You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4194 lines
144KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file vc1.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1.h"
  31. #include "vc1data.h"
  32. #include "vc1acdata.h"
  33. #include "msmpeg4data.h"
  34. #undef NDEBUG
  35. #include <assert.h>
  36. #define MB_INTRA_VLC_BITS 9
  37. #define DC_VLC_BITS 9
  38. #define AC_VLC_BITS 9
  39. static const uint16_t table_mb_intra[64][2];
  40. /**
  41. * Get unary code of limited length
  42. * @todo FIXME Slow and ugly
  43. * @param gb GetBitContext
  44. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  45. * @param[in] len Maximum length
  46. * @return Unary length/index
  47. */
  48. static int get_prefix(GetBitContext *gb, int stop, int len)
  49. {
  50. #if 1
  51. int i;
  52. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  53. return i;
  54. /* int i = 0, tmp = !stop;
  55. while (i != len && tmp != stop)
  56. {
  57. tmp = get_bits(gb, 1);
  58. i++;
  59. }
  60. if (i == len && tmp != stop) return len+1;
  61. return i;*/
  62. #else
  63. unsigned int buf;
  64. int log;
  65. OPEN_READER(re, gb);
  66. UPDATE_CACHE(re, gb);
  67. buf=GET_CACHE(re, gb); //Still not sure
  68. if (stop) buf = ~buf;
  69. log= av_log2(-buf); //FIXME: -?
  70. if (log < limit){
  71. LAST_SKIP_BITS(re, gb, log+1);
  72. CLOSE_READER(re, gb);
  73. return log;
  74. }
  75. LAST_SKIP_BITS(re, gb, limit);
  76. CLOSE_READER(re, gb);
  77. return limit;
  78. #endif
  79. }
  80. static inline int decode210(GetBitContext *gb){
  81. if (get_bits1(gb))
  82. return 0;
  83. else
  84. return 2 - get_bits1(gb);
  85. }
  86. /**
  87. * Init VC-1 specific tables and VC1Context members
  88. * @param v The VC1Context to initialize
  89. * @return Status
  90. */
  91. static int vc1_init_common(VC1Context *v)
  92. {
  93. static int done = 0;
  94. int i = 0;
  95. v->hrd_rate = v->hrd_buffer = NULL;
  96. /* VLC tables */
  97. if(!done)
  98. {
  99. done = 1;
  100. init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  101. ff_vc1_bfraction_bits, 1, 1,
  102. ff_vc1_bfraction_codes, 1, 1, 1);
  103. init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  104. ff_vc1_norm2_bits, 1, 1,
  105. ff_vc1_norm2_codes, 1, 1, 1);
  106. init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  107. ff_vc1_norm6_bits, 1, 1,
  108. ff_vc1_norm6_codes, 2, 2, 1);
  109. init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  110. ff_vc1_imode_bits, 1, 1,
  111. ff_vc1_imode_codes, 1, 1, 1);
  112. for (i=0; i<3; i++)
  113. {
  114. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  115. ff_vc1_ttmb_bits[i], 1, 1,
  116. ff_vc1_ttmb_codes[i], 2, 2, 1);
  117. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  118. ff_vc1_ttblk_bits[i], 1, 1,
  119. ff_vc1_ttblk_codes[i], 1, 1, 1);
  120. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  121. ff_vc1_subblkpat_bits[i], 1, 1,
  122. ff_vc1_subblkpat_codes[i], 1, 1, 1);
  123. }
  124. for(i=0; i<4; i++)
  125. {
  126. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  127. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  128. ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  129. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  130. ff_vc1_cbpcy_p_bits[i], 1, 1,
  131. ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
  132. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  133. ff_vc1_mv_diff_bits[i], 1, 1,
  134. ff_vc1_mv_diff_codes[i], 2, 2, 1);
  135. }
  136. for(i=0; i<8; i++)
  137. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  138. &vc1_ac_tables[i][0][1], 8, 4,
  139. &vc1_ac_tables[i][0][0], 8, 4, 1);
  140. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  141. &ff_msmp4_mb_i_table[0][1], 4, 2,
  142. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  143. }
  144. /* Other defaults */
  145. v->pq = -1;
  146. v->mvrange = 0; /* 7.1.1.18, p80 */
  147. return 0;
  148. }
  149. /***********************************************************************/
  150. /**
  151. * @defgroup bitplane VC9 Bitplane decoding
  152. * @see 8.7, p56
  153. * @{
  154. */
  155. /** @addtogroup bitplane
  156. * Imode types
  157. * @{
  158. */
  159. enum Imode {
  160. IMODE_RAW,
  161. IMODE_NORM2,
  162. IMODE_DIFF2,
  163. IMODE_NORM6,
  164. IMODE_DIFF6,
  165. IMODE_ROWSKIP,
  166. IMODE_COLSKIP
  167. };
  168. /** @} */ //imode defines
  169. /** Decode rows by checking if they are skipped
  170. * @param plane Buffer to store decoded bits
  171. * @param[in] width Width of this buffer
  172. * @param[in] height Height of this buffer
  173. * @param[in] stride of this buffer
  174. */
  175. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  176. int x, y;
  177. for (y=0; y<height; y++){
  178. if (!get_bits(gb, 1)) //rowskip
  179. memset(plane, 0, width);
  180. else
  181. for (x=0; x<width; x++)
  182. plane[x] = get_bits(gb, 1);
  183. plane += stride;
  184. }
  185. }
  186. /** Decode columns by checking if they are skipped
  187. * @param plane Buffer to store decoded bits
  188. * @param[in] width Width of this buffer
  189. * @param[in] height Height of this buffer
  190. * @param[in] stride of this buffer
  191. * @todo FIXME: Optimize
  192. */
  193. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  194. int x, y;
  195. for (x=0; x<width; x++){
  196. if (!get_bits(gb, 1)) //colskip
  197. for (y=0; y<height; y++)
  198. plane[y*stride] = 0;
  199. else
  200. for (y=0; y<height; y++)
  201. plane[y*stride] = get_bits(gb, 1);
  202. plane ++;
  203. }
  204. }
  205. /** Decode a bitplane's bits
  206. * @param bp Bitplane where to store the decode bits
  207. * @param v VC-1 context for bit reading and logging
  208. * @return Status
  209. * @todo FIXME: Optimize
  210. */
  211. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  212. {
  213. GetBitContext *gb = &v->s.gb;
  214. int imode, x, y, code, offset;
  215. uint8_t invert, *planep = data;
  216. int width, height, stride;
  217. width = v->s.mb_width;
  218. height = v->s.mb_height;
  219. stride = v->s.mb_stride;
  220. invert = get_bits(gb, 1);
  221. imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  222. *raw_flag = 0;
  223. switch (imode)
  224. {
  225. case IMODE_RAW:
  226. //Data is actually read in the MB layer (same for all tests == "raw")
  227. *raw_flag = 1; //invert ignored
  228. return invert;
  229. case IMODE_DIFF2:
  230. case IMODE_NORM2:
  231. if ((height * width) & 1)
  232. {
  233. *planep++ = get_bits(gb, 1);
  234. offset = 1;
  235. }
  236. else offset = 0;
  237. // decode bitplane as one long line
  238. for (y = offset; y < height * width; y += 2) {
  239. code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  240. *planep++ = code & 1;
  241. offset++;
  242. if(offset == width) {
  243. offset = 0;
  244. planep += stride - width;
  245. }
  246. *planep++ = code >> 1;
  247. offset++;
  248. if(offset == width) {
  249. offset = 0;
  250. planep += stride - width;
  251. }
  252. }
  253. break;
  254. case IMODE_DIFF6:
  255. case IMODE_NORM6:
  256. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  257. for(y = 0; y < height; y+= 3) {
  258. for(x = width & 1; x < width; x += 2) {
  259. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  260. if(code < 0){
  261. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  262. return -1;
  263. }
  264. planep[x + 0] = (code >> 0) & 1;
  265. planep[x + 1] = (code >> 1) & 1;
  266. planep[x + 0 + stride] = (code >> 2) & 1;
  267. planep[x + 1 + stride] = (code >> 3) & 1;
  268. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  269. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  270. }
  271. planep += stride * 3;
  272. }
  273. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  274. } else { // 3x2
  275. planep += (height & 1) * stride;
  276. for(y = height & 1; y < height; y += 2) {
  277. for(x = width % 3; x < width; x += 3) {
  278. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  279. if(code < 0){
  280. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  281. return -1;
  282. }
  283. planep[x + 0] = (code >> 0) & 1;
  284. planep[x + 1] = (code >> 1) & 1;
  285. planep[x + 2] = (code >> 2) & 1;
  286. planep[x + 0 + stride] = (code >> 3) & 1;
  287. planep[x + 1 + stride] = (code >> 4) & 1;
  288. planep[x + 2 + stride] = (code >> 5) & 1;
  289. }
  290. planep += stride * 2;
  291. }
  292. x = width % 3;
  293. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  294. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  295. }
  296. break;
  297. case IMODE_ROWSKIP:
  298. decode_rowskip(data, width, height, stride, &v->s.gb);
  299. break;
  300. case IMODE_COLSKIP:
  301. decode_colskip(data, width, height, stride, &v->s.gb);
  302. break;
  303. default: break;
  304. }
  305. /* Applying diff operator */
  306. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  307. {
  308. planep = data;
  309. planep[0] ^= invert;
  310. for (x=1; x<width; x++)
  311. planep[x] ^= planep[x-1];
  312. for (y=1; y<height; y++)
  313. {
  314. planep += stride;
  315. planep[0] ^= planep[-stride];
  316. for (x=1; x<width; x++)
  317. {
  318. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  319. else planep[x] ^= planep[x-1];
  320. }
  321. }
  322. }
  323. else if (invert)
  324. {
  325. planep = data;
  326. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  327. }
  328. return (imode<<1) + invert;
  329. }
  330. /** @} */ //Bitplane group
  331. /***********************************************************************/
  332. /** VOP Dquant decoding
  333. * @param v VC-1 Context
  334. */
  335. static int vop_dquant_decoding(VC1Context *v)
  336. {
  337. GetBitContext *gb = &v->s.gb;
  338. int pqdiff;
  339. //variable size
  340. if (v->dquant == 2)
  341. {
  342. pqdiff = get_bits(gb, 3);
  343. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  344. else v->altpq = v->pq + pqdiff + 1;
  345. }
  346. else
  347. {
  348. v->dquantfrm = get_bits(gb, 1);
  349. if ( v->dquantfrm )
  350. {
  351. v->dqprofile = get_bits(gb, 2);
  352. switch (v->dqprofile)
  353. {
  354. case DQPROFILE_SINGLE_EDGE:
  355. case DQPROFILE_DOUBLE_EDGES:
  356. v->dqsbedge = get_bits(gb, 2);
  357. break;
  358. case DQPROFILE_ALL_MBS:
  359. v->dqbilevel = get_bits(gb, 1);
  360. default: break; //Forbidden ?
