You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1371 lines
38KB

  1. /*
  2. * The simplest AC3 encoder
  3. * Copyright (c) 2000 Fabrice Bellard.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file ac3enc.c
  23. * The simplest AC3 encoder.
  24. */
  25. //#define DEBUG
  26. //#define DEBUG_BITALLOC
  27. #include "avcodec.h"
  28. #include "bitstream.h"
  29. #include "crc.h"
  30. #include "ac3.h"
  31. typedef struct AC3EncodeContext {
  32. PutBitContext pb;
  33. int nb_channels;
  34. int nb_all_channels;
  35. int lfe_channel;
  36. int bit_rate;
  37. unsigned int sample_rate;
  38. unsigned int bsid;
  39. unsigned int frame_size_min; /* minimum frame size in case rounding is necessary */
  40. unsigned int frame_size; /* current frame size in words */
  41. unsigned int bits_written;
  42. unsigned int samples_written;
  43. int halfratecod;
  44. unsigned int frmsizecod;
  45. unsigned int fscod; /* frequency */
  46. unsigned int acmod;
  47. int lfe;
  48. unsigned int bsmod;
  49. short last_samples[AC3_MAX_CHANNELS][256];
  50. unsigned int chbwcod[AC3_MAX_CHANNELS];
  51. int nb_coefs[AC3_MAX_CHANNELS];
  52. /* bitrate allocation control */
  53. int sgaincod, sdecaycod, fdecaycod, dbkneecod, floorcod;
  54. AC3BitAllocParameters bit_alloc;
  55. int csnroffst;
  56. int fgaincod[AC3_MAX_CHANNELS];
  57. int fsnroffst[AC3_MAX_CHANNELS];
  58. /* mantissa encoding */
  59. int mant1_cnt, mant2_cnt, mant4_cnt;
  60. } AC3EncodeContext;
  61. static int16_t costab[64];
  62. static int16_t sintab[64];
  63. static int16_t fft_rev[512];
  64. static int16_t xcos1[128];
  65. static int16_t xsin1[128];
  66. #define MDCT_NBITS 9
  67. #define N (1 << MDCT_NBITS)
  68. /* new exponents are sent if their Norm 1 exceed this number */
  69. #define EXP_DIFF_THRESHOLD 1000
  70. static void fft_init(int ln);
  71. static inline int16_t fix15(float a)
  72. {
  73. int v;
  74. v = (int)(a * (float)(1 << 15));
  75. if (v < -32767)
  76. v = -32767;
  77. else if (v > 32767)
  78. v = 32767;
  79. return v;
  80. }
  81. typedef struct IComplex {
  82. short re,im;
  83. } IComplex;
  84. static void fft_init(int ln)
  85. {
  86. int i, j, m, n;
  87. float alpha;
  88. n = 1 << ln;
  89. for(i=0;i<(n/2);i++) {
  90. alpha = 2 * M_PI * (float)i / (float)n;
  91. costab[i] = fix15(cos(alpha));
  92. sintab[i] = fix15(sin(alpha));
  93. }
  94. for(i=0;i<n;i++) {
  95. m=0;
  96. for(j=0;j<ln;j++) {
  97. m |= ((i >> j) & 1) << (ln-j-1);
  98. }
  99. fft_rev[i]=m;
  100. }
  101. }
  102. /* butter fly op */
  103. #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
  104. {\
  105. int ax, ay, bx, by;\
  106. bx=pre1;\
  107. by=pim1;\
  108. ax=qre1;\
  109. ay=qim1;\
  110. pre = (bx + ax) >> 1;\
  111. pim = (by + ay) >> 1;\
  112. qre = (bx - ax) >> 1;\
  113. qim = (by - ay) >> 1;\
  114. }
  115. #define MUL16(a,b) ((a) * (b))
  116. #define CMUL(pre, pim, are, aim, bre, bim) \
  117. {\
  118. pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;\
  119. pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;\
  120. }
  121. /* do a 2^n point complex fft on 2^ln points. */
  122. static void fft(IComplex *z, int ln)
  123. {
  124. int j, l, np, np2;
  125. int nblocks, nloops;
  126. register IComplex *p,*q;
  127. int tmp_re, tmp_im;
  128. np = 1 << ln;
  129. /* reverse */
  130. for(j=0;j<np;j++) {
  131. int k;
  132. IComplex tmp;
  133. k = fft_rev[j];
  134. if (k < j) {
  135. tmp = z[k];
  136. z[k] = z[j];
  137. z[j] = tmp;
  138. }
  139. }
  140. /* pass 0 */
  141. p=&z[0];
  142. j=(np >> 1);
  143. do {
  144. BF(p[0].re, p[0].im, p[1].re, p[1].im,
  145. p[0].re, p[0].im, p[1].re, p[1].im);
  146. p+=2;
  147. } while (--j != 0);
  148. /* pass 1 */
  149. p=&z[0];
  150. j=np >> 2;
  151. do {
  152. BF(p[0].re, p[0].im, p[2].re, p[2].im,
  153. p[0].re, p[0].im, p[2].re, p[2].im);
  154. BF(p[1].re, p[1].im, p[3].re, p[3].im,
  155. p[1].re, p[1].im, p[3].im, -p[3].re);
  156. p+=4;
  157. } while (--j != 0);
  158. /* pass 2 .. ln-1 */
  159. nblocks = np >> 3;
  160. nloops = 1 << 2;
  161. np2 = np >> 1;
  162. do {
  163. p = z;
  164. q = z + nloops;
  165. for (j = 0; j < nblocks; ++j) {
  166. BF(p->re, p->im, q->re, q->im,
  167. p->re, p->im, q->re, q->im);
  168. p++;
  169. q++;
  170. for(l = nblocks; l < np2; l += nblocks) {
  171. CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);
  172. BF(p->re, p->im, q->re, q->im,
  173. p->re, p->im, tmp_re, tmp_im);
  174. p++;
  175. q++;
  176. }
  177. p += nloops;
  178. q += nloops;
  179. }
  180. nblocks = nblocks >> 1;
  181. nloops = nloops << 1;
  182. } while (nblocks != 0);
  183. }
