * 214013 + 2531011;
  202. noise_table[i] = (delta * (float)(((int32_t)random_seed >> 16) & 0x00007FFF)- 1.0) * 1.3;
  203. }
  204. for (i = 0; i < 256 ;i++) {
  205. random_seed = 81;
  206. ldw = i;
  207. for (j = 0; j < 5 ;j++) {
  208. random_dequant_index[i][j] = (uint8_t)((ldw / random_seed) & 0xFF);
  209. ldw = (uint32_t)ldw % (uint32_t)random_seed;
  210. tmp64_1 = (random_seed * 0x55555556);
  211. hdw = (uint32_t)(tmp64_1 >> 32);
  212. random_seed = (uint64_t)(hdw + (ldw >> 31));
  213. }
  214. }
  215. for (i = 0; i < 128 ;i++) {
  216. random_seed = 25;
  217. ldw = i;
  218. for (j = 0; j < 3 ;j++) {
  219. random_dequant_type24[i][j] = (uint8_t)((ldw / random_seed) & 0xFF);
  220. ldw = (uint32_t)ldw % (uint32_t)random_seed;
  221. tmp64_1 = (random_seed * 0x66666667);
  222. hdw = (uint32_t)(tmp64_1 >> 33);
  223. random_seed = hdw + (ldw >> 31);
  224. }
  225. }
  226. }
  227. static av_cold void init_noise_samples(void) {
  228. int i;
  229. int random_seed = 0;
  230. float delta = 1.0 / 16384.0;
  231. for (i = 0; i < 128;i++) {
  232. random_seed = random_seed * 214013 + 2531011;
  233. noise_samples[i] = (delta * (float)((random_seed >> 16) & 0x00007fff) - 1.0);
  234. }
  235. }
  236. static const uint16_t qdm2_vlc_offs[] = {
  237. 0,260,566,598,894,1166,1230,1294,1678,1950,2214,2278,2310,2570,2834,3124,3448,3838,
  238. };
  239. static av_cold void qdm2_init_vlc(void)
  240. {
  241. static int vlcs_initialized = 0;
  242. static VLC_TYPE qdm2_table[3838][2];
  243. if (!vlcs_initialized) {
  244. vlc_tab_level.table = &qdm2_table[qdm2_vlc_offs[0]];
  245. vlc_tab_level.table_allocated = qdm2_vlc_offs[1] - qdm2_vlc_offs[0];
  246. init_vlc (&vlc_tab_level, 8, 24,
  247. vlc_tab_level_huffbits, 1, 1,
  248. vlc_tab_level_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  249. vlc_tab_diff.table = &qdm2_table[qdm2_vlc_offs[1]];
  250. vlc_tab_diff.table_allocated = qdm2_vlc_offs[2] - qdm2_vlc_offs[1];
  251. init_vlc (&vlc_tab_diff, 8, 37,
  252. vlc_tab_diff_huffbits, 1, 1,
  253. vlc_tab_diff_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  254. vlc_tab_run.table = &qdm2_table[qdm2_vlc_offs[2]];
  255. vlc_tab_run.table_allocated = qdm2_vlc_offs[3] - qdm2_vlc_offs[2];
  256. init_vlc (&vlc_tab_run, 5, 6,
  257. vlc_tab_run_huffbits, 1, 1,
  258. vlc_tab_run_huffcodes, 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  259. fft_level_exp_alt_vlc.table = &qdm2_table[qdm2_vlc_offs[3]];
  260. fft_level_exp_alt_vlc.table_allocated = qdm2_vlc_offs[4] - qdm2_vlc_offs[3];
  261. init_vlc (&fft_level_exp_alt_vlc, 8, 28,
  262. fft_level_exp_alt_huffbits, 1, 1,
  263. fft_level_exp_alt_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  264. fft_level_exp_vlc.table = &qdm2_table[qdm2_vlc_offs[4]];
  265. fft_level_exp_vlc.table_allocated = qdm2_vlc_offs[5] - qdm2_vlc_offs[4];
  266. init_vlc (&fft_level_exp_vlc, 8, 20,
  267. fft_level_exp_huffbits, 1, 1,
  268. fft_level_exp_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  269. fft_stereo_exp_vlc.table = &qdm2_table[qdm2_vlc_offs[5]];
  270. fft_stereo_exp_vlc.table_allocated = qdm2_vlc_offs[6] - qdm2_vlc_offs[5];
  271. init_vlc (&fft_stereo_exp_vlc, 6, 7,
  272. fft_stereo_exp_huffbits, 1, 1,
  273. fft_stereo_exp_huffcodes, 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  274. fft_stereo_phase_vlc.table = &qdm2_table[qdm2_vlc_offs[6]];
  275. fft_stereo_phase_vlc.table_allocated = qdm2_vlc_offs[7] - qdm2_vlc_offs[6];
  276. init_vlc (&fft_stereo_phase_vlc, 6, 9,
  277. fft_stereo_phase_huffbits, 1, 1,
  278. fft_stereo_phase_huffcodes, 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  279. vlc_tab_tone_level_idx_hi1.table = &qdm2_table[qdm2_vlc_offs[7]];
  280. vlc_tab_tone_level_idx_hi1.table_allocated = qdm2_vlc_offs[8] - qdm2_vlc_offs[7];
  281. init_vlc (&vlc_tab_tone_level_idx_hi1, 8, 20,
  282. vlc_tab_tone_level_idx_hi1_huffbits, 1, 1,
  283. vlc_tab_tone_level_idx_hi1_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  284. vlc_tab_tone_level_idx_mid.table = &qdm2_table[qdm2_vlc_offs[8]];
  285. vlc_tab_tone_level_idx_mid.table_allocated = qdm2_vlc_offs[9] - qdm2_vlc_offs[8];
  286. init_vlc (&vlc_tab_tone_level_idx_mid, 8, 24,
  287. vlc_tab_tone_level_idx_mid_huffbits, 1, 1,
  288. vlc_tab_tone_level_idx_mid_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  289. vlc_tab_tone_level_idx_hi2.table = &qdm2_table[qdm2_vlc_offs[9]];
  290. vlc_tab_tone_level_idx_hi2.table_allocated = qdm2_vlc_offs[10] - qdm2_vlc_offs[9];
  291. init_vlc (&vlc_tab_tone_level_idx_hi2, 8, 24,
  292. vlc_tab_tone_level_idx_hi2_huffbits, 1, 1,
  293. vlc_tab_tone_level_idx_hi2_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  294. vlc_tab_type30.table = &qdm2_table[qdm2_vlc_offs[10]];
  295. vlc_tab_type30.table_allocated = qdm2_vlc_offs[11] - qdm2_vlc_offs[10];
  296. init_vlc (&vlc_tab_type30, 6, 9,
  297. vlc_tab_type30_huffbits, 1, 1,
  298. vlc_tab_type30_huffcodes, 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  299. vlc_tab_type34.table = &qdm2_table[qdm2_vlc_offs[11]];
  300. vlc_tab_type34.table_allocated = qdm2_vlc_offs[12] - qdm2_vlc_offs[11];
  301. init_vlc (&vlc_tab_type34, 5, 10,
  302. vlc_tab_type34_huffbits, 1, 1,
  303. vlc_tab_type34_huffcodes, 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  304. vlc_tab_fft_tone_offset[0].table = &qdm2_table[qdm2_vlc_offs[12]];
  305. vlc_tab_fft_tone_offset[0].table_allocated = qdm2_vlc_offs[13] - qdm2_vlc_offs[12];
  306. init_vlc (&vlc_tab_fft_tone_offset[0], 8, 23,
  307. vlc_tab_fft_tone_offset_0_huffbits, 1, 1,
  308. vlc_tab_fft_tone_offset_0_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  309. vlc_tab_fft_tone_offset[1].table = &qdm2_table[qdm2_vlc_offs[13]];
  310. vlc_tab_fft_tone_offset[1].table_allocated = qdm2_vlc_offs[14] - qdm2_vlc_offs[13];
  311. init_vlc (&vlc_tab_fft_tone_offset[1], 8, 28,
  312. vlc_tab_fft_tone_offset_1_huffbits, 1, 1,
  313. vlc_tab_fft_tone_offset_1_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  314. vlc_tab_fft_tone_offset[2].table = &qdm2_table[qdm2_vlc_offs[14]];
  315. vlc_tab_fft_tone_offset[2].table_allocated = qdm2_vlc_offs[15] - qdm2_vlc_offs[14];
  316. init_vlc (&vlc_tab_fft_tone_offset[2], 8, 32,
  317. vlc_tab_fft_tone_offset_2_huffbits, 1, 1,
  318. vlc_tab_fft_tone_offset_2_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  319. vlc_tab_fft_tone_offset[3].table = &qdm2_table[qdm2_vlc_offs[15]];
  320. vlc_tab_fft_tone_offset[3].table_allocated = qdm2_vlc_offs[16] - qdm2_vlc_offs[15];
  321. init_vlc (&vlc_tab_fft_tone_offset[3], 8, 35,
  322. vlc_tab_fft_tone_offset_3_huffbits, 1, 1,
  323. vlc_tab_fft_tone_offset_3_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  324. vlc_tab_fft_tone_offset[4].table = &qdm2_table[qdm2_vlc_offs[16]];
  325. vlc_tab_fft_tone_offset[4].table_allocated = qdm2_vlc_offs[17] - qdm2_vlc_offs[16];
  326. init_vlc (&vlc_tab_fft_tone_offset[4], 8, 38,
  327. vlc_tab_fft_tone_offset_4_huffbits, 1, 1,
  328. vlc_tab_fft_tone_offset_4_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  329. vlcs_initialized=1;
  330. }
  331. }
  332. /* for floating point to fixed point conversion */
  333. static const float f2i_scale = (float) (1 << (FRAC_BITS - 15));
  334. static int qdm2_get_vlc (GetBitContext *gb, VLC *vlc, int flag, int depth)
  335. {
  336. int value;
  337. value = get_vlc2(gb, vlc->table, vlc->bits, depth);
  338. /* stage-2, 3 bits exponent escape sequence */
  339. if (value-- == 0)
  340. value = get_bits (gb, get_bits (gb, 3) + 1);
  341. /* stage-3, optional */
  342. if (flag) {
  343. int tmp = vlc_stage3_values[value];
  344. if ((value & ~3) > 0)
  345. tmp += get_bits (gb, (value >> 2));
  346. value = tmp;
  347. }
  348. return value;
  349. }
  350. static int qdm2_get_se_vlc (VLC *vlc, GetBitContext *gb, int depth)
  351. {
  352. int value = qdm2_get_vlc (gb, vlc, 0, depth);
  353. return (value & 1) ? ((value + 1) >> 1) : -(value >> 1);
  354. }
  355. /**
  356. * QDM2 checksum
  357. *
  358. * @param data pointer to data to be checksum'ed
  359. * @param length data length
  360. * @param value checksum value
  361. *
  362. * @return 0 if checksum is OK
  363. */
  364. static uint16_t qdm2_packet_checksum (const uint8_t *data, int length, int value) {
  365. int i;
  366. for (i=0; i < length; i++)
  367. value -= data[i];
  368. return (uint16_t)(value & 0xffff);
  369. }
  370. /**
  371. * Fills a QDM2SubPacket structure with packet type, size, and data pointer.