  361. }
  362. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  363. {
  364. pqdiff = get_bits(gb, 3);
  365. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  366. else v->altpq = v->pq + pqdiff + 1;
  367. }
  368. }
  369. }
  370. return 0;
  371. }
  372. /** Put block onto picture
  373. */
  374. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  375. {
  376. uint8_t *Y;
  377. int ys, us, vs;
  378. DSPContext *dsp = &v->s.dsp;
  379. if(v->rangeredfrm) {
  380. int i, j, k;
  381. for(k = 0; k < 6; k++)
  382. for(j = 0; j < 8; j++)
  383. for(i = 0; i < 8; i++)
  384. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  385. }
  386. ys = v->s.current_picture.linesize[0];
  387. us = v->s.current_picture.linesize[1];
  388. vs = v->s.current_picture.linesize[2];
  389. Y = v->s.dest[0];
  390. dsp->put_pixels_clamped(block[0], Y, ys);
  391. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  392. Y += ys * 8;
  393. dsp->put_pixels_clamped(block[2], Y, ys);
  394. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  395. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  396. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  397. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  398. }
  399. }
  400. /** Do motion compensation over 1 macroblock
  401. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  402. */
  403. static void vc1_mc_1mv(VC1Context *v, int dir)
  404. {
  405. MpegEncContext *s = &v->s;
  406. DSPContext *dsp = &v->s.dsp;
  407. uint8_t *srcY, *srcU, *srcV;
  408. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  409. if(!v->s.last_picture.data[0])return;
  410. mx = s->mv[dir][0][0];
  411. my = s->mv[dir][0][1];
  412. // store motion vectors for further use in B frames
  413. if(s->pict_type == P_TYPE) {
  414. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  415. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  416. }
  417. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  418. uvmy = (my + ((my & 3) == 3)) >> 1;
  419. if(v->fastuvmc) {
  420. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  421. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  422. }
  423. if(!dir) {
  424. srcY = s->last_picture.data[0];
  425. srcU = s->last_picture.data[1];
  426. srcV = s->last_picture.data[2];
  427. } else {
  428. srcY = s->next_picture.data[0];
  429. srcU = s->next_picture.data[1];
  430. srcV = s->next_picture.data[2];
  431. }
  432. src_x = s->mb_x * 16 + (mx >> 2);
  433. src_y = s->mb_y * 16 + (my >> 2);
  434. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  435. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  436. if(v->profile != PROFILE_ADVANCED){
  437. src_x = av_clip( src_x, -16, s->mb_width * 16);
  438. src_y = av_clip( src_y, -16, s->mb_height * 16);
  439. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  440. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  441. }else{
  442. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  443. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  444. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  445. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  446. }
  447. srcY += src_y * s->linesize + src_x;
  448. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  449. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  450. /* for grayscale we should not try to read from unknown area */
  451. if(s->flags & CODEC_FLAG_GRAY) {
  452. srcU = s->edge_emu_buffer + 18 * s->linesize;
  453. srcV = s->edge_emu_buffer + 18 * s->linesize;
  454. }
  455. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  456. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  457. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  458. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  459. srcY -= s->mspel * (1 + s->linesize);
  460. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  461. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  462. srcY = s->edge_emu_buffer;
  463. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  464. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  465. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  466. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  467. srcU = uvbuf;
  468. srcV = uvbuf + 16;
  469. /* if we deal with range reduction we need to scale source blocks */
  470. if(v->rangeredfrm) {
  471. int i, j;
  472. uint8_t *src, *src2;
  473. src = srcY;
  474. for(j = 0; j < 17 + s->mspel*2; j++) {
  475. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  476. src += s->linesize;
  477. }
  478. src = srcU; src2 = srcV;
  479. for(j = 0; j < 9; j++) {
  480. for(i = 0; i < 9; i++) {
  481. src[i] = ((src[i] - 128) >> 1) + 128;
  482. src2[i] = ((src2[i] - 128) >> 1) + 128;
  483. }
  484. src += s->uvlinesize;
  485. src2 += s->uvlinesize;
  486. }
  487. }
  488. /* if we deal with intensity compensation we need to scale source blocks */
  489. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  490. int i, j;
  491. uint8_t *src, *src2;
  492. src = srcY;
  493. for(j = 0; j < 17 + s->mspel*2; j++) {
  494. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  495. src += s->linesize;
  496. }
  497. src = srcU; src2 = srcV;
  498. for(j = 0; j < 9; j++) {
  499. for(i = 0; i < 9; i++) {
  500. src[i] = v->lutuv[src[i]];
  501. src2[i] = v->lutuv[src2[i]];
  502. }
  503. src += s->uvlinesize;
  504. src2 += s->uvlinesize;
  505. }
  506. }
  507. srcY += s->mspel * (1 + s->linesize);
  508. }
  509. if(s->mspel) {
  510. dxy = ((my & 3) << 2) | (mx & 3);
  511. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  512. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  513. srcY += s->linesize * 8;
  514. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  515. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  516. } else { // hpel mc - always used for luma
  517. dxy = (my & 2) | ((mx & 2) >> 1);
  518. if(!v->rnd)
  519. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  520. else
  521. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  522. }
  523. if(s->flags & CODEC_FLAG_GRAY) return;
  524. /* Chroma MC always uses qpel bilinear */
  525. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  526. uvmx = (uvmx&3)<<1;
  527. uvmy = (uvmy&3)<<1;
  528. if(!v->rnd){
  529. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  530. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  531. }else{
  532. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  533. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  534. }
  535. }
  536. /** Do motion compensation for 4-MV macroblock - luminance block
  537. */
  538. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  539. {
  540. MpegEncContext *s = &v->s;
  541. DSPContext *dsp = &v->s.dsp;
  542. uint8_t *srcY;
  543. int dxy, mx, my, src_x, src_y;
  544. int off;
  545. if(!v->s.last_picture.data[0])return;
  546. mx = s->mv[0][n][0];
  547. my = s->mv[0][n][1];
  548. srcY = s->last_picture.data[0];
  549. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  550. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  551. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  552. if(v->profile != PROFILE_ADVANCED){
  553. src_x = av_clip( src_x, -16, s->mb_width * 16);
  554. src_y = av_clip( src_y, -16, s->mb_height * 16);
  555. }else{
  556. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  557. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  558. }
  559. srcY += src_y * s->linesize + src_x;
  560. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  561. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  562. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  563. srcY -= s->mspel * (1 + s->linesize);
  564. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  565. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  566. srcY = s->edge_emu_buffer;
  567. /* if we deal with range reduction we need to scale source blocks */
  568. if(v->rangeredfrm) {
  569. int i, j;
  570. uint8_t *src;
  571. src = srcY;
  572. for(j = 0; j < 9 + s->mspel*2; j++) {
  573. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  574. src += s->linesize;
  575. }
  576. }
  577. /* if we deal with intensity compensation we need to scale source blocks */
  578. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  579. int i, j;
  580. uint8_t *src;
  581. src = srcY;
  582. for(j = 0; j < 9 + s->mspel*2; j++) {
  583. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  584. src += s->linesize;
  585. }
  586. }
  587. srcY += s->mspel * (1 + s->linesize);
  588. }
  589. if(s->mspel) {
  590. dxy = ((my & 3) << 2) | (mx & 3);
  591. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  592. } else { // hpel mc - always used for luma
  593. dxy = (my & 2) | ((mx & 2) >> 1);
  594. if(!v->rnd)
  595. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  596. else
  597. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  598. }
  599. }
  600. static inline int median4(int a, int b, int c, int d)
  601. {
  602. if(a < b) {
  603. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  604. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  605. } else {
  606. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  607. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  608. }
  609. }
  610. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  611. */
  612. static void vc1_mc_4mv_chroma(VC1Context *v)
  613. {
  614. MpegEncContext *s = &v->s;
  615. DSPContext *dsp = &v->s.dsp;
  616. uint8_t *srcU, *srcV;
  617. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  618. int i, idx, tx = 0, ty = 0;
  619. int mvx[4], mvy[4], intra[4];
  620. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  621. if(!v->s.last_picture.data[0])return;
  622. if(s->flags & CODEC_FLAG_GRAY) return;
  623. for(i = 0; i < 4; i++) {
  624. mvx[i] = s->mv[0][i][0];
  625. mvy[i] = s->mv[0][i][1];
  626. intra[i] = v->mb_type[0][s->block_index[i]];
  627. }
  628. /* calculate chroma MV vector from four luma MVs */
  629. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  630. if(!idx) { // all blocks are inter
  631. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  632. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  633. } else if(count[idx] == 1) { // 3 inter blocks
  634. switch(idx) {
  635. case 0x1:
  636. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  637. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  638. break;
  639. case 0x2:
  640. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  641. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  642. break;
  643. case 0x4:
  644. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  645. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  646. break;
  647. case 0x8:
  648. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  649. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  650. break;
  651. }
  652. } else if(count[idx] == 2) {
  653. int t1 = 0, t2 = 0;
  654. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  655. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  656. tx = (mvx[t1] + mvx[t2]) / 2;
  657. ty = (mvy[t1] + mvy[t2]) / 2;
  658. } else {
  659. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  660. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  661. return; //no need to do MC for inter blocks
  662. }
  663. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  664. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  665. uvmx = (tx + ((tx&3) == 3)) >> 1;
  666. uvmy = (ty + ((ty&3) == 3)) >> 1;
  667. if(v->fastuvmc) {
  668. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  669. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  670. }
  671. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  672. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  673. if(v->profile != PROFILE_ADVANCED){
  674. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  675. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  676. }else{
  677. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  678. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  679. }
  680. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  681. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  682. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  683. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  684. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  685. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  686. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  687. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  688. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  689. srcU = s->edge_emu_buffer;
  690. srcV = s->edge_emu_buffer + 16;
  691. /* if we deal with range reduction we need to scale source blocks */
  692. if(v->rangeredfrm) {
  693. int i, j;
  694. uint8_t *src, *src2;
  695. src = srcU; src2 = srcV;
  696. for(j = 0; j < 9; j++) {
  697. for(i = 0; i < 9; i++) {
  698. src[i] = ((src[i] - 128) >> 1) + 128;
  699. src2[i] = ((src2[i] - 128) >> 1) + 128;
  700. }
  701. src += s->uvlinesize;
  702. src2 += s->uvlinesize;
  703. }
  704. }
  705. /* if we deal with intensity compensation we need to scale source blocks */
  706. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  707. int i, j;
  708. uint8_t *src, *src2;
  709. src = srcU; src2 = srcV;
  710. for(j = 0; j < 9; j++) {
  711. for(i = 0; i < 9; i++) {
  712. src[i] = v->lutuv[src[i]];
  713. src2[i] = v->lutuv[src2[i]];
  714. }
  715. src += s->uvlinesize;
  716. src2 += s->uvlinesize;
  717. }
  718. }
  719. }
  720. /* Chroma MC always uses qpel bilinear */
  721. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  722. uvmx = (uvmx&3)<<1;
  723. uvmy = (uvmy&3)<<1;
  724. if(!v->rnd){
  725. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  726. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  727. }else{
  728. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  729. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  730. }
  731. }
  732. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  733. /**
  734. * Decode Simple/Main Profiles sequence header
  735. * @see Figure 7-8, p16-17
  736. * @param avctx Codec context
  737. * @param gb GetBit context initialized from Codec context extra_data
  738. * @return Status
  739. */
  740. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  741. {
  742. VC1Context *v = avctx->priv_data;
  743. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  744. v->profile = get_bits(gb, 2);
  745. if (v->profile == PROFILE_COMPLEX)
  746. {
  747. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  748. }
  749. if (v->profile == PROFILE_ADVANCED)
  750. {
  751. return decode_sequence_header_adv(v, gb);
  752. }
  753. else
  754. {
  755. v->res_sm = get_bits(gb, 2); //reserved
  756. if (v->res_sm)
  757. {
  758. av_log(avctx, AV_LOG_ERROR,
  759. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  760. return -1;
  761. }
  762. }
  763. // (fps-2)/4 (->30)
  764. v->frmrtq_postproc = get_bits(gb, 3); //common
  765. // (bitrate-32kbps)/64kbps
  766. v->bitrtq_postproc = get_bits(gb, 5); //common
  767. v->s.loop_filter = get_bits(gb, 1); //common
  768. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  769. {
  770. av_log(avctx, AV_LOG_ERROR,
  771. "LOOPFILTER shell not be enabled in simple profile\n");
  772. }
  773. v->res_x8 = get_bits(gb, 1); //reserved
  774. if (v->res_x8)
  775. {
  776. av_log(avctx, AV_LOG_ERROR,
  777. "1 for reserved RES_X8 is forbidden\n");
  778. //return -1;
  779. }
  780. v->multires = get_bits(gb, 1);
  781. v->res_fasttx = get_bits(gb, 1);
  782. if (!v->res_fasttx)
  783. {
  784. av_log(avctx, AV_LOG_ERROR,
  785. "0 for reserved RES_FASTTX is forbidden\n");
  786. //return -1;
  787. }
  788. v->fastuvmc = get_bits(gb, 1); //common
  789. if (!v->profile && !v->fastuvmc)
  790. {
  791. av_log(avctx, AV_LOG_ERROR,
  792. "FASTUVMC unavailable in Simple Profile\n");
  793. return -1;
  794. }
  795. v->extended_mv = get_bits(gb, 1); //common
  796. if (!v->profile && v->extended_mv)
  797. {
  798. av_log(avctx, AV_LOG_ERROR,
  799. "Extended MVs unavailable in Simple Profile\n");
  800. return -1;
  801. }
  802. v->dquant = get_bits(gb, 2); //common
  803. v->vstransform = get_bits(gb, 1); //common
  804. v->res_transtab = get_bits(gb, 1);
  805. if (v->res_transtab)
  806. {
  807. av_log(avctx, AV_LOG_ERROR,
  808. "1 for reserved RES_TRANSTAB is forbidden\n");
  809. return -1;
  810. }
  811. v->overlap = get_bits(gb, 1); //common
  812. v->s.resync_marker = get_bits(gb, 1);
  813. v->rangered = get_bits(gb, 1);
  814. if (v->rangered && v->profile == PROFILE_SIMPLE)
  815. {
  816. av_log(avctx, AV_LOG_INFO,
  817. "RANGERED should be set to 0 in simple profile\n");
  818. }
  819. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  820. v->quantizer_mode = get_bits(gb, 2); //common
  821. v->finterpflag = get_bits(gb, 1); //common
  822. v->res_rtm_flag = get_bits(gb, 1); //reserved
  823. if (!v->res_rtm_flag)
  824. {
  825. // av_log(avctx, AV_LOG_ERROR,
  826. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  827. av_log(avctx, AV_LOG_ERROR,
  828. "Old WMV3 version detected, only I-frames will be decoded\n");
  829. //return -1;
  830. }
  831. //TODO: figure out what they mean (always 0x402F)
  832. if(!v->res_fasttx) skip_bits(gb, 16);
  833. av_log(avctx, AV_LOG_DEBUG,
  834. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  835. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  836. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  837. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  838. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  839. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  840. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  841. v->dquant, v->quantizer_mode, avctx->max_b_frames
  842. );
  843. return 0;
  844. }
  845. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  846. {
  847. v->res_rtm_flag = 1;
  848. v->level = get_bits(gb, 3);
  849. if(v->level >= 5)
  850. {
  851. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  852. }
  853. v->chromaformat = get_bits(gb, 2);
  854. if (v->chromaformat != 1)
  855. {
  856. av_log(v->s.avctx, AV_LOG_ERROR,
  857. "Only 4:2:0 chroma format supported\n");
  858. return -1;
  859. }
  860. // (fps-2)/4 (->30)
  861. v->frmrtq_postproc = get_bits(gb, 3); //common
  862. // (bitrate-32kbps)/64kbps
  863. v->bitrtq_postproc = get_bits(gb, 5); //common
  864. v->postprocflag = get_bits(gb, 1); //common
  865. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  866. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  867. v->s.avctx->width = v->s.avctx->coded_width;
  868. v->s.avctx->height = v->s.avctx->coded_height;
  869. v->broadcast = get_bits1(gb);
  870. v->interlace = get_bits1(gb);
  871. v->tfcntrflag = get_bits1(gb);
  872. v->finterpflag = get_bits1(gb);
  873. get_bits1(gb); // reserved
  874. v->s.h_edge_pos = v->s.avctx->coded_width;
  875. v->s.v_edge_pos = v->s.avctx->coded_height;
  876. av_log(v->s.avctx, AV_LOG_DEBUG,
  877. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  878. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  879. "TFCTRflag=%i, FINTERPflag=%i\n",
  880. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  881. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  882. v->tfcntrflag, v->finterpflag
  883. );
  884. v->psf = get_bits1(gb);
  885. if(v->psf) { //PsF, 6.1.13
  886. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  887. return -1;
  888. }
  889. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  890. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  891. int w, h, ar = 0;
  892. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  893. v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
  894. v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
  895. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  896. if(get_bits1(gb))
  897. ar = get_bits(gb, 4);
  898. if(ar && ar < 14){
  899. v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
  900. }else if(ar == 15){
  901. w = get_bits(gb, 8);
  902. h = get_bits(gb, 8);
  903. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  904. }
  905. if(get_bits1(gb)){ //framerate stuff
  906. if(get_bits1(gb)) {
  907. v->s.avctx->time_base.num = 32;
  908. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  909. } else {
  910. int nr, dr;
  911. nr = get_bits(gb, 8);
  912. dr = get_bits(gb, 4);
  913. if(nr && nr < 8 && dr && dr < 3){
  914. v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
  915. v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
  916. }
  917. }
  918. }
  919. if(get_bits1(gb)){
  920. v->color_prim = get_bits(gb, 8);
  921. v->transfer_char = get_bits(gb, 8);
  922. v->matrix_coef = get_bits(gb, 8);
  923. }
  924. }
  925. v->hrd_param_flag = get_bits1(gb);
  926. if(v->hrd_param_flag) {
  927. int i;
  928. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  929. get_bits(gb, 4); //bitrate exponent
  930. get_bits(gb, 4); //buffer size exponent
  931. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  932. get_bits(gb, 16); //hrd_rate[n]
  933. get_bits(gb, 16); //hrd_buffer[n]
  934. }
  935. }
  936. return 0;
  937. }
  938. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  939. {
  940. VC1Context *v = avctx->priv_data;
  941. int i, blink, clentry, refdist;
  942. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  943. blink = get_bits1(gb); // broken link
  944. clentry = get_bits1(gb); // closed entry
  945. v->panscanflag = get_bits1(gb);
  946. refdist = get_bits1(gb); // refdist flag
  947. v->s.loop_filter = get_bits1(gb);
  948. v->fastuvmc = get_bits1(gb);
  949. v->extended_mv = get_bits1(gb);
  950. v->dquant = get_bits(gb, 2);
  951. v->vstransform = get_bits1(gb);
  952. v->overlap = get_bits1(gb);
  953. v->quantizer_mode = get_bits(gb, 2);
  954. if(v->hrd_param_flag){
  955. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  956. get_bits(gb, 8); //hrd_full[n]
  957. }
  958. }
  959. if(get_bits1(gb)){
  960. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  961. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  962. }
  963. if(v->extended_mv)
  964. v->extended_dmv = get_bits1(gb);
  965. if(get_bits1(gb)) {
  966. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  967. skip_bits(gb, 3); // Y range, ignored for now
  968. }
  969. if(get_bits1(gb)) {
  970. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  971. skip_bits(gb, 3); // UV range, ignored for now
  972. }
  973. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  974. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  975. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  976. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  977. blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
  978. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  979. return 0;
  980. }
  981. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  982. {
  983. int pqindex, lowquant, status;
  984. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  985. skip_bits(gb, 2); //framecnt unused
  986. v->rangeredfrm = 0;
  987. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  988. v->s.pict_type = get_bits(gb, 1);
  989. if (v->s.avctx->max_b_frames) {
  990. if (!v->s.pict_type) {
  991. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  992. else v->s.pict_type = B_TYPE;
  993. } else v->s.pict_type = P_TYPE;
  994. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  995. v->bi_type = 0;
  996. if(v->s.pict_type == B_TYPE) {
  997. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  998. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  999. if(v->bfraction == 0) {
  1000. v->s.pict_type = BI_TYPE;
  1001. }
  1002. }
  1003. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1004. get_bits(gb, 7); // skip buffer fullness
  1005. /* calculate RND */
  1006. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1007. v->rnd = 1;
  1008. if(v->s.pict_type == P_TYPE)
  1009. v->rnd ^= 1;
  1010. /* Quantizer stuff */
  1011. pqindex = get_bits(gb, 5);
  1012. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1013. v->pq = ff_vc1_pquant_table[0][pqindex];
  1014. else
  1015. v->pq = ff_vc1_pquant_table[1][pqindex];
  1016. v->pquantizer = 1;
  1017. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1018. v->pquantizer = pqindex < 9;
  1019. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1020. v->pquantizer = 0;
  1021. v->pqindex = pqindex;
  1022. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1023. else v->halfpq = 0;
  1024. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1025. v->pquantizer = get_bits(gb, 1);
  1026. v->dquantfrm = 0;
  1027. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1028. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1029. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1030. v->range_x = 1 << (v->k_x - 1);
  1031. v->range_y = 1 << (v->k_y - 1);
  1032. if (v->profile == PROFILE_ADVANCED)
  1033. {
  1034. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1035. }
  1036. else
  1037. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1038. if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){
  1039. if(get_bits1(gb))return -1;
  1040. }
  1041. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1042. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1043. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1044. switch(v->s.pict_type) {
  1045. case P_TYPE:
  1046. if (v->pq < 5) v->tt_index = 0;
  1047. else if(v->pq < 13) v->tt_index = 1;
  1048. else v->tt_index = 2;
  1049. lowquant = (v->pq > 12) ? 0 : 1;
  1050. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1051. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1052. {
  1053. int scale, shift, i;
  1054. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1055. v->lumscale = get_bits(gb, 6);
  1056. v->lumshift = get_bits(gb, 6);
  1057. v->use_ic = 1;
  1058. /* fill lookup tables for intensity compensation */
  1059. if(!v->lumscale) {
  1060. scale = -64;
  1061. shift = (255 - v->lumshift * 2) << 6;
  1062. if(v->lumshift > 31)
  1063. shift += 128 << 6;
  1064. } else {
  1065. scale = v->lumscale + 32;
  1066. if(v->lumshift > 31)
  1067. shift = (v->lumshift - 64) << 6;
  1068. else
  1069. shift = v->lumshift << 6;
  1070. }
  1071. for(i = 0; i < 256; i++) {
  1072. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1073. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1074. }
  1075. }
  1076. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1077. v->s.quarter_sample = 0;
  1078. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1079. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1080. v->s.quarter_sample = 0;
  1081. else
  1082. v->s.quarter_sample = 1;
  1083. } else
  1084. v->s.quarter_sample = 1;
  1085. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1086. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1087. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1088. || v->mv_mode == MV_PMODE_MIXED_MV)
  1089. {
  1090. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1091. if (status < 0) return -1;
  1092. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1093. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1094. } else {
  1095. v->mv_type_is_raw = 0;
  1096. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1097. }
  1098. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1099. if (status < 0) return -1;
  1100. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1101. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1102. /* Hopefully this is correct for P frames */
  1103. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1104. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1105. if (v->dquant)
  1106. {
  1107. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1108. vop_dquant_decoding(v);
  1109. }
  1110. v->ttfrm = 0; //FIXME Is that so ?