  184. /* do a 512 point mdct */
  185. static void mdct512(int32_t *out, int16_t *in)
  186. {
  187. int i, re, im, re1, im1;
  188. int16_t rot[N];
  189. IComplex x[N/4];
  190. /* shift to simplify computations */
  191. for(i=0;i<N/4;i++)
  192. rot[i] = -in[i + 3*N/4];
  193. for(i=N/4;i<N;i++)
  194. rot[i] = in[i - N/4];
  195. /* pre rotation */
  196. for(i=0;i<N/4;i++) {
  197. re = ((int)rot[2*i] - (int)rot[N-1-2*i]) >> 1;
  198. im = -((int)rot[N/2+2*i] - (int)rot[N/2-1-2*i]) >> 1;
  199. CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);
  200. }
  201. fft(x, MDCT_NBITS - 2);
  202. /* post rotation */
  203. for(i=0;i<N/4;i++) {
  204. re = x[i].re;
  205. im = x[i].im;
  206. CMUL(re1, im1, re, im, xsin1[i], xcos1[i]);
  207. out[2*i] = im1;
  208. out[N/2-1-2*i] = re1;
  209. }
  210. }
  211. /* XXX: use another norm ? */
  212. static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n)
  213. {
  214. int sum, i;
  215. sum = 0;
  216. for(i=0;i<n;i++) {
  217. sum += abs(exp1[i] - exp2[i]);
  218. }
  219. return sum;
  220. }
  221. static void compute_exp_strategy(uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  222. uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  223. int ch, int is_lfe)
  224. {
  225. int i, j;
  226. int exp_diff;
  227. /* estimate if the exponent variation & decide if they should be
  228. reused in the next frame */
  229. exp_strategy[0][ch] = EXP_NEW;
  230. for(i=1;i<NB_BLOCKS;i++) {
  231. exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], N/2);
  232. #ifdef DEBUG
  233. av_log(NULL, AV_LOG_DEBUG, "exp_diff=%d\n", exp_diff);
  234. #endif
  235. if (exp_diff > EXP_DIFF_THRESHOLD)
  236. exp_strategy[i][ch] = EXP_NEW;
  237. else
  238. exp_strategy[i][ch] = EXP_REUSE;
  239. }
  240. if (is_lfe)
  241. return;
  242. /* now select the encoding strategy type : if exponents are often
  243. recoded, we use a coarse encoding */
  244. i = 0;
  245. while (i < NB_BLOCKS) {
  246. j = i + 1;
  247. while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE)
  248. j++;
  249. switch(j - i) {
  250. case 1:
  251. exp_strategy[i][ch] = EXP_D45;
  252. break;
  253. case 2:
  254. case 3:
  255. exp_strategy[i][ch] = EXP_D25;
  256. break;
  257. default:
  258. exp_strategy[i][ch] = EXP_D15;
  259. break;
  260. }
  261. i = j;
  262. }
  263. }
  264. /* set exp[i] to min(exp[i], exp1[i]) */
  265. static void exponent_min(uint8_t exp[N/2], uint8_t exp1[N/2], int n)
  266. {
  267. int i;
  268. for(i=0;i<n;i++) {
  269. if (exp1[i] < exp[i])
  270. exp[i] = exp1[i];
  271. }
  272. }
  273. /* update the exponents so that they are the ones the decoder will
  274. decode. Return the number of bits used to code the exponents */
  275. static int encode_exp(uint8_t encoded_exp[N/2],
  276. uint8_t exp[N/2],
  277. int nb_exps,
  278. int exp_strategy)
  279. {
  280. int group_size, nb_groups, i, j, k, exp_min;
  281. uint8_t exp1[N/2];
  282. switch(exp_strategy) {
  283. case EXP_D15:
  284. group_size = 1;
  285. break;
  286. case EXP_D25:
  287. group_size = 2;
  288. break;
  289. default:
  290. case EXP_D45:
  291. group_size = 4;
  292. break;
  293. }
  294. nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3;
  295. /* for each group, compute the minimum exponent */
  296. exp1[0] = exp[0]; /* DC exponent is handled separately */
  297. k = 1;
  298. for(i=1;i<=nb_groups;i++) {
  299. exp_min = exp[k];
  300. assert(exp_min >= 0 && exp_min <= 24);
  301. for(j=1;j<group_size;j++) {
  302. if (exp[k+j] < exp_min)
  303. exp_min = exp[k+j];
  304. }
  305. exp1[i] = exp_min;
  306. k += group_size;
  307. }
  308. /* constraint for DC exponent */
  309. if (exp1[0] > 15)
  310. exp1[0] = 15;
  311. /* Decrease the delta between each groups to within 2
  312. * so that they can be differentially encoded */
  313. for (i=1;i<=nb_groups;i++)
  314. exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2);
  315. for (i=nb_groups-1;i>=0;i--)
  316. exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2);
  317. /* now we have the exponent values the decoder will see */
  318. encoded_exp[0] = exp1[0];
  319. k = 1;
  320. for(i=1;i<=nb_groups;i++) {
  321. for(j=0;j<group_size;j++) {
  322. encoded_exp[k+j] = exp1[i];
  323. }
  324. k += group_size;
  325. }
  326. #if defined(DEBUG)
  327. av_log(NULL, AV_LOG_DEBUG, "exponents: strategy=%d\n", exp_strategy);
  328. for(i=0;i<=nb_groups * group_size;i++) {
  329. av_log(NULL, AV_LOG_DEBUG, "%d ", encoded_exp[i]);
  330. }
  331. av_log(NULL, AV_LOG_DEBUG, "\n");
  332. #endif
  333. return 4 + (nb_groups / 3) * 7;
  334. }
  335. /* return the size in bits taken by the mantissa */
