You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1428 lines
41KB

  1. /*
  2. * The simplest AC-3 encoder
  3. * Copyright (c) 2000 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/ac3enc.c
  23. * The simplest AC-3 encoder.
  24. */
  25. //#define DEBUG
  26. //#define DEBUG_BITALLOC
  27. #include "libavutil/crc.h"
  28. #include "avcodec.h"
  29. #include "get_bits.h" // for ff_reverse
  30. #include "put_bits.h"
  31. #include "ac3.h"
  32. #include "audioconvert.h"
  33. typedef struct AC3EncodeContext {
  34. PutBitContext pb;
  35. int nb_channels;
  36. int nb_all_channels;
  37. int lfe_channel;
  38. const uint8_t *channel_map;
  39. int bit_rate;
  40. unsigned int sample_rate;
  41. unsigned int bitstream_id;
  42. unsigned int frame_size_min; /* minimum frame size in case rounding is necessary */
  43. unsigned int frame_size; /* current frame size in words */
  44. unsigned int bits_written;
  45. unsigned int samples_written;
  46. int sr_shift;
  47. unsigned int frame_size_code;
  48. unsigned int sr_code; /* frequency */
  49. unsigned int channel_mode;
  50. int lfe;
  51. unsigned int bitstream_mode;
  52. short last_samples[AC3_MAX_CHANNELS][256];
  53. unsigned int chbwcod[AC3_MAX_CHANNELS];
  54. int nb_coefs[AC3_MAX_CHANNELS];
  55. /* bitrate allocation control */
  56. int slow_gain_code, slow_decay_code, fast_decay_code, db_per_bit_code, floor_code;
  57. AC3BitAllocParameters bit_alloc;
  58. int coarse_snr_offset;
  59. int fast_gain_code[AC3_MAX_CHANNELS];
  60. int fine_snr_offset[AC3_MAX_CHANNELS];
  61. /* mantissa encoding */
  62. int mant1_cnt, mant2_cnt, mant4_cnt;
  63. } AC3EncodeContext;
  64. static int16_t costab[64];
  65. static int16_t sintab[64];
  66. static int16_t xcos1[128];
  67. static int16_t xsin1[128];
  68. #define MDCT_NBITS 9
  69. #define N (1 << MDCT_NBITS)
  70. /* new exponents are sent if their Norm 1 exceed this number */
  71. #define EXP_DIFF_THRESHOLD 1000
  72. static inline int16_t fix15(float a)
  73. {
  74. int v;
  75. v = (int)(a * (float)(1 << 15));
  76. if (v < -32767)
  77. v = -32767;
  78. else if (v > 32767)
  79. v = 32767;
  80. return v;
  81. }
  82. typedef struct IComplex {
  83. short re,im;
  84. } IComplex;
  85. static av_cold void fft_init(int ln)
  86. {
  87. int i, n;
  88. float alpha;
  89. n = 1 << ln;
  90. for(i=0;i<(n/2);i++) {
  91. alpha = 2 * M_PI * (float)i / (float)n;
  92. costab[i] = fix15(cos(alpha));
  93. sintab[i] = fix15(sin(alpha));
  94. }
  95. }
  96. /* butter fly op */
  97. #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
  98. {\
  99. int ax, ay, bx, by;\
  100. bx=pre1;\
  101. by=pim1;\
  102. ax=qre1;\
  103. ay=qim1;\
  104. pre = (bx + ax) >> 1;\
  105. pim = (by + ay) >> 1;\
  106. qre = (bx - ax) >> 1;\
  107. qim = (by - ay) >> 1;\
  108. }
  109. #define CMUL(pre, pim, are, aim, bre, bim) \
  110. {\
  111. pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;\
  112. pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;\
  113. }
  114. /* do a 2^n point complex fft on 2^ln points. */
  115. static void fft(IComplex *z, int ln)
  116. {
  117. int j, l, np, np2;
  118. int nblocks, nloops;
  119. register IComplex *p,*q;
  120. int tmp_re, tmp_im;
  121. np = 1 << ln;
  122. /* reverse */
  123. for(j=0;j<np;j++) {
  124. int k = ff_reverse[j] >> (8 - ln);
  125. if (k < j)
  126. FFSWAP(IComplex, z[k], z[j]);
  127. }
  128. /* pass 0 */
  129. p=&z[0];
  130. j=(np >> 1);
  131. do {
  132. BF(p[0].re, p[0].im, p[1].re, p[1].im,
  133. p[0].re, p[0].im, p[1].re, p[1].im);
  134. p+=2;
  135. } while (--j != 0);
  136. /* pass 1 */
  137. p=&z[0];
  138. j=np >> 2;
  139. do {
  140. BF(p[0].re, p[0].im, p[2].re, p[2].im,
  141. p[0].re, p[0].im, p[2].re, p[2].im);
  142. BF(p[1].re, p[1].im, p[3].re, p[3].im,
  143. p[1].re, p[1].im, p[3].im, -p[3].re);
  144. p+=4;
  145. } while (--j != 0);
  146. /* pass 2 .. ln-1 */
  147. nblocks = np >> 3;
  148. nloops = 1 << 2;
  149. np2 = np >> 1;
  150. do {
  151. p = z;
  152. q = z + nloops;
  153. for (j = 0; j < nblocks; ++j) {
  154. BF(p->re, p->im, q->re, q->im,
  155. p->re, p->im, q->re, q->im);
  156. p++;
  157. q++;
  158. for(l = nblocks; l < np2; l += nblocks) {
  159. CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);
  160. BF(p->re, p->im, q->re, q->im,
  161. p->re, p->im, tmp_re, tmp_im);
  162. p++;
  163. q++;
  164. }
  165. p += nloops;
  166. q += nloops;
  167. }
  168. nblocks = nblocks >> 1;
  169. nloops = nloops << 1;
  170. } while (nblocks != 0);
  171. }
  172. /* do a 512 point mdct */
  173. static void mdct512(int32_t *out, int16_t *in)
  174. {
  175. int i, re, im, re1, im1;
  176. int16_t rot[N];
  177. IComplex x[N/4];
  178. /* shift to simplify computations */
  179. for(i=0;i<N/4;i++)
  180. rot[i] = -in[i + 3*N/4];
  181. for(i=N/4;i<N;i++)
  182. rot[i] = in[i - N/4];
  183. /* pre rotation */
  184. for(i=0;i<N/4;i++) {
  185. re = ((int)rot[2*i] - (int)rot[N-1-2*i]) >> 1;
  186. im = -((int)rot[N/2+2*i] - (int)rot[N/2-1-2*i]) >> 1;