  1111. if (v->vstransform)
  1112. {
  1113. v->ttmbf = get_bits(gb, 1);
  1114. if (v->ttmbf)
  1115. {
  1116. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1117. }
  1118. } else {
  1119. v->ttmbf = 1;
  1120. v->ttfrm = TT_8X8;
  1121. }
  1122. break;
  1123. case B_TYPE:
  1124. if (v->pq < 5) v->tt_index = 0;
  1125. else if(v->pq < 13) v->tt_index = 1;
  1126. else v->tt_index = 2;
  1127. lowquant = (v->pq > 12) ? 0 : 1;
  1128. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1129. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1130. v->s.mspel = v->s.quarter_sample;
  1131. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1132. if (status < 0) return -1;
  1133. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1134. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1135. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1136. if (status < 0) return -1;
  1137. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1138. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1139. v->s.mv_table_index = get_bits(gb, 2);
  1140. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1141. if (v->dquant)
  1142. {
  1143. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1144. vop_dquant_decoding(v);
  1145. }
  1146. v->ttfrm = 0;
  1147. if (v->vstransform)
  1148. {
  1149. v->ttmbf = get_bits(gb, 1);
  1150. if (v->ttmbf)
  1151. {
  1152. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1153. }
  1154. } else {
  1155. v->ttmbf = 1;
  1156. v->ttfrm = TT_8X8;
  1157. }
  1158. break;
  1159. }
  1160. /* AC Syntax */
  1161. v->c_ac_table_index = decode012(gb);
  1162. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1163. {
  1164. v->y_ac_table_index = decode012(gb);
  1165. }
  1166. /* DC Syntax */
  1167. v->s.dc_table_index = get_bits(gb, 1);
  1168. if(v->s.pict_type == BI_TYPE) {
  1169. v->s.pict_type = B_TYPE;
  1170. v->bi_type = 1;
  1171. }
  1172. return 0;
  1173. }
  1174. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1175. {
  1176. int pqindex, lowquant;
  1177. int status;
  1178. v->p_frame_skipped = 0;
  1179. if(v->interlace){
  1180. v->fcm = decode012(gb);
  1181. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1182. }
  1183. switch(get_prefix(gb, 0, 4)) {
  1184. case 0:
  1185. v->s.pict_type = P_TYPE;
  1186. break;
  1187. case 1:
  1188. v->s.pict_type = B_TYPE;
  1189. break;
  1190. case 2:
  1191. v->s.pict_type = I_TYPE;
  1192. break;
  1193. case 3:
  1194. v->s.pict_type = BI_TYPE;
  1195. break;
  1196. case 4:
  1197. v->s.pict_type = P_TYPE; // skipped pic
  1198. v->p_frame_skipped = 1;
  1199. return 0;
  1200. }
  1201. if(v->tfcntrflag)
  1202. get_bits(gb, 8);
  1203. if(v->broadcast) {
  1204. if(!v->interlace || v->psf) {
  1205. v->rptfrm = get_bits(gb, 2);
  1206. } else {
  1207. v->tff = get_bits1(gb);
  1208. v->rptfrm = get_bits1(gb);
  1209. }
  1210. }
  1211. if(v->panscanflag) {
  1212. //...
  1213. }
  1214. v->rnd = get_bits1(gb);
  1215. if(v->interlace)
  1216. v->uvsamp = get_bits1(gb);
  1217. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1218. if(v->s.pict_type == B_TYPE) {
  1219. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1220. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1221. if(v->bfraction == 0) {
  1222. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1223. }
  1224. }
  1225. pqindex = get_bits(gb, 5);
  1226. v->pqindex = pqindex;
  1227. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1228. v->pq = ff_vc1_pquant_table[0][pqindex];
  1229. else
  1230. v->pq = ff_vc1_pquant_table[1][pqindex];
  1231. v->pquantizer = 1;
  1232. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1233. v->pquantizer = pqindex < 9;
  1234. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1235. v->pquantizer = 0;
  1236. v->pqindex = pqindex;
  1237. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1238. else v->halfpq = 0;
  1239. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1240. v->pquantizer = get_bits(gb, 1);
  1241. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1242. switch(v->s.pict_type) {
  1243. case I_TYPE:
  1244. case BI_TYPE:
  1245. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1246. if (status < 0) return -1;
  1247. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1248. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1249. v->condover = CONDOVER_NONE;
  1250. if(v->overlap && v->pq <= 8) {
  1251. v->condover = decode012(gb);
  1252. if(v->condover == CONDOVER_SELECT) {
  1253. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1254. if (status < 0) return -1;
  1255. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1256. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1257. }
  1258. }
  1259. break;
  1260. case P_TYPE:
  1261. if(v->postprocflag)
  1262. v->postproc = get_bits1(gb);
  1263. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1264. else v->mvrange = 0;
  1265. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1266. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1267. v->range_x = 1 << (v->k_x - 1);
  1268. v->range_y = 1 << (v->k_y - 1);
  1269. if (v->pq < 5) v->tt_index = 0;
  1270. else if(v->pq < 13) v->tt_index = 1;
  1271. else v->tt_index = 2;
  1272. lowquant = (v->pq > 12) ? 0 : 1;
  1273. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1274. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1275. {
  1276. int scale, shift, i;
  1277. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1278. v->lumscale = get_bits(gb, 6);
  1279. v->lumshift = get_bits(gb, 6);
  1280. /* fill lookup tables for intensity compensation */
  1281. if(!v->lumscale) {
  1282. scale = -64;
  1283. shift = (255 - v->lumshift * 2) << 6;
  1284. if(v->lumshift > 31)
  1285. shift += 128 << 6;
  1286. } else {
  1287. scale = v->lumscale + 32;
  1288. if(v->lumshift > 31)
  1289. shift = (v->lumshift - 64) << 6;
  1290. else
  1291. shift = v->lumshift << 6;
  1292. }
  1293. for(i = 0; i < 256; i++) {
  1294. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1295. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1296. }
  1297. v->use_ic = 1;
  1298. }
  1299. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1300. v->s.quarter_sample = 0;
  1301. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1302. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1303. v->s.quarter_sample = 0;
  1304. else
  1305. v->s.quarter_sample = 1;
  1306. } else
  1307. v->s.quarter_sample = 1;
  1308. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1309. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1310. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1311. || v->mv_mode == MV_PMODE_MIXED_MV)
  1312. {
  1313. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1314. if (status < 0) return -1;
  1315. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1316. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1317. } else {
  1318. v->mv_type_is_raw = 0;
  1319. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1320. }
  1321. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1322. if (status < 0) return -1;
  1323. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1324. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1325. /* Hopefully this is correct for P frames */
  1326. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1327. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1328. if (v->dquant)
  1329. {
  1330. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1331. vop_dquant_decoding(v);
  1332. }
  1333. v->ttfrm = 0; //FIXME Is that so ?