  336. static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs)
  337. {
  338. int bits, mant, i;
  339. bits = 0;
  340. for(i=0;i<nb_coefs;i++) {
  341. mant = m[i];
  342. switch(mant) {
  343. case 0:
  344. /* nothing */
  345. break;
  346. case 1:
  347. /* 3 mantissa in 5 bits */
  348. if (s->mant1_cnt == 0)
  349. bits += 5;
  350. if (++s->mant1_cnt == 3)
  351. s->mant1_cnt = 0;
  352. break;
  353. case 2:
  354. /* 3 mantissa in 7 bits */
  355. if (s->mant2_cnt == 0)
  356. bits += 7;
  357. if (++s->mant2_cnt == 3)
  358. s->mant2_cnt = 0;
  359. break;
  360. case 3:
  361. bits += 3;
  362. break;
  363. case 4:
  364. /* 2 mantissa in 7 bits */
  365. if (s->mant4_cnt == 0)
  366. bits += 7;
  367. if (++s->mant4_cnt == 2)
  368. s->mant4_cnt = 0;
  369. break;
  370. case 14:
  371. bits += 14;
  372. break;
  373. case 15:
  374. bits += 16;
  375. break;
  376. default:
  377. bits += mant - 1;
  378. break;
  379. }
  380. }
  381. return bits;
  382. }
  383. static void bit_alloc_masking(AC3EncodeContext *s,
  384. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  385. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  386. int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  387. int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50])
  388. {
  389. int blk, ch;
  390. int16_t bndpsd[NB_BLOCKS][AC3_MAX_CHANNELS][50];
  391. for(blk=0; blk<NB_BLOCKS; blk++) {
  392. for(ch=0;ch<s->nb_all_channels;ch++) {
  393. if(exp_strategy[blk][ch] == EXP_REUSE) {
  394. memcpy(psd[blk][ch], psd[blk-1][ch], (N/2)*sizeof(int16_t));
  395. memcpy(mask[blk][ch], mask[blk-1][ch], 50*sizeof(int16_t));
  396. } else {
  397. ff_ac3_bit_alloc_calc_psd(encoded_exp[blk][ch], 0,
  398. s->nb_coefs[ch],
  399. psd[blk][ch], bndpsd[blk][ch]);
  400. ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, bndpsd[blk][ch],
  401. 0, s->nb_coefs[ch],
  402. ff_fgaintab[s->fgaincod[ch]],
  403. ch == s->lfe_channel,
  404. DBA_NONE, 0, NULL, NULL, NULL,
  405. mask[blk][ch]);
  406. }
  407. }
  408. }
  409. }
  410. static int bit_alloc(AC3EncodeContext *s,
  411. int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50],
  412. int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  413. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  414. int frame_bits, int csnroffst, int fsnroffst)
  415. {
  416. int i, ch;
  417. int snroffset;
  418. snroffset = (((csnroffst - 15) << 4) + fsnroffst) << 2;
  419. /* compute size */
  420. for(i=0;i<NB_BLOCKS;i++) {
  421. s->mant1_cnt = 0;
  422. s->mant2_cnt = 0;
  423. s->mant4_cnt = 0;
  424. for(ch=0;ch<s->nb_all_channels;ch++) {
  425. ff_ac3_bit_alloc_calc_bap(mask[i][ch], psd[i][ch], 0,
  426. s->nb_coefs[ch], snroffset,
  427. s->bit_alloc.floor, bap[i][ch]);
  428. frame_bits += compute_mantissa_size(s, bap[i][ch],
  429. s->nb_coefs[ch]);
  430. }
  431. }
  432. #if 0
  433. printf("csnr=%d fsnr=%d frame_bits=%d diff=%d\n",
  434. csnroffst, fsnroffst, frame_bits,
  435. 16 * s->frame_size - ((frame_bits + 7) & ~7));
  436. #endif
  437. return 16 * s->frame_size - frame_bits;
  438. }
  439. #define SNR_INC1 4
  440. static int compute_bit_allocation(AC3EncodeContext *s,
  441. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  442. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  443. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  444. int frame_bits)
  445. {
  446. int i, ch;
  447. int csnroffst, fsnroffst;
  448. uint8_t bap1[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  449. int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  450. int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50];
  451. static int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
  452. /* init default parameters */
  453. s->sdecaycod = 2;
  454. s->fdecaycod = 1;
  455. s->sgaincod = 1;
  456. s->dbkneecod = 2;
  457. s->floorcod = 4;
  458. for(ch=0;ch<s->nb_all_channels;ch++)
  459. s->fgaincod[ch] = 4;
  460. /* compute real values */
  461. s->bit_alloc.fscod = s->fscod;
  462. s->bit_alloc.halfratecod = s->halfratecod;
  463. s->bit_alloc.sdecay = ff_sdecaytab[s->sdecaycod] >> s->halfratecod;
  464. s->bit_alloc.fdecay = ff_fdecaytab[s->fdecaycod] >> s->halfratecod;
  465. s->bit_alloc.sgain = ff_sgaintab[s->sgaincod];
  466. s->bit_alloc.dbknee = ff_dbkneetab[s->dbkneecod];
  467. s->bit_alloc.floor = ff_floortab[s->floorcod];
  468. /* header size */
  469. frame_bits += 65;
  470. // if (s->acmod == 2)
  471. // frame_bits += 2;
  472. frame_bits += frame_bits_inc[s->acmod];
  473. /* audio blocks */
  474. for(i=0;i<NB_BLOCKS;i++) {
  475. frame_bits += s->nb_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