  187. CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);
  188. }
  189. fft(x, MDCT_NBITS - 2);
  190. /* post rotation */
  191. for(i=0;i<N/4;i++) {
  192. re = x[i].re;
  193. im = x[i].im;
  194. CMUL(re1, im1, re, im, xsin1[i], xcos1[i]);
  195. out[2*i] = im1;
  196. out[N/2-1-2*i] = re1;
  197. }
  198. }
  199. /* XXX: use another norm ? */
  200. static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n)
  201. {
  202. int sum, i;
  203. sum = 0;
  204. for(i=0;i<n;i++) {
  205. sum += abs(exp1[i] - exp2[i]);
  206. }
  207. return sum;
  208. }
  209. static void compute_exp_strategy(uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  210. uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  211. int ch, int is_lfe)
  212. {
  213. int i, j;
  214. int exp_diff;
  215. /* estimate if the exponent variation & decide if they should be
  216. reused in the next frame */
  217. exp_strategy[0][ch] = EXP_NEW;
  218. for(i=1;i<NB_BLOCKS;i++) {
  219. exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], N/2);
  220. #ifdef DEBUG
  221. av_log(NULL, AV_LOG_DEBUG, "exp_diff=%d\n", exp_diff);
  222. #endif
  223. if (exp_diff > EXP_DIFF_THRESHOLD)
  224. exp_strategy[i][ch] = EXP_NEW;
  225. else
  226. exp_strategy[i][ch] = EXP_REUSE;
  227. }
  228. if (is_lfe)
  229. return;
  230. /* now select the encoding strategy type : if exponents are often
  231. recoded, we use a coarse encoding */
  232. i = 0;
  233. while (i < NB_BLOCKS) {
  234. j = i + 1;
  235. while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE)
  236. j++;
  237. switch(j - i) {
  238. case 1:
  239. exp_strategy[i][ch] = EXP_D45;
  240. break;
  241. case 2:
  242. case 3:
  243. exp_strategy[i][ch] = EXP_D25;
  244. break;
  245. default:
  246. exp_strategy[i][ch] = EXP_D15;
  247. break;
  248. }
  249. i = j;
  250. }
  251. }
  252. /* set exp[i] to min(exp[i], exp1[i]) */
  253. static void exponent_min(uint8_t exp[N/2], uint8_t exp1[N/2], int n)
  254. {
  255. int i;
  256. for(i=0;i<n;i++) {
  257. if (exp1[i] < exp[i])
  258. exp[i] = exp1[i];
  259. }
  260. }
  261. /* update the exponents so that they are the ones the decoder will
  262. decode. Return the number of bits used to code the exponents */
  263. static int encode_exp(uint8_t encoded_exp[N/2],
  264. uint8_t exp[N/2],
  265. int nb_exps,
  266. int exp_strategy)
  267. {
  268. int group_size, nb_groups, i, j, k, exp_min;
  269. uint8_t exp1[N/2];
  270. switch(exp_strategy) {
  271. case EXP_D15:
  272. group_size = 1;
  273. break;
  274. case EXP_D25:
  275. group_size = 2;
  276. break;
  277. default:
  278. case EXP_D45:
  279. group_size = 4;
  280. break;
  281. }
  282. nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3;
  283. /* for each group, compute the minimum exponent */
  284. exp1[0] = exp[0]; /* DC exponent is handled separately */
  285. k = 1;
  286. for(i=1;i<=nb_groups;i++) {
  287. exp_min = exp[k];
  288. assert(exp_min >= 0 && exp_min <= 24);
  289. for(j=1;j<group_size;j++) {
  290. if (exp[k+j] < exp_min)
  291. exp_min = exp[k+j];
  292. }
  293. exp1[i] = exp_min;
  294. k += group_size;
  295. }
  296. /* constraint for DC exponent */
  297. if (exp1[0] > 15)
  298. exp1[0] = 15;
  299. /* Decrease the delta between each groups to within 2
  300. * so that they can be differentially encoded */
  301. for (i=1;i<=nb_groups;i++)
  302. exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2);
  303. for (i=nb_groups-1;i>=0;i--)
  304. exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2);
  305. /* now we have the exponent values the decoder will see */
  306. encoded_exp[0] = exp1[0];
  307. k = 1;
  308. for(i=1;i<=nb_groups;i++) {
  309. for(j=0;j<group_size;j++) {
  310. encoded_exp[k+j] = exp1[i];
  311. }
  312. k += group_size;
  313. }
  314. #if defined(DEBUG)
  315. av_log(NULL, AV_LOG_DEBUG, "exponents: strategy=%d\n", exp_strategy);
  316. for(i=0;i<=nb_groups * group_size;i++) {
  317. av_log(NULL, AV_LOG_DEBUG, "%d ", encoded_exp[i]);
  318. }
  319. av_log(NULL, AV_LOG_DEBUG, "\n");
  320. #endif
  321. return 4 + (nb_groups / 3) * 7;
  322. }
  323. /* return the size in bits taken by the mantissa */
  324. static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs)
  325. {
  326. int bits, mant, i;
  327. bits = 0;
  328. for(i=0;i<nb_coefs;i++) {
  329. mant = m[i];
  330. switch(mant) {
  331. case 0:
  332. /* nothing */
  333. break;
  334. case 1:
  335. /* 3 mantissa in 5 bits */
  336. if (s->mant1_cnt == 0)
  337. bits += 5;
  338. if (++s->mant1_cnt == 3)
  339. s->mant1_cnt = 0;
  340. break;
  341. case 2:
  342. /* 3 mantissa in 7 bits */
  343. if (s->mant2_cnt == 0)
  344. bits += 7;
  345. if (++s->mant2_cnt == 3)
  346. s->mant2_cnt = 0;
  347. break;
  348. case 3:
  349. bits += 3;
  350. break;
  351. case 4:
  352. /* 2 mantissa in 7 bits */
  353. if (s->mant4_cnt == 0)
  354. bits += 7;
  355. if (++s->mant4_cnt == 2)
  356. s->mant4_cnt = 0;
  357. break;
  358. case 14:
  359. bits += 14;
  360. break;
  361. case 15:
  362. bits += 16;
  363. break;
  364. default:
  365. bits += mant - 1;
  366. break;
  367. }
  368. }
  369. return bits;
  370. }
  371. static void bit_alloc_masking(AC3EncodeContext *s,
  372. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  373. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  374. int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  375. int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50])
  376. {
  377. int blk, ch;
  378. int16_t band_psd[NB_BLOCKS][AC3_MAX_CHANNELS][50];
  379. for(blk=0; blk<NB_BLOCKS; blk++) {
  380. for(ch=0;ch<s->nb_all_channels;ch++) {
  381. if(exp_strategy[blk][ch] == EXP_REUSE) {
  382. memcpy(psd[blk][ch], psd[blk-1][ch], (N/2)*sizeof(int16_t));
  383. memcpy(mask[blk][ch], mask[blk-1][ch], 50*sizeof(int16_t));
  384. } else {
  385. ff_ac3_bit_alloc_calc_psd(encoded_exp[blk][ch], 0,
  386. s->nb_coefs[ch],
  387. psd[blk][ch], band_psd[blk][ch]);
  388. ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, band_psd[blk][ch],
  389. 0, s->nb_coefs[ch],
  390. ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
  391. ch == s->lfe_channel,
  392. DBA_NONE, 0, NULL, NULL, NULL,
  393. mask[blk][ch]);
  394. }
  395. }
  396. }
  397. }
  398. static int bit_alloc(AC3EncodeContext *s,
  399. int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50],
  400. int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  401. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  402. int frame_bits, int coarse_snr_offset, int fine_snr_offset)
  403. {
  404. int i, ch;
  405. int snr_offset;
  406. snr_offset = (((coarse_snr_offset - 15) << 4) + fine_snr_offset) << 2;
  407. /* compute size */
  408. for(i=0;i<NB_BLOCKS;i++) {
  409. s->mant1_cnt = 0;
  410. s->mant2_cnt = 0;
  411. s->mant4_cnt = 0;
  412. for(ch=0;ch<s->nb_all_channels;ch++) {
  413. ff_ac3_bit_alloc_calc_bap(mask[i][ch], psd[i][ch], 0,
  414. s->nb_coefs[ch], snr_offset,
  415. s->bit_alloc.floor, ff_ac3_bap_tab,
  416. bap[i][ch]);
  417. frame_bits += compute_mantissa_size(s, bap[i][ch],
  418. s->nb_coefs[ch]);
  419. }
  420. }
  421. #if 0
  422. printf("csnr=%d fsnr=%d frame_bits=%d diff=%d\n",
  423. coarse_snr_offset, fine_snr_offset, frame_bits,
  424. 16 * s->frame_size - ((frame_bits + 7) & ~7));
  425. #endif
  426. return 16 * s->frame_size - frame_bits;
  427. }
  428. #define SNR_INC1 4
  429. static int compute_bit_allocation(AC3EncodeContext *s,
  430. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  431. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  432. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  433. int frame_bits)
  434. {
  435. int i, ch;
  436. int coarse_snr_offset, fine_snr_offset;
  437. uint8_t bap1[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  438. int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  439. int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50];
  440. static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
  441. /* init default parameters */
  442. s->slow_decay_code = 2;
  443. s->fast_decay_code = 1;
  444. s->slow_gain_code = 1;
  445. s->db_per_bit_code = 2;
  446. s->floor_code = 4;
  447. for(ch=0;ch<s->nb_all_channels;ch++)
  448. s->fast_gain_code[ch] = 4;
  449. /* compute real values */
  450. s->bit_alloc.sr_code = s->sr_code;
  451. s->bit_alloc.sr_shift = s->sr_shift;
  452. s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->sr_shift;
  453. s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->sr_shift;
  454. s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code];
  455. s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
  456. s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code];
  457. /* header size */
  458. frame_bits += 65;
  459. // if (s->channel_mode == 2)
  460. // frame_bits += 2;
  461. frame_bits += frame_bits_inc[s->channel_mode];
  462. /* audio blocks */
  463. for(i=0;i<NB_BLOCKS;i++) {
  464. frame_bits += s->nb_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
  465. if (s->channel_mode == AC3_CHMODE_STEREO) {
  466. frame_bits++; /* rematstr */
  467. if(i==0) frame_bits += 4;
  468. }
  469. frame_bits += 2 * s->nb_channels; /* chexpstr[2] * c */
  470. if (s->lfe)
  471. frame_bits++; /* lfeexpstr */
  472. for(ch=0;ch<s->nb_channels;ch++) {
  473. if (exp_strategy[i][ch] != EXP_REUSE)
  474. frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
  475. }
  476. frame_bits++; /* baie */
  477. frame_bits++; /* snr */
  478. frame_bits += 2; /* delta / skip */
  479. }
  480. frame_bits++; /* cplinu for block 0 */
  481. /* bit alloc info */
  482. /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
  483. /* csnroffset[6] */
  484. /* (fsnoffset[4] + fgaincod[4]) * c */
  485. frame_bits += 2*4 + 3 + 6 + s->nb_all_channels * (4 + 3);
  486. /* auxdatae, crcrsv */
  487. frame_bits += 2;
  488. /* CRC */
  489. frame_bits += 16;
  490. /* calculate psd and masking curve before doing bit allocation */
  491. bit_alloc_masking(s, encoded_exp, exp_strategy, psd, mask);