  372. *
  373. * @param gb bitreader context
  374. * @param sub_packet packet under analysis
  375. */
  376. static void qdm2_decode_sub_packet_header (GetBitContext *gb, QDM2SubPacket *sub_packet)
  377. {
  378. sub_packet->type = get_bits (gb, 8);
  379. if (sub_packet->type == 0) {
  380. sub_packet->size = 0;
  381. sub_packet->data = NULL;
  382. } else {
  383. sub_packet->size = get_bits (gb, 8);
  384. if (sub_packet->type & 0x80) {
  385. sub_packet->size <<= 8;
  386. sub_packet->size |= get_bits (gb, 8);
  387. sub_packet->type &= 0x7f;
  388. }
  389. if (sub_packet->type == 0x7f)
  390. sub_packet->type |= (get_bits (gb, 8) << 8);
  391. sub_packet->data = &gb->buffer[get_bits_count(gb) / 8]; // FIXME: this depends on bitreader internal data
  392. }
  393. av_log(NULL,AV_LOG_DEBUG,"Subpacket: type=%d size=%d start_offs=%x\n",
  394. sub_packet->type, sub_packet->size, get_bits_count(gb) / 8);
  395. }
  396. /**
  397. * Return node pointer to first packet of requested type in list.
  398. *
  399. * @param list list of subpackets to be scanned
  400. * @param type type of searched subpacket
  401. * @return node pointer for subpacket if found, else NULL
  402. */
  403. static QDM2SubPNode* qdm2_search_subpacket_type_in_list (QDM2SubPNode *list, int type)
  404. {
  405. while (list != NULL && list->packet != NULL) {
  406. if (list->packet->type == type)
  407. return list;
  408. list = list->next;
  409. }
  410. return NULL;
  411. }
  412. /**
  413. * Replaces 8 elements with their average value.
  414. * Called by qdm2_decode_superblock before starting subblock decoding.
  415. *
  416. * @param q context
  417. */
  418. static void average_quantized_coeffs (QDM2Context *q)
  419. {
  420. int i, j, n, ch, sum;
  421. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1;
  422. for (ch = 0; ch < q->nb_channels; ch++)
  423. for (i = 0; i < n; i++) {
  424. sum = 0;
  425. for (j = 0; j < 8; j++)
  426. sum += q->quantized_coeffs[ch][i][j];
  427. sum /= 8;
  428. if (sum > 0)
  429. sum--;
  430. for (j=0; j < 8; j++)
  431. q->quantized_coeffs[ch][i][j] = sum;
  432. }
  433. }
  434. /**
  435. * Build subband samples with noise weighted by q->tone_level.
  436. * Called by synthfilt_build_sb_samples.
  437. *
  438. * @param q context
  439. * @param sb subband index
  440. */
  441. static void build_sb_samples_from_noise (QDM2Context *q, int sb)
  442. {
  443. int ch, j;
  444. FIX_NOISE_IDX(q->noise_idx);
  445. if (!q->nb_channels)
  446. return;
  447. for (ch = 0; ch < q->nb_channels; ch++)
  448. for (j = 0; j < 64; j++) {
  449. q->sb_samples[ch][j * 2][sb] = (int32_t)(f2i_scale * SB_DITHERING_NOISE(sb,q->noise_idx) * q->tone_level[ch][sb][j] + .5);
  450. q->sb_samples[ch][j * 2 + 1][sb] = (int32_t)(f2i_scale * SB_DITHERING_NOISE(sb,q->noise_idx) * q->tone_level[ch][sb][j] + .5);
  451. }
  452. }
  453. /**
  454. * Called while processing data from subpackets 11 and 12.
  455. * Used after making changes to coding_method array.
  456. *
  457. * @param sb subband index
  458. * @param channels number of channels
  459. * @param coding_method q->coding_method[0][0][0]
  460. */
  461. static void fix_coding_method_array (int sb, int channels, sb_int8_array coding_method)
  462. {
  463. int j,k;
  464. int ch;
  465. int run, case_val;
  466. int switchtable[23] = {0,5,1,5,5,5,5,5,2,5,5,5,5,5,5,5,3,5,5,5,5,5,4};
  467. for (ch = 0; ch < channels; ch++) {
  468. for (j = 0; j < 64; ) {
  469. if((coding_method[ch][sb][j] - 8) > 22) {
  470. run = 1;
  471. case_val = 8;
  472. } else {
  473. switch (switchtable[coding_method[ch][sb][j]-8]) {
  474. case 0: run = 10; case_val = 10; break;
  475. case 1: run = 1; case_val = 16; break;
  476. case 2: run = 5; case_val = 24; break;
  477. case 3: run = 3; case_val = 30; break;
  478. case 4: run = 1; case_val = 30; break;
  479. case 5: run = 1; case_val = 8; break;
  480. default: run = 1; case_val = 8; break;
  481. }
  482. }
  483. for (k = 0; k < run; k++)
  484. if (j + k < 128)
  485. if (coding_method[ch][sb + (j + k) / 64][(j + k) % 64] > coding_method[ch][sb][j])
  486. if (k > 0) {
  487. SAMPLES_NEEDED
  488. //not debugged, almost never used
  489. memset(&coding_method[ch][sb][j + k], case_val, k * sizeof(int8_t));
  490. memset(&coding_method[ch][sb][j + k], case_val, 3 * sizeof(int8_t));
  491. }
  492. j += run;
  493. }
  494. }
  495. }
  496. /**
  497. * Related to synthesis filter
  498. * Called by process_subpacket_10
  499. *
  500. * @param q context
  501. * @param flag 1 if called after getting data from subpacket 10, 0 if no subpacket 10
  502. */
  503. static void fill_tone_level_array (QDM2Context *q, int flag)
  504. {
  505. int i, sb, ch, sb_used;
  506. int tmp, tab;
  507. // This should never happen
  508. if (q->nb_channels <= 0)
  509. return;
  510. for (ch = 0; ch < q->nb_channels; ch++)
  511. for (sb = 0; sb < 30; sb++)
  512. for (i = 0; i < 8; i++) {
  513. if ((tab=coeff_per_sb_for_dequant[q->coeff_per_sb_select][sb]) < (last_coeff[q->coeff_per_sb_select] - 1))
  514. tmp = q->quantized_coeffs[ch][tab + 1][i] * dequant_table[q->coeff_per_sb_select][tab + 1][sb]+
  515. q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  516. else
  517. tmp = q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  518. if(tmp < 0)
  519. tmp += 0xff;
  520. q->tone_level_idx_base[ch][sb][i] = (tmp / 256) & 0xff;
  521. }
  522. sb_used = QDM2_SB_USED(q->sub_sampling);
  523. if ((q->superblocktype_2_3 != 0) && !flag) {
  524. for (sb = 0; sb < sb_used; sb++)
  525. for (ch = 0; ch < q->nb_channels; ch++)
  526. for (i = 0; i < 64; i++) {
  527. q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  528. if (q->tone_level_idx[ch][sb][i] < 0)
  529. q->tone_level[ch][sb][i] = 0;
  530. else
  531. q->tone_level[ch][sb][i] = fft_tone_level_table[0][q->tone_level_idx[ch][sb][i] & 0x3f];
  532. }
  533. } else {
  534. tab = q->superblocktype_2_3 ? 0 : 1;
  535. for (sb = 0; sb < sb_used; sb++) {
  536. if ((sb >= 4) && (sb <= 23)) {
  537. for (ch = 0; ch < q->nb_channels; ch++)
  538. for (i = 0; i < 64; i++) {
  539. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  540. q->tone_level_idx_hi1[ch][sb / 8][i / 8][i % 8] -
  541. q->tone_level_idx_mid[ch][sb - 4][i / 8] -
  542. q->tone_level_idx_hi2[ch][sb - 4];
  543. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  544. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  545. q->tone_level[ch][sb][i] = 0;
  546. else
  547. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  548. }
  549. } else {
  550. if (sb > 4) {
  551. for (ch = 0; ch < q->nb_channels; ch++)
  552. for (i = 0; i < 64; i++) {
  553. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  554. q->tone_level_idx_hi1[ch][2][i / 8][i % 8] -
  555. q->tone_level_idx_hi2[ch][sb - 4];
  556. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  557. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  558. q->tone_level[ch][sb][i] = 0;
  559. else
  560. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  561. }
  562. } else {
  563. for (ch = 0; ch < q->nb_channels; ch++)
  564. for (i = 0; i < 64; i++) {