  1334. if (v->vstransform)
  1335. {
  1336. v->ttmbf = get_bits(gb, 1);
  1337. if (v->ttmbf)
  1338. {
  1339. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1340. }
  1341. } else {
  1342. v->ttmbf = 1;
  1343. v->ttfrm = TT_8X8;
  1344. }
  1345. break;
  1346. case B_TYPE:
  1347. if(v->postprocflag)
  1348. v->postproc = get_bits1(gb);
  1349. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1350. else v->mvrange = 0;
  1351. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1352. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1353. v->range_x = 1 << (v->k_x - 1);
  1354. v->range_y = 1 << (v->k_y - 1);
  1355. if (v->pq < 5) v->tt_index = 0;
  1356. else if(v->pq < 13) v->tt_index = 1;
  1357. else v->tt_index = 2;
  1358. lowquant = (v->pq > 12) ? 0 : 1;
  1359. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1360. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1361. v->s.mspel = v->s.quarter_sample;
  1362. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1363. if (status < 0) return -1;
  1364. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1365. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1366. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1367. if (status < 0) return -1;
  1368. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1369. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1370. v->s.mv_table_index = get_bits(gb, 2);
  1371. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1372. if (v->dquant)
  1373. {
  1374. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1375. vop_dquant_decoding(v);
  1376. }
  1377. v->ttfrm = 0;
  1378. if (v->vstransform)
  1379. {
  1380. v->ttmbf = get_bits(gb, 1);
  1381. if (v->ttmbf)
  1382. {
  1383. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1384. }
  1385. } else {
  1386. v->ttmbf = 1;
  1387. v->ttfrm = TT_8X8;
  1388. }
  1389. break;
  1390. }
  1391. /* AC Syntax */
  1392. v->c_ac_table_index = decode012(gb);
  1393. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1394. {
  1395. v->y_ac_table_index = decode012(gb);
  1396. }
  1397. /* DC Syntax */
  1398. v->s.dc_table_index = get_bits(gb, 1);
  1399. if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
  1400. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1401. vop_dquant_decoding(v);
  1402. }
  1403. v->bi_type = 0;
  1404. if(v->s.pict_type == BI_TYPE) {
  1405. v->s.pict_type = B_TYPE;
  1406. v->bi_type = 1;
  1407. }
  1408. return 0;
  1409. }
  1410. /***********************************************************************/
  1411. /**
  1412. * @defgroup block VC-1 Block-level functions
  1413. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1414. * @{
  1415. */
  1416. /**
  1417. * @def GET_MQUANT
  1418. * @brief Get macroblock-level quantizer scale
  1419. */
  1420. #define GET_MQUANT() \
  1421. if (v->dquantfrm) \
  1422. { \
  1423. int edges = 0; \
  1424. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1425. { \
  1426. if (v->dqbilevel) \
  1427. { \
  1428. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1429. } \
  1430. else \
  1431. { \
  1432. mqdiff = get_bits(gb, 3); \
  1433. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1434. else mquant = get_bits(gb, 5); \
  1435. } \
  1436. } \
  1437. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1438. edges = 1 << v->dqsbedge; \
  1439. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1440. edges = (3 << v->dqsbedge) % 15; \
  1441. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1442. edges = 15; \
  1443. if((edges&1) && !s->mb_x) \
  1444. mquant = v->altpq; \
  1445. if((edges&2) && s->first_slice_line) \
  1446. mquant = v->altpq; \
  1447. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1448. mquant = v->altpq; \
  1449. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1450. mquant = v->altpq; \
  1451. }
  1452. /**
  1453. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1454. * @brief Get MV differentials
  1455. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1456. * @param _dmv_x Horizontal differential for decoded MV
  1457. * @param _dmv_y Vertical differential for decoded MV
  1458. */
  1459. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1460. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  1461. VC1_MV_DIFF_VLC_BITS, 2); \
  1462. if (index > 36) \
  1463. { \
  1464. mb_has_coeffs = 1; \
  1465. index -= 37; \
  1466. } \
  1467. else mb_has_coeffs = 0; \
  1468. s->mb_intra = 0; \
  1469. if (!index) { _dmv_x = _dmv_y = 0; } \
  1470. else if (index == 35) \
  1471. { \
  1472. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1473. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1474. } \
  1475. else if (index == 36) \
  1476. { \
  1477. _dmv_x = 0; \
  1478. _dmv_y = 0; \
  1479. s->mb_intra = 1; \
  1480. } \
  1481. else \
  1482. { \
  1483. index1 = index%6; \
  1484. if (!s->quarter_sample && index1 == 5) val = 1; \
  1485. else val = 0; \
  1486. if(size_table[index1] - val > 0) \
  1487. val = get_bits(gb, size_table[index1] - val); \
  1488. else val = 0; \
  1489. sign = 0 - (val&1); \
  1490. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1491. \
  1492. index1 = index/6; \
  1493. if (!s->quarter_sample && index1 == 5) val = 1; \
  1494. else val = 0; \
  1495. if(size_table[index1] - val > 0) \
  1496. val = get_bits(gb, size_table[index1] - val); \
  1497. else val = 0; \
  1498. sign = 0 - (val&1); \
  1499. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1500. }
  1501. /** Predict and set motion vector
  1502. */
  1503. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1504. {
  1505. int xy, wrap, off = 0;
  1506. int16_t *A, *B, *C;
  1507. int px, py;
  1508. int sum;
  1509. /* scale MV difference to be quad-pel */
  1510. dmv_x <<= 1 - s->quarter_sample;
  1511. dmv_y <<= 1 - s->quarter_sample;
  1512. wrap = s->b8_stride;
  1513. xy = s->block_index[n];
  1514. if(s->mb_intra){
  1515. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1516. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1517. s->current_picture.motion_val[1][xy][0] = 0;
  1518. s->current_picture.motion_val[1][xy][1] = 0;
  1519. if(mv1) { /* duplicate motion data for 1-MV block */
  1520. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1521. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1522. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1523. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1524. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1525. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1526. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1527. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1528. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1529. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1530. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1531. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1532. }
  1533. return;
  1534. }
  1535. C = s->current_picture.motion_val[0][xy - 1];
  1536. A = s->current_picture.motion_val[0][xy - wrap];
  1537. if(mv1)
  1538. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1539. else {
  1540. //in 4-MV mode different blocks have different B predictor position
  1541. switch(n){
  1542. case 0:
  1543. off = (s->mb_x > 0) ? -1 : 1;
  1544. break;
  1545. case 1:
  1546. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1547. break;
  1548. case 2:
  1549. off = 1;
  1550. break;
  1551. case 3:
  1552. off = -1;
  1553. }
  1554. }
  1555. B = s->current_picture.motion_val[0][xy - wrap + off];
  1556. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1557. if(s->mb_width == 1) {
  1558. px = A[0];
  1559. py = A[1];
  1560. } else {
  1561. px = mid_pred(A[0], B[0], C[0]);
  1562. py = mid_pred(A[1], B[1], C[1]);
  1563. }
  1564. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1565. px = C[0];
  1566. py = C[1];
  1567. } else {
  1568. px = py = 0;
  1569. }
  1570. /* Pullback MV as specified in 8.3.5.3.4 */
  1571. {
  1572. int qx, qy, X, Y;
  1573. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1574. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1575. X = (s->mb_width << 6) - 4;
  1576. Y = (s->mb_height << 6) - 4;
  1577. if(mv1) {
  1578. if(qx + px < -60) px = -60 - qx;
  1579. if(qy + py < -60) py = -60 - qy;
  1580. } else {
  1581. if(qx + px < -28) px = -28 - qx;
  1582. if(qy + py < -28) py = -28 - qy;
  1583. }
  1584. if(qx + px > X) px = X - qx;
  1585. if(qy + py > Y) py = Y - qy;
  1586. }
  1587. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1588. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1589. if(is_intra[xy - wrap])
  1590. sum = FFABS(px) + FFABS(py);
  1591. else
  1592. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1593. if(sum > 32) {
  1594. if(get_bits1(&s->gb)) {
  1595. px = A[0];
  1596. py = A[1];
  1597. } else {
  1598. px = C[0];
  1599. py = C[1];
  1600. }
  1601. } else {
  1602. if(is_intra[xy - 1])
  1603. sum = FFABS(px) + FFABS(py);
  1604. else
  1605. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1606. if(sum > 32) {
  1607. if(get_bits1(&s->gb)) {
  1608. px = A[0];
  1609. py = A[1];
  1610. } else {
  1611. px = C[0];
  1612. py = C[1];
  1613. }
  1614. }
  1615. }
  1616. }
  1617. /* store MV using signed modulus of MV range defined in 4.11 */
  1618. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1619. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1620. if(mv1) { /* duplicate motion data for 1-MV block */
  1621. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1622. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1623. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1624. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1625. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1626. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1627. }
  1628. }
  1629. /** Motion compensation for direct or interpolated blocks in B-frames
  1630. */
  1631. static void vc1_interp_mc(VC1Context *v)
  1632. {
  1633. MpegEncContext *s = &v->s;
  1634. DSPContext *dsp = &v->s.dsp;
  1635. uint8_t *srcY, *srcU, *srcV;
  1636. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1637. if(!v->s.next_picture.data[0])return;
  1638. mx = s->mv[1][0][0];
  1639. my = s->mv[1][0][1];
  1640. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1641. uvmy = (my + ((my & 3) == 3)) >> 1;
  1642. if(v->fastuvmc) {
  1643. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1644. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1645. }
  1646. srcY = s->next_picture.data[0];
  1647. srcU = s->next_picture.data[1];
  1648. srcV = s->next_picture.data[2];
  1649. src_x = s->mb_x * 16 + (mx >> 2);
  1650. src_y = s->mb_y * 16 + (my >> 2);
  1651. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1652. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1653. if(v->profile != PROFILE_ADVANCED){
  1654. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1655. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1656. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1657. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1658. }else{
  1659. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1660. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1661. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1662. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1663. }
  1664. srcY += src_y * s->linesize + src_x;
  1665. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1666. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1667. /* for grayscale we should not try to read from unknown area */
  1668. if(s->flags & CODEC_FLAG_GRAY) {
  1669. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1670. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1671. }
  1672. if(v->rangeredfrm
  1673. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1674. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1675. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1676. srcY -= s->mspel * (1 + s->linesize);
  1677. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1678. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1679. srcY = s->edge_emu_buffer;
  1680. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1681. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1682. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1683. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1684. srcU = uvbuf;
  1685. srcV = uvbuf + 16;
  1686. /* if we deal with range reduction we need to scale source blocks */
  1687. if(v->rangeredfrm) {
  1688. int i, j;
  1689. uint8_t *src, *src2;
  1690. src = srcY;
  1691. for(j = 0; j < 17 + s->mspel*2; j++) {
  1692. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1693. src += s->linesize;
  1694. }
  1695. src = srcU; src2 = srcV;
  1696. for(j = 0; j < 9; j++) {
  1697. for(i = 0; i < 9; i++) {
  1698. src[i] = ((src[i] - 128) >> 1) + 128;
  1699. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1700. }
  1701. src += s->uvlinesize;
  1702. src2 += s->uvlinesize;
  1703. }
  1704. }
  1705. srcY += s->mspel * (1 + s->linesize);
  1706. }
  1707. mx >>= 1;
  1708. my >>= 1;
  1709. dxy = ((my & 1) << 1) | (mx & 1);
  1710. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1711. if(s->flags & CODEC_FLAG_GRAY) return;
  1712. /* Chroma MC always uses qpel blilinear */
  1713. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1714. uvmx = (uvmx&3)<<1;
  1715. uvmy = (uvmy&3)<<1;
  1716. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1717. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1718. }
  1719. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1720. {
  1721. int n = bfrac;
  1722. #if B_FRACTION_DEN==256
  1723. if(inv)
  1724. n -= 256;
  1725. if(!qs)
  1726. return 2 * ((value * n + 255) >> 9);
  1727. return (value * n + 128) >> 8;
  1728. #else
  1729. if(inv)
  1730. n -= B_FRACTION_DEN;
  1731. if(!qs)
  1732. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1733. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1734. #endif
  1735. }
  1736. /** Reconstruct motion vector for B-frame and do motion compensation
  1737. */
  1738. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1739. {
  1740. if(v->use_ic) {
  1741. v->mv_mode2 = v->mv_mode;
  1742. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1743. }
  1744. if(direct) {
  1745. vc1_mc_1mv(v, 0);
  1746. vc1_interp_mc(v);
  1747. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1748. return;
  1749. }
  1750. if(mode == BMV_TYPE_INTERPOLATED) {
  1751. vc1_mc_1mv(v, 0);
  1752. vc1_interp_mc(v);
  1753. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1754. return;
  1755. }
  1756. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1757. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1758. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1759. }
  1760. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1761. {
  1762. MpegEncContext *s = &v->s;
  1763. int xy, wrap, off = 0;
  1764. int16_t *A, *B, *C;
  1765. int px, py;
  1766. int sum;
  1767. int r_x, r_y;
  1768. const uint8_t *is_intra = v->mb_type[0];
  1769. r_x = v->range_x;
  1770. r_y = v->range_y;
  1771. /* scale MV difference to be quad-pel */
  1772. dmv_x[0] <<= 1 - s->quarter_sample;
  1773. dmv_y[0] <<= 1 - s->quarter_sample;
  1774. dmv_x[1] <<= 1 - s->quarter_sample;
  1775. dmv_y[1] <<= 1 - s->quarter_sample;
  1776. wrap = s->b8_stride;
  1777. xy = s->block_index[0];
  1778. if(s->mb_intra) {
  1779. s->current_picture.motion_val[0][xy][0] =
  1780. s->current_picture.motion_val[0][xy][1] =
  1781. s->current_picture.motion_val[1][xy][0] =
  1782. s->current_picture.motion_val[1][xy][1] = 0;
  1783. return;
  1784. }
  1785. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1786. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1787. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1788. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1789. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1790. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1791. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1792. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1793. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1794. if(direct) {
  1795. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1796. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1797. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1798. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1799. return;
  1800. }
  1801. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1802. C = s->current_picture.motion_val[0][xy - 2];
  1803. A = s->current_picture.motion_val[0][xy - wrap*2];
  1804. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1805. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1806. if(!s->mb_x) C[0] = C[1] = 0;