  492. /* now the big work begins : do the bit allocation. Modify the snr
  493. offset until we can pack everything in the requested frame size */
  494. coarse_snr_offset = s->coarse_snr_offset;
  495. while (coarse_snr_offset >= 0 &&
  496. bit_alloc(s, mask, psd, bap, frame_bits, coarse_snr_offset, 0) < 0)
  497. coarse_snr_offset -= SNR_INC1;
  498. if (coarse_snr_offset < 0) {
  499. av_log(NULL, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
  500. return -1;
  501. }
  502. while ((coarse_snr_offset + SNR_INC1) <= 63 &&
  503. bit_alloc(s, mask, psd, bap1, frame_bits,
  504. coarse_snr_offset + SNR_INC1, 0) >= 0) {
  505. coarse_snr_offset += SNR_INC1;
  506. memcpy(bap, bap1, sizeof(bap1));
  507. }
  508. while ((coarse_snr_offset + 1) <= 63 &&
  509. bit_alloc(s, mask, psd, bap1, frame_bits, coarse_snr_offset + 1, 0) >= 0) {
  510. coarse_snr_offset++;
  511. memcpy(bap, bap1, sizeof(bap1));
  512. }
  513. fine_snr_offset = 0;
  514. while ((fine_snr_offset + SNR_INC1) <= 15 &&
  515. bit_alloc(s, mask, psd, bap1, frame_bits,
  516. coarse_snr_offset, fine_snr_offset + SNR_INC1) >= 0) {
  517. fine_snr_offset += SNR_INC1;
  518. memcpy(bap, bap1, sizeof(bap1));
  519. }
  520. while ((fine_snr_offset + 1) <= 15 &&
  521. bit_alloc(s, mask, psd, bap1, frame_bits,
  522. coarse_snr_offset, fine_snr_offset + 1) >= 0) {
  523. fine_snr_offset++;
  524. memcpy(bap, bap1, sizeof(bap1));
  525. }
  526. s->coarse_snr_offset = coarse_snr_offset;
  527. for(ch=0;ch<s->nb_all_channels;ch++)
  528. s->fine_snr_offset[ch] = fine_snr_offset;
  529. #if defined(DEBUG_BITALLOC)
  530. {
  531. int j;
  532. for(i=0;i<6;i++) {
  533. for(ch=0;ch<s->nb_all_channels;ch++) {
  534. printf("Block #%d Ch%d:\n", i, ch);
  535. printf("bap=");
  536. for(j=0;j<s->nb_coefs[ch];j++) {
  537. printf("%d ",bap[i][ch][j]);
  538. }
  539. printf("\n");
  540. }
  541. }
  542. }
  543. #endif
  544. return 0;
  545. }
  546. static av_cold int set_channel_info(AC3EncodeContext *s, int channels,
  547. int64_t *channel_layout)
  548. {
  549. int ch_layout;
  550. if (channels < 1 || channels > AC3_MAX_CHANNELS)
  551. return -1;
  552. if ((uint64_t)*channel_layout > 0x7FF)
  553. return -1;
  554. ch_layout = *channel_layout;
  555. if (!ch_layout)
  556. ch_layout = avcodec_guess_channel_layout(channels, CODEC_ID_AC3, NULL);
  557. if (avcodec_channel_layout_num_channels(ch_layout) != channels)
  558. return -1;
  559. s->lfe = !!(ch_layout & CH_LOW_FREQUENCY);
  560. s->nb_all_channels = channels;
  561. s->nb_channels = channels - s->lfe;
  562. s->lfe_channel = s->lfe ? s->nb_channels : -1;
  563. if (s->lfe)
  564. ch_layout -= CH_LOW_FREQUENCY;
  565. switch (ch_layout) {
  566. case CH_LAYOUT_MONO: s->channel_mode = AC3_CHMODE_MONO; break;
  567. case CH_LAYOUT_STEREO: s->channel_mode = AC3_CHMODE_STEREO; break;
  568. case CH_LAYOUT_SURROUND: s->channel_mode = AC3_CHMODE_3F; break;
  569. case CH_LAYOUT_2_1: s->channel_mode = AC3_CHMODE_2F1R; break;
  570. case CH_LAYOUT_4POINT0: s->channel_mode = AC3_CHMODE_3F1R; break;
  571. case CH_LAYOUT_QUAD:
  572. case CH_LAYOUT_2_2: s->channel_mode = AC3_CHMODE_2F2R; break;
  573. case CH_LAYOUT_5POINT0:
  574. case CH_LAYOUT_5POINT0_BACK: s->channel_mode = AC3_CHMODE_3F2R; break;
  575. default:
  576. return -1;
  577. }
  578. s->channel_map = ff_ac3_enc_channel_map[s->channel_mode][s->lfe];
  579. *channel_layout = ch_layout;
  580. if (s->lfe)
  581. *channel_layout |= CH_LOW_FREQUENCY;
  582. return 0;
  583. }
  584. static av_cold int AC3_encode_init(AVCodecContext *avctx)
  585. {
  586. int freq = avctx->sample_rate;
  587. int bitrate = avctx->bit_rate;
  588. AC3EncodeContext *s = avctx->priv_data;
  589. int i, j, ch;
  590. float alpha;
  591. int bw_code;
  592. avctx->frame_size = AC3_FRAME_SIZE;
  593. ac3_common_init();
  594. if (!avctx->channel_layout) {
  595. av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
  596. "encoder will guess the layout, but it "
  597. "might be incorrect.\n");
  598. }
  599. if (set_channel_info(s, avctx->channels, &avctx->channel_layout)) {
  600. av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
  601. return -1;
  602. }
  603. /* frequency */
  604. for(i=0;i<3;i++) {
  605. for(j=0;j<3;j++)
  606. if ((ff_ac3_sample_rate_tab[j] >> i) == freq)
  607. goto found;
  608. }
  609. return -1;
  610. found:
  611. s->sample_rate = freq;
  612. s->sr_shift = i;
  613. s->sr_code = j;
  614. s->bitstream_id = 8 + s->sr_shift;
  615. s->bitstream_mode = 0; /* complete main audio service */
  616. /* bitrate & frame size */
  617. for(i=0;i<19;i++) {
  618. if ((ff_ac3_bitrate_tab[i] >> s->sr_shift)*1000 == bitrate)
  619. break;
  620. }
  621. if (i == 19)
  622. return -1;
  623. s->bit_rate = bitrate;
  624. s->frame_size_code = i << 1;
  625. s->frame_size_min = ff_ac3_frame_size_tab[s->frame_size_code][s->sr_code];
  626. s->bits_written = 0;
  627. s->samples_written = 0;
  628. s->frame_size = s->frame_size_min;
  629. /* bit allocation init */
  630. if(avctx->cutoff) {