  565. tmp = q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  566. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  567. q->tone_level[ch][sb][i] = 0;
  568. else
  569. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  570. }
  571. }
  572. }
  573. }
  574. }
  575. return;
  576. }
  577. /**
  578. * Related to synthesis filter
  579. * Called by process_subpacket_11
  580. * c is built with data from subpacket 11
  581. * Most of this function is used only if superblock_type_2_3 == 0, never seen it in samples
  582. *
  583. * @param tone_level_idx
  584. * @param tone_level_idx_temp
  585. * @param coding_method q->coding_method[0][0][0]
  586. * @param nb_channels number of channels
  587. * @param c coming from subpacket 11, passed as 8*c
  588. * @param superblocktype_2_3 flag based on superblock packet type
  589. * @param cm_table_select q->cm_table_select
  590. */
  591. static void fill_coding_method_array (sb_int8_array tone_level_idx, sb_int8_array tone_level_idx_temp,
  592. sb_int8_array coding_method, int nb_channels,
  593. int c, int superblocktype_2_3, int cm_table_select)
  594. {
  595. int ch, sb, j;
  596. int tmp, acc, esp_40, comp;
  597. int add1, add2, add3, add4;
  598. int64_t multres;
  599. // This should never happen
  600. if (nb_channels <= 0)
  601. return;
  602. if (!superblocktype_2_3) {
  603. /* This case is untested, no samples available */
  604. SAMPLES_NEEDED
  605. for (ch = 0; ch < nb_channels; ch++)
  606. for (sb = 0; sb < 30; sb++) {
  607. for (j = 1; j < 63; j++) { // The loop only iterates to 63 so the code doesn't overflow the buffer
  608. add1 = tone_level_idx[ch][sb][j] - 10;
  609. if (add1 < 0)
  610. add1 = 0;
  611. add2 = add3 = add4 = 0;
  612. if (sb > 1) {
  613. add2 = tone_level_idx[ch][sb - 2][j] + tone_level_idx_offset_table[sb][0] - 6;
  614. if (add2 < 0)
  615. add2 = 0;
  616. }
  617. if (sb > 0) {
  618. add3 = tone_level_idx[ch][sb - 1][j] + tone_level_idx_offset_table[sb][1] - 6;
  619. if (add3 < 0)
  620. add3 = 0;
  621. }
  622. if (sb < 29) {
  623. add4 = tone_level_idx[ch][sb + 1][j] + tone_level_idx_offset_table[sb][3] - 6;
  624. if (add4 < 0)
  625. add4 = 0;
  626. }
  627. tmp = tone_level_idx[ch][sb][j + 1] * 2 - add4 - add3 - add2 - add1;
  628. if (tmp < 0)
  629. tmp = 0;
  630. tone_level_idx_temp[ch][sb][j + 1] = tmp & 0xff;
  631. }
  632. tone_level_idx_temp[ch][sb][0] = tone_level_idx_temp[ch][sb][1];
  633. }
  634. acc = 0;
  635. for (ch = 0; ch < nb_channels; ch++)
  636. for (sb = 0; sb < 30; sb++)
  637. for (j = 0; j < 64; j++)
  638. acc += tone_level_idx_temp[ch][sb][j];
  639. multres = 0x66666667 * (acc * 10);
  640. esp_40 = (multres >> 32) / 8 + ((multres & 0xffffffff) >> 31);
  641. for (ch = 0; ch < nb_channels; ch++)
  642. for (sb = 0; sb < 30; sb++)
  643. for (j = 0; j < 64; j++) {
  644. comp = tone_level_idx_temp[ch][sb][j]* esp_40 * 10;
  645. if (comp < 0)
  646. comp += 0xff;
  647. comp /= 256; // signed shift
  648. switch(sb) {
  649. case 0:
  650. if (comp < 30)
  651. comp = 30;
  652. comp += 15;
  653. break;
  654. case 1:
  655. if (comp < 24)
  656. comp = 24;
  657. comp += 10;
  658. break;
  659. case 2:
  660. case 3:
  661. case 4:
  662. if (comp < 16)
  663. comp = 16;
  664. }
  665. if (comp <= 5)
  666. tmp = 0;
  667. else if (comp <= 10)
  668. tmp = 10;
  669. else if (comp <= 16)
  670. tmp = 16;
  671. else if (comp <= 24)
  672. tmp = -1;
  673. else
  674. tmp = 0;
  675. coding_method[ch][sb][j] = ((tmp & 0xfffa) + 30 )& 0xff;
  676. }
  677. for (sb = 0; sb < 30; sb++)
  678. fix_coding_method_array(sb, nb_channels, coding_method);
  679. for (ch = 0; ch < nb_channels; ch++)
  680. for (sb = 0; sb < 30; sb++)
  681. for (j = 0; j < 64; j++)
  682. if (sb >= 10) {
  683. if (coding_method[ch][sb][j] < 10)
  684. coding_method[ch][sb][j] = 10;
  685. } else {
  686. if (sb >= 2) {
  687. if (coding_method[ch][sb][j] < 16)
  688. coding_method[ch][sb][j] = 16;
  689. } else {
  690. if (coding_method[ch][sb][j] < 30)
  691. coding_method[ch][sb][j] = 30;
  692. }
  693. }
  694. } else { // superblocktype_2_3 != 0
  695. for (ch = 0; ch < nb_channels; ch++)
  696. for (sb = 0; sb < 30; sb++)
  697. for (j = 0; j < 64; j++)
  698. coding_method[ch][sb][j] = coding_method_table[cm_table_select][sb];
  699. }
  700. return;
  701. }
  702. /**
  703. *
  704. * Called by process_subpacket_11 to process more data from subpacket 11 with sb 0-8
  705. * Called by process_subpacket_12 to process data from subpacket 12 with sb 8-sb_used
  706. *
  707. * @param q context
  708. * @param gb bitreader context
  709. * @param length packet length in bits
  710. * @param sb_min lower subband processed (sb_min included)
  711. * @param sb_max higher subband processed (sb_max excluded)
  712. */
  713. static void synthfilt_build_sb_samples (QDM2Context *q, GetBitContext *gb, int length, int sb_min, int sb_max)
  714. {
  715. int sb, j, k, n, ch, run, channels;
  716. int joined_stereo, zero_encoding, chs;
  717. int type34_first;
  718. float type34_div = 0;
  719. float type34_predictor;
  720. float samples[10], sign_bits[16];
  721. if (length == 0) {
  722. // If no data use noise
  723. for (sb=sb_min; sb < sb_max; sb++)
  724. build_sb_samples_from_noise (q, sb);
  725. return;
  726. }
  727. for (sb = sb_min; sb < sb_max; sb++) {
  728. FIX_NOISE_IDX(q->noise_idx);
  729. channels = q->nb_channels;
  730. if (q->nb_channels <= 1 || sb < 12)
  731. joined_stereo = 0;
  732. else if (sb >= 24)
  733. joined_stereo = 1;
  734. else
  735. joined_stereo = (BITS_LEFT(length,gb) >= 1) ? get_bits1 (gb) : 0;
  736. if (joined_stereo) {
  737. if (BITS_LEFT(length,gb) >= 16)
  738. for (j = 0; j < 16; j++)
  739. sign_bits[j] = get_bits1 (gb);
  740. for (j = 0; j < 64; j++)
  741. if (q->coding_method[1][sb][j] > q->coding_method[0][sb][j])
  742. q->coding_method[0][sb][j] = q->coding_method[1][sb][j];
  743. fix_coding_method_array(sb, q->nb_channels, q->coding_method);
  744. channels = 1;
  745. }
  746. for (ch = 0; ch < channels; ch++) {
  747. zero_encoding = (BITS_LEFT(length,gb) >= 1) ? get_bits1(gb) : 0;
  748. type34_predictor = 0.0;
  749. type34_first = 1;
  750. for (j = 0; j < 128; ) {
  751. switch (q->coding_method[ch][sb][j / 2]) {
  752. case 8:
  753. if (BITS_LEFT(length,gb) >= 10) {
  754. if (zero_encoding) {
  755. for (k = 0; k < 5; k++) {
  756. if ((j + 2 * k) >= 128)
  757. break;
  758. samples[2 * k] = get_bits1(gb) ? dequant_1bit[joined_stereo][2 * get_bits1(gb)] : 0;
  759. }
  760. } else {
  761. n = get_bits(gb, 8);
  762. for (k = 0; k < 5; k++)
  763. samples[2 * k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  764. }
  765. for (k = 0; k < 5; k++)
  766. samples[2 * k + 1] = SB_DITHERING_NOISE(sb,q->noise_idx);
  767. } else {
  768. for (k = 0; k < 10; k++)
  769. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  770. }
  771. run = 10;
  772. break;
  773. case 10:
  774. if (BITS_LEFT(length,gb) >= 1) {
  775. float f = 0.81;
  776. if (get_bits1(gb))
  777. f = -f;
  778. f -= noise_samples[((sb + 1) * (j +5 * ch + 1)) & 127] * 9.0 / 40.0;