  476. if (s->acmod == AC3_ACMOD_STEREO) {
  477. frame_bits++; /* rematstr */
  478. if(i==0) frame_bits += 4;
  479. }
  480. frame_bits += 2 * s->nb_channels; /* chexpstr[2] * c */
  481. if (s->lfe)
  482. frame_bits++; /* lfeexpstr */
  483. for(ch=0;ch<s->nb_channels;ch++) {
  484. if (exp_strategy[i][ch] != EXP_REUSE)
  485. frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
  486. }
  487. frame_bits++; /* baie */
  488. frame_bits++; /* snr */
  489. frame_bits += 2; /* delta / skip */
  490. }
  491. frame_bits++; /* cplinu for block 0 */
  492. /* bit alloc info */
  493. /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
  494. /* csnroffset[6] */
  495. /* (fsnoffset[4] + fgaincod[4]) * c */
  496. frame_bits += 2*4 + 3 + 6 + s->nb_all_channels * (4 + 3);
  497. /* auxdatae, crcrsv */
  498. frame_bits += 2;
  499. /* CRC */
  500. frame_bits += 16;
  501. /* calculate psd and masking curve before doing bit allocation */
  502. bit_alloc_masking(s, encoded_exp, exp_strategy, psd, mask);
  503. /* now the big work begins : do the bit allocation. Modify the snr
  504. offset until we can pack everything in the requested frame size */
  505. csnroffst = s->csnroffst;
  506. while (csnroffst >= 0 &&
  507. bit_alloc(s, mask, psd, bap, frame_bits, csnroffst, 0) < 0)
  508. csnroffst -= SNR_INC1;
  509. if (csnroffst < 0) {
  510. av_log(NULL, AV_LOG_ERROR, "Bit allocation failed, try increasing the bitrate, -ab 384 for example!\n");
  511. return -1;
  512. }
  513. while ((csnroffst + SNR_INC1) <= 63 &&
  514. bit_alloc(s, mask, psd, bap1, frame_bits,
  515. csnroffst + SNR_INC1, 0) >= 0) {
  516. csnroffst += SNR_INC1;
  517. memcpy(bap, bap1, sizeof(bap1));
  518. }
  519. while ((csnroffst + 1) <= 63 &&
  520. bit_alloc(s, mask, psd, bap1, frame_bits, csnroffst + 1, 0) >= 0) {
  521. csnroffst++;
  522. memcpy(bap, bap1, sizeof(bap1));
  523. }
  524. fsnroffst = 0;
  525. while ((fsnroffst + SNR_INC1) <= 15 &&
  526. bit_alloc(s, mask, psd, bap1, frame_bits,
  527. csnroffst, fsnroffst + SNR_INC1) >= 0) {
  528. fsnroffst += SNR_INC1;
  529. memcpy(bap, bap1, sizeof(bap1));
  530. }
  531. while ((fsnroffst + 1) <= 15 &&
  532. bit_alloc(s, mask, psd, bap1, frame_bits,
  533. csnroffst, fsnroffst + 1) >= 0) {
  534. fsnroffst++;
  535. memcpy(bap, bap1, sizeof(bap1));
  536. }
  537. s->csnroffst = csnroffst;
  538. for(ch=0;ch<s->nb_all_channels;ch++)
  539. s->fsnroffst[ch] = fsnroffst;
  540. #if defined(DEBUG_BITALLOC)
  541. {
  542. int j;
  543. for(i=0;i<6;i++) {
  544. for(ch=0;ch<s->nb_all_channels;ch++) {
  545. printf("Block #%d Ch%d:\n", i, ch);
  546. printf("bap=");
  547. for(j=0;j<s->nb_coefs[ch];j++) {
  548. printf("%d ",bap[i][ch][j]);
  549. }
  550. printf("\n");
  551. }
  552. }
  553. }
  554. #endif
  555. return 0;
  556. }
  557. static int AC3_encode_init(AVCodecContext *avctx)
  558. {
  559. int freq = avctx->sample_rate;
  560. int bitrate = avctx->bit_rate;
  561. int channels = avctx->channels;
  562. AC3EncodeContext *s = avctx->priv_data;
  563. int i, j, ch;
  564. float alpha;
  565. static const uint8_t acmod_defs[6] = {
  566. 0x01, /* C */
  567. 0x02, /* L R */
  568. 0x03, /* L C R */
  569. 0x06, /* L R SL SR */
  570. 0x07, /* L C R SL SR */
  571. 0x07, /* L C R SL SR (+LFE) */
  572. };
  573. avctx->frame_size = AC3_FRAME_SIZE;
  574. ac3_common_init();
  575. /* number of channels */
  576. if (channels < 1 || channels > 6)
  577. return -1;
  578. s->acmod = acmod_defs[channels - 1];
  579. s->lfe = (channels == 6) ? 1 : 0;
  580. s->nb_all_channels = channels;
  581. s->nb_channels = channels > 5 ? 5 : channels;
  582. s->lfe_channel = s->lfe ? 5 : -1;
  583. /* frequency */
  584. for(i=0;i<3;i++) {
  585. for(j=0;j<3;j++)
  586. if ((ff_ac3_freqs[j] >> i) == freq)
  587. goto found;
  588. }
  589. return -1;
  590. found:
  591. s->sample_rate = freq;
  592. s->halfratecod = i;
  593. s->fscod = j;
  594. s->bsid = 8 + s->halfratecod;
  595. s->bsmod = 0; /* complete main audio service */
  596. /* bitrate & frame size */
  597. bitrate /= 1000;
  598. for(i=0;i<19;i++) {
  599. if ((ff_ac3_bitratetab[i] >> s->halfratecod) == bitrate)
  600. break;
  601. }
  602. if (i == 19)
  603. return -1;
  604. s->bit_rate = bitrate;
  605. s->frmsizecod = i << 1;
  606. s->frame_size_min = ff_ac3_frame_sizes[s->frmsizecod][s->fscod];
  607. s->bits_written = 0;
  608. s->samples_written = 0;
  609. s->frame_size = s->frame_size_min;
  610. /* bit allocation init */
  611. for(ch=0;ch<s->nb_channels;ch++) {
  612. /* bandwidth for each channel */
  613. /* XXX: should compute the bandwidth according to the frame
  614. size, so that we avoid anoying high freq artefacts */