  631. /* calculate bandwidth based on user-specified cutoff frequency */
  632. int cutoff = av_clip(avctx->cutoff, 1, s->sample_rate >> 1);
  633. int fbw_coeffs = cutoff * 512 / s->sample_rate;
  634. bw_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
  635. } else {
  636. /* use default bandwidth setting */
  637. /* XXX: should compute the bandwidth according to the frame
  638. size, so that we avoid annoying high frequency artifacts */
  639. bw_code = 50;
  640. }
  641. for(ch=0;ch<s->nb_channels;ch++) {
  642. /* bandwidth for each channel */
  643. s->chbwcod[ch] = bw_code;
  644. s->nb_coefs[ch] = bw_code * 3 + 73;
  645. }
  646. if (s->lfe) {
  647. s->nb_coefs[s->lfe_channel] = 7; /* fixed */
  648. }
  649. /* initial snr offset */
  650. s->coarse_snr_offset = 40;
  651. /* mdct init */
  652. fft_init(MDCT_NBITS - 2);
  653. for(i=0;i<N/4;i++) {
  654. alpha = 2 * M_PI * (i + 1.0 / 8.0) / (float)N;
  655. xcos1[i] = fix15(-cos(alpha));
  656. xsin1[i] = fix15(-sin(alpha));
  657. }
  658. avctx->coded_frame= avcodec_alloc_frame();
  659. avctx->coded_frame->key_frame= 1;
  660. return 0;
  661. }
  662. /* output the AC-3 frame header */
  663. static void output_frame_header(AC3EncodeContext *s, unsigned char *frame)
  664. {
  665. init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
  666. put_bits(&s->pb, 16, 0x0b77); /* frame header */
  667. put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
  668. put_bits(&s->pb, 2, s->sr_code);
  669. put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min));
  670. put_bits(&s->pb, 5, s->bitstream_id);
  671. put_bits(&s->pb, 3, s->bitstream_mode);
  672. put_bits(&s->pb, 3, s->channel_mode);
  673. if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
  674. put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */
  675. if (s->channel_mode & 0x04)
  676. put_bits(&s->pb, 2, 1); /* XXX -6 dB */
  677. if (s->channel_mode == AC3_CHMODE_STEREO)
  678. put_bits(&s->pb, 2, 0); /* surround not indicated */
  679. put_bits(&s->pb, 1, s->lfe); /* LFE */
  680. put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */
  681. put_bits(&s->pb, 1, 0); /* no compression control word */
  682. put_bits(&s->pb, 1, 0); /* no lang code */
  683. put_bits(&s->pb, 1, 0); /* no audio production info */
  684. put_bits(&s->pb, 1, 0); /* no copyright */
  685. put_bits(&s->pb, 1, 1); /* original bitstream */
  686. put_bits(&s->pb, 1, 0); /* no time code 1 */
  687. put_bits(&s->pb, 1, 0); /* no time code 2 */
  688. put_bits(&s->pb, 1, 0); /* no additional bit stream info */
  689. }
  690. /* symetric quantization on 'levels' levels */
  691. static inline int sym_quant(int c, int e, int levels)
  692. {
  693. int v;
  694. if (c >= 0) {
  695. v = (levels * (c << e)) >> 24;
  696. v = (v + 1) >> 1;
  697. v = (levels >> 1) + v;
  698. } else {
  699. v = (levels * ((-c) << e)) >> 24;
  700. v = (v + 1) >> 1;
  701. v = (levels >> 1) - v;
  702. }
  703. assert (v >= 0 && v < levels);
  704. return v;
  705. }
  706. /* asymetric quantization on 2^qbits levels */
  707. static inline int asym_quant(int c, int e, int qbits)
  708. {
  709. int lshift, m, v;
  710. lshift = e + qbits - 24;
  711. if (lshift >= 0)
  712. v = c << lshift;
  713. else
  714. v = c >> (-lshift);
  715. /* rounding */
  716. v = (v + 1) >> 1;
  717. m = (1 << (qbits-1));
  718. if (v >= m)
  719. v = m - 1;
  720. assert(v >= -m);
  721. return v & ((1 << qbits)-1);
  722. }
  723. /* Output one audio block. There are NB_BLOCKS audio blocks in one AC-3
  724. frame */
  725. static void output_audio_block(AC3EncodeContext *s,
  726. uint8_t exp_strategy[AC3_MAX_CHANNELS],
  727. uint8_t encoded_exp[AC3_MAX_CHANNELS][N/2],
  728. uint8_t bap[AC3_MAX_CHANNELS][N/2],
  729. int32_t mdct_coefs[AC3_MAX_CHANNELS][N/2],
  730. int8_t global_exp[AC3_MAX_CHANNELS],
  731. int block_num)
  732. {
  733. int ch, nb_groups, group_size, i, baie, rbnd;
  734. uint8_t *p;
  735. uint16_t qmant[AC3_MAX_CHANNELS][N/2];
  736. int exp0, exp1;
  737. int mant1_cnt, mant2_cnt, mant4_cnt;
  738. uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr;
  739. int delta0, delta1, delta2;
  740. for(ch=0;ch<s->nb_channels;ch++)
  741. put_bits(&s->pb, 1, 0); /* 512 point MDCT */
  742. for(ch=0;ch<s->nb_channels;ch++)
  743. put_bits(&s->pb, 1, 1); /* no dither */
  744. put_bits(&s->pb, 1, 0); /* no dynamic range */
  745. if (block_num == 0) {
  746. /* for block 0, even if no coupling, we must say it. This is a
  747. waste of bit :-) */
  748. put_bits(&s->pb, 1, 1); /* coupling strategy present */
  749. put_bits(&s->pb, 1, 0); /* no coupling strategy */
  750. } else {
  751. put_bits(&s->pb, 1, 0); /* no new coupling strategy */
  752. }
  753. if (s->channel_mode == AC3_CHMODE_STEREO)
  754. {
  755. if(block_num==0)
  756. {
  757. /* first block must define rematrixing (rematstr) */
  758. put_bits(&s->pb, 1, 1);
  759. /* dummy rematrixing rematflg(1:4)=0 */
  760. for (rbnd=0;rbnd<4;rbnd++)
  761. put_bits(&s->pb, 1, 0);
  762. }
  763. else
  764. {