  779. samples[0] = f;
  780. } else {
  781. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  782. }
  783. run = 1;
  784. break;
  785. case 16:
  786. if (BITS_LEFT(length,gb) >= 10) {
  787. if (zero_encoding) {
  788. for (k = 0; k < 5; k++) {
  789. if ((j + k) >= 128)
  790. break;
  791. samples[k] = (get_bits1(gb) == 0) ? 0 : dequant_1bit[joined_stereo][2 * get_bits1(gb)];
  792. }
  793. } else {
  794. n = get_bits (gb, 8);
  795. for (k = 0; k < 5; k++)
  796. samples[k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  797. }
  798. } else {
  799. for (k = 0; k < 5; k++)
  800. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  801. }
  802. run = 5;
  803. break;
  804. case 24:
  805. if (BITS_LEFT(length,gb) >= 7) {
  806. n = get_bits(gb, 7);
  807. for (k = 0; k < 3; k++)
  808. samples[k] = (random_dequant_type24[n][k] - 2.0) * 0.5;
  809. } else {
  810. for (k = 0; k < 3; k++)
  811. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  812. }
  813. run = 3;
  814. break;
  815. case 30:
  816. if (BITS_LEFT(length,gb) >= 4)
  817. samples[0] = type30_dequant[qdm2_get_vlc(gb, &vlc_tab_type30, 0, 1)];
  818. else
  819. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  820. run = 1;
  821. break;
  822. case 34:
  823. if (BITS_LEFT(length,gb) >= 7) {
  824. if (type34_first) {
  825. type34_div = (float)(1 << get_bits(gb, 2));
  826. samples[0] = ((float)get_bits(gb, 5) - 16.0) / 15.0;
  827. type34_predictor = samples[0];
  828. type34_first = 0;
  829. } else {
  830. samples[0] = type34_delta[qdm2_get_vlc(gb, &vlc_tab_type34, 0, 1)] / type34_div + type34_predictor;
  831. type34_predictor = samples[0];
  832. }
  833. } else {
  834. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  835. }
  836. run = 1;
  837. break;
  838. default:
  839. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  840. run = 1;
  841. break;
  842. }
  843. if (joined_stereo) {
  844. float tmp[10][MPA_MAX_CHANNELS];
  845. for (k = 0; k < run; k++) {
  846. tmp[k][0] = samples[k];
  847. tmp[k][1] = (sign_bits[(j + k) / 8]) ? -samples[k] : samples[k];
  848. }
  849. for (chs = 0; chs < q->nb_channels; chs++)
  850. for (k = 0; k < run; k++)
  851. if ((j + k) < 128)
  852. q->sb_samples[chs][j + k][sb] = (int32_t)(f2i_scale * q->tone_level[chs][sb][((j + k)/2)] * tmp[k][chs] + .5);
  853. } else {
  854. for (k = 0; k < run; k++)
  855. if ((j + k) < 128)
  856. q->sb_samples[ch][j + k][sb] = (int32_t)(f2i_scale * q->tone_level[ch][sb][(j + k)/2] * samples[k] + .5);
  857. }
  858. j += run;
  859. } // j loop
  860. } // channel loop
  861. } // subband loop
  862. }
  863. /**
  864. * Init the first element of a channel in quantized_coeffs with data from packet 10 (quantized_coeffs[ch][0]).
  865. * This is similar to process_subpacket_9, but for a single channel and for element [0]
  866. * same VLC tables as process_subpacket_9 are used.
  867. *
  868. * @param q context
  869. * @param quantized_coeffs pointer to quantized_coeffs[ch][0]
  870. * @param gb bitreader context
  871. * @param length packet length in bits
  872. */
  873. static void init_quantized_coeffs_elem0 (int8_t *quantized_coeffs, GetBitContext *gb, int length)
  874. {
  875. int i, k, run, level, diff;
  876. if (BITS_LEFT(length,gb) < 16)
  877. return;
  878. level = qdm2_get_vlc(gb, &vlc_tab_level, 0, 2);
  879. quantized_coeffs[0] = level;
  880. for (i = 0; i < 7; ) {
  881. if (BITS_LEFT(length,gb) < 16)
  882. break;
  883. run = qdm2_get_vlc(gb, &vlc_tab_run, 0, 1) + 1;
  884. if (BITS_LEFT(length,gb) < 16)
  885. break;
  886. diff = qdm2_get_se_vlc(&vlc_tab_diff, gb, 2);
  887. for (k = 1; k <= run; k++)
  888. quantized_coeffs[i + k] = (level + ((k * diff) / run));
  889. level += diff;
  890. i += run;
  891. }
  892. }
  893. /**
  894. * Related to synthesis filter, process data from packet 10
  895. * Init part of quantized_coeffs via function init_quantized_coeffs_elem0
  896. * Init tone_level_idx_hi1, tone_level_idx_hi2, tone_level_idx_mid with data from packet 10
  897. *
  898. * @param q context
  899. * @param gb bitreader context
  900. * @param length packet length in bits
  901. */
  902. static void init_tone_level_dequantization (QDM2Context *q, GetBitContext *gb, int length)
  903. {
  904. int sb, j, k, n, ch;
  905. for (ch = 0; ch < q->nb_channels; ch++) {
  906. init_quantized_coeffs_elem0(q->quantized_coeffs[ch][0], gb, length);
  907. if (BITS_LEFT(length,gb) < 16) {
  908. memset(q->quantized_coeffs[ch][0], 0, 8);
  909. break;
  910. }
  911. }
  912. n = q->sub_sampling + 1;
  913. for (sb = 0; sb < n; sb++)
  914. for (ch = 0; ch < q->nb_channels; ch++)
  915. for (j = 0; j < 8; j++) {
  916. if (BITS_LEFT(length,gb) < 1)
  917. break;
  918. if (get_bits1(gb)) {
  919. for (k=0; k < 8; k++) {
  920. if (BITS_LEFT(length,gb) < 16)
  921. break;
  922. q->tone_level_idx_hi1[ch][sb][j][k] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_hi1, 0, 2);
  923. }
  924. } else {
  925. for (k=0; k < 8; k++)
  926. q->tone_level_idx_hi1[ch][sb][j][k] = 0;
  927. }
  928. }
  929. n = QDM2_SB_USED(q->sub_sampling) - 4;
  930. for (sb = 0; sb < n; sb++)
  931. for (ch = 0; ch < q->nb_channels; ch++) {
  932. if (BITS_LEFT(length,gb) < 16)
  933. break;
  934. q->tone_level_idx_hi2[ch][sb] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_hi2, 0, 2);
  935. if (sb > 19)
  936. q->tone_level_idx_hi2[ch][sb] -= 16;
  937. else
  938. for (j = 0; j < 8; j++)
  939. q->tone_level_idx_mid[ch][sb][j] = -16;
  940. }
  941. n = QDM2_SB_USED(q->sub_sampling) - 5;
  942. for (sb = 0; sb < n; sb++)
  943. for (ch = 0; ch < q->nb_channels; ch++)
  944. for (j = 0; j < 8; j++) {
  945. if (BITS_LEFT(length,gb) < 16)
  946. break;
  947. q->tone_level_idx_mid[ch][sb][j] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_mid, 0, 2) - 32;
  948. }
  949. }
  950. /**
  951. * Process subpacket 9, init quantized_coeffs with data from it
  952. *
  953. * @param q context
  954. * @param node pointer to node with packet
  955. */
  956. static void process_subpacket_9 (QDM2Context *q, QDM2SubPNode *node)
  957. {
  958. GetBitContext gb;
  959. int i, j, k, n, ch, run, level, diff;
  960. init_get_bits(&gb, node->packet->data, node->packet->size*8);
  961. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1; // same as averagesomething function
  962. for (i = 1; i < n; i++)
  963. for (ch=0; ch < q->nb_channels; ch++) {
  964. level = qdm2_get_vlc(&gb, &vlc_tab_level, 0, 2);
  965. q->quantized_coeffs[ch][i][0] = level;
  966. for (j = 0; j < (8 - 1); ) {
  967. run = qdm2_get_vlc(&gb, &vlc_tab_run, 0, 1) + 1;
  968. diff = qdm2_get_se_vlc(&vlc_tab_diff, &gb, 2);
  969. for (k = 1; k <= run; k++)
  970. q->quantized_coeffs[ch][i][j + k] = (level + ((k*diff) / run));
  971. level += diff;
  972. j += run;
  973. }
  974. }
  975. for (ch = 0; ch < q->nb_channels; ch++)
  976. for (i = 0; i < 8; i++)
  977. q->quantized_coeffs[ch][0][i] = 0;
  978. }
  979. /**
  980. * Process subpacket 10 if not null, else
  981. *
  982. * @param q context
  983. * @param node pointer to node with packet
  984. * @param length packet length in bits