  615. s->chbwcod[ch] = 50; /* sample bandwidth as mpeg audio layer 2 table 0 */
  616. s->nb_coefs[ch] = ((s->chbwcod[ch] + 12) * 3) + 37;
  617. }
  618. if (s->lfe) {
  619. s->nb_coefs[s->lfe_channel] = 7; /* fixed */
  620. }
  621. /* initial snr offset */
  622. s->csnroffst = 40;
  623. /* mdct init */
  624. fft_init(MDCT_NBITS - 2);
  625. for(i=0;i<N/4;i++) {
  626. alpha = 2 * M_PI * (i + 1.0 / 8.0) / (float)N;
  627. xcos1[i] = fix15(-cos(alpha));
  628. xsin1[i] = fix15(-sin(alpha));
  629. }
  630. avctx->coded_frame= avcodec_alloc_frame();
  631. avctx->coded_frame->key_frame= 1;
  632. return 0;
  633. }
  634. /* output the AC3 frame header */
  635. static void output_frame_header(AC3EncodeContext *s, unsigned char *frame)
  636. {
  637. init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
  638. put_bits(&s->pb, 16, 0x0b77); /* frame header */
  639. put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
  640. put_bits(&s->pb, 2, s->fscod);
  641. put_bits(&s->pb, 6, s->frmsizecod + (s->frame_size - s->frame_size_min));
  642. put_bits(&s->pb, 5, s->bsid);
  643. put_bits(&s->pb, 3, s->bsmod);
  644. put_bits(&s->pb, 3, s->acmod);
  645. if ((s->acmod & 0x01) && s->acmod != AC3_ACMOD_MONO)
  646. put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */
  647. if (s->acmod & 0x04)
  648. put_bits(&s->pb, 2, 1); /* XXX -6 dB */
  649. if (s->acmod == AC3_ACMOD_STEREO)
  650. put_bits(&s->pb, 2, 0); /* surround not indicated */
  651. put_bits(&s->pb, 1, s->lfe); /* LFE */
  652. put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */
  653. put_bits(&s->pb, 1, 0); /* no compression control word */
  654. put_bits(&s->pb, 1, 0); /* no lang code */
  655. put_bits(&s->pb, 1, 0); /* no audio production info */
  656. put_bits(&s->pb, 1, 0); /* no copyright */
  657. put_bits(&s->pb, 1, 1); /* original bitstream */
  658. put_bits(&s->pb, 1, 0); /* no time code 1 */
  659. put_bits(&s->pb, 1, 0); /* no time code 2 */
  660. put_bits(&s->pb, 1, 0); /* no addtional bit stream info */
  661. }
  662. /* symetric quantization on 'levels' levels */
  663. static inline int sym_quant(int c, int e, int levels)
  664. {
  665. int v;
  666. if (c >= 0) {
  667. v = (levels * (c << e)) >> 24;
  668. v = (v + 1) >> 1;
  669. v = (levels >> 1) + v;
  670. } else {
  671. v = (levels * ((-c) << e)) >> 24;
  672. v = (v + 1) >> 1;
  673. v = (levels >> 1) - v;
  674. }
  675. assert (v >= 0 && v < levels);
  676. return v;
  677. }
  678. /* asymetric quantization on 2^qbits levels */
  679. static inline int asym_quant(int c, int e, int qbits)
  680. {
  681. int lshift, m, v;
  682. lshift = e + qbits - 24;
  683. if (lshift >= 0)
  684. v = c << lshift;
  685. else
  686. v = c >> (-lshift);
  687. /* rounding */
  688. v = (v + 1) >> 1;
  689. m = (1 << (qbits-1));
  690. if (v >= m)
  691. v = m - 1;
  692. assert(v >= -m);
  693. return v & ((1 << qbits)-1);
  694. }
  695. /* Output one audio block. There are NB_BLOCKS audio blocks in one AC3
  696. frame */
  697. static void output_audio_block(AC3EncodeContext *s,
  698. uint8_t exp_strategy[AC3_MAX_CHANNELS],
  699. uint8_t encoded_exp[AC3_MAX_CHANNELS][N/2],
  700. uint8_t bap[AC3_MAX_CHANNELS][N/2],
  701. int32_t mdct_coefs[AC3_MAX_CHANNELS][N/2],
  702. int8_t global_exp[AC3_MAX_CHANNELS],
  703. int block_num)
  704. {
  705. int ch, nb_groups, group_size, i, baie, rbnd;
  706. uint8_t *p;
  707. uint16_t qmant[AC3_MAX_CHANNELS][N/2];
  708. int exp0, exp1;
  709. int mant1_cnt, mant2_cnt, mant4_cnt;
  710. uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr;
  711. int delta0, delta1, delta2;
  712. for(ch=0;ch<s->nb_channels;ch++)
  713. put_bits(&s->pb, 1, 0); /* 512 point MDCT */
  714. for(ch=0;ch<s->nb_channels;ch++)
  715. put_bits(&s->pb, 1, 1); /* no dither */
  716. put_bits(&s->pb, 1, 0); /* no dynamic range */
  717. if (block_num == 0) {
  718. /* for block 0, even if no coupling, we must say it. This is a
  719. waste of bit :-) */
  720. put_bits(&s->pb, 1, 1); /* coupling strategy present */
  721. put_bits(&s->pb, 1, 0); /* no coupling strategy */
  722. } else {
  723. put_bits(&s->pb, 1, 0); /* no new coupling strategy */
  724. }
  725. if (s->acmod == AC3_ACMOD_STEREO)
  726. {
  727. if(block_num==0)
  728. {
  729. /* first block must define rematrixing (rematstr) */
  730. put_bits(&s->pb, 1, 1);
  731. /* dummy rematrixing rematflg(1:4)=0 */
  732. for (rbnd=0;rbnd<4;rbnd++)
  733. put_bits(&s->pb, 1, 0);
  734. }
  735. else
  736. {
  737. /* no matrixing (but should be used in the future) */
  738. put_bits(&s->pb, 1, 0);
  739. }
  740. }
  741. #if defined(DEBUG)
  742. {