  765. /* no matrixing (but should be used in the future) */
  766. put_bits(&s->pb, 1, 0);
  767. }
  768. }
  769. #if defined(DEBUG)
  770. {
  771. static int count = 0;
  772. av_log(NULL, AV_LOG_DEBUG, "Block #%d (%d)\n", block_num, count++);
  773. }
  774. #endif
  775. /* exponent strategy */
  776. for(ch=0;ch<s->nb_channels;ch++) {
  777. put_bits(&s->pb, 2, exp_strategy[ch]);
  778. }
  779. if (s->lfe) {
  780. put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]);
  781. }
  782. for(ch=0;ch<s->nb_channels;ch++) {
  783. if (exp_strategy[ch] != EXP_REUSE)
  784. put_bits(&s->pb, 6, s->chbwcod[ch]);
  785. }
  786. /* exponents */
  787. for (ch = 0; ch < s->nb_all_channels; ch++) {
  788. switch(exp_strategy[ch]) {
  789. case EXP_REUSE:
  790. continue;
  791. case EXP_D15:
  792. group_size = 1;
  793. break;
  794. case EXP_D25:
  795. group_size = 2;
  796. break;
  797. default:
  798. case EXP_D45:
  799. group_size = 4;
  800. break;
  801. }
  802. nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size);
  803. p = encoded_exp[ch];
  804. /* first exponent */
  805. exp1 = *p++;
  806. put_bits(&s->pb, 4, exp1);
  807. /* next ones are delta encoded */
  808. for(i=0;i<nb_groups;i++) {
  809. /* merge three delta in one code */
  810. exp0 = exp1;
  811. exp1 = p[0];
  812. p += group_size;
  813. delta0 = exp1 - exp0 + 2;
  814. exp0 = exp1;
  815. exp1 = p[0];
  816. p += group_size;
  817. delta1 = exp1 - exp0 + 2;
  818. exp0 = exp1;
  819. exp1 = p[0];
  820. p += group_size;
  821. delta2 = exp1 - exp0 + 2;
  822. put_bits(&s->pb, 7, ((delta0 * 5 + delta1) * 5) + delta2);
  823. }
  824. if (ch != s->lfe_channel)
  825. put_bits(&s->pb, 2, 0); /* no gain range info */
  826. }
  827. /* bit allocation info */
  828. baie = (block_num == 0);
  829. put_bits(&s->pb, 1, baie);
  830. if (baie) {
  831. put_bits(&s->pb, 2, s->slow_decay_code);
  832. put_bits(&s->pb, 2, s->fast_decay_code);
  833. put_bits(&s->pb, 2, s->slow_gain_code);
  834. put_bits(&s->pb, 2, s->db_per_bit_code);
  835. put_bits(&s->pb, 3, s->floor_code);
  836. }
  837. /* snr offset */
  838. put_bits(&s->pb, 1, baie); /* always present with bai */
  839. if (baie) {
  840. put_bits(&s->pb, 6, s->coarse_snr_offset);
  841. for(ch=0;ch<s->nb_all_channels;ch++) {
  842. put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
  843. put_bits(&s->pb, 3, s->fast_gain_code[ch]);
  844. }
  845. }
  846. put_bits(&s->pb, 1, 0); /* no delta bit allocation */
  847. put_bits(&s->pb, 1, 0); /* no data to skip */
  848. /* mantissa encoding : we use two passes to handle the grouping. A
  849. one pass method may be faster, but it would necessitate to
  850. modify the output stream. */
  851. /* first pass: quantize */
  852. mant1_cnt = mant2_cnt = mant4_cnt = 0;
  853. qmant1_ptr = qmant2_ptr = qmant4_ptr = NULL;
  854. for (ch = 0; ch < s->nb_all_channels; ch++) {
  855. int b, c, e, v;
  856. for(i=0;i<s->nb_coefs[ch];i++) {
  857. c = mdct_coefs[ch][i];
  858. e = encoded_exp[ch][i] - global_exp[ch];
  859. b = bap[ch][i];
  860. switch(b) {
  861. case 0:
  862. v = 0;
  863. break;
  864. case 1:
  865. v = sym_quant(c, e, 3);
  866. switch(mant1_cnt) {
  867. case 0:
  868. qmant1_ptr = &qmant[ch][i];
  869. v = 9 * v;
  870. mant1_cnt = 1;
  871. break;
  872. case 1:
  873. *qmant1_ptr += 3 * v;
  874. mant1_cnt = 2;
  875. v = 128;
  876. break;
  877. default:
  878. *qmant1_ptr += v;
  879. mant1_cnt = 0;
  880. v = 128;
  881. break;
  882. }
  883. break;
  884. case 2:
  885. v = sym_quant(c, e, 5);
  886. switch(mant2_cnt) {
  887. case 0:
  888. qmant2_ptr = &qmant[ch][i];
  889. v = 25 * v;
  890. mant2_cnt = 1;
  891. break;
  892. case 1:
  893. *qmant2_ptr += 5 * v;
  894. mant2_cnt = 2;
  895. v = 128;
  896. break;
  897. default:
  898. *qmant2_ptr += v;
  899. mant2_cnt = 0;
  900. v = 128;
  901. break;
  902. }
  903. break;
  904. case 3:
  905. v = sym_quant(c, e, 7);
  906. break;
  907. case 4:
  908. v = sym_quant(c, e, 11);
  909. switch(mant4_cnt) {
  910. case 0:
  911. qmant4_ptr = &qmant[ch][i];
  912. v = 11 * v;
  913. mant4_cnt = 1;
  914. break;
  915. default:
  916. *qmant4_ptr += v;
  917. mant4_cnt = 0;
  918. v = 128;
  919. break;
  920. }
  921. break;
  922. case 5:
  923. v = sym_quant(c, e, 15);
  924. break;
  925. case 14:
  926. v = asym_quant(c, e, 14);
  927. break;
  928. case 15:
  929. v = asym_quant(c, e, 16);
  930. break;
  931. default:
  932. v = asym_quant(c, e, b - 1);
  933. break;
  934. }
  935. qmant[ch][i] = v;
  936. }
  937. }
  938. /* second pass : output the values */
  939. for (ch = 0; ch < s->nb_all_channels; ch++) {
  940. int b, q;
  941. for(i=0;i<s->nb_coefs[ch];i++) {
  942. q = qmant[ch][i];
  943. b = bap[ch][i];
  944. switch(b) {
  945. case 0:
  946. break;
  947. case 1:
  948. if (q != 128)
  949. put_bits(&s->pb, 5, q);
  950. break;
  951. case 2:
  952. if (q != 128)
  953. put_bits(&s->pb, 7, q);
  954. break;
  955. case 3:
  956. put_bits(&s->pb, 3, q);
  957. break;
  958. case 4:
  959. if (q != 128)
  960. put_bits(&s->pb, 7, q);
  961. break;
  962. case 14:
  963. put_bits(&s->pb, 14, q);
  964. break;
  965. case 15:
  966. put_bits(&s->pb, 16, q);
  967. break;
  968. default:
  969. put_bits(&s->pb, b - 1, q);
  970. break;
  971. }
  972. }
  973. }
  974. }
  975. #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
  976. static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
  977. {
  978. unsigned int c;
  979. c = 0;
  980. while (a) {
  981. if (a & 1)
  982. c ^= b;
  983. a = a >> 1;
  984. b = b << 1;
  985. if (b & (1 << 16))
  986. b ^= poly;
  987. }
  988. return c;
  989. }
  990. static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
  991. {
  992. unsigned int r;
  993. r = 1;
  994. while (n) {
  995. if (n & 1)
  996. r = mul_poly(r, a, poly);
  997. a = mul_poly(a, a, poly);
  998. n >>= 1;
  999. }
  1000. return r;
  1001. }
  1002. /* compute log2(max(abs(tab[]))) */
  1003. static int log2_tab(int16_t *tab, int n)
  1004. {
  1005. int i, v;
  1006. v = 0;
  1007. for(i=0;i<n;i++) {
  1008. v |= abs(tab[i]);
  1009. }
  1010. return av_log2(v);
  1011. }
  1012. static void lshift_tab(int16_t *tab, int n, int lshift)
  1013. {
  1014. int i;
  1015. if (lshift > 0) {
  1016. for(i=0;i<n;i++) {
  1017. tab[i] <<= lshift;
  1018. }
  1019. } else if (lshift < 0) {
  1020. lshift = -lshift;
  1021. for(i=0;i<n;i++) {
  1022. tab[i] >>= lshift;
  1023. }
  1024. }
  1025. }
  1026. /* fill the end of the frame and compute the two crcs */
  1027. static int output_frame_end(AC3EncodeContext *s)
  1028. {
  1029. int frame_size, frame_size_58, n, crc1, crc2, crc_inv;
  1030. uint8_t *frame;
  1031. frame_size = s->frame_size; /* frame size in words */
  1032. /* align to 8 bits */
  1033. flush_put_bits(&s->pb);
  1034. /* add zero bytes to reach the frame size */
  1035. frame = s->pb.buf;
  1036. n = 2 * s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
  1037. assert(n >= 0);
  1038. if(n>0)
  1039. memset(put_bits_ptr(&s->pb), 0, n);
  1040. /* Now we must compute both crcs : this is not so easy for crc1
  1041. because it is at the beginning of the data... */
  1042. frame_size_58 = (frame_size >> 1) + (frame_size >> 3);
  1043. crc1 = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
  1044. frame + 4, 2 * frame_size_58 - 4));
  1045. /* XXX: could precompute crc_inv */
  1046. crc_inv = pow_poly((CRC16_POLY >> 1), (16 * frame_size_58) - 16, CRC16_POLY);
  1047. crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
  1048. AV_WB16(frame+2,crc1);
  1049. crc2 = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
  1050. frame + 2 * frame_size_58,
  1051. (frame_size - frame_size_58) * 2 - 2));
  1052. AV_WB16(frame+2*frame_size-2,crc2);
  1053. // printf("n=%d frame_size=%d\n", n, frame_size);
  1054. return frame_size * 2;
  1055. }
  1056. static int AC3_encode_frame(AVCodecContext *avctx,
  1057. unsigned char *frame, int buf_size, void *data)
  1058. {
  1059. AC3EncodeContext *s = avctx->priv_data;
  1060. int16_t *samples = data;
  1061. int i, j, k, v, ch;
  1062. int16_t input_samples[N];
  1063. int32_t mdct_coef[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1064. uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1065. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS];
  1066. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1067. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1068. int8_t exp_samples[NB_BLOCKS][AC3_MAX_CHANNELS];
  1069. int frame_bits;
  1070. frame_bits = 0;
  1071. for(ch=0;ch<s->nb_all_channels;ch++) {
  1072. int ich = s->channel_map[ch];
  1073. /* fixed mdct to the six sub blocks & exponent computation */
  1074. for(i=0;i<NB_BLOCKS;i++) {
  1075. int16_t *sptr;
  1076. int sinc;
  1077. /* compute input samples */
  1078. memcpy(input_samples, s->last_samples[ich], N/2 * sizeof(int16_t));
  1079. sinc = s->nb_all_channels;
  1080. sptr = samples + (sinc * (N/2) * i) + ich;
  1081. for(j=0;j<N/2;j++) {
  1082. v = *sptr;
  1083. input_samples[j + N/2] = v;
  1084. s->last_samples[ich][j] = v;
  1085. sptr += sinc;
  1086. }
  1087. /* apply the MDCT window */
  1088. for(j=0;j<N/2;j++) {
  1089. input_samples[j] = MUL16(input_samples[j],
  1090. ff_ac3_window[j]) >> 15;
  1091. input_samples[N-j-1] = MUL16(input_samples[N-j-1],
  1092. ff_ac3_window[j]) >> 15;
  1093. }
  1094. /* Normalize the samples to use the maximum available
  1095. precision */
  1096. v = 14 - log2_tab(input_samples, N);
  1097. if (v < 0)
  1098. v = 0;
  1099. exp_samples[i][ch] = v - 9;
  1100. lshift_tab(input_samples, N, v);
  1101. /* do the MDCT */
  1102. mdct512(mdct_coef[i][ch], input_samples);
  1103. /* compute "exponents". We take into account the
  1104. normalization there */
  1105. for(j=0;j<N/2;j++) {
  1106. int e;
  1107. v = abs(mdct_coef[i][ch][j]);
  1108. if (v == 0)
  1109. e = 24;
  1110. else {
  1111. e = 23 - av_log2(v) + exp_samples[i][ch];
  1112. if (e >= 24) {
  1113. e = 24;
  1114. mdct_coef[i][ch][j] = 0;
  1115. }
  1116. }
  1117. exp[i][ch][j] = e;