  985. */
  986. static void process_subpacket_10 (QDM2Context *q, QDM2SubPNode *node, int length)
  987. {
  988. GetBitContext gb;
  989. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  990. if (length != 0) {
  991. init_tone_level_dequantization(q, &gb, length);
  992. fill_tone_level_array(q, 1);
  993. } else {
  994. fill_tone_level_array(q, 0);
  995. }
  996. }
  997. /**
  998. * Process subpacket 11
  999. *
  1000. * @param q context
  1001. * @param node pointer to node with packet
  1002. * @param length packet length in bit
  1003. */
  1004. static void process_subpacket_11 (QDM2Context *q, QDM2SubPNode *node, int length)
  1005. {
  1006. GetBitContext gb;
  1007. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  1008. if (length >= 32) {
  1009. int c = get_bits (&gb, 13);
  1010. if (c > 3)
  1011. fill_coding_method_array (q->tone_level_idx, q->tone_level_idx_temp, q->coding_method,
  1012. q->nb_channels, 8*c, q->superblocktype_2_3, q->cm_table_select);
  1013. }
  1014. synthfilt_build_sb_samples(q, &gb, length, 0, 8);
  1015. }
  1016. /**
  1017. * Process subpacket 12
  1018. *
  1019. * @param q context
  1020. * @param node pointer to node with packet
  1021. * @param length packet length in bits
  1022. */
  1023. static void process_subpacket_12 (QDM2Context *q, QDM2SubPNode *node, int length)
  1024. {
  1025. GetBitContext gb;
  1026. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  1027. synthfilt_build_sb_samples(q, &gb, length, 8, QDM2_SB_USED(q->sub_sampling));
  1028. }
  1029. /*
  1030. * Process new subpackets for synthesis filter
  1031. *
  1032. * @param q context
  1033. * @param list list with synthesis filter packets (list D)
  1034. */
  1035. static void process_synthesis_subpackets (QDM2Context *q, QDM2SubPNode *list)
  1036. {
  1037. QDM2SubPNode *nodes[4];
  1038. nodes[0] = qdm2_search_subpacket_type_in_list(list, 9);
  1039. if (nodes[0] != NULL)
  1040. process_subpacket_9(q, nodes[0]);
  1041. nodes[1] = qdm2_search_subpacket_type_in_list(list, 10);
  1042. if (nodes[1] != NULL)
  1043. process_subpacket_10(q, nodes[1], nodes[1]->packet->size << 3);
  1044. else
  1045. process_subpacket_10(q, NULL, 0);
  1046. nodes[2] = qdm2_search_subpacket_type_in_list(list, 11);
  1047. if (nodes[0] != NULL && nodes[1] != NULL && nodes[2] != NULL)
  1048. process_subpacket_11(q, nodes[2], (nodes[2]->packet->size << 3));
  1049. else
  1050. process_subpacket_11(q, NULL, 0);
  1051. nodes[3] = qdm2_search_subpacket_type_in_list(list, 12);
  1052. if (nodes[0] != NULL && nodes[1] != NULL && nodes[3] != NULL)
  1053. process_subpacket_12(q, nodes[3], (nodes[3]->packet->size << 3));
  1054. else
  1055. process_subpacket_12(q, NULL, 0);
  1056. }
  1057. /*
  1058. * Decode superblock, fill packet lists.
  1059. *
  1060. * @param q context
  1061. */
  1062. static void qdm2_decode_super_block (QDM2Context *q)
  1063. {
  1064. GetBitContext gb;
  1065. QDM2SubPacket header, *packet;
  1066. int i, packet_bytes, sub_packet_size, sub_packets_D;
  1067. unsigned int next_index = 0;
  1068. memset(q->tone_level_idx_hi1, 0, sizeof(q->tone_level_idx_hi1));
  1069. memset(q->tone_level_idx_mid, 0, sizeof(q->tone_level_idx_mid));
  1070. memset(q->tone_level_idx_hi2, 0, sizeof(q->tone_level_idx_hi2));
  1071. q->sub_packets_B = 0;
  1072. sub_packets_D = 0;
  1073. average_quantized_coeffs(q); // average elements in quantized_coeffs[max_ch][10][8]
  1074. init_get_bits(&gb, q->compressed_data, q->compressed_size*8);
  1075. qdm2_decode_sub_packet_header(&gb, &header);
  1076. if (header.type < 2 || header.type >= 8) {
  1077. q->has_errors = 1;
  1078. av_log(NULL,AV_LOG_ERROR,"bad superblock type\n");
  1079. return;
  1080. }
  1081. q->superblocktype_2_3 = (header.type == 2 || header.type == 3);
  1082. packet_bytes = (q->compressed_size - get_bits_count(&gb) / 8);
  1083. init_get_bits(&gb, header.data, header.size*8);
  1084. if (header.type == 2 || header.type == 4 || header.type == 5) {
  1085. int csum = 257 * get_bits(&gb, 8) + 2 * get_bits(&gb, 8);
  1086. csum = qdm2_packet_checksum(q->compressed_data, q->checksum_size, csum);
  1087. if (csum != 0) {
  1088. q->has_errors = 1;
  1089. av_log(NULL,AV_LOG_ERROR,"bad packet checksum\n");
  1090. return;
  1091. }
  1092. }
  1093. q->sub_packet_list_B[0].packet = NULL;
  1094. q->sub_packet_list_D[0].packet = NULL;
  1095. for (i = 0; i < 6; i++)
  1096. if (--q->fft_level_exp[i] < 0)
  1097. q->fft_level_exp[i] = 0;
  1098. for (i = 0; packet_bytes > 0; i++) {
  1099. int j;
  1100. q->sub_packet_list_A[i].next = NULL;
  1101. if (i > 0) {
  1102. q->sub_packet_list_A[i - 1].next = &q->sub_packet_list_A[i];
  1103. /* seek to next block */
  1104. init_get_bits(&gb, header.data, header.size*8);
  1105. skip_bits(&gb, next_index*8);
  1106. if (next_index >= header.size)
  1107. break;
  1108. }
  1109. /* decode subpacket */
  1110. packet = &q->sub_packets[i];
  1111. qdm2_decode_sub_packet_header(&gb, packet);
  1112. next_index = packet->size + get_bits_count(&gb) / 8;
  1113. sub_packet_size = ((packet->size > 0xff) ? 1 : 0) + packet->size + 2;
  1114. if (packet->type == 0)
  1115. break;
  1116. if (sub_packet_size > packet_bytes) {
  1117. if (packet->type != 10 && packet->type != 11 && packet->type != 12)
  1118. break;
  1119. packet->size += packet_bytes - sub_packet_size;
  1120. }
  1121. packet_bytes -= sub_packet_size;
  1122. /* add subpacket to 'all subpackets' list */
  1123. q->sub_packet_list_A[i].packet = packet;
  1124. /* add subpacket to related list */
  1125. if (packet->type == 8) {
  1126. SAMPLES_NEEDED_2("packet type 8");
  1127. return;
  1128. } else if (packet->type >= 9 && packet->type <= 12) {
  1129. /* packets for MPEG Audio like Synthesis Filter */
  1130. QDM2_LIST_ADD(q->sub_packet_list_D, sub_packets_D, packet);
  1131. } else if (packet->type == 13) {
  1132. for (j = 0; j < 6; j++)
  1133. q->fft_level_exp[j] = get_bits(&gb, 6);
  1134. } else if (packet->type == 14) {
  1135. for (j = 0; j < 6; j++)
  1136. q->fft_level_exp[j] = qdm2_get_vlc(&gb, &fft_level_exp_vlc, 0, 2);
  1137. } else if (packet->type == 15) {
  1138. SAMPLES_NEEDED_2("packet type 15")
  1139. return;
  1140. } else if (packet->type >= 16 && packet->type < 48 && !fft_subpackets[packet->type - 16]) {
  1141. /* packets for FFT */
  1142. QDM2_LIST_ADD(q->sub_packet_list_B, q->sub_packets_B, packet);
  1143. }
  1144. } // Packet bytes loop
  1145. /* **************************************************************** */
  1146. if (q->sub_packet_list_D[0].packet != NULL) {
  1147. process_synthesis_subpackets(q, q->sub_packet_list_D);
  1148. q->do_synth_filter = 1;
  1149. } else if (q->do_synth_filter) {
  1150. process_subpacket_10(q, NULL, 0);
  1151. process_subpacket_11(q, NULL, 0);
  1152. process_subpacket_12(q, NULL, 0);
  1153. }
  1154. /* **************************************************************** */
  1155. }
  1156. static void qdm2_fft_init_coefficient (QDM2Context *q, int sub_packet,
  1157. int offset, int duration, int channel,
  1158. int exp, int phase)
  1159. {
  1160. if (q->fft_coefs_min_index[duration] < 0)
