|
- /*
- * AC-3 Audio Decoder
- * This code is developed as part of Google Summer of Code 2006 Program.
- *
- * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
- * Copyright (c) 2007 Justin Ruggles
- *
- * Portions of this code are derived from liba52
- * http://liba52.sourceforge.net
- * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
- * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- #include <stdio.h>
- #include <stddef.h>
- #include <math.h>
- #include <string.h>
-
- #include "avcodec.h"
- #include "ac3_parser.h"
- #include "bitstream.h"
- #include "dsputil.h"
- #include "random.h"
-
- /**
- * Table of bin locations for rematrixing bands
- * reference: Section 7.5.2 Rematrixing : Frequency Band Definitions
- */
- static const uint8_t rematrix_band_tbl[5] = { 13, 25, 37, 61, 253 };
-
- /* table for exponent to scale_factor mapping
- * scale_factor[i] = 2 ^ -(i + 15)
- */
- static float scale_factors[25];
-
- /** table for grouping exponents */
- static uint8_t exp_ungroup_tbl[128][3];
-
-
- /** tables for ungrouping mantissas */
- static float b1_mantissas[32][3];
- static float b2_mantissas[128][3];
- static float b3_mantissas[8];
- static float b4_mantissas[128][2];
- static float b5_mantissas[16];
-
- /**
- * Quantization table: levels for symmetric. bits for asymmetric.
- * reference: Table 7.18 Mapping of bap to Quantizer
- */
- static const uint8_t qntztab[16] = {
- 0, 3, 5, 7, 11, 15,
- 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
- };
-
- /** dynamic range table. converts codes to scale factors. */
- static float dynrng_tbl[256];
-
- /** dialogue normalization table */
- static float dialnorm_tbl[32];
-
- /* Adjustmens in dB gain */
- #define LEVEL_MINUS_3DB 0.7071067811865476
- #define LEVEL_MINUS_4POINT5DB 0.5946035575013605
- #define LEVEL_MINUS_6DB 0.5000000000000000
- #define LEVEL_MINUS_9DB 0.3535533905932738
- #define LEVEL_ZERO 0.0000000000000000
- #define LEVEL_ONE 1.0000000000000000
-
- static const float gain_levels[6] = {
- LEVEL_ZERO,
- LEVEL_ONE,
- LEVEL_MINUS_3DB,
- LEVEL_MINUS_4POINT5DB,
- LEVEL_MINUS_6DB,
- LEVEL_MINUS_9DB
- };
-
- /**
- * Table for center mix levels
- * reference: Section 5.4.2.4 cmixlev
- */
- static const uint8_t clevs[4] = { 2, 3, 4, 3 };
-
- /**
- * Table for surround mix levels
- * reference: Section 5.4.2.5 surmixlev
- */
- static const uint8_t slevs[4] = { 2, 4, 0, 4 };
-
- /**
- * Table for default stereo downmixing coefficients
- * reference: Section 7.8.2 Downmixing Into Two Channels
- */
- static const uint8_t ac3_default_coeffs[8][5][2] = {
- { { 1, 0 }, { 0, 1 }, },
- { { 2, 2 }, },
- { { 1, 0 }, { 0, 1 }, },
- { { 1, 0 }, { 3, 3 }, { 0, 1 }, },
- { { 1, 0 }, { 0, 1 }, { 4, 4 }, },
- { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 5, 5 }, },
- { { 1, 0 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
- { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
- };
-
- /* override ac3.h to include coupling channel */
- #undef AC3_MAX_CHANNELS
- #define AC3_MAX_CHANNELS 7
- #define CPL_CH 0
-
- #define AC3_OUTPUT_LFEON 8
-
- typedef struct {
- int acmod;
- int dsurmod;
- int blksw[AC3_MAX_CHANNELS];
- int dithflag[AC3_MAX_CHANNELS];
- int dither_all;
- int cplinu;
- int chincpl[AC3_MAX_CHANNELS];
- int phsflginu;
- int cplbndstrc[18];
- int rematstr;
- int nrematbnd;