  743. static int count = 0;
  744. av_log(NULL, AV_LOG_DEBUG, "Block #%d (%d)\n", block_num, count++);
  745. }
  746. #endif
  747. /* exponent strategy */
  748. for(ch=0;ch<s->nb_channels;ch++) {
  749. put_bits(&s->pb, 2, exp_strategy[ch]);
  750. }
  751. if (s->lfe) {
  752. put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]);
  753. }
  754. for(ch=0;ch<s->nb_channels;ch++) {
  755. if (exp_strategy[ch] != EXP_REUSE)
  756. put_bits(&s->pb, 6, s->chbwcod[ch]);
  757. }
  758. /* exponents */
  759. for (ch = 0; ch < s->nb_all_channels; ch++) {
  760. switch(exp_strategy[ch]) {
  761. case EXP_REUSE:
  762. continue;
  763. case EXP_D15:
  764. group_size = 1;
  765. break;
  766. case EXP_D25:
  767. group_size = 2;
  768. break;
  769. default:
  770. case EXP_D45:
  771. group_size = 4;
  772. break;
  773. }
  774. nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size);
  775. p = encoded_exp[ch];
  776. /* first exponent */
  777. exp1 = *p++;
  778. put_bits(&s->pb, 4, exp1);
  779. /* next ones are delta encoded */
  780. for(i=0;i<nb_groups;i++) {
  781. /* merge three delta in one code */
  782. exp0 = exp1;
  783. exp1 = p[0];
  784. p += group_size;
  785. delta0 = exp1 - exp0 + 2;
  786. exp0 = exp1;
  787. exp1 = p[0];
  788. p += group_size;
  789. delta1 = exp1 - exp0 + 2;
  790. exp0 = exp1;
  791. exp1 = p[0];
  792. p += group_size;
  793. delta2 = exp1 - exp0 + 2;
  794. put_bits(&s->pb, 7, ((delta0 * 5 + delta1) * 5) + delta2);
  795. }
  796. if (ch != s->lfe_channel)
  797. put_bits(&s->pb, 2, 0); /* no gain range info */
  798. }
  799. /* bit allocation info */
  800. baie = (block_num == 0);
  801. put_bits(&s->pb, 1, baie);
  802. if (baie) {
  803. put_bits(&s->pb, 2, s->sdecaycod);
  804. put_bits(&s->pb, 2, s->fdecaycod);
  805. put_bits(&s->pb, 2, s->sgaincod);
  806. put_bits(&s->pb, 2, s->dbkneecod);
  807. put_bits(&s->pb, 3, s->floorcod);
  808. }
  809. /* snr offset */
  810. put_bits(&s->pb, 1, baie); /* always present with bai */
  811. if (baie) {
  812. put_bits(&s->pb, 6, s->csnroffst);
  813. for(ch=0;ch<s->nb_all_channels;ch++) {
  814. put_bits(&s->pb, 4, s->fsnroffst[ch]);
  815. put_bits(&s->pb, 3, s->fgaincod[ch]);
  816. }
  817. }
  818. put_bits(&s->pb, 1, 0); /* no delta bit allocation */
  819. put_bits(&s->pb, 1, 0); /* no data to skip */
  820. /* mantissa encoding : we use two passes to handle the grouping. A
  821. one pass method may be faster, but it would necessitate to
  822. modify the output stream. */
  823. /* first pass: quantize */
  824. mant1_cnt = mant2_cnt = mant4_cnt = 0;
  825. qmant1_ptr = qmant2_ptr = qmant4_ptr = NULL;
  826. for (ch = 0; ch < s->nb_all_channels; ch++) {
  827. int b, c, e, v;
  828. for(i=0;i<s->nb_coefs[ch];i++) {
  829. c = mdct_coefs[ch][i];
  830. e = encoded_exp[ch][i] - global_exp[ch];
  831. b = bap[ch][i];
  832. switch(b) {
  833. case 0:
  834. v = 0;
  835. break;
  836. case 1:
  837. v = sym_quant(c, e, 3);
  838. switch(mant1_cnt) {
  839. case 0:
  840. qmant1_ptr = &qmant[ch][i];
  841. v = 9 * v;
  842. mant1_cnt = 1;
  843. break;
  844. case 1:
  845. *qmant1_ptr += 3 * v;
  846. mant1_cnt = 2;
  847. v = 128;
  848. break;
  849. default:
  850. *qmant1_ptr += v;
  851. mant1_cnt = 0;
  852. v = 128;
  853. break;
  854. }
  855. break;
  856. case 2:
  857. v = sym_quant(c, e, 5);
  858. switch(mant2_cnt) {
  859. case 0:
  860. qmant2_ptr = &qmant[ch][i];
  861. v = 25 * v;
  862. mant2_cnt = 1;
  863. break;
  864. case 1:
  865. *qmant2_ptr += 5 * v;
  866. mant2_cnt = 2;
  867. v = 128;
  868. break;
  869. default:
  870. *qmant2_ptr += v;
  871. mant2_cnt = 0;
  872. v = 128;
  873. break;
  874. }
  875. break;
  876. case 3:
  877. v = sym_quant(c, e, 7);
  878. break;
  879. case 4:
  880. v = sym_quant(c, e, 11);
  881. switch(mant4_cnt) {
  882. case 0:
  883. qmant4_ptr = &qmant[ch][i];
  884. v = 11 * v;
  885. mant4_cnt = 1;
  886. break;
  887. default:
  888. *qmant4_ptr += v;
  889. mant4_cnt = 0;
  890. v = 128;
  891. break;
  892. }
  893. break;
  894. case 5:
  895. v = sym_quant(c, e, 15);
  896. break;
  897. case 14:
  898. v = asym_quant(c, e, 14);
  899. break;
  900. case 15:
  901. v = asym_quant(c, e, 16);
  902. break;
  903. default:
  904. v = asym_quant(c, e, b - 1);
  905. break;
  906. }
  907. qmant[ch][i] = v;
  908. }
  909. }
  910. /* second pass : output the values */
  911. for (ch = 0; ch < s->nb_all_channels; ch++) {
  912. int b, q;
  913. for(i=0;i<s->nb_coefs[ch];i++) {
  914. q = qmant[ch][i];
  915. b = bap[ch][i];
  916. switch(b) {
  917. case 0:
  918. break;
  919. case 1:
  920. if (q != 128)
  921. put_bits(&s->pb, 5, q);
  922. break;