  1161. q->fft_coefs_min_index[duration] = q->fft_coefs_index;
  1162. q->fft_coefs[q->fft_coefs_index].sub_packet = ((sub_packet >= 16) ? (sub_packet - 16) : sub_packet);
  1163. q->fft_coefs[q->fft_coefs_index].channel = channel;
  1164. q->fft_coefs[q->fft_coefs_index].offset = offset;
  1165. q->fft_coefs[q->fft_coefs_index].exp = exp;
  1166. q->fft_coefs[q->fft_coefs_index].phase = phase;
  1167. q->fft_coefs_index++;
  1168. }
  1169. static void qdm2_fft_decode_tones (QDM2Context *q, int duration, GetBitContext *gb, int b)
  1170. {
  1171. int channel, stereo, phase, exp;
  1172. int local_int_4, local_int_8, stereo_phase, local_int_10;
  1173. int local_int_14, stereo_exp, local_int_20, local_int_28;
  1174. int n, offset;
  1175. local_int_4 = 0;
  1176. local_int_28 = 0;
  1177. local_int_20 = 2;
  1178. local_int_8 = (4 - duration);
  1179. local_int_10 = 1 << (q->group_order - duration - 1);
  1180. offset = 1;
  1181. while (1) {
  1182. if (q->superblocktype_2_3) {
  1183. while ((n = qdm2_get_vlc(gb, &vlc_tab_fft_tone_offset[local_int_8], 1, 2)) < 2) {
  1184. offset = 1;
  1185. if (n == 0) {
  1186. local_int_4 += local_int_10;
  1187. local_int_28 += (1 << local_int_8);
  1188. } else {
  1189. local_int_4 += 8*local_int_10;
  1190. local_int_28 += (8 << local_int_8);
  1191. }
  1192. }
  1193. offset += (n - 2);
  1194. } else {
  1195. offset += qdm2_get_vlc(gb, &vlc_tab_fft_tone_offset[local_int_8], 1, 2);
  1196. while (offset >= (local_int_10 - 1)) {
  1197. offset += (1 - (local_int_10 - 1));
  1198. local_int_4 += local_int_10;
  1199. local_int_28 += (1 << local_int_8);
  1200. }
  1201. }
  1202. if (local_int_4 >= q->group_size)
  1203. return;
  1204. local_int_14 = (offset >> local_int_8);
  1205. if (q->nb_channels > 1) {
  1206. channel = get_bits1(gb);
  1207. stereo = get_bits1(gb);
  1208. } else {
  1209. channel = 0;
  1210. stereo = 0;
  1211. }
  1212. exp = qdm2_get_vlc(gb, (b ? &fft_level_exp_vlc : &fft_level_exp_alt_vlc), 0, 2);
  1213. exp += q->fft_level_exp[fft_level_index_table[local_int_14]];
  1214. exp = (exp < 0) ? 0 : exp;
  1215. phase = get_bits(gb, 3);
  1216. stereo_exp = 0;
  1217. stereo_phase = 0;
  1218. if (stereo) {
  1219. stereo_exp = (exp - qdm2_get_vlc(gb, &fft_stereo_exp_vlc, 0, 1));
  1220. stereo_phase = (phase - qdm2_get_vlc(gb, &fft_stereo_phase_vlc, 0, 1));
  1221. if (stereo_phase < 0)
  1222. stereo_phase += 8;
  1223. }
  1224. if (q->frequency_range > (local_int_14 + 1)) {
  1225. int sub_packet = (local_int_20 + local_int_28);
  1226. qdm2_fft_init_coefficient(q, sub_packet, offset, duration, channel, exp, phase);
  1227. if (stereo)
  1228. qdm2_fft_init_coefficient(q, sub_packet, offset, duration, (1 - channel), stereo_exp, stereo_phase);
  1229. }
  1230. offset++;
  1231. }
  1232. }
  1233. static void qdm2_decode_fft_packets (QDM2Context *q)
  1234. {
  1235. int i, j, min, max, value, type, unknown_flag;
  1236. GetBitContext gb;
  1237. if (q->sub_packet_list_B[0].packet == NULL)
  1238. return;
  1239. /* reset minimum indexes for FFT coefficients */
  1240. q->fft_coefs_index = 0;
  1241. for (i=0; i < 5; i++)
  1242. q->fft_coefs_min_index[i] = -1;
  1243. /* process subpackets ordered by type, largest type first */
  1244. for (i = 0, max = 256; i < q->sub_packets_B; i++) {
  1245. QDM2SubPacket *packet= NULL;
  1246. /* find subpacket with largest type less than max */
  1247. for (j = 0, min = 0; j < q->sub_packets_B; j++) {
  1248. value = q->sub_packet_list_B[j].packet->type;
  1249. if (value > min && value < max) {
  1250. min = value;
  1251. packet = q->sub_packet_list_B[j].packet;
  1252. }
  1253. }
  1254. max = min;
  1255. /* check for errors (?) */
  1256. if (!packet)
  1257. return;
  1258. if (i == 0 && (packet->type < 16 || packet->type >= 48 || fft_subpackets[packet->type - 16]))
  1259. return;
  1260. /* decode FFT tones */
  1261. init_get_bits (&gb, packet->data, packet->size*8);
  1262. if (packet->type >= 32 && packet->type < 48 && !fft_subpackets[packet->type - 16])
  1263. unknown_flag = 1;
  1264. else
  1265. unknown_flag = 0;
  1266. type = packet->type;
  1267. if ((type >= 17 && type < 24) || (type >= 33 && type < 40)) {
  1268. int duration = q->sub_sampling + 5 - (type & 15);
  1269. if (duration >= 0 && duration < 4)
  1270. qdm2_fft_decode_tones(q, duration, &gb, unknown_flag);
  1271. } else if (type == 31) {
  1272. for (j=0; j < 4; j++)
  1273. qdm2_fft_decode_tones(q, j, &gb, unknown_flag);
  1274. } else if (type == 46) {
  1275. for (j=0; j < 6; j++)
  1276. q->fft_level_exp[j] = get_bits(&gb, 6);
  1277. for (j=0; j < 4; j++)
  1278. qdm2_fft_decode_tones(q, j, &gb, unknown_flag);
  1279. }
  1280. } // Loop on B packets
  1281. /* calculate maximum indexes for FFT coefficients */
  1282. for (i = 0, j = -1; i < 5; i++)
  1283. if (q->fft_coefs_min_index[i] >= 0) {
  1284. if (j >= 0)
  1285. q->fft_coefs_max_index[j] = q->fft_coefs_min_index[i];
  1286. j = i;
  1287. }
  1288. if (j >= 0)
  1289. q->fft_coefs_max_index[j] = q->fft_coefs_index;
  1290. }
  1291. static void qdm2_fft_generate_tone (QDM2Context *q, FFTTone *tone)
  1292. {
  1293. float level, f[6];
  1294. int i;
  1295. QDM2Complex c;
  1296. const double iscale = 2.0*M_PI / 512.0;
  1297. tone->phase += tone->phase_shift;
  1298. /* calculate current level (maximum amplitude) of tone */
  1299. level = fft_tone_envelope_table[tone->duration][tone->time_index] * tone->level;
  1300. c.im = level * sin(tone->phase*iscale);
  1301. c.re = level * cos(tone->phase*iscale);
  1302. /* generate FFT coefficients for tone */
  1303. if (tone->duration >= 3 || tone->cutoff >= 3) {
  1304. tone->complex[0].im += c.im;
  1305. tone->complex[0].re += c.re;
  1306. tone->complex[1].im -= c.im;
  1307. tone->complex[1].re -= c.re;
  1308. } else {
  1309. f[1] = -tone->table[4];
  1310. f[0] = tone->table[3] - tone->table[0];
  1311. f[2] = 1.0 - tone->table[2] - tone->table[3];
  1312. f[3] = tone->table[1] + tone->table[4] - 1.0;
  1313. f[4] = tone->table[0] - tone->table[1];
  1314. f[5] = tone->table[2];
  1315. for (i = 0; i < 2; i++) {
  1316. tone->complex[fft_cutoff_index_table[tone->cutoff][i]].re += c.re * f[i];
  1317. tone->complex[fft_cutoff_index_table[tone->cutoff][i]].im += c.im *((tone->cutoff <= i) ? -f[i] : f[i]);
  1318. }
  1319. for (i = 0; i < 4; i++) {
  1320. tone->complex[i].re += c.re * f[i+2];
  1321. tone->complex[i].im += c.im * f[i+2];
  1322. }
  1323. }
  1324. /* copy the tone if it has not yet died out */
  1325. if (++tone->time_index < ((1 << (5 - tone->duration)) - 1)) {
  1326. memcpy(&q->fft_tones[q->fft_tone_end], tone, sizeof(FFTTone));
  1327. q->fft_tone_end = (q->fft_tone_end + 1) % 1000;
  1328. }
  1329. }
  1330. static void qdm2_fft_tone_synthesizer (QDM2Context *q, int sub_packet)
  1331. {
  1332. int i, j, ch;
  1333. const double iscale = 0.25 * M_PI;
  1334. for (ch = 0; ch < q->channels; ch++) {
  1335. memset(q->fft.complex[ch], 0, q->fft_size * sizeof(QDM2Complex));
  1336. }
  1337. /* apply FFT tones with duration 4 (1 FFT period) */
  1338. if (q->fft_coefs_min_index[4] >= 0)