  1807. if(!s->first_slice_line) { // predictor A is not out of bounds
  1808. if(s->mb_width == 1) {
  1809. px = A[0];
  1810. py = A[1];
  1811. } else {
  1812. px = mid_pred(A[0], B[0], C[0]);
  1813. py = mid_pred(A[1], B[1], C[1]);
  1814. }
  1815. } else if(s->mb_x) { // predictor C is not out of bounds
  1816. px = C[0];
  1817. py = C[1];
  1818. } else {
  1819. px = py = 0;
  1820. }
  1821. /* Pullback MV as specified in 8.3.5.3.4 */
  1822. {
  1823. int qx, qy, X, Y;
  1824. if(v->profile < PROFILE_ADVANCED) {
  1825. qx = (s->mb_x << 5);
  1826. qy = (s->mb_y << 5);
  1827. X = (s->mb_width << 5) - 4;
  1828. Y = (s->mb_height << 5) - 4;
  1829. if(qx + px < -28) px = -28 - qx;
  1830. if(qy + py < -28) py = -28 - qy;
  1831. if(qx + px > X) px = X - qx;
  1832. if(qy + py > Y) py = Y - qy;
  1833. } else {
  1834. qx = (s->mb_x << 6);
  1835. qy = (s->mb_y << 6);
  1836. X = (s->mb_width << 6) - 4;
  1837. Y = (s->mb_height << 6) - 4;
  1838. if(qx + px < -60) px = -60 - qx;
  1839. if(qy + py < -60) py = -60 - qy;
  1840. if(qx + px > X) px = X - qx;
  1841. if(qy + py > Y) py = Y - qy;
  1842. }
  1843. }
  1844. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1845. if(0 && !s->first_slice_line && s->mb_x) {
  1846. if(is_intra[xy - wrap])
  1847. sum = FFABS(px) + FFABS(py);
  1848. else
  1849. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1850. if(sum > 32) {
  1851. if(get_bits1(&s->gb)) {
  1852. px = A[0];
  1853. py = A[1];
  1854. } else {
  1855. px = C[0];
  1856. py = C[1];
  1857. }
  1858. } else {
  1859. if(is_intra[xy - 2])
  1860. sum = FFABS(px) + FFABS(py);
  1861. else
  1862. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1863. if(sum > 32) {
  1864. if(get_bits1(&s->gb)) {
  1865. px = A[0];
  1866. py = A[1];
  1867. } else {
  1868. px = C[0];
  1869. py = C[1];
  1870. }
  1871. }
  1872. }
  1873. }
  1874. /* store MV using signed modulus of MV range defined in 4.11 */
  1875. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1876. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1877. }
  1878. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1879. C = s->current_picture.motion_val[1][xy - 2];
  1880. A = s->current_picture.motion_val[1][xy - wrap*2];
  1881. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1882. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1883. if(!s->mb_x) C[0] = C[1] = 0;
  1884. if(!s->first_slice_line) { // predictor A is not out of bounds
  1885. if(s->mb_width == 1) {
  1886. px = A[0];
  1887. py = A[1];
  1888. } else {
  1889. px = mid_pred(A[0], B[0], C[0]);
  1890. py = mid_pred(A[1], B[1], C[1]);
  1891. }
  1892. } else if(s->mb_x) { // predictor C is not out of bounds
  1893. px = C[0];
  1894. py = C[1];
  1895. } else {
  1896. px = py = 0;
  1897. }
  1898. /* Pullback MV as specified in 8.3.5.3.4 */
  1899. {
  1900. int qx, qy, X, Y;
  1901. if(v->profile < PROFILE_ADVANCED) {
  1902. qx = (s->mb_x << 5);
  1903. qy = (s->mb_y << 5);
  1904. X = (s->mb_width << 5) - 4;
  1905. Y = (s->mb_height << 5) - 4;
  1906. if(qx + px < -28) px = -28 - qx;
  1907. if(qy + py < -28) py = -28 - qy;
  1908. if(qx + px > X) px = X - qx;
  1909. if(qy + py > Y) py = Y - qy;
  1910. } else {
  1911. qx = (s->mb_x << 6);
  1912. qy = (s->mb_y << 6);
  1913. X = (s->mb_width << 6) - 4;
  1914. Y = (s->mb_height << 6) - 4;
  1915. if(qx + px < -60) px = -60 - qx;
  1916. if(qy + py < -60) py = -60 - qy;
  1917. if(qx + px > X) px = X - qx;
  1918. if(qy + py > Y) py = Y - qy;
  1919. }
  1920. }
  1921. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1922. if(0 && !s->first_slice_line && s->mb_x) {
  1923. if(is_intra[xy - wrap])
  1924. sum = FFABS(px) + FFABS(py);
  1925. else
  1926. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1927. if(sum > 32) {
  1928. if(get_bits1(&s->gb)) {
  1929. px = A[0];
  1930. py = A[1];
  1931. } else {
  1932. px = C[0];
  1933. py = C[1];
  1934. }
  1935. } else {
  1936. if(is_intra[xy - 2])
  1937. sum = FFABS(px) + FFABS(py);
  1938. else
  1939. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1940. if(sum > 32) {
  1941. if(get_bits1(&s->gb)) {
  1942. px = A[0];
  1943. py = A[1];
  1944. } else {
  1945. px = C[0];
  1946. py = C[1];
  1947. }
  1948. }
  1949. }
  1950. }
  1951. /* store MV using signed modulus of MV range defined in 4.11 */
  1952. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1953. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1954. }
  1955. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1956. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1957. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1958. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1959. }
  1960. /** Get predicted DC value for I-frames only
  1961. * prediction dir: left=0, top=1
  1962. * @param s MpegEncContext
  1963. * @param[in] n block index in the current MB
  1964. * @param dc_val_ptr Pointer to DC predictor
  1965. * @param dir_ptr Prediction direction for use in AC prediction
  1966. */
  1967. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1968. int16_t **dc_val_ptr, int *dir_ptr)
  1969. {
  1970. int a, b, c, wrap, pred, scale;
  1971. int16_t *dc_val;
  1972. static const uint16_t dcpred[32] = {
  1973. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1974. 114, 102, 93, 85, 79, 73, 68, 64,
  1975. 60, 57, 54, 51, 49, 47, 45, 43,
  1976. 41, 39, 38, 37, 35, 34, 33
  1977. };
  1978. /* find prediction - wmv3_dc_scale always used here in fact */
  1979. if (n < 4) scale = s->y_dc_scale;
  1980. else scale = s->c_dc_scale;
  1981. wrap = s->block_wrap[n];
  1982. dc_val= s->dc_val[0] + s->block_index[n];
  1983. /* B A
  1984. * C X
  1985. */
  1986. c = dc_val[ - 1];
  1987. b = dc_val[ - 1 - wrap];
  1988. a = dc_val[ - wrap];
  1989. if (pq < 9 || !overlap)
  1990. {
  1991. /* Set outer values */
  1992. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1993. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1994. }
  1995. else
  1996. {
  1997. /* Set outer values */
  1998. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1999. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2000. }
  2001. if (abs(a - b) <= abs(b - c)) {
  2002. pred = c;
  2003. *dir_ptr = 1;//left
  2004. } else {
  2005. pred = a;
  2006. *dir_ptr = 0;//top
  2007. }
  2008. /* update predictor */
  2009. *dc_val_ptr = &dc_val[0];
  2010. return pred;
  2011. }
  2012. /** Get predicted DC value
  2013. * prediction dir: left=0, top=1
  2014. * @param s MpegEncContext
  2015. * @param[in] n block index in the current MB
  2016. * @param dc_val_ptr Pointer to DC predictor
  2017. * @param dir_ptr Prediction direction for use in AC prediction
  2018. */
  2019. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2020. int a_avail, int c_avail,
  2021. int16_t **dc_val_ptr, int *dir_ptr)
  2022. {
  2023. int a, b, c, wrap, pred, scale;
  2024. int16_t *dc_val;
  2025. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2026. int q1, q2 = 0;
  2027. /* find prediction - wmv3_dc_scale always used here in fact */
  2028. if (n < 4) scale = s->y_dc_scale;
  2029. else scale = s->c_dc_scale;
  2030. wrap = s->block_wrap[n];
  2031. dc_val= s->dc_val[0] + s->block_index[n];
  2032. /* B A
  2033. * C X
  2034. */
  2035. c = dc_val[ - 1];
  2036. b = dc_val[ - 1 - wrap];
  2037. a = dc_val[ - wrap];
  2038. /* scale predictors if needed */
  2039. q1 = s->current_picture.qscale_table[mb_pos];
  2040. if(c_avail && (n!= 1 && n!=3)) {
  2041. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2042. if(q2 && q2 != q1)
  2043. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2044. }
  2045. if(a_avail && (n!= 2 && n!=3)) {
  2046. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2047. if(q2 && q2 != q1)
  2048. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2049. }
  2050. if(a_avail && c_avail && (n!=3)) {
  2051. int off = mb_pos;
  2052. if(n != 1) off--;
  2053. if(n != 2) off -= s->mb_stride;
  2054. q2 = s->current_picture.qscale_table[off];
  2055. if(q2 && q2 != q1)
  2056. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2057. }
  2058. if(a_avail && c_avail) {
  2059. if(abs(a - b) <= abs(b - c)) {
  2060. pred = c;
  2061. *dir_ptr = 1;//left
  2062. } else {
  2063. pred = a;
  2064. *dir_ptr = 0;//top
  2065. }
  2066. } else if(a_avail) {
  2067. pred = a;
  2068. *dir_ptr = 0;//top
  2069. } else if(c_avail) {
  2070. pred = c;
  2071. *dir_ptr = 1;//left
  2072. } else {
  2073. pred = 0;
  2074. *dir_ptr = 1;//left
  2075. }
  2076. /* update predictor */
  2077. *dc_val_ptr = &dc_val[0];
  2078. return pred;
  2079. }
  2080. /**
  2081. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2082. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2083. * @{
  2084. */
  2085. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2086. {
  2087. int xy, wrap, pred, a, b, c;
  2088. xy = s->block_index[n];
  2089. wrap = s->b8_stride;
  2090. /* B C
  2091. * A X
  2092. */
  2093. a = s->coded_block[xy - 1 ];
  2094. b = s->coded_block[xy - 1 - wrap];
  2095. c = s->coded_block[xy - wrap];
  2096. if (b == c) {
  2097. pred = a;
  2098. } else {
  2099. pred = c;
  2100. }
  2101. /* store value */
  2102. *coded_block_ptr = &s->coded_block[xy];
  2103. return pred;
  2104. }
  2105. /**
  2106. * Decode one AC coefficient
  2107. * @param v The VC1 context
  2108. * @param last Last coefficient
  2109. * @param skip How much zero coefficients to skip
  2110. * @param value Decoded AC coefficient value
  2111. * @see 8.1.3.4
  2112. */
  2113. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2114. {
  2115. GetBitContext *gb = &v->s.gb;
  2116. int index, escape, run = 0, level = 0, lst = 0;
  2117. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2118. if (index != vc1_ac_sizes[codingset] - 1) {
  2119. run = vc1_index_decode_table[codingset][index][0];
  2120. level = vc1_index_decode_table[codingset][index][1];
  2121. lst = index >= vc1_last_decode_table[codingset];
  2122. if(get_bits(gb, 1))
  2123. level = -level;
  2124. } else {
  2125. escape = decode210(gb);
  2126. if (escape != 2) {
  2127. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2128. run = vc1_index_decode_table[codingset][index][0];
  2129. level = vc1_index_decode_table[codingset][index][1];
  2130. lst = index >= vc1_last_decode_table[codingset];
  2131. if(escape == 0) {
  2132. if(lst)
  2133. level += vc1_last_delta_level_table[codingset][run];
  2134. else
  2135. level += vc1_delta_level_table[codingset][run];
  2136. } else {
  2137. if(lst)
  2138. run += vc1_last_delta_run_table[codingset][level] + 1;
  2139. else
  2140. run += vc1_delta_run_table[codingset][level] + 1;
  2141. }
  2142. if(get_bits(gb, 1))
  2143. level = -level;
  2144. } else {
  2145. int sign;
  2146. lst = get_bits(gb, 1);
  2147. if(v->s.esc3_level_length == 0) {
  2148. if(v->pq < 8 || v->dquantfrm) { // table 59
  2149. v->s.esc3_level_length = get_bits(gb, 3);
  2150. if(!v->s.esc3_level_length)
  2151. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2152. } else { //table 60
  2153. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  2154. }
  2155. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2156. }
  2157. run = get_bits(gb, v->s.esc3_run_length);
  2158. sign = get_bits(gb, 1);
  2159. level = get_bits(gb, v->s.esc3_level_length);
  2160. if(sign)
  2161. level = -level;
  2162. }
  2163. }
  2164. *last = lst;
  2165. *skip = run;
  2166. *value = level;
  2167. }
  2168. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2169. * @param v VC1Context
  2170. * @param block block to decode
  2171. * @param coded are AC coeffs present or not
  2172. * @param codingset set of VLC to decode data
  2173. */
  2174. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2175. {
  2176. GetBitContext *gb = &v->s.gb;
  2177. MpegEncContext *s = &v->s;
  2178. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2179. int run_diff, i;
  2180. int16_t *dc_val;
  2181. int16_t *ac_val, *ac_val2;
  2182. int dcdiff;
  2183. /* Get DC differential */
  2184. if (n < 4) {
  2185. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2186. } else {
  2187. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2188. }
  2189. if (dcdiff < 0){
  2190. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2191. return -1;
  2192. }
  2193. if (dcdiff)
  2194. {
  2195. if (dcdiff == 119 /* ESC index value */)
  2196. {
  2197. /* TODO: Optimize */
  2198. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2199. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2200. else dcdiff = get_bits(gb, 8);
  2201. }
  2202. else
  2203. {
  2204. if (v->pq == 1)
  2205. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2206. else if (v->pq == 2)
  2207. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2208. }
  2209. if (get_bits(gb, 1))
  2210. dcdiff = -dcdiff;
  2211. }
  2212. /* Prediction */
  2213. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2214. *dc_val = dcdiff;
  2215. /* Store the quantized DC coeff, used for prediction */
  2216. if (n < 4) {
  2217. block[0] = dcdiff * s->y_dc_scale;
  2218. } else {
  2219. block[0] = dcdiff * s->c_dc_scale;
  2220. }
  2221. /* Skip ? */
  2222. run_diff = 0;
  2223. i = 0;
  2224. if (!coded) {
  2225. goto not_coded;
  2226. }
  2227. //AC Decoding
  2228. i = 1;
  2229. {
  2230. int last = 0, skip, value;
  2231. const int8_t *zz_table;
  2232. int scale;
  2233. int k;
  2234. scale = v->pq * 2 + v->halfpq;
  2235. if(v->s.ac_pred) {
  2236. if(!dc_pred_dir)
  2237. zz_table = ff_vc1_horizontal_zz;
  2238. else
  2239. zz_table = ff_vc1_vertical_zz;
  2240. } else
  2241. zz_table = ff_vc1_normal_zz;
  2242. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2243. ac_val2 = ac_val;
  2244. if(dc_pred_dir) //left
  2245. ac_val -= 16;
  2246. else //top
  2247. ac_val -= 16 * s->block_wrap[n];
  2248. while (!last) {
  2249. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2250. i += skip;
  2251. if(i > 63)
  2252. break;
  2253. block[zz_table[i++]] = value;
  2254. }
  2255. /* apply AC prediction if needed */
  2256. if(s->ac_pred) {
  2257. if(dc_pred_dir) { //left
  2258. for(k = 1; k < 8; k++)
  2259. block[k << 3] += ac_val[k];
  2260. } else { //top
  2261. for(k = 1; k < 8; k++)
  2262. block[k] += ac_val[k + 8];
  2263. }
  2264. }
  2265. /* save AC coeffs for further prediction */
  2266. for(k = 1; k < 8; k++) {
  2267. ac_val2[k] = block[k << 3];
  2268. ac_val2[k + 8] = block[k];
  2269. }
  2270. /* scale AC coeffs */
  2271. for(k = 1; k < 64; k++)
  2272. if(block[k]) {
  2273. block[k] *= scale;
  2274. if(!v->pquantizer)
  2275. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2276. }
  2277. if(s->ac_pred) i = 63;
  2278. }
  2279. not_coded:
  2280. if(!coded) {
  2281. int k, scale;
  2282. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2283. ac_val2 = ac_val;
  2284. scale = v->pq * 2 + v->halfpq;
  2285. memset(ac_val2, 0, 16 * 2);
  2286. if(dc_pred_dir) {//left
  2287. ac_val -= 16;
  2288. if(s->ac_pred)
  2289. memcpy(ac_val2, ac_val, 8 * 2);
  2290. } else {//top
  2291. ac_val -= 16 * s->block_wrap[n];
  2292. if(s->ac_pred)
  2293. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2294. }
  2295. /* apply AC prediction if needed */
  2296. if(s->ac_pred) {
  2297. if(dc_pred_dir) { //left
  2298. for(k = 1; k < 8; k++) {
  2299. block[k << 3] = ac_val[k] * scale;
  2300. if(!v->pquantizer && block[k << 3])
  2301. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2302. }
  2303. } else { //top
  2304. for(k = 1; k < 8; k++) {
  2305. block[k] = ac_val[k + 8] * scale;
  2306. if(!v->pquantizer && block[k])
  2307. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2308. }
  2309. }
  2310. i = 63;
  2311. }
  2312. }
  2313. s->block_last_index[n] = i;
  2314. return 0;
  2315. }
  2316. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2317. * @param v VC1Context
  2318. * @param block block to decode
  2319. * @param coded are AC coeffs present or not
  2320. * @param codingset set of VLC to decode data
  2321. */
  2322. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2323. {
  2324. GetBitContext *gb = &v->s.gb;
  2325. MpegEncContext *s = &v->s;
  2326. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2327. int run_diff, i;
  2328. int16_t *dc_val;
  2329. int16_t *ac_val, *ac_val2;
  2330. int dcdiff;
  2331. int a_avail = v->a_avail, c_avail = v->c_avail;
  2332. int use_pred = s->ac_pred;
  2333. int scale;
  2334. int q1, q2 = 0;
  2335. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2336. /* Get DC differential */
  2337. if (n < 4) {
  2338. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2339. } else {