- int rematflg[4];
- int expstr[AC3_MAX_CHANNELS];
- int snroffst[AC3_MAX_CHANNELS];
- int fgain[AC3_MAX_CHANNELS];
- int deltbae[AC3_MAX_CHANNELS];
- int deltnseg[AC3_MAX_CHANNELS];
- uint8_t deltoffst[AC3_MAX_CHANNELS][8];
- uint8_t deltlen[AC3_MAX_CHANNELS][8];
- uint8_t deltba[AC3_MAX_CHANNELS][8];
-
- /* Derived Attributes. */
- int sampling_rate;
- int bit_rate;
- int frame_size;
-
- int nchans; //number of total channels
- int nfchans; //number of full-bandwidth channels
- int lfeon; //lfe channel in use
- int lfe_ch; ///< index of LFE channel
- int output_mode; ///< output channel configuration
- int out_channels; ///< number of output channels
-
- float downmix_coeffs[AC3_MAX_CHANNELS][2]; ///< stereo downmix coefficients
- float dialnorm[2]; ///< dialogue normalization
- float dynrng[2]; ///< dynamic range
- float cplco[AC3_MAX_CHANNELS][18]; //coupling coordinates
- int ncplbnd; //number of coupling bands
- int ncplsubnd; //number of coupling sub bands
- int startmant[AC3_MAX_CHANNELS]; ///< start frequency bin
- int endmant[AC3_MAX_CHANNELS]; //channel end mantissas
- AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters
-
- int8_t dexps[AC3_MAX_CHANNELS][256]; ///< decoded exponents
- uint8_t bap[AC3_MAX_CHANNELS][256]; ///< bit allocation pointers
- int16_t psd[AC3_MAX_CHANNELS][256]; ///< scaled exponents
- int16_t bndpsd[AC3_MAX_CHANNELS][50]; ///< interpolated exponents
- int16_t mask[AC3_MAX_CHANNELS][50]; ///< masking curve values
-
- DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]); //transform coefficients
-
- /* For IMDCT. */
- MDCTContext imdct_512; //for 512 sample imdct transform
- MDCTContext imdct_256; //for 256 sample imdct transform
- DSPContext dsp; //for optimization
- float add_bias; ///< offset for float_to_int16 conversion
- float mul_bias; ///< scaling for float_to_int16 conversion
-
- DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS-1][256]); //output after imdct transform and windowing
- DECLARE_ALIGNED_16(short, int_output[AC3_MAX_CHANNELS-1][256]); ///< final 16-bit integer output
- DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS-1][256]); //delay - added to the next block
- DECLARE_ALIGNED_16(float, tmp_imdct[256]); //temporary storage for imdct transform
- DECLARE_ALIGNED_16(float, tmp_output[512]); //temporary storage for output before windowing
- DECLARE_ALIGNED_16(float, window[256]); //window coefficients
-
- /* Miscellaneous. */
- GetBitContext gb;
- AVRandomState dith_state; //for dither generation
- AVCodecContext *avctx; ///< parent context
- } AC3DecodeContext;
-
- /**
- * Generate a Kaiser-Bessel Derived Window.
- */
- static void ac3_window_init(float *window)
- {
- int i, j;
- double sum = 0.0, bessel, tmp;
- double local_window[256];
- double alpha2 = (5.0 * M_PI / 256.0) * (5.0 * M_PI / 256.0);
-
- for (i = 0; i < 256; i++) {
- tmp = i * (256 - i) * alpha2;
- bessel = 1.0;
- for (j = 100; j > 0; j--) /* defaul to 100 iterations */
- bessel = bessel * tmp / (j * j) + 1;
- sum += bessel;
- local_window[i] = sum;
- }
-
- sum++;
- for (i = 0; i < 256; i++)
- window[i] = sqrt(local_window[i] / sum);
- }
-
- static inline float
- symmetric_dequant(int code, int levels)
- {
- return (code - (levels >> 1)) * (2.0f / levels);
- }
-
- /*
- * Initialize tables at runtime.