  1339. for (i = q->fft_coefs_min_index[4]; i < q->fft_coefs_max_index[4]; i++) {
  1340. float level;
  1341. QDM2Complex c;
  1342. if (q->fft_coefs[i].sub_packet != sub_packet)
  1343. break;
  1344. ch = (q->channels == 1) ? 0 : q->fft_coefs[i].channel;
  1345. level = (q->fft_coefs[i].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[i].exp & 63];
  1346. c.re = level * cos(q->fft_coefs[i].phase * iscale);
  1347. c.im = level * sin(q->fft_coefs[i].phase * iscale);
  1348. q->fft.complex[ch][q->fft_coefs[i].offset + 0].re += c.re;
  1349. q->fft.complex[ch][q->fft_coefs[i].offset + 0].im += c.im;
  1350. q->fft.complex[ch][q->fft_coefs[i].offset + 1].re -= c.re;
  1351. q->fft.complex[ch][q->fft_coefs[i].offset + 1].im -= c.im;
  1352. }
  1353. /* generate existing FFT tones */
  1354. for (i = q->fft_tone_end; i != q->fft_tone_start; ) {
  1355. qdm2_fft_generate_tone(q, &q->fft_tones[q->fft_tone_start]);
  1356. q->fft_tone_start = (q->fft_tone_start + 1) % 1000;
  1357. }
  1358. /* create and generate new FFT tones with duration 0 (long) to 3 (short) */
  1359. for (i = 0; i < 4; i++)
  1360. if (q->fft_coefs_min_index[i] >= 0) {
  1361. for (j = q->fft_coefs_min_index[i]; j < q->fft_coefs_max_index[i]; j++) {
  1362. int offset, four_i;
  1363. FFTTone tone;
  1364. if (q->fft_coefs[j].sub_packet != sub_packet)
  1365. break;
  1366. four_i = (4 - i);
  1367. offset = q->fft_coefs[j].offset >> four_i;
  1368. ch = (q->channels == 1) ? 0 : q->fft_coefs[j].channel;
  1369. if (offset < q->frequency_range) {
  1370. if (offset < 2)
  1371. tone.cutoff = offset;
  1372. else
  1373. tone.cutoff = (offset >= 60) ? 3 : 2;
  1374. tone.level = (q->fft_coefs[j].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[j].exp & 63];
  1375. tone.complex = &q->fft.complex[ch][offset];
  1376. tone.table = fft_tone_sample_table[i][q->fft_coefs[j].offset - (offset << four_i)];
  1377. tone.phase = 64 * q->fft_coefs[j].phase - (offset << 8) - 128;
  1378. tone.phase_shift = (2 * q->fft_coefs[j].offset + 1) << (7 - four_i);
  1379. tone.duration = i;
  1380. tone.time_index = 0;
  1381. qdm2_fft_generate_tone(q, &tone);
  1382. }
  1383. }
  1384. q->fft_coefs_min_index[i] = j;
  1385. }
  1386. }
  1387. static void qdm2_calculate_fft (QDM2Context *q, int channel, int sub_packet)
  1388. {
  1389. const float gain = (q->channels == 1 && q->nb_channels == 2) ? 0.5f : 1.0f;
  1390. int i;
  1391. q->fft.complex[channel][0].re *= 2.0f;
  1392. q->fft.complex[channel][0].im = 0.0f;
  1393. ff_rdft_calc(&q->rdft_ctx, (FFTSample *)q->fft.complex[channel]);
  1394. /* add samples to output buffer */
  1395. for (i = 0; i < ((q->fft_frame_size + 15) & ~15); i++)
  1396. q->output_buffer[q->channels * i + channel] += ((float *) q->fft.complex[channel])[i] * gain;
  1397. }
  1398. /**
  1399. * @param q context
  1400. * @param index subpacket number
  1401. */
  1402. static void qdm2_synthesis_filter (QDM2Context *q, int index)
  1403. {
  1404. OUT_INT samples[MPA_MAX_CHANNELS * MPA_FRAME_SIZE];
  1405. int i, k, ch, sb_used, sub_sampling, dither_state = 0;
  1406. /* copy sb_samples */
  1407. sb_used = QDM2_SB_USED(q->sub_sampling);
  1408. for (ch = 0; ch < q->channels; ch++)
  1409. for (i = 0; i < 8; i++)
  1410. for (k=sb_used; k < SBLIMIT; k++)
  1411. q->sb_samples[ch][(8 * index) + i][k] = 0;
  1412. for (ch = 0; ch < q->nb_channels; ch++) {
  1413. OUT_INT *samples_ptr = samples + ch;
  1414. for (i = 0; i < 8; i++) {
  1415. ff_mpa_synth_filter(q->synth_buf[ch], &(q->synth_buf_offset[ch]),
  1416. mpa_window, &dither_state,
  1417. samples_ptr, q->nb_channels,
  1418. q->sb_samples[ch][(8 * index) + i]);
  1419. samples_ptr += 32 * q->nb_channels;
  1420. }
  1421. }
  1422. /* add samples to output buffer */
  1423. sub_sampling = (4 >> q->sub_sampling);
  1424. for (ch = 0; ch < q->channels; ch++)
  1425. for (i = 0; i < q->frame_size; i++)
  1426. q->output_buffer[q->channels * i + ch] += (float)(samples[q->nb_channels * sub_sampling * i + ch] >> (sizeof(OUT_INT)*8-16));
  1427. }
  1428. /**
  1429. * Init static data (does not depend on specific file)
  1430. *
  1431. * @param q context
  1432. */
  1433. static av_cold void qdm2_init(QDM2Context *q) {
  1434. static int initialized = 0;
  1435. if (initialized != 0)
  1436. return;
  1437. initialized = 1;
  1438. qdm2_init_vlc();
  1439. ff_mpa_synth_init(mpa_window);
  1440. softclip_table_init();
  1441. rnd_table_init();
  1442. init_noise_samples();
  1443. av_log(NULL, AV_LOG_DEBUG, "init done\n");
  1444. }
  1445. #if 0
  1446. static void dump_context(QDM2Context *q)
  1447. {
  1448. int i;
  1449. #define PRINT(a,b) av_log(NULL,AV_LOG_DEBUG," %s = %d\n", a, b);
  1450. PRINT("compressed_data",q->compressed_data);
  1451. PRINT("compressed_size",q->compressed_size);
  1452. PRINT("frame_size",q->frame_size);
  1453. PRINT("checksum_size",q->checksum_size);
  1454. PRINT("channels",q->channels);
  1455. PRINT("nb_channels",q->nb_channels);
  1456. PRINT("fft_frame_size",q->fft_frame_size);
  1457. PRINT("fft_size",q->fft_size);
  1458. PRINT("sub_sampling",q->sub_sampling);
  1459. PRINT("fft_order",q->fft_order);
  1460. PRINT("group_order",q->group_order);
  1461. PRINT("group_size",q->group_size);
  1462. PRINT("sub_packet",q->sub_packet);
  1463. PRINT("frequency_range",q->frequency_range);
  1464. PRINT("has_errors",q->has_errors);
  1465. PRINT("fft_tone_end",q->fft_tone_end);
  1466. PRINT("fft_tone_start",q->fft_tone_start);
  1467. PRINT("fft_coefs_index",q->fft_coefs_index);
  1468. PRINT("coeff_per_sb_select",q->coeff_per_sb_select);
  1469. PRINT("cm_table_select",q->cm_table_select);
  1470. PRINT("noise_idx",q->noise_idx);
  1471. for (i = q->fft_tone_start; i < q->fft_tone_end; i++)
  1472. {
  1473. FFTTone *t = &q->fft_tones[i];
  1474. av_log(NULL,AV_LOG_DEBUG,"Tone (%d) dump:\n", i);
  1475. av_log(NULL,AV_LOG_DEBUG," level = %f\n", t->level);
  1476. // PRINT(" level", t->level);
  1477. PRINT(" phase", t->phase);
  1478. PRINT(" phase_shift", t->phase_shift);
  1479. PRINT(" duration", t->duration);
  1480. PRINT(" samples_im", t->samples_im);
  1481. PRINT(" samples_re", t->samples_re);
  1482. PRINT(" table", t->table);
  1483. }
  1484. }
  1485. #endif
  1486. /**
  1487. * Init parameters from codec extradata
  1488. */
  1489. static av_cold int qdm2_decode_init(AVCodecContext *avctx)
  1490. {
  1491. QDM2Context *s = avctx->priv_data;
  1492. uint8_t *extradata;
  1493. int extradata_size;
  1494. int tmp_val, tmp, size;
  1495. /* extradata parsing
  1496. Structure:
  1497. wave {
  1498. frma (QDM2)
  1499. QDCA
  1500. QDCP
  1501. }
  1502. 32 size (including this field)
  1503. 32 tag (=frma)
  1504. 32 type (=QDM2 or QDMC)
  1505. 32 size (including this field, in bytes)
  1506. 32 tag (=QDCA) // maybe mandatory parameters
  1507. 32 unknown (=1)
  1508. 32 channels (=2)
  1509. 32 samplerate (=44100)
  1510. 32 bitrate (=96000)
  1511. 32 block size (=4096)
  1512. 32 frame size (=256) (for one channel)
  1513. 32 packet size (=1300)
  1514. 32 size (including this field, in bytes)
  1515. 32 tag (=QDCP) // maybe some tuneable parameters
  1516. 32 float1 (=1.0)
  1517. 32 zero ?