  923. case 2:
  924. if (q != 128)
  925. put_bits(&s->pb, 7, q);
  926. break;
  927. case 3:
  928. put_bits(&s->pb, 3, q);
  929. break;
  930. case 4:
  931. if (q != 128)
  932. put_bits(&s->pb, 7, q);
  933. break;
  934. case 14:
  935. put_bits(&s->pb, 14, q);
  936. break;
  937. case 15:
  938. put_bits(&s->pb, 16, q);
  939. break;
  940. default:
  941. put_bits(&s->pb, b - 1, q);
  942. break;
  943. }
  944. }
  945. }
  946. }
  947. #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
  948. static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
  949. {
  950. unsigned int c;
  951. c = 0;
  952. while (a) {
  953. if (a & 1)
  954. c ^= b;
  955. a = a >> 1;
  956. b = b << 1;
  957. if (b & (1 << 16))
  958. b ^= poly;
  959. }
  960. return c;
  961. }
  962. static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
  963. {
  964. unsigned int r;
  965. r = 1;
  966. while (n) {
  967. if (n & 1)
  968. r = mul_poly(r, a, poly);
  969. a = mul_poly(a, a, poly);
  970. n >>= 1;
  971. }
  972. return r;
  973. }
  974. /* compute log2(max(abs(tab[]))) */
  975. static int log2_tab(int16_t *tab, int n)
  976. {
  977. int i, v;
  978. v = 0;
  979. for(i=0;i<n;i++) {
  980. v |= abs(tab[i]);
  981. }
  982. return av_log2(v);
  983. }
  984. static void lshift_tab(int16_t *tab, int n, int lshift)
  985. {
  986. int i;
  987. if (lshift > 0) {
  988. for(i=0;i<n;i++) {
  989. tab[i] <<= lshift;
  990. }
  991. } else if (lshift < 0) {
  992. lshift = -lshift;
  993. for(i=0;i<n;i++) {
  994. tab[i] >>= lshift;
  995. }
  996. }
  997. }
  998. /* fill the end of the frame and compute the two crcs */
  999. static int output_frame_end(AC3EncodeContext *s)
  1000. {
  1001. int frame_size, frame_size_58, n, crc1, crc2, crc_inv;
  1002. uint8_t *frame;
  1003. frame_size = s->frame_size; /* frame size in words */
  1004. /* align to 8 bits */
  1005. flush_put_bits(&s->pb);
  1006. /* add zero bytes to reach the frame size */
  1007. frame = s->pb.buf;
  1008. n = 2 * s->frame_size - (pbBufPtr(&s->pb) - frame) - 2;
  1009. assert(n >= 0);
  1010. if(n>0)
  1011. memset(pbBufPtr(&s->pb), 0, n);
  1012. /* Now we must compute both crcs : this is not so easy for crc1
  1013. because it is at the beginning of the data... */
  1014. frame_size_58 = (frame_size >> 1) + (frame_size >> 3);
  1015. crc1 = bswap_16(av_crc(av_crc8005, 0, frame + 4, 2 * frame_size_58 - 4));
  1016. /* XXX: could precompute crc_inv */
  1017. crc_inv = pow_poly((CRC16_POLY >> 1), (16 * frame_size_58) - 16, CRC16_POLY);
  1018. crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
  1019. AV_WB16(frame+2,crc1);
  1020. crc2 = bswap_16(av_crc(av_crc8005, 0, frame + 2 * frame_size_58, (frame_size - frame_size_58) * 2 - 2));
  1021. AV_WB16(frame+2*frame_size-2,crc2);
  1022. // printf("n=%d frame_size=%d\n", n, frame_size);
  1023. return frame_size * 2;
  1024. }
  1025. static int AC3_encode_frame(AVCodecContext *avctx,
  1026. unsigned char *frame, int buf_size, void *data)
  1027. {
  1028. AC3EncodeContext *s = avctx->priv_data;
  1029. int16_t *samples = data;
  1030. int i, j, k, v, ch;
  1031. int16_t input_samples[N];
  1032. int32_t mdct_coef[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1033. uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1034. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS];
  1035. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1036. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1037. int8_t exp_samples[NB_BLOCKS][AC3_MAX_CHANNELS];
  1038. int frame_bits;
  1039. frame_bits = 0;
  1040. for(ch=0;ch<s->nb_all_channels;ch++) {
  1041. /* fixed mdct to the six sub blocks & exponent computation */
  1042. for(i=0;i<NB_BLOCKS;i++) {
  1043. int16_t *sptr;
  1044. int sinc;
  1045. /* compute input samples */
  1046. memcpy(input_samples, s->last_samples[ch], N/2 * sizeof(int16_t));
  1047. sinc = s->nb_all_channels;
  1048. sptr = samples + (sinc * (N/2) * i) + ch;
  1049. for(j=0;j<N/2;j++) {
  1050. v = *sptr;
  1051. input_samples[j + N/2] = v;
  1052. s->last_samples[ch][j] = v;
  1053. sptr += sinc;
  1054. }
  1055. /* apply the MDCT window */
  1056. for(j=0;j<N/2;j++) {
  1057. input_samples[j] = MUL16(input_samples[j],
  1058. ff_ac3_window[j]) >> 15;
  1059. input_samples[N-j-1] = MUL16(input_samples[N-j-1],
  1060. ff_ac3_window[j]) >> 15;
  1061. }
  1062. /* Normalize the samples to use the maximum available
  1063. precision */
  1064. v = 14 - log2_tab(input_samples, N);
  1065. if (v < 0)
  1066. v = 0;
  1067. exp_samples[i][ch] = v - 9;
  1068. lshift_tab(input_samples, N, v);
  1069. /* do the MDCT */
  1070. mdct512(mdct_coef[i][ch], input_samples);