  1118. }
  1119. }
  1120. compute_exp_strategy(exp_strategy, exp, ch, ch == s->lfe_channel);
  1121. /* compute the exponents as the decoder will see them. The
  1122. EXP_REUSE case must be handled carefully : we select the
  1123. min of the exponents */
  1124. i = 0;
  1125. while (i < NB_BLOCKS) {
  1126. j = i + 1;
  1127. while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) {
  1128. exponent_min(exp[i][ch], exp[j][ch], s->nb_coefs[ch]);
  1129. j++;
  1130. }
  1131. frame_bits += encode_exp(encoded_exp[i][ch],
  1132. exp[i][ch], s->nb_coefs[ch],
  1133. exp_strategy[i][ch]);
  1134. /* copy encoded exponents for reuse case */
  1135. for(k=i+1;k<j;k++) {
  1136. memcpy(encoded_exp[k][ch], encoded_exp[i][ch],
  1137. s->nb_coefs[ch] * sizeof(uint8_t));
  1138. }
  1139. i = j;
  1140. }
  1141. }
  1142. /* adjust for fractional frame sizes */
  1143. while(s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
  1144. s->bits_written -= s->bit_rate;
  1145. s->samples_written -= s->sample_rate;
  1146. }
  1147. s->frame_size = s->frame_size_min + (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
  1148. s->bits_written += s->frame_size * 16;
  1149. s->samples_written += AC3_FRAME_SIZE;
  1150. compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits);
  1151. /* everything is known... let's output the frame */
  1152. output_frame_header(s, frame);
  1153. for(i=0;i<NB_BLOCKS;i++) {
  1154. output_audio_block(s, exp_strategy[i], encoded_exp[i],
  1155. bap[i], mdct_coef[i], exp_samples[i], i);
  1156. }
  1157. return output_frame_end(s);
  1158. }
  1159. static av_cold int AC3_encode_close(AVCodecContext *avctx)
  1160. {
  1161. av_freep(&avctx->coded_frame);
  1162. return 0;
  1163. }
  1164. #if 0
  1165. /*************************************************************************/
  1166. /* TEST */
  1167. #undef random
  1168. #define FN (N/4)
  1169. void fft_test(void)
  1170. {
  1171. IComplex in[FN], in1[FN];
  1172. int k, n, i;
  1173. float sum_re, sum_im, a;
  1174. /* FFT test */
  1175. for(i=0;i<FN;i++) {
  1176. in[i].re = random() % 65535 - 32767;
  1177. in[i].im = random() % 65535 - 32767;
  1178. in1[i] = in[i];
  1179. }
  1180. fft(in, 7);
  1181. /* do it by hand */
  1182. for(k=0;k<FN;k++) {
  1183. sum_re = 0;
  1184. sum_im = 0;
  1185. for(n=0;n<FN;n++) {
  1186. a = -2 * M_PI * (n * k) / FN;
  1187. sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
  1188. sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
  1189. }
  1190. printf("%3d: %6d,%6d %6.0f,%6.0f\n",
  1191. k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
  1192. }
  1193. }
  1194. void mdct_test(void)
  1195. {
  1196. int16_t input[N];
  1197. int32_t output[N/2];
  1198. float input1[N];
  1199. float output1[N/2];
  1200. float s, a, err, e, emax;
  1201. int i, k, n;
  1202. for(i=0;i<N;i++) {
  1203. input[i] = (random() % 65535 - 32767) * 9 / 10;
  1204. input1[i] = input[i];
  1205. }
  1206. mdct512(output, input);
  1207. /* do it by hand */
  1208. for(k=0;k<N/2;k++) {
  1209. s = 0;
  1210. for(n=0;n<N;n++) {
  1211. a = (2*M_PI*(2*n+1+N/2)*(2*k+1) / (4 * N));
  1212. s += input1[n] * cos(a);
  1213. }
  1214. output1[k] = -2 * s / N;
  1215. }
  1216. err = 0;
  1217. emax = 0;
  1218. for(i=0;i<N/2;i++) {
  1219. printf("%3d: %7d %7.0f\n", i, output[i], output1[i]);
  1220. e = output[i] - output1[i];
  1221. if (e > emax)
  1222. emax = e;
  1223. err += e * e;
  1224. }
  1225. printf("err2=%f emax=%f\n", err / (N/2), emax);
  1226. }
  1227. void test_ac3(void)
  1228. {
  1229. AC3EncodeContext ctx;
  1230. unsigned char frame[AC3_MAX_CODED_FRAME_SIZE];
  1231. short samples[AC3_FRAME_SIZE];
  1232. int ret, i;
  1233. AC3_encode_init(&ctx, 44100, 64000, 1);
  1234. fft_test();
  1235. mdct_test();
  1236. for(i=0;i<AC3_FRAME_SIZE;i++)
  1237. samples[i] = (int)(sin(2*M_PI*i*1000.0/44100) * 10000);
  1238. ret = AC3_encode_frame(&ctx, frame, samples);
  1239. printf("ret=%d\n", ret);
  1240. }
  1241. #endif
  1242. AVCodec ac3_encoder = {
  1243. "ac3",
  1244. CODEC_TYPE_AUDIO,
  1245. CODEC_ID_AC3,
  1246. sizeof(AC3EncodeContext),
  1247. AC3_encode_init,
  1248. AC3_encode_frame,
  1249. AC3_encode_close,
  1250. NULL,
  1251. .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
  1252. .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
  1253. .channel_layouts = (int64_t[]){
  1254. CH_LAYOUT_MONO,
  1255. CH_LAYOUT_STEREO,
  1256. CH_LAYOUT_2_1,
  1257. CH_LAYOUT_SURROUND,
  1258. CH_LAYOUT_2_2,
  1259. CH_LAYOUT_QUAD,
  1260. CH_LAYOUT_4POINT0,
  1261. CH_LAYOUT_5POINT0,
  1262. CH_LAYOUT_5POINT0_BACK,
  1263. (CH_LAYOUT_MONO | CH_LOW_FREQUENCY),
  1264. (CH_LAYOUT_STEREO | CH_LOW_FREQUENCY),
  1265. (CH_LAYOUT_2_1 | CH_LOW_FREQUENCY),
  1266. (CH_LAYOUT_SURROUND | CH_LOW_FREQUENCY),
  1267. (CH_LAYOUT_2_2 | CH_LOW_FREQUENCY),
  1268. (CH_LAYOUT_QUAD | CH_LOW_FREQUENCY),
  1269. (CH_LAYOUT_4POINT0 | CH_LOW_FREQUENCY),
  1270. CH_LAYOUT_5POINT1,
  1271. CH_LAYOUT_5POINT1_BACK,
  1272. 0 },
  1273. };