- */
- static void ac3_tables_init(void)
- {
- int i;
-
- /* generate grouped mantissa tables
- reference: Section 7.3.5 Ungrouping of Mantissas */
- for(i=0; i<32; i++) {
- /* bap=1 mantissas */
- b1_mantissas[i][0] = symmetric_dequant( i / 9 , 3);
- b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3);
- b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3);
- }
- for(i=0; i<128; i++) {
- /* bap=2 mantissas */
- b2_mantissas[i][0] = symmetric_dequant( i / 25 , 5);
- b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5);
- b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5);
-
- /* bap=4 mantissas */
- b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
- b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
- }
- /* generate ungrouped mantissa tables
- reference: Tables 7.21 and 7.23 */
- for(i=0; i<7; i++) {
- /* bap=3 mantissas */
- b3_mantissas[i] = symmetric_dequant(i, 7);
- }
- for(i=0; i<15; i++) {
- /* bap=5 mantissas */
- b5_mantissas[i] = symmetric_dequant(i, 15);
- }
-
- /* generate dynamic range table
- reference: Section 7.7.1 Dynamic Range Control */
- for(i=0; i<256; i++) {
- int v = (i >> 5) - ((i >> 7) << 3) - 5;
- dynrng_tbl[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
- }
-
- /* generate dialogue normalization table
- references: Section 5.4.2.8 dialnorm
- Section 7.6 Dialogue Normalization */
- for(i=1; i<32; i++) {
- dialnorm_tbl[i] = expf((i-31) * M_LN10 / 20.0f);
- }
- dialnorm_tbl[0] = dialnorm_tbl[31];
-
- //generate scale factors
- for (i = 0; i < 25; i++)
- scale_factors[i] = pow(2.0, -i);
-
- /* generate exponent tables
- reference: Section 7.1.3 Exponent Decoding */
- for(i=0; i<128; i++) {
- exp_ungroup_tbl[i][0] = i / 25;
- exp_ungroup_tbl[i][1] = (i % 25) / 5;
- exp_ungroup_tbl[i][2] = (i % 25) % 5;
- }
- }
-
-
- static int ac3_decode_init(AVCodecContext *avctx)
- {
- AC3DecodeContext *ctx = avctx->priv_data;
- ctx->avctx = avctx;
-
- ac3_common_init();
- ac3_tables_init();
- ff_mdct_init(&ctx->imdct_256, 8, 1);
- ff_mdct_init(&ctx->imdct_512, 9, 1);
- ac3_window_init(ctx->window);
- dsputil_init(&ctx->dsp, avctx);
- av_init_random(0, &ctx->dith_state);
-
- if(ctx->dsp.float_to_int16 == ff_float_to_int16_c) {
- ctx->add_bias = 385.0f;
- ctx->mul_bias = 1.0f;
- } else {
- ctx->add_bias = 0.0f;
- ctx->mul_bias = 32767.0f;
- }
-
- return 0;
- }
-
- /**
- * Parses the 'sync info' and 'bit stream info' from the AC-3 bitstream.
- * GetBitContext within AC3DecodeContext must point to
- * start of the synchronized ac3 bitstream.