  1518. 32 float2 (=1.0)
  1519. 32 float3 (=1.0)
  1520. 32 unknown (27)
  1521. 32 unknown (8)
  1522. 32 zero ?
  1523. */
  1524. if (!avctx->extradata || (avctx->extradata_size < 48)) {
  1525. av_log(avctx, AV_LOG_ERROR, "extradata missing or truncated\n");
  1526. return -1;
  1527. }
  1528. extradata = avctx->extradata;
  1529. extradata_size = avctx->extradata_size;
  1530. while (extradata_size > 7) {
  1531. if (!memcmp(extradata, "frmaQDM", 7))
  1532. break;
  1533. extradata++;
  1534. extradata_size--;
  1535. }
  1536. if (extradata_size < 12) {
  1537. av_log(avctx, AV_LOG_ERROR, "not enough extradata (%i)\n",
  1538. extradata_size);
  1539. return -1;
  1540. }
  1541. if (memcmp(extradata, "frmaQDM", 7)) {
  1542. av_log(avctx, AV_LOG_ERROR, "invalid headers, QDM? not found\n");
  1543. return -1;
  1544. }
  1545. if (extradata[7] == 'C') {
  1546. // s->is_qdmc = 1;
  1547. av_log(avctx, AV_LOG_ERROR, "stream is QDMC version 1, which is not supported\n");
  1548. return -1;
  1549. }
  1550. extradata += 8;
  1551. extradata_size -= 8;
  1552. size = AV_RB32(extradata);
  1553. if(size > extradata_size){
  1554. av_log(avctx, AV_LOG_ERROR, "extradata size too small, %i < %i\n",
  1555. extradata_size, size);
  1556. return -1;
  1557. }
  1558. extradata += 4;
  1559. av_log(avctx, AV_LOG_DEBUG, "size: %d\n", size);
  1560. if (AV_RB32(extradata) != MKBETAG('Q','D','C','A')) {
  1561. av_log(avctx, AV_LOG_ERROR, "invalid extradata, expecting QDCA\n");
  1562. return -1;
  1563. }
  1564. extradata += 8;
  1565. avctx->channels = s->nb_channels = s->channels = AV_RB32(extradata);
  1566. extradata += 4;
  1567. avctx->sample_rate = AV_RB32(extradata);
  1568. extradata += 4;
  1569. avctx->bit_rate = AV_RB32(extradata);
  1570. extradata += 4;
  1571. s->group_size = AV_RB32(extradata);
  1572. extradata += 4;
  1573. s->fft_size = AV_RB32(extradata);
  1574. extradata += 4;
  1575. s->checksum_size = AV_RB32(extradata);
  1576. s->fft_order = av_log2(s->fft_size) + 1;
  1577. s->fft_frame_size = 2 * s->fft_size; // complex has two floats
  1578. // something like max decodable tones
  1579. s->group_order = av_log2(s->group_size) + 1;
  1580. s->frame_size = s->group_size / 16; // 16 iterations per super block
  1581. s->sub_sampling = s->fft_order - 7;
  1582. s->frequency_range = 255 / (1 << (2 - s->sub_sampling));
  1583. switch ((s->sub_sampling * 2 + s->channels - 1)) {
  1584. case 0: tmp = 40; break;
  1585. case 1: tmp = 48; break;
  1586. case 2: tmp = 56; break;
  1587. case 3: tmp = 72; break;
  1588. case 4: tmp = 80; break;
  1589. case 5: tmp = 100;break;
  1590. default: tmp=s->sub_sampling; break;
  1591. }
  1592. tmp_val = 0;
  1593. if ((tmp * 1000) < avctx->bit_rate) tmp_val = 1;
  1594. if ((tmp * 1440) < avctx->bit_rate) tmp_val = 2;
  1595. if ((tmp * 1760) < avctx->bit_rate) tmp_val = 3;
  1596. if ((tmp * 2240) < avctx->bit_rate) tmp_val = 4;
  1597. s->cm_table_select = tmp_val;
  1598. if (s->sub_sampling == 0)
  1599. tmp = 7999;
  1600. else
  1601. tmp = ((-(s->sub_sampling -1)) & 8000) + 20000;
  1602. /*
  1603. 0: 7999 -> 0
  1604. 1: 20000 -> 2
  1605. 2: 28000 -> 2
  1606. */
  1607. if (tmp < 8000)
  1608. s->coeff_per_sb_select = 0;
  1609. else if (tmp <= 16000)
  1610. s->coeff_per_sb_select = 1;
  1611. else
  1612. s->coeff_per_sb_select = 2;
  1613. // Fail on unknown fft order
  1614. if ((s->fft_order < 7) || (s->fft_order > 9)) {
  1615. av_log(avctx, AV_LOG_ERROR, "Unknown FFT order (%d), contact the developers!\n", s->fft_order);
  1616. return -1;
  1617. }
  1618. ff_rdft_init(&s->rdft_ctx, s->fft_order, IRDFT);
  1619. qdm2_init(s);
  1620. avctx->sample_fmt = SAMPLE_FMT_S16;
  1621. // dump_context(s);
  1622. return 0;
  1623. }
  1624. static av_cold int qdm2_decode_close(AVCodecContext *avctx)
  1625. {
  1626. QDM2Context *s = avctx->priv_data;
  1627. ff_rdft_end(&s->rdft_ctx);
  1628. return 0;
  1629. }
  1630. static void qdm2_decode (QDM2Context *q, const uint8_t *in, int16_t *out)
  1631. {
  1632. int ch, i;
  1633. const int frame_size = (q->frame_size * q->channels);
  1634. /* select input buffer */
  1635. q->compressed_data = in;
  1636. q->compressed_size = q->checksum_size;
  1637. // dump_context(q);
  1638. /* copy old block, clear new block of output samples */
  1639. memmove(q->output_buffer, &q->output_buffer[frame_size], frame_size * sizeof(float));
  1640. memset(&q->output_buffer[frame_size], 0, frame_size * sizeof(float));
  1641. /* decode block of QDM2 compressed data */
  1642. if (q->sub_packet == 0) {
  1643. q->has_errors = 0; // zero it for a new super block
  1644. av_log(NULL,AV_LOG_DEBUG,"Superblock follows\n");
  1645. qdm2_decode_super_block(q);
  1646. }
  1647. /* parse subpackets */
  1648. if (!q->has_errors) {
  1649. if (q->sub_packet == 2)
  1650. qdm2_decode_fft_packets(q);
  1651. qdm2_fft_tone_synthesizer(q, q->sub_packet);
  1652. }
  1653. /* sound synthesis stage 1 (FFT) */
  1654. for (ch = 0; ch < q->channels; ch++) {
  1655. qdm2_calculate_fft(q, ch, q->sub_packet);
  1656. if (!q->has_errors && q->sub_packet_list_C[0].packet != NULL) {
  1657. SAMPLES_NEEDED_2("has errors, and C list is not empty")
  1658. return;
  1659. }
  1660. }
  1661. /* sound synthesis stage 2 (MPEG audio like synthesis filter) */
  1662. if (!q->has_errors && q->do_synth_filter)
  1663. qdm2_synthesis_filter(q, q->sub_packet);
  1664. q->sub_packet = (q->sub_packet + 1) % 16;
  1665. /* clip and convert output float[] to 16bit signed samples */
  1666. for (i = 0; i < frame_size; i++) {
  1667. int value = (int)q->output_buffer[i];
  1668. if (value > SOFTCLIP_THRESHOLD)
  1669. value = (value > HARDCLIP_THRESHOLD) ? 32767 : softclip_table[ value - SOFTCLIP_THRESHOLD];
  1670. else if (value < -SOFTCLIP_THRESHOLD)
  1671. value = (value < -HARDCLIP_THRESHOLD) ? -32767 : -softclip_table[-value - SOFTCLIP_THRESHOLD];
  1672. out[i] = value;
  1673. }
  1674. }
  1675. static int qdm2_decode_frame(AVCodecContext *avctx,
  1676. void *data, int *data_size,
  1677. AVPacket *avpkt)
  1678. {
  1679. const uint8_t *buf = avpkt->data;
  1680. int buf_size = avpkt->size;
  1681. QDM2Context *s = avctx->priv_data;
  1682. if(!buf)
  1683. return 0;
  1684. if(buf_size < s->checksum_size)
  1685. return -1;
  1686. *data_size = s->channels * s->frame_size * sizeof(int16_t);
  1687. av_log(avctx, AV_LOG_DEBUG, "decode(%d): %p[%d] -> %p[%d]\n",
  1688. buf_size, buf, s->checksum_size, data, *data_size);
  1689. qdm2_decode(s, buf, data);
  1690. // reading only when next superblock found
  1691. if (s->sub_packet == 0) {
  1692. return s->checksum_size;
  1693. }
  1694. return 0;
  1695. }
  1696. AVCodec qdm2_decoder =
  1697. {
  1698. .name = "qdm2",
  1699. .type = CODEC_TYPE_AUDIO,
  1700. .id = CODEC_ID_QDM2,
  1701. .priv_data_size = sizeof(QDM2Context),
  1702. .init = qdm2_decode_init,
  1703. .close = qdm2_decode_close,
  1704. .decode = qdm2_decode_frame,
  1705. .long_name = NULL_IF_CONFIG_SMALL("QDesign Music Codec 2"),
  1706. };