  2340. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2341. }
  2342. if (dcdiff < 0){
  2343. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2344. return -1;
  2345. }
  2346. if (dcdiff)
  2347. {
  2348. if (dcdiff == 119 /* ESC index value */)
  2349. {
  2350. /* TODO: Optimize */
  2351. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2352. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2353. else dcdiff = get_bits(gb, 8);
  2354. }
  2355. else
  2356. {
  2357. if (mquant == 1)
  2358. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2359. else if (mquant == 2)
  2360. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2361. }
  2362. if (get_bits(gb, 1))
  2363. dcdiff = -dcdiff;
  2364. }
  2365. /* Prediction */
  2366. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2367. *dc_val = dcdiff;
  2368. /* Store the quantized DC coeff, used for prediction */
  2369. if (n < 4) {
  2370. block[0] = dcdiff * s->y_dc_scale;
  2371. } else {
  2372. block[0] = dcdiff * s->c_dc_scale;
  2373. }
  2374. /* Skip ? */
  2375. run_diff = 0;
  2376. i = 0;
  2377. //AC Decoding
  2378. i = 1;
  2379. /* check if AC is needed at all */
  2380. if(!a_avail && !c_avail) use_pred = 0;
  2381. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2382. ac_val2 = ac_val;
  2383. scale = mquant * 2 + v->halfpq;
  2384. if(dc_pred_dir) //left
  2385. ac_val -= 16;
  2386. else //top
  2387. ac_val -= 16 * s->block_wrap[n];
  2388. q1 = s->current_picture.qscale_table[mb_pos];
  2389. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2390. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2391. if(dc_pred_dir && n==1) q2 = q1;
  2392. if(!dc_pred_dir && n==2) q2 = q1;
  2393. if(n==3) q2 = q1;
  2394. if(coded) {
  2395. int last = 0, skip, value;
  2396. const int8_t *zz_table;
  2397. int k;
  2398. if(v->s.ac_pred) {
  2399. if(!dc_pred_dir)
  2400. zz_table = ff_vc1_horizontal_zz;
  2401. else
  2402. zz_table = ff_vc1_vertical_zz;
  2403. } else
  2404. zz_table = ff_vc1_normal_zz;
  2405. while (!last) {
  2406. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2407. i += skip;
  2408. if(i > 63)
  2409. break;
  2410. block[zz_table[i++]] = value;
  2411. }
  2412. /* apply AC prediction if needed */
  2413. if(use_pred) {
  2414. /* scale predictors if needed*/
  2415. if(q2 && q1!=q2) {
  2416. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2417. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2418. if(dc_pred_dir) { //left
  2419. for(k = 1; k < 8; k++)
  2420. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2421. } else { //top
  2422. for(k = 1; k < 8; k++)
  2423. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2424. }
  2425. } else {
  2426. if(dc_pred_dir) { //left
  2427. for(k = 1; k < 8; k++)
  2428. block[k << 3] += ac_val[k];
  2429. } else { //top
  2430. for(k = 1; k < 8; k++)
  2431. block[k] += ac_val[k + 8];
  2432. }
  2433. }
  2434. }
  2435. /* save AC coeffs for further prediction */
  2436. for(k = 1; k < 8; k++) {
  2437. ac_val2[k] = block[k << 3];
  2438. ac_val2[k + 8] = block[k];
  2439. }
  2440. /* scale AC coeffs */
  2441. for(k = 1; k < 64; k++)
  2442. if(block[k]) {
  2443. block[k] *= scale;
  2444. if(!v->pquantizer)
  2445. block[k] += (block[k] < 0) ? -mquant : mquant;
  2446. }
  2447. if(use_pred) i = 63;
  2448. } else { // no AC coeffs
  2449. int k;
  2450. memset(ac_val2, 0, 16 * 2);
  2451. if(dc_pred_dir) {//left
  2452. if(use_pred) {
  2453. memcpy(ac_val2, ac_val, 8 * 2);
  2454. if(q2 && q1!=q2) {
  2455. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2456. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2457. for(k = 1; k < 8; k++)
  2458. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2459. }
  2460. }
  2461. } else {//top
  2462. if(use_pred) {
  2463. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2464. if(q2 && q1!=q2) {
  2465. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2466. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2467. for(k = 1; k < 8; k++)
  2468. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2469. }
  2470. }
  2471. }
  2472. /* apply AC prediction if needed */
  2473. if(use_pred) {
  2474. if(dc_pred_dir) { //left
  2475. for(k = 1; k < 8; k++) {
  2476. block[k << 3] = ac_val2[k] * scale;
  2477. if(!v->pquantizer && block[k << 3])
  2478. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2479. }
  2480. } else { //top
  2481. for(k = 1; k < 8; k++) {
  2482. block[k] = ac_val2[k + 8] * scale;
  2483. if(!v->pquantizer && block[k])
  2484. block[k] += (block[k] < 0) ? -mquant : mquant;
  2485. }
  2486. }
  2487. i = 63;
  2488. }
  2489. }
  2490. s->block_last_index[n] = i;
  2491. return 0;
  2492. }
  2493. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2494. * @param v VC1Context
  2495. * @param block block to decode
  2496. * @param coded are AC coeffs present or not
  2497. * @param mquant block quantizer
  2498. * @param codingset set of VLC to decode data
  2499. */
  2500. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2501. {
  2502. GetBitContext *gb = &v->s.gb;
  2503. MpegEncContext *s = &v->s;
  2504. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2505. int run_diff, i;
  2506. int16_t *dc_val;
  2507. int16_t *ac_val, *ac_val2;
  2508. int dcdiff;
  2509. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2510. int a_avail = v->a_avail, c_avail = v->c_avail;
  2511. int use_pred = s->ac_pred;
  2512. int scale;
  2513. int q1, q2 = 0;
  2514. /* XXX: Guard against dumb values of mquant */
  2515. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2516. /* Set DC scale - y and c use the same */
  2517. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2518. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2519. /* Get DC differential */
  2520. if (n < 4) {
  2521. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2522. } else {
  2523. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2524. }
  2525. if (dcdiff < 0){
  2526. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2527. return -1;
  2528. }
  2529. if (dcdiff)
  2530. {
  2531. if (dcdiff == 119 /* ESC index value */)
  2532. {
  2533. /* TODO: Optimize */
  2534. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2535. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2536. else dcdiff = get_bits(gb, 8);
  2537. }
  2538. else
  2539. {
  2540. if (mquant == 1)
  2541. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2542. else if (mquant == 2)
  2543. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2544. }
  2545. if (get_bits(gb, 1))
  2546. dcdiff = -dcdiff;
  2547. }
  2548. /* Prediction */
  2549. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2550. *dc_val = dcdiff;
  2551. /* Store the quantized DC coeff, used for prediction */
  2552. if (n < 4) {
  2553. block[0] = dcdiff * s->y_dc_scale;
  2554. } else {
  2555. block[0] = dcdiff * s->c_dc_scale;
  2556. }
  2557. /* Skip ? */
  2558. run_diff = 0;
  2559. i = 0;
  2560. //AC Decoding
  2561. i = 1;
  2562. /* check if AC is needed at all and adjust direction if needed */
  2563. if(!a_avail) dc_pred_dir = 1;
  2564. if(!c_avail) dc_pred_dir = 0;
  2565. if(!a_avail && !c_avail) use_pred = 0;
  2566. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2567. ac_val2 = ac_val;
  2568. scale = mquant * 2 + v->halfpq;
  2569. if(dc_pred_dir) //left
  2570. ac_val -= 16;
  2571. else //top
  2572. ac_val -= 16 * s->block_wrap[n];
  2573. q1 = s->current_picture.qscale_table[mb_pos];
  2574. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2575. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2576. if(dc_pred_dir && n==1) q2 = q1;
  2577. if(!dc_pred_dir && n==2) q2 = q1;
  2578. if(n==3) q2 = q1;
  2579. if(coded) {
  2580. int last = 0, skip, value;
  2581. const int8_t *zz_table;
  2582. int k;
  2583. zz_table = ff_vc1_simple_progressive_8x8_zz;
  2584. while (!last) {
  2585. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2586. i += skip;
  2587. if(i > 63)
  2588. break;
  2589. block[zz_table[i++]] = value;
  2590. }
  2591. /* apply AC prediction if needed */
  2592. if(use_pred) {
  2593. /* scale predictors if needed*/
  2594. if(q2 && q1!=q2) {
  2595. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2596. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2597. if(dc_pred_dir) { //left
  2598. for(k = 1; k < 8; k++)
  2599. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2600. } else { //top
  2601. for(k = 1; k < 8; k++)
  2602. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2603. }
  2604. } else {
  2605. if(dc_pred_dir) { //left
  2606. for(k = 1; k < 8; k++)
  2607. block[k << 3] += ac_val[k];
  2608. } else { //top
  2609. for(k = 1; k < 8; k++)
  2610. block[k] += ac_val[k + 8];
  2611. }
  2612. }
  2613. }
  2614. /* save AC coeffs for further prediction */
  2615. for(k = 1; k < 8; k++) {
  2616. ac_val2[k] = block[k << 3];
  2617. ac_val2[k + 8] = block[k];
  2618. }
  2619. /* scale AC coeffs */
  2620. for(k = 1; k < 64; k++)
  2621. if(block[k]) {
  2622. block[k] *= scale;
  2623. if(!v->pquantizer)
  2624. block[k] += (block[k] < 0) ? -mquant : mquant;
  2625. }
  2626. if(use_pred) i = 63;
  2627. } else { // no AC coeffs
  2628. int k;
  2629. memset(ac_val2, 0, 16 * 2);
  2630. if(dc_pred_dir) {//left
  2631. if(use_pred) {
  2632. memcpy(ac_val2, ac_val, 8 * 2);
  2633. if(q2 && q1!=q2) {
  2634. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2635. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2636. for(k = 1; k < 8; k++)
  2637. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2638. }
  2639. }
  2640. } else {//top
  2641. if(use_pred) {
  2642. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2643. if(q2 && q1!=q2) {
  2644. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2645. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2646. for(k = 1; k < 8; k++)
  2647. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2648. }
  2649. }
  2650. }
  2651. /* apply AC prediction if needed */
  2652. if(use_pred) {
  2653. if(dc_pred_dir) { //left
  2654. for(k = 1; k < 8; k++) {
  2655. block[k << 3] = ac_val2[k] * scale;
  2656. if(!v->pquantizer && block[k << 3])
  2657. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2658. }
  2659. } else { //top
  2660. for(k = 1; k < 8; k++) {
  2661. block[k] = ac_val2[k + 8] * scale;
  2662. if(!v->pquantizer && block[k])
  2663. block[k] += (block[k] < 0) ? -mquant : mquant;
  2664. }
  2665. }
  2666. i = 63;
  2667. }
  2668. }
  2669. s->block_last_index[n] = i;
  2670. return 0;
  2671. }
  2672. /** Decode P block
  2673. */
  2674. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2675. {
  2676. MpegEncContext *s = &v->s;
  2677. GetBitContext *gb = &s->gb;
  2678. int i, j;
  2679. int subblkpat = 0;
  2680. int scale, off, idx, last, skip, value;
  2681. int ttblk = ttmb & 7;
  2682. if(ttmb == -1) {
  2683. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2684. }
  2685. if(ttblk == TT_4X4) {
  2686. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2687. }
  2688. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2689. subblkpat = decode012(gb);
  2690. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2691. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2692. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2693. }
  2694. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2695. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2696. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2697. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2698. ttblk = TT_8X4;
  2699. }
  2700. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2701. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2702. ttblk = TT_4X8;
  2703. }
  2704. switch(ttblk) {
  2705. case TT_8X8:
  2706. i = 0;
  2707. last = 0;
  2708. while (!last) {
  2709. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2710. i += skip;
  2711. if(i > 63)
  2712. break;
  2713. idx = ff_vc1_simple_progressive_8x8_zz[i++];
  2714. block[idx] = value * scale;
  2715. if(!v->pquantizer)
  2716. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2717. }
  2718. s->dsp.vc1_inv_trans_8x8(block);
  2719. break;
  2720. case TT_4X4:
  2721. for(j = 0; j < 4; j++) {
  2722. last = subblkpat & (1 << (3 - j));
  2723. i = 0;
  2724. off = (j & 1) * 4 + (j & 2) * 16;
  2725. while (!last) {
  2726. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2727. i += skip;
  2728. if(i > 15)
  2729. break;
  2730. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2731. block[idx + off] = value * scale;
  2732. if(!v->pquantizer)
  2733. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2734. }
  2735. if(!(subblkpat & (1 << (3 - j))))
  2736. s->dsp.vc1_inv_trans_4x4(block, j);
  2737. }
  2738. break;
  2739. case TT_8X4:
  2740. for(j = 0; j < 2; j++) {
  2741. last = subblkpat & (1 << (1 - j));
  2742. i = 0;
  2743. off = j * 32;
  2744. while (!last) {
  2745. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2746. i += skip;
  2747. if(i > 31)
  2748. break;
  2749. if(v->profile < PROFILE_ADVANCED)
  2750. idx = ff_vc1_simple_progressive_8x4_zz[i++];
  2751. else
  2752. idx = ff_vc1_adv_progressive_8x4_zz[i++];
  2753. block[idx + off] = value * scale;
  2754. if(!v->pquantizer)
  2755. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2756. }
  2757. if(!(subblkpat & (1 << (1 - j))))
  2758. s->dsp.vc1_inv_trans_8x4(block, j);
  2759. }
  2760. break;
  2761. case TT_4X8:
  2762. for(j = 0; j < 2; j++) {
  2763. last = subblkpat & (1 << (1 - j));
  2764. i = 0;
  2765. off = j * 4;
  2766. while (!last) {
  2767. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2768. i += skip;
  2769. if(i > 31)
  2770. break;
  2771. if(v->profile < PROFILE_ADVANCED)
  2772. idx = ff_vc1_simple_progressive_4x8_zz[i++];
  2773. else
  2774. idx = ff_vc1_adv_progressive_4x8_zz[i++];
  2775. block[idx + off] = value * scale;
  2776. if(!v->pquantizer)
  2777. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2778. }
  2779. if(!(subblkpat & (1 << (1 - j))))
  2780. s->dsp.vc1_inv_trans_4x8(block, j);
  2781. }
  2782. break;
  2783. }
  2784. return 0;
  2785. }
  2786. /** Decode one P-frame MB (in Simple/Main profile)
  2787. */
  2788. static int vc1_decode_p_mb(VC1Context *v)
  2789. {
  2790. MpegEncContext *s = &v->s;
  2791. GetBitContext *gb = &s->gb;
  2792. int i, j;
  2793. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2794. int cbp; /* cbp decoding stuff */
  2795. int mqdiff, mquant; /* MB quantization */
  2796. int ttmb = v->ttfrm; /* MB Transform type */
  2797. int status;
  2798. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2799. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2800. int mb_has_coeffs = 1; /* last_flag */
  2801. int dmv_x, dmv_y; /* Differential MV components */
  2802. int index, index1; /* LUT indices */
  2803. int val, sign; /* temp values */
  2804. int first_block = 1;
  2805. int dst_idx, off;
  2806. int skipped, fourmv;
  2807. mquant = v->pq; /* Loosy initialization */
  2808. if (v->mv_type_is_raw)
  2809. fourmv = get_bits1(gb);
  2810. else
  2811. fourmv = v->mv_type_mb_plane[mb_pos];
  2812. if (v->skip_is_raw)
  2813. skipped = get_bits1(gb);
  2814. else
  2815. skipped = v->s.mbskip_table[mb_pos];
  2816. s->dsp.clear_blocks(s->block[0]);
  2817. if (!fourmv) /* 1MV mode */
  2818. {
  2819. if (!skipped)
  2820. {
  2821. GET_MVDATA(dmv_x, dmv_y);
  2822. if (s->mb_intra) {
  2823. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2824. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2825. }
  2826. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2827. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2828. /* FIXME Set DC val for inter block ? */
  2829. if (s->mb_intra && !mb_has_coeffs)
  2830. {
  2831. GET_MQUANT();
  2832. s->ac_pred = get_bits(gb, 1);
  2833. cbp = 0;
  2834. }
  2835. else if (mb_has_coeffs)
  2836. {
  2837. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  2838. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2839. GET_MQUANT();
  2840. }
  2841. else
  2842. {
  2843. mquant = v->pq;
  2844. cbp = 0;
  2845. }
  2846. s->current_picture.qscale_table[mb_pos] = mquant;
  2847. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2848. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2849. VC1_TTMB_VLC_BITS, 2);
  2850. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2851. dst_idx = 0;
  2852. for (i=0; i<6; i++)
  2853. {
  2854. s->dc_val[0][s->block_index[i]] = 0;
  2855. dst_idx += i >> 2;
  2856. val = ((cbp >> (5 - i)) & 1);
  2857. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2858. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2859. if(s->mb_intra) {