- */
- static int ac3_parse_header(AC3DecodeContext *ctx)
- {
- AC3HeaderInfo hdr;
- GetBitContext *gb = &ctx->gb;
- float cmixlev, surmixlev;
- int err, i;
-
- err = ff_ac3_parse_header(gb->buffer, &hdr);
- if(err)
- return err;
-
- /* get decoding parameters from header info */
- ctx->bit_alloc_params.fscod = hdr.fscod;
- ctx->acmod = hdr.acmod;
- cmixlev = gain_levels[clevs[hdr.cmixlev]];
- surmixlev = gain_levels[slevs[hdr.surmixlev]];
- ctx->dsurmod = hdr.dsurmod;
- ctx->lfeon = hdr.lfeon;
- ctx->bit_alloc_params.halfratecod = hdr.halfratecod;
- ctx->sampling_rate = hdr.sample_rate;
- ctx->bit_rate = hdr.bit_rate;
- ctx->nchans = hdr.channels;
- ctx->nfchans = ctx->nchans - ctx->lfeon;
- ctx->lfe_ch = ctx->nfchans + 1;
- ctx->frame_size = hdr.frame_size;
-
- /* set default output to all source channels */
- ctx->out_channels = ctx->nchans;
- ctx->output_mode = ctx->acmod;
- if(ctx->lfeon)
- ctx->output_mode |= AC3_OUTPUT_LFEON;
-
- /* skip over portion of header which has already been read */
- skip_bits(gb, 16); //skip the sync_word, sync_info->sync_word = get_bits(gb, 16);
- skip_bits(gb, 16); // skip crc1
- skip_bits(gb, 8); // skip fscod and frmsizecod
- skip_bits(gb, 11); // skip bsid, bsmod, and acmod
- if(ctx->acmod == AC3_ACMOD_STEREO) {
- skip_bits(gb, 2); // skip dsurmod
- } else {
- if((ctx->acmod & 1) && ctx->acmod != AC3_ACMOD_MONO)
- skip_bits(gb, 2); // skip cmixlev
- if(ctx->acmod & 4)
- skip_bits(gb, 2); // skip surmixlev
- }
- skip_bits1(gb); // skip lfeon
-
- /* read the rest of the bsi. read twice for dual mono mode. */
- i = !(ctx->acmod);
- do {
- ctx->dialnorm[i] = dialnorm_tbl[get_bits(gb, 5)]; // dialogue normalization
- if (get_bits1(gb))
- skip_bits(gb, 8); //skip compression
- if (get_bits1(gb))
- skip_bits(gb, 8); //skip language code
- if (get_bits1(gb))
- skip_bits(gb, 7); //skip audio production information
- } while (i--);
-
- skip_bits(gb, 2); //skip copyright bit and original bitstream bit
-
- /* FIXME: read & use the xbsi1 downmix levels */
- if (get_bits1(gb))
- skip_bits(gb, 14); //skip timecode1
- if (get_bits1(gb))
- skip_bits(gb, 14); //skip timecode2
-
- if (get_bits1(gb)) {
- i = get_bits(gb, 6); //additional bsi length
- do {
- skip_bits(gb, 8);
- } while(i--);
- }
-
- /* set stereo downmixing coefficients
- reference: Section 7.8.2 Downmixing Into Two Channels */
- for(i=0; i<ctx->nfchans; i++) {
- ctx->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[ctx->acmod][i][0]];
- ctx->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[ctx->acmod][i][1]];
- }
- if(ctx->acmod > 1 && ctx->acmod & 1) {
- ctx->downmix_coeffs[1][0] = ctx->downmix_coeffs[1][1] = cmixlev;
- }
- if(ctx->acmod == AC3_ACMOD_2F1R || ctx->acmod == AC3_ACMOD_3F1R) {
- int nf = ctx->acmod - 2;
- ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf][1] = surmixlev * LEVEL_MINUS_3DB;
- }
- if(ctx->acmod == AC3_ACMOD_2F2R || ctx->acmod == AC3_ACMOD_3F2R) {
- int nf = ctx->acmod - 4;
- ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf+1][1] = surmixlev;
- }
-
- return 0;
- }
-
- /**
- * Decodes the grouped exponents.
- * This function decodes the coded exponents according to exponent strategy
- * and stores them in the decoded exponents buffer.