  1071. /* compute "exponents". We take into account the
  1072. normalization there */
  1073. for(j=0;j<N/2;j++) {
  1074. int e;
  1075. v = abs(mdct_coef[i][ch][j]);
  1076. if (v == 0)
  1077. e = 24;
  1078. else {
  1079. e = 23 - av_log2(v) + exp_samples[i][ch];
  1080. if (e >= 24) {
  1081. e = 24;
  1082. mdct_coef[i][ch][j] = 0;
  1083. }
  1084. }
  1085. exp[i][ch][j] = e;
  1086. }
  1087. }
  1088. compute_exp_strategy(exp_strategy, exp, ch, ch == s->lfe_channel);
  1089. /* compute the exponents as the decoder will see them. The
  1090. EXP_REUSE case must be handled carefully : we select the
  1091. min of the exponents */
  1092. i = 0;
  1093. while (i < NB_BLOCKS) {
  1094. j = i + 1;
  1095. while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) {
  1096. exponent_min(exp[i][ch], exp[j][ch], s->nb_coefs[ch]);
  1097. j++;
  1098. }
  1099. frame_bits += encode_exp(encoded_exp[i][ch],
  1100. exp[i][ch], s->nb_coefs[ch],
  1101. exp_strategy[i][ch]);
  1102. /* copy encoded exponents for reuse case */
  1103. for(k=i+1;k<j;k++) {
  1104. memcpy(encoded_exp[k][ch], encoded_exp[i][ch],
  1105. s->nb_coefs[ch] * sizeof(uint8_t));
  1106. }
  1107. i = j;
  1108. }
  1109. }
  1110. /* adjust for fractional frame sizes */
  1111. while(s->bits_written >= s->bit_rate*1000 && s->samples_written >= s->sample_rate) {
  1112. s->bits_written -= s->bit_rate*1000;
  1113. s->samples_written -= s->sample_rate;
  1114. }
  1115. s->frame_size = s->frame_size_min + (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate*1000);
  1116. s->bits_written += s->frame_size * 16;
  1117. s->samples_written += AC3_FRAME_SIZE;
  1118. compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits);
  1119. /* everything is known... let's output the frame */
  1120. output_frame_header(s, frame);
  1121. for(i=0;i<NB_BLOCKS;i++) {
  1122. output_audio_block(s, exp_strategy[i], encoded_exp[i],
  1123. bap[i], mdct_coef[i], exp_samples[i], i);
  1124. }
  1125. return output_frame_end(s);
  1126. }
  1127. static int AC3_encode_close(AVCodecContext *avctx)
  1128. {
  1129. av_freep(&avctx->coded_frame);
  1130. return 0;
  1131. }
  1132. #if 0
  1133. /*************************************************************************/
  1134. /* TEST */
  1135. #undef random
  1136. #define FN (N/4)
  1137. void fft_test(void)
  1138. {
  1139. IComplex in[FN], in1[FN];
  1140. int k, n, i;
  1141. float sum_re, sum_im, a;
  1142. /* FFT test */
  1143. for(i=0;i<FN;i++) {
  1144. in[i].re = random() % 65535 - 32767;
  1145. in[i].im = random() % 65535 - 32767;
  1146. in1[i] = in[i];
  1147. }
  1148. fft(in, 7);
  1149. /* do it by hand */
  1150. for(k=0;k<FN;k++) {
  1151. sum_re = 0;
  1152. sum_im = 0;
  1153. for(n=0;n<FN;n++) {
  1154. a = -2 * M_PI * (n * k) / FN;
  1155. sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
  1156. sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
  1157. }
  1158. printf("%3d: %6d,%6d %6.0f,%6.0f\n",
  1159. k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
  1160. }
  1161. }
  1162. void mdct_test(void)
  1163. {
  1164. int16_t input[N];
  1165. int32_t output[N/2];
  1166. float input1[N];
  1167. float output1[N/2];
  1168. float s, a, err, e, emax;
  1169. int i, k, n;
  1170. for(i=0;i<N;i++) {
  1171. input[i] = (random() % 65535 - 32767) * 9 / 10;
  1172. input1[i] = input[i];
  1173. }
  1174. mdct512(output, input);
  1175. /* do it by hand */
  1176. for(k=0;k<N/2;k++) {
  1177. s = 0;
  1178. for(n=0;n<N;n++) {
  1179. a = (2*M_PI*(2*n+1+N/2)*(2*k+1) / (4 * N));
  1180. s += input1[n] * cos(a);
  1181. }
  1182. output1[k] = -2 * s / N;
  1183. }
  1184. err = 0;
  1185. emax = 0;
  1186. for(i=0;i<N/2;i++) {
  1187. printf("%3d: %7d %7.0f\n", i, output[i], output1[i]);
  1188. e = output[i] - output1[i];
  1189. if (e > emax)
  1190. emax = e;
  1191. err += e * e;
  1192. }
  1193. printf("err2=%f emax=%f\n", err / (N/2), emax);
  1194. }
  1195. void test_ac3(void)
  1196. {
  1197. AC3EncodeContext ctx;
  1198. unsigned char frame[AC3_MAX_CODED_FRAME_SIZE];
  1199. short samples[AC3_FRAME_SIZE];
  1200. int ret, i;
  1201. AC3_encode_init(&ctx, 44100, 64000, 1);
  1202. fft_test();
  1203. mdct_test();
  1204. for(i=0;i<AC3_FRAME_SIZE;i++)
  1205. samples[i] = (int)(sin(2*M_PI*i*1000.0/44100) * 10000);
  1206. ret = AC3_encode_frame(&ctx, frame, samples);
  1207. printf("ret=%d\n", ret);
  1208. }
  1209. #endif
  1210. AVCodec ac3_encoder = {
  1211. "ac3",
  1212. CODEC_TYPE_AUDIO,
  1213. CODEC_ID_AC3,
  1214. sizeof(AC3EncodeContext),
  1215. AC3_encode_init,
  1216. AC3_encode_frame,
  1217. AC3_encode_close,
  1218. NULL,
  1219. };