  2860. /* check if prediction blocks A and C are available */
  2861. v->a_avail = v->c_avail = 0;
  2862. if(i == 2 || i == 3 || !s->first_slice_line)
  2863. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2864. if(i == 1 || i == 3 || s->mb_x)
  2865. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2866. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2867. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2868. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2869. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2870. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2871. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  2872. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2873. if(v->pq >= 9 && v->overlap) {
  2874. if(v->c_avail)
  2875. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2876. if(v->a_avail)
  2877. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2878. }
  2879. } else if(val) {
  2880. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2881. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2882. first_block = 0;
  2883. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2884. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2885. }
  2886. }
  2887. }
  2888. else //Skipped
  2889. {
  2890. s->mb_intra = 0;
  2891. for(i = 0; i < 6; i++) {
  2892. v->mb_type[0][s->block_index[i]] = 0;
  2893. s->dc_val[0][s->block_index[i]] = 0;
  2894. }
  2895. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2896. s->current_picture.qscale_table[mb_pos] = 0;
  2897. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2898. vc1_mc_1mv(v, 0);
  2899. return 0;
  2900. }
  2901. } //1MV mode
  2902. else //4MV mode
  2903. {
  2904. if (!skipped /* unskipped MB */)
  2905. {
  2906. int intra_count = 0, coded_inter = 0;
  2907. int is_intra[6], is_coded[6];
  2908. /* Get CBPCY */
  2909. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2910. for (i=0; i<6; i++)
  2911. {
  2912. val = ((cbp >> (5 - i)) & 1);
  2913. s->dc_val[0][s->block_index[i]] = 0;
  2914. s->mb_intra = 0;
  2915. if(i < 4) {
  2916. dmv_x = dmv_y = 0;
  2917. s->mb_intra = 0;
  2918. mb_has_coeffs = 0;
  2919. if(val) {
  2920. GET_MVDATA(dmv_x, dmv_y);
  2921. }
  2922. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2923. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2924. intra_count += s->mb_intra;
  2925. is_intra[i] = s->mb_intra;
  2926. is_coded[i] = mb_has_coeffs;
  2927. }
  2928. if(i&4){
  2929. is_intra[i] = (intra_count >= 3);
  2930. is_coded[i] = val;
  2931. }
  2932. if(i == 4) vc1_mc_4mv_chroma(v);
  2933. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2934. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2935. }
  2936. // if there are no coded blocks then don't do anything more
  2937. if(!intra_count && !coded_inter) return 0;
  2938. dst_idx = 0;
  2939. GET_MQUANT();
  2940. s->current_picture.qscale_table[mb_pos] = mquant;
  2941. /* test if block is intra and has pred */
  2942. {
  2943. int intrapred = 0;
  2944. for(i=0; i<6; i++)
  2945. if(is_intra[i]) {
  2946. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2947. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2948. intrapred = 1;
  2949. break;
  2950. }
  2951. }
  2952. if(intrapred)s->ac_pred = get_bits(gb, 1);
  2953. else s->ac_pred = 0;
  2954. }
  2955. if (!v->ttmbf && coded_inter)
  2956. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2957. for (i=0; i<6; i++)
  2958. {
  2959. dst_idx += i >> 2;
  2960. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2961. s->mb_intra = is_intra[i];
  2962. if (is_intra[i]) {
  2963. /* check if prediction blocks A and C are available */
  2964. v->a_avail = v->c_avail = 0;
  2965. if(i == 2 || i == 3 || !s->first_slice_line)
  2966. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2967. if(i == 1 || i == 3 || s->mb_x)
  2968. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2969. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2970. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2971. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2972. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2973. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2974. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  2975. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2976. if(v->pq >= 9 && v->overlap) {
  2977. if(v->c_avail)
  2978. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2979. if(v->a_avail)
  2980. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2981. }
  2982. } else if(is_coded[i]) {
  2983. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2984. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2985. first_block = 0;
  2986. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2987. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2988. }
  2989. }
  2990. return status;
  2991. }
  2992. else //Skipped MB
  2993. {
  2994. s->mb_intra = 0;
  2995. s->current_picture.qscale_table[mb_pos] = 0;
  2996. for (i=0; i<6; i++) {
  2997. v->mb_type[0][s->block_index[i]] = 0;
  2998. s->dc_val[0][s->block_index[i]] = 0;
  2999. }
  3000. for (i=0; i<4; i++)
  3001. {
  3002. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3003. vc1_mc_4mv_luma(v, i);
  3004. }
  3005. vc1_mc_4mv_chroma(v);
  3006. s->current_picture.qscale_table[mb_pos] = 0;
  3007. return 0;
  3008. }
  3009. }
  3010. /* Should never happen */
  3011. return -1;
  3012. }
  3013. /** Decode one B-frame MB (in Main profile)
  3014. */
  3015. static void vc1_decode_b_mb(VC1Context *v)
  3016. {
  3017. MpegEncContext *s = &v->s;
  3018. GetBitContext *gb = &s->gb;
  3019. int i, j;
  3020. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3021. int cbp = 0; /* cbp decoding stuff */
  3022. int mqdiff, mquant; /* MB quantization */
  3023. int ttmb = v->ttfrm; /* MB Transform type */
  3024. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3025. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3026. int mb_has_coeffs = 0; /* last_flag */
  3027. int index, index1; /* LUT indices */
  3028. int val, sign; /* temp values */
  3029. int first_block = 1;
  3030. int dst_idx, off;
  3031. int skipped, direct;
  3032. int dmv_x[2], dmv_y[2];
  3033. int bmvtype = BMV_TYPE_BACKWARD;
  3034. mquant = v->pq; /* Loosy initialization */
  3035. s->mb_intra = 0;
  3036. if (v->dmb_is_raw)
  3037. direct = get_bits1(gb);
  3038. else
  3039. direct = v->direct_mb_plane[mb_pos];
  3040. if (v->skip_is_raw)
  3041. skipped = get_bits1(gb);
  3042. else
  3043. skipped = v->s.mbskip_table[mb_pos];
  3044. s->dsp.clear_blocks(s->block[0]);
  3045. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3046. for(i = 0; i < 6; i++) {
  3047. v->mb_type[0][s->block_index[i]] = 0;
  3048. s->dc_val[0][s->block_index[i]] = 0;
  3049. }
  3050. s->current_picture.qscale_table[mb_pos] = 0;
  3051. if (!direct) {
  3052. if (!skipped) {
  3053. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3054. dmv_x[1] = dmv_x[0];
  3055. dmv_y[1] = dmv_y[0];
  3056. }
  3057. if(skipped || !s->mb_intra) {
  3058. bmvtype = decode012(gb);
  3059. switch(bmvtype) {
  3060. case 0:
  3061. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3062. break;
  3063. case 1:
  3064. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3065. break;
  3066. case 2:
  3067. bmvtype = BMV_TYPE_INTERPOLATED;
  3068. dmv_x[0] = dmv_y[0] = 0;
  3069. }
  3070. }
  3071. }
  3072. for(i = 0; i < 6; i++)
  3073. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3074. if (skipped) {
  3075. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3076. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3077. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3078. return;
  3079. }
  3080. if (direct) {
  3081. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3082. GET_MQUANT();
  3083. s->mb_intra = 0;
  3084. mb_has_coeffs = 0;
  3085. s->current_picture.qscale_table[mb_pos] = mquant;
  3086. if(!v->ttmbf)
  3087. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3088. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3089. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3090. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3091. } else {
  3092. if(!mb_has_coeffs && !s->mb_intra) {
  3093. /* no coded blocks - effectively skipped */
  3094. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3095. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3096. return;
  3097. }
  3098. if(s->mb_intra && !mb_has_coeffs) {
  3099. GET_MQUANT();
  3100. s->current_picture.qscale_table[mb_pos] = mquant;
  3101. s->ac_pred = get_bits1(gb);
  3102. cbp = 0;
  3103. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3104. } else {
  3105. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3106. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3107. if(!mb_has_coeffs) {
  3108. /* interpolated skipped block */
  3109. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3110. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3111. return;
  3112. }
  3113. }
  3114. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3115. if(!s->mb_intra) {
  3116. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3117. }
  3118. if(s->mb_intra)
  3119. s->ac_pred = get_bits1(gb);
  3120. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3121. GET_MQUANT();
  3122. s->current_picture.qscale_table[mb_pos] = mquant;
  3123. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3124. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3125. }
  3126. }
  3127. dst_idx = 0;
  3128. for (i=0; i<6; i++)
  3129. {
  3130. s->dc_val[0][s->block_index[i]] = 0;
  3131. dst_idx += i >> 2;
  3132. val = ((cbp >> (5 - i)) & 1);
  3133. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3134. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3135. if(s->mb_intra) {
  3136. /* check if prediction blocks A and C are available */
  3137. v->a_avail = v->c_avail = 0;
  3138. if(i == 2 || i == 3 || !s->first_slice_line)
  3139. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3140. if(i == 1 || i == 3 || s->mb_x)
  3141. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3142. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3143. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3144. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3145. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3146. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3147. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3148. } else if(val) {
  3149. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3150. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3151. first_block = 0;
  3152. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3153. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3154. }
  3155. }
  3156. }
  3157. /** Decode blocks of I-frame
  3158. */
  3159. static void vc1_decode_i_blocks(VC1Context *v)
  3160. {
  3161. int k, j;
  3162. MpegEncContext *s = &v->s;
  3163. int cbp, val;
  3164. uint8_t *coded_val;
  3165. int mb_pos;
  3166. /* select codingmode used for VLC tables selection */
  3167. switch(v->y_ac_table_index){
  3168. case 0:
  3169. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3170. break;
  3171. case 1:
  3172. v->codingset = CS_HIGH_MOT_INTRA;
  3173. break;
  3174. case 2:
  3175. v->codingset = CS_MID_RATE_INTRA;
  3176. break;
  3177. }
  3178. switch(v->c_ac_table_index){
  3179. case 0:
  3180. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3181. break;
  3182. case 1:
  3183. v->codingset2 = CS_HIGH_MOT_INTER;
  3184. break;
  3185. case 2:
  3186. v->codingset2 = CS_MID_RATE_INTER;
  3187. break;
  3188. }
  3189. /* Set DC scale - y and c use the same */
  3190. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3191. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3192. //do frame decode
  3193. s->mb_x = s->mb_y = 0;
  3194. s->mb_intra = 1;
  3195. s->first_slice_line = 1;
  3196. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3197. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3198. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3199. ff_init_block_index(s);
  3200. ff_update_block_index(s);
  3201. s->dsp.clear_blocks(s->block[0]);
  3202. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3203. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3204. s->current_picture.qscale_table[mb_pos] = v->pq;
  3205. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3206. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3207. // do actual MB decoding and displaying
  3208. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3209. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3210. for(k = 0; k < 6; k++) {
  3211. val = ((cbp >> (5 - k)) & 1);
  3212. if (k < 4) {
  3213. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3214. val = val ^ pred;
  3215. *coded_val = val;
  3216. }
  3217. cbp |= val << (5 - k);
  3218. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3219. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3220. if(!v->res_fasttx && !v->res_x8) for(j = 0; j < 64; j++) s->block[k][j] -= 16;
  3221. if(v->pq >= 9 && v->overlap) {
  3222. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3223. }
  3224. }
  3225. vc1_put_block(v, s->block);
  3226. if(v->pq >= 9 && v->overlap) {
  3227. if(s->mb_x) {
  3228. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3229. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3230. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3231. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3232. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3233. }
  3234. }
  3235. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3236. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3237. if(!s->first_slice_line) {
  3238. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3239. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3240. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3241. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3242. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3243. }
  3244. }
  3245. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3246. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3247. }
  3248. if(get_bits_count(&s->gb) > v->bits) {
  3249. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3250. return;
  3251. }
  3252. }
  3253. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3254. s->first_slice_line = 0;
  3255. }
  3256. }
  3257. /** Decode blocks of I-frame for advanced profile
  3258. */
  3259. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3260. {
  3261. int k, j;
  3262. MpegEncContext *s = &v->s;
  3263. int cbp, val;
  3264. uint8_t *coded_val;
  3265. int mb_pos;
  3266. int mquant = v->pq;
  3267. int mqdiff;
  3268. int overlap;
  3269. GetBitContext *gb = &s->gb;
  3270. /* select codingmode used for VLC tables selection */
  3271. switch(v->y_ac_table_index){
  3272. case 0:
  3273. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3274. break;
  3275. case 1:
  3276. v->codingset = CS_HIGH_MOT_INTRA;
  3277. break;
  3278. case 2:
  3279. v->codingset = CS_MID_RATE_INTRA;
  3280. break;
  3281. }
  3282. switch(v->c_ac_table_index){
  3283. case 0:
  3284. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3285. break;
  3286. case 1:
  3287. v->codingset2 = CS_HIGH_MOT_INTER;
  3288. break;
  3289. case 2:
  3290. v->codingset2 = CS_MID_RATE_INTER;
  3291. break;
  3292. }
  3293. //do frame decode
  3294. s->mb_x = s->mb_y = 0;
  3295. s->mb_intra = 1;
  3296. s->first_slice_line = 1;
  3297. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3298. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3299. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3300. ff_init_block_index(s);
  3301. ff_update_block_index(s);
  3302. s->dsp.clear_blocks(s->block[0]);
  3303. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3304. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3305. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3306. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3307. // do actual MB decoding and displaying
  3308. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3309. if(v->acpred_is_raw)
  3310. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3311. else
  3312. v->s.ac_pred = v->acpred_plane[mb_pos];
  3313. if(v->condover == CONDOVER_SELECT) {
  3314. if(v->overflg_is_raw)
  3315. overlap = get_bits(&v->s.gb, 1);
  3316. else
  3317. overlap = v->over_flags_plane[mb_pos];
  3318. } else
  3319. overlap = (v->condover == CONDOVER_ALL);
  3320. GET_MQUANT();
  3321. s->current_picture.qscale_table[mb_pos] = mquant;
  3322. /* Set DC scale - y and c use the same */
  3323. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3324. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3325. for(k = 0; k < 6; k++) {