- *
- * @param[in] gb GetBitContext which points to start of coded exponents
- * @param[in] expstr Exponent coding strategy
- * @param[in] ngrps Number of grouped exponents
- * @param[in] absexp Absolute exponent or DC exponent
- * @param[out] dexps Decoded exponents are stored in dexps
- */
- static void decode_exponents(GetBitContext *gb, int expstr, int ngrps,
- uint8_t absexp, int8_t *dexps)
- {
- int i, j, grp, grpsize;
- int dexp[256];
- int expacc, prevexp;
-
- /* unpack groups */
- grpsize = expstr + (expstr == EXP_D45);
- for(grp=0,i=0; grp<ngrps; grp++) {
- expacc = get_bits(gb, 7);
- dexp[i++] = exp_ungroup_tbl[expacc][0];
- dexp[i++] = exp_ungroup_tbl[expacc][1];
- dexp[i++] = exp_ungroup_tbl[expacc][2];
- }
-
- /* convert to absolute exps and expand groups */
- prevexp = absexp;
- for(i=0; i<ngrps*3; i++) {
- prevexp = av_clip(prevexp + dexp[i]-2, 0, 24);
- for(j=0; j<grpsize; j++) {
- dexps[(i*grpsize)+j] = prevexp;
- }
- }
- }
-
- /**
- * Generates transform coefficients for each coupled channel in the coupling
- * range using the coupling coefficients and coupling coordinates.
- * reference: Section 7.4.3 Coupling Coordinate Format
- */
- static void uncouple_channels(AC3DecodeContext *ctx)
- {
- int i, j, ch, bnd, subbnd;
-
- subbnd = -1;
- i = ctx->startmant[CPL_CH];
- for(bnd=0; bnd<ctx->ncplbnd; bnd++) {
- do {
- subbnd++;
- for(j=0; j<12; j++) {
- for(ch=1; ch<=ctx->nfchans; ch++) {
- if(ctx->chincpl[ch])
- ctx->transform_coeffs[ch][i] = ctx->transform_coeffs[CPL_CH][i] * ctx->cplco[ch][bnd] * 8.0f;
- }
- i++;
- }
- } while(ctx->cplbndstrc[subbnd]);
- }
- }
-
- typedef struct { /* grouped mantissas for 3-level 5-leve and 11-level quantization */
- float b1_mant[3];
- float b2_mant[3];
- float b4_mant[2];
- int b1ptr;
- int b2ptr;
- int b4ptr;
- } mant_groups;
-
- /* Get the transform coefficients for particular channel */
- static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_groups *m)
- {
- GetBitContext *gb = &ctx->gb;
- int i, gcode, tbap, start, end;
- uint8_t *exps;
- uint8_t *bap;
- float *coeffs;
-
- exps = ctx->dexps[ch_index];
- bap = ctx->bap[ch_index];
- coeffs = ctx->transform_coeffs[ch_index];
- start = ctx->startmant[ch_index];
- end = ctx->endmant[ch_index];
-
- for (i = start; i < end; i++) {
- tbap = bap[i];
- switch (tbap) {
- case 0:
- coeffs[i] = ((av_random(&ctx->dith_state) & 0xFFFF) * LEVEL_MINUS_3DB) / 32768.0f;
- break;
-
- case 1:
- if(m->b1ptr > 2) {
- gcode = get_bits(gb, 5);
- m->b1_mant[0] = b1_mantissas[gcode][0];
- m->b1_mant[1] = b1_mantissas[gcode][1];
- m->b1_mant[2] = b1_mantissas[gcode][2];
- m->b1ptr = 0;
- }
- coeffs[i] = m->b1_mant[m->b1ptr++];
- break;
-
- case 2:
- if(m->b2ptr > 2) {
- gcode = get_bits(gb, 7);
- m->b2_mant[0] = b2_mantissas[gcode][0];
- m->b2_mant[1] = b2_mantissas[gcode][1];
- m->b2_mant[2] = b2_mantissas[gcode][2];
- m->b2ptr = 0;
- }
- coeffs[i] = m->b2_mant[m->b2ptr++];
- break;
-
- case 3:
- coeffs[i] = b3_mantissas[get_bits(gb, 3)];
- break;
-
- case 4:
- if(m->b4ptr > 1) {
- gcode = get_bits(gb, 7);
- m->b4_mant[0] = b4_mantissas[gcode][0];
- m->b4_mant[1] = b4_mantissas[gcode][1];
- m->b4ptr = 0;
- }
- coeffs[i] = m->b4_mant[m->b4ptr++];
- break;
-
- case 5:
- coeffs[i] = b5_mantissas[get_bits(gb, 4)];
- break;
-
- default:
- coeffs[i] = get_sbits(gb, qntztab[tbap]) * scale_factors[qntztab[tbap]-1];
- break;
- }
- coeffs[i] *= scale_factors[exps[i]];
- }
-
- return 0;
- }
-
- /**
- * Removes random dithering from coefficients with zero-bit mantissas
- * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
- */
- static void remove_dithering(AC3DecodeContext *ctx) {
- int ch, i;
- int end=0;
- float *coeffs;
- uint8_t *bap;
-
- for(ch=1; ch<=ctx->nfchans; ch++) {
- if(!ctx->dithflag[ch]) {
- coeffs = ctx->transform_coeffs[ch];
- bap = ctx->bap[ch];
- if(ctx->chincpl[ch])
- end = ctx->startmant[CPL_CH];
- else
- end = ctx->endmant[ch];
- for(i=0; i<end; i++) {
- if(bap[i] == 0)
- coeffs[i] = 0.0f;
- }
- if(ctx->chincpl[ch]) {
- bap = ctx->bap[CPL_CH];
- for(; i<ctx->endmant[CPL_CH]; i++) {
- if(bap[i] == 0)
- coeffs[i] = 0.0f;
- }
- }
- }
- }
- }
-
- /* Get the transform coefficients.
- * This function extracts the tranform coefficients form the ac3 bitstream.
- * This function is called after bit allocation is performed.
- */
- static int get_transform_coeffs(AC3DecodeContext * ctx)
- {
- int ch, end;
- int got_cplchan = 0;
- mant_groups m;
-
- m.b1ptr = m.b2ptr = m.b4ptr = 3;
-
- for (ch = 1; ch <= ctx->nchans; ch++) {
- /* transform coefficients for individual channel */
- if (get_transform_coeffs_ch(ctx, ch, &m))
- return -1;
- /* tranform coefficients for coupling channels */
- if (ctx->chincpl[ch]) {
- if (!got_cplchan) {
- if (get_transform_coeffs_ch(ctx, CPL_CH, &m)) {
- av_log(ctx->avctx, AV_LOG_ERROR, "error in decoupling channels\n");
- return -1;
- }
- uncouple_channels(ctx);
- got_cplchan = 1;
- }
- end = ctx->endmant[CPL_CH];
- } else {
- end = ctx->endmant[ch];
- }
- do
- ctx->transform_coeffs[ch][end] = 0;
- while(++end < 256);
- }
-
- /* if any channel doesn't use dithering, zero appropriate coefficients */
- if(!ctx->dither_all)
- remove_dithering(ctx);
-
- return 0;
- }
-
- /**
- * Performs stereo rematrixing.
- * reference: Section 7.5.4 Rematrixing : Decoding Technique
- */
- static void do_rematrixing(AC3DecodeContext *ctx)
- {
- int bnd, i;
- int end, bndend;
- float tmp0, tmp1;
-
- end = FFMIN(ctx->endmant[1], ctx->endmant[2]);
-
- for(bnd=0; bnd<ctx->nrematbnd; bnd++) {
- if(ctx->rematflg[bnd]) {
- bndend = FFMIN(end, rematrix_band_tbl[bnd+1]);
- for(i=rematrix_band_tbl[bnd]; i<bndend; i++) {
- tmp0 = ctx->transform_coeffs[1][i];
- tmp1 = ctx->transform_coeffs[2][i];
- ctx->transform_coeffs[1][i] = tmp0 + tmp1;
- ctx->transform_coeffs[2][i] = tmp0 - tmp1;
- }
- }
- }
- }
-
- /* This function performs the imdct on 256 sample transform
- * coefficients.