  3326. val = ((cbp >> (5 - k)) & 1);
  3327. if (k < 4) {
  3328. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3329. val = val ^ pred;
  3330. *coded_val = val;
  3331. }
  3332. cbp |= val << (5 - k);
  3333. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3334. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3335. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3336. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3337. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3338. }
  3339. vc1_put_block(v, s->block);
  3340. if(overlap) {
  3341. if(s->mb_x) {
  3342. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3343. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3344. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3345. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3346. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3347. }
  3348. }
  3349. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3350. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3351. if(!s->first_slice_line) {
  3352. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3353. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3354. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3355. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3356. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3357. }
  3358. }
  3359. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3360. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3361. }
  3362. if(get_bits_count(&s->gb) > v->bits) {
  3363. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3364. return;
  3365. }
  3366. }
  3367. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3368. s->first_slice_line = 0;
  3369. }
  3370. }
  3371. static void vc1_decode_p_blocks(VC1Context *v)
  3372. {
  3373. MpegEncContext *s = &v->s;
  3374. /* select codingmode used for VLC tables selection */
  3375. switch(v->c_ac_table_index){
  3376. case 0:
  3377. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3378. break;
  3379. case 1:
  3380. v->codingset = CS_HIGH_MOT_INTRA;
  3381. break;
  3382. case 2:
  3383. v->codingset = CS_MID_RATE_INTRA;
  3384. break;
  3385. }
  3386. switch(v->c_ac_table_index){
  3387. case 0:
  3388. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3389. break;
  3390. case 1:
  3391. v->codingset2 = CS_HIGH_MOT_INTER;
  3392. break;
  3393. case 2:
  3394. v->codingset2 = CS_MID_RATE_INTER;
  3395. break;
  3396. }
  3397. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3398. s->first_slice_line = 1;
  3399. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3400. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3401. ff_init_block_index(s);
  3402. ff_update_block_index(s);
  3403. s->dsp.clear_blocks(s->block[0]);
  3404. vc1_decode_p_mb(v);
  3405. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3406. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3407. return;
  3408. }
  3409. }
  3410. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3411. s->first_slice_line = 0;
  3412. }
  3413. }
  3414. static void vc1_decode_b_blocks(VC1Context *v)
  3415. {
  3416. MpegEncContext *s = &v->s;
  3417. /* select codingmode used for VLC tables selection */
  3418. switch(v->c_ac_table_index){
  3419. case 0:
  3420. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3421. break;
  3422. case 1:
  3423. v->codingset = CS_HIGH_MOT_INTRA;
  3424. break;
  3425. case 2:
  3426. v->codingset = CS_MID_RATE_INTRA;
  3427. break;
  3428. }
  3429. switch(v->c_ac_table_index){
  3430. case 0:
  3431. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3432. break;
  3433. case 1:
  3434. v->codingset2 = CS_HIGH_MOT_INTER;
  3435. break;
  3436. case 2:
  3437. v->codingset2 = CS_MID_RATE_INTER;
  3438. break;
  3439. }
  3440. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3441. s->first_slice_line = 1;
  3442. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3443. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3444. ff_init_block_index(s);
  3445. ff_update_block_index(s);
  3446. s->dsp.clear_blocks(s->block[0]);
  3447. vc1_decode_b_mb(v);
  3448. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3449. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3450. return;
  3451. }
  3452. }
  3453. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3454. s->first_slice_line = 0;
  3455. }
  3456. }
  3457. static void vc1_decode_skip_blocks(VC1Context *v)
  3458. {
  3459. MpegEncContext *s = &v->s;
  3460. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3461. s->first_slice_line = 1;
  3462. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3463. s->mb_x = 0;
  3464. ff_init_block_index(s);
  3465. ff_update_block_index(s);
  3466. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3467. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3468. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3469. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3470. s->first_slice_line = 0;
  3471. }
  3472. s->pict_type = P_TYPE;
  3473. }
  3474. static void vc1_decode_blocks(VC1Context *v)
  3475. {
  3476. v->s.esc3_level_length = 0;
  3477. switch(v->s.pict_type) {
  3478. case I_TYPE:
  3479. if(v->profile == PROFILE_ADVANCED)
  3480. vc1_decode_i_blocks_adv(v);
  3481. else
  3482. vc1_decode_i_blocks(v);
  3483. break;
  3484. case P_TYPE:
  3485. if(v->p_frame_skipped)
  3486. vc1_decode_skip_blocks(v);
  3487. else
  3488. vc1_decode_p_blocks(v);
  3489. break;
  3490. case B_TYPE:
  3491. if(v->bi_type){
  3492. if(v->profile == PROFILE_ADVANCED)
  3493. vc1_decode_i_blocks_adv(v);
  3494. else
  3495. vc1_decode_i_blocks(v);
  3496. }else
  3497. vc1_decode_b_blocks(v);
  3498. break;
  3499. }
  3500. }
  3501. /** Find VC-1 marker in buffer
  3502. * @return position where next marker starts or end of buffer if no marker found
  3503. */
  3504. static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end)
  3505. {
  3506. uint32_t mrk = 0xFFFFFFFF;
  3507. if(end-src < 4) return end;
  3508. while(src < end){
  3509. mrk = (mrk << 8) | *src++;
  3510. if(IS_MARKER(mrk))
  3511. return src-4;
  3512. }
  3513. return end;
  3514. }
  3515. static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst)
  3516. {
  3517. int dsize = 0, i;
  3518. if(size < 4){
  3519. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3520. return size;
  3521. }
  3522. for(i = 0; i < size; i++, src++) {
  3523. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3524. dst[dsize++] = src[1];
  3525. src++;
  3526. i++;
  3527. } else
  3528. dst[dsize++] = *src;
  3529. }
  3530. return dsize;
  3531. }
  3532. /** Initialize a VC1/WMV3 decoder
  3533. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3534. * @todo TODO: Decypher remaining bits in extra_data
  3535. */
  3536. static int vc1_decode_init(AVCodecContext *avctx)
  3537. {
  3538. VC1Context *v = avctx->priv_data;
  3539. MpegEncContext *s = &v->s;
  3540. GetBitContext gb;
  3541. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3542. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3543. avctx->pix_fmt = PIX_FMT_YUV420P;
  3544. else
  3545. avctx->pix_fmt = PIX_FMT_GRAY8;
  3546. v->s.avctx = avctx;
  3547. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3548. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3549. if(ff_h263_decode_init(avctx) < 0)
  3550. return -1;
  3551. if (vc1_init_common(v) < 0) return -1;
  3552. avctx->coded_width = avctx->width;
  3553. avctx->coded_height = avctx->height;
  3554. if (avctx->codec_id == CODEC_ID_WMV3)
  3555. {
  3556. int count = 0;
  3557. // looks like WMV3 has a sequence header stored in the extradata
  3558. // advanced sequence header may be before the first frame
  3559. // the last byte of the extradata is a version number, 1 for the
  3560. // samples we can decode
  3561. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3562. if (decode_sequence_header(avctx, &gb) < 0)
  3563. return -1;
  3564. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3565. if (count>0)
  3566. {
  3567. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3568. count, get_bits(&gb, count));
  3569. }
  3570. else if (count < 0)
  3571. {
  3572. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3573. }
  3574. } else { // VC1/WVC1
  3575. uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size;
  3576. uint8_t *next; int size, buf2_size;
  3577. uint8_t *buf2 = NULL;
  3578. int seq_inited = 0, ep_inited = 0;
  3579. if(avctx->extradata_size < 16) {
  3580. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3581. return -1;
  3582. }
  3583. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3584. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3585. next = start;
  3586. for(; next < end; start = next){
  3587. next = find_next_marker(start + 4, end);
  3588. size = next - start - 4;
  3589. if(size <= 0) continue;
  3590. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3591. init_get_bits(&gb, buf2, buf2_size * 8);
  3592. switch(AV_RB32(start)){
  3593. case VC1_CODE_SEQHDR:
  3594. if(decode_sequence_header(avctx, &gb) < 0){
  3595. av_free(buf2);
  3596. return -1;
  3597. }
  3598. seq_inited = 1;
  3599. break;
  3600. case VC1_CODE_ENTRYPOINT:
  3601. if(decode_entry_point(avctx, &gb) < 0){
  3602. av_free(buf2);
  3603. return -1;
  3604. }
  3605. ep_inited = 1;
  3606. break;
  3607. }
  3608. }
  3609. av_free(buf2);
  3610. if(!seq_inited || !ep_inited){
  3611. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3612. return -1;
  3613. }
  3614. }
  3615. avctx->has_b_frames= !!(avctx->max_b_frames);
  3616. s->low_delay = !avctx->has_b_frames;
  3617. s->mb_width = (avctx->coded_width+15)>>4;
  3618. s->mb_height = (avctx->coded_height+15)>>4;
  3619. /* Allocate mb bitplanes */
  3620. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3621. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3622. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3623. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3624. /* allocate block type info in that way so it could be used with s->block_index[] */
  3625. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3626. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3627. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3628. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3629. /* Init coded blocks info */
  3630. if (v->profile == PROFILE_ADVANCED)
  3631. {
  3632. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3633. // return -1;
  3634. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3635. // return -1;
  3636. }
  3637. return 0;
  3638. }
  3639. /** Decode a VC1/WMV3 frame
  3640. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3641. */
  3642. static int vc1_decode_frame(AVCodecContext *avctx,
  3643. void *data, int *data_size,
  3644. uint8_t *buf, int buf_size)
  3645. {
  3646. VC1Context *v = avctx->priv_data;
  3647. MpegEncContext *s = &v->s;
  3648. AVFrame *pict = data;
  3649. uint8_t *buf2 = NULL;
  3650. /* no supplementary picture */
  3651. if (buf_size == 0) {
  3652. /* special case for last picture */
  3653. if (s->low_delay==0 && s->next_picture_ptr) {
  3654. *pict= *(AVFrame*)s->next_picture_ptr;
  3655. s->next_picture_ptr= NULL;
  3656. *data_size = sizeof(AVFrame);
  3657. }
  3658. return 0;
  3659. }
  3660. /* We need to set current_picture_ptr before reading the header,
  3661. * otherwise we cannot store anything in there. */
  3662. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3663. int i= ff_find_unused_picture(s, 0);
  3664. s->current_picture_ptr= &s->picture[i];
  3665. }
  3666. //for advanced profile we may need to parse and unescape data
  3667. if (avctx->codec_id == CODEC_ID_VC1) {
  3668. int buf_size2 = 0;
  3669. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3670. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3671. uint8_t *start, *end, *next;
  3672. int size;
  3673. next = buf;
  3674. for(start = buf, end = buf + buf_size; next < end; start = next){
  3675. next = find_next_marker(start + 4, end);
  3676. size = next - start - 4;
  3677. if(size <= 0) continue;
  3678. switch(AV_RB32(start)){
  3679. case VC1_CODE_FRAME:
  3680. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3681. break;
  3682. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3683. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3684. init_get_bits(&s->gb, buf2, buf_size2*8);
  3685. decode_entry_point(avctx, &s->gb);
  3686. break;
  3687. case VC1_CODE_SLICE:
  3688. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3689. av_free(buf2);
  3690. return -1;
  3691. }
  3692. }
  3693. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3694. uint8_t *divider;
  3695. divider = find_next_marker(buf, buf + buf_size);
  3696. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3697. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3698. return -1;
  3699. }
  3700. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3701. // TODO
  3702. av_free(buf2);return -1;
  3703. }else{
  3704. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3705. }
  3706. init_get_bits(&s->gb, buf2, buf_size2*8);
  3707. } else
  3708. init_get_bits(&s->gb, buf, buf_size*8);
  3709. // do parse frame header
  3710. if(v->profile < PROFILE_ADVANCED) {
  3711. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3712. av_free(buf2);
  3713. return -1;
  3714. }
  3715. } else {
  3716. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3717. av_free(buf2);
  3718. return -1;
  3719. }
  3720. }
  3721. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  3722. av_free(buf2);
  3723. return -1;
  3724. }
  3725. // for hurry_up==5
  3726. s->current_picture.pict_type= s->pict_type;
  3727. s->current_picture.key_frame= s->pict_type == I_TYPE;
  3728. /* skip B-frames if we don't have reference frames */
  3729. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  3730. av_free(buf2);
  3731. return -1;//buf_size;
  3732. }
  3733. /* skip b frames if we are in a hurry */
  3734. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  3735. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  3736. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  3737. || avctx->skip_frame >= AVDISCARD_ALL) {
  3738. av_free(buf2);
  3739. return buf_size;
  3740. }
  3741. /* skip everything if we are in a hurry>=5 */
  3742. if(avctx->hurry_up>=5) {
  3743. av_free(buf2);
  3744. return -1;//buf_size;
  3745. }
  3746. if(s->next_p_frame_damaged){
  3747. if(s->pict_type==B_TYPE)
  3748. return buf_size;
  3749. else
  3750. s->next_p_frame_damaged=0;
  3751. }
  3752. if(MPV_frame_start(s, avctx) < 0) {
  3753. av_free(buf2);
  3754. return -1;
  3755. }
  3756. ff_er_frame_start(s);
  3757. v->bits = buf_size * 8;
  3758. vc1_decode_blocks(v);
  3759. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3760. // if(get_bits_count(&s->gb) > buf_size * 8)
  3761. // return -1;
  3762. ff_er_frame_end(s);
  3763. MPV_frame_end(s);
  3764. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3765. assert(s->current_picture.pict_type == s->pict_type);
  3766. if (s->pict_type == B_TYPE || s->low_delay) {
  3767. *pict= *(AVFrame*)s->current_picture_ptr;
  3768. } else if (s->last_picture_ptr != NULL) {
  3769. *pict= *(AVFrame*)s->last_picture_ptr;
  3770. }
  3771. if(s->last_picture_ptr || s->low_delay){
  3772. *data_size = sizeof(AVFrame);
  3773. ff_print_debug_info(s, pict);
  3774. }
  3775. /* Return the Picture timestamp as the frame number */
  3776. /* we substract 1 because it is added on utils.c */
  3777. avctx->frame_number = s->picture_number - 1;
  3778. av_free(buf2);
  3779. return buf_size;
  3780. }
  3781. /** Close a VC1/WMV3 decoder
  3782. * @warning Initial try at using MpegEncContext stuff
  3783. */
  3784. static int vc1_decode_end(AVCodecContext *avctx)
  3785. {
  3786. VC1Context *v = avctx->priv_data;
  3787. av_freep(&v->hrd_rate);
  3788. av_freep(&v->hrd_buffer);
  3789. MPV_common_end(&v->s);
  3790. av_freep(&v->mv_type_mb_plane);
  3791. av_freep(&v->direct_mb_plane);
  3792. av_freep(&v->acpred_plane);
  3793. av_freep(&v->over_flags_plane);
  3794. av_freep(&v->mb_type_base);
  3795. return 0;
  3796. }
  3797. AVCodec vc1_decoder = {
  3798. "vc1",
  3799. CODEC_TYPE_VIDEO,
  3800. CODEC_ID_VC1,
  3801. sizeof(VC1Context),
  3802. vc1_decode_init,
  3803. NULL,
  3804. vc1_decode_end,
  3805. vc1_decode_frame,
  3806. CODEC_CAP_DELAY,
  3807. NULL
  3808. };
  3809. AVCodec wmv3_decoder = {
  3810. "wmv3",
  3811. CODEC_TYPE_VIDEO,
  3812. CODEC_ID_WMV3,
  3813. sizeof(VC1Context),
  3814. vc1_decode_init,
  3815. NULL,
  3816. vc1_decode_end,
  3817. vc1_decode_frame,
  3818. CODEC_CAP_DELAY,
  3819. NULL
  3820. };