- */
- static void do_imdct_256(AC3DecodeContext *ctx, int chindex)
- {
- int i, k;
- DECLARE_ALIGNED_16(float, x[128]);
- FFTComplex z[2][64];
- float *o_ptr = ctx->tmp_output;
-
- for(i=0; i<2; i++) {
- /* de-interleave coefficients */
- for(k=0; k<128; k++) {
- x[k] = ctx->transform_coeffs[chindex][2*k+i];
- }
-
- /* run standard IMDCT */
- ctx->imdct_256.fft.imdct_calc(&ctx->imdct_256, o_ptr, x, ctx->tmp_imdct);
-
- /* reverse the post-rotation & reordering from standard IMDCT */
- for(k=0; k<32; k++) {
- z[i][32+k].re = -o_ptr[128+2*k];
- z[i][32+k].im = -o_ptr[2*k];
- z[i][31-k].re = o_ptr[2*k+1];
- z[i][31-k].im = o_ptr[128+2*k+1];
- }
- }
-
- /* apply AC-3 post-rotation & reordering */
- for(k=0; k<64; k++) {
- o_ptr[ 2*k ] = -z[0][ k].im;
- o_ptr[ 2*k+1] = z[0][63-k].re;
- o_ptr[128+2*k ] = -z[0][ k].re;
- o_ptr[128+2*k+1] = z[0][63-k].im;
- o_ptr[256+2*k ] = -z[1][ k].re;
- o_ptr[256+2*k+1] = z[1][63-k].im;
- o_ptr[384+2*k ] = z[1][ k].im;
- o_ptr[384+2*k+1] = -z[1][63-k].re;
- }
- }
-
- /* IMDCT Transform. */
- static inline void do_imdct(AC3DecodeContext *ctx)
- {
- int ch;
- int nchans;
-
- nchans = ctx->nfchans;
- if(ctx->output_mode & AC3_OUTPUT_LFEON)
- nchans++;
-
- for (ch=1; ch<=nchans; ch++) {
- if (ctx->blksw[ch]) {
- do_imdct_256(ctx, ch);
- } else {
- ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output,
- ctx->transform_coeffs[ch],
- ctx->tmp_imdct);
- }
- ctx->dsp.vector_fmul_add_add(ctx->output[ch-1], ctx->tmp_output,
- ctx->window, ctx->delay[ch-1], 0, 256, 1);
- ctx->dsp.vector_fmul_reverse(ctx->delay[ch-1], ctx->tmp_output+256,
- ctx->window, 256);
- }
- }
-
- /**
- * Downmixes the output to stereo.
- */
- static void ac3_downmix(float samples[AC3_MAX_CHANNELS][256], int nfchans,
- int output_mode, float coef[AC3_MAX_CHANNELS][2])
- {
- int i, j;
- float v0, v1, s0, s1;
-
- for(i=0; i<256; i++) {
- v0 = v1 = s0 = s1 = 0.0f;
- for(j=0; j<nfchans; j++) {
- v0 += samples[j][i] * coef[j][0];
- v1 += samples[j][i] * coef[j][1];
- s0 += coef[j][0];
- s1 += coef[j][1];
- }
- v0 /= s0;
- v1 /= s1;
- if(output_mode == AC3_ACMOD_MONO) {
- samples[0][i] = (v0 + v1) * LEVEL_MINUS_3DB;
- } else if(output_mode == AC3_ACMOD_STEREO) {
- samples[0][i] = v0;
- samples[1][i] = v1;
- }
- }
- }
-
- /* Parse the audio block from ac3 bitstream.
- * This function extract the audio block from the ac3 bitstream
- * and produces the output for the block. This function must
- * be called for each of the six audio block in the ac3 bitstream.
- */
- static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk)
- {
- int nfchans = ctx->nfchans;
- int acmod = ctx->acmod;
- int i, bnd, seg, ch;
- GetBitContext *gb = &ctx->gb;
- uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
-
- memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
-
- for (ch = 1; ch <= nfchans; ch++) /*block switch flag */
- ctx->blksw[ch] = get_bits1(gb);
-
- ctx->dither_all = 1;
- for (ch = 1; ch <= nfchans; ch++) { /* dithering flag */
- ctx->dithflag[ch] = get_bits1(gb);
- if(!ctx->dithflag[ch])
- ctx->dither_all = 0;
- }
-
- /* dynamic range */
- i = !(ctx->acmod);
- do {
- if(get_bits1(gb)) {
- ctx->dynrng[i] = dynrng_tbl[get_bits(gb, 8)];
- } else if(blk == 0) {
- ctx->dynrng[i] = 1.0f;
- }
- } while(i--);
-
- if (get_bits1(gb)) { /* coupling strategy */
- memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
- ctx->cplinu = get_bits1(gb);
- if (ctx->cplinu) { /* coupling in use */
- int cplbegf, cplendf;
-
- for (ch = 1; ch <= nfchans; ch++)
- ctx->chincpl[ch] = get_bits1(gb);
-
- if (acmod == AC3_ACMOD_STEREO)
- ctx->phsflginu = get_bits1(gb); //phase flag in use
-
- cplbegf = get_bits(gb, 4);
- cplendf = get_bits(gb, 4);
-
- if (3 + cplendf - cplbegf < 0) {
- av_log(ctx->avctx, AV_LOG_ERROR, "cplendf = %d < cplbegf = %d\n", cplendf, cplbegf);
- return -1;
- }
-
- ctx->ncplbnd = ctx->ncplsubnd = 3 + cplendf - cplbegf;
- ctx->startmant[CPL_CH] = cplbegf * 12 + 37;
- ctx->endmant[CPL_CH] = cplendf * 12 + 73;
- for (bnd = 0; bnd < ctx->ncplsubnd - 1; bnd++) { /* coupling band structure */
- if (get_bits1(gb)) {
- ctx->cplbndstrc[bnd] = 1;
- ctx->ncplbnd--;
- }
- }
- } else {
- for (ch = 1; ch <= nfchans; ch++)
- ctx->chincpl[ch] = 0;
- }
- }
-
- if (ctx->cplinu) {
- int cplcoe = 0;
-
- for (ch = 1; ch <= nfchans; ch++) {
- if (ctx->chincpl[ch]) {
- if (get_bits1(gb)) { /* coupling co-ordinates */
- int mstrcplco, cplcoexp, cplcomant;
- cplcoe = 1;
- mstrcplco = 3 * get_bits(gb, 2);
- for (bnd = 0; bnd < ctx->ncplbnd; bnd++) {
- cplcoexp = get_bits(gb, 4);
- cplcomant = get_bits(gb, 4);
- if (cplcoexp == 15)
- ctx->cplco[ch][bnd] = cplcomant / 16.0f;
- else
- ctx->cplco[ch][bnd] = (cplcomant + 16.0f) / 32.0f;
- ctx->cplco[ch][bnd] *= scale_factors[cplcoexp + mstrcplco];
- }
- }
- }
- }
-
- if (acmod == AC3_ACMOD_STEREO && ctx->phsflginu && cplcoe) {
- for (bnd = 0; bnd < ctx->ncplbnd; bnd++) {
- if (get_bits1(gb))
- ctx->cplco[2][bnd] = -ctx->cplco[2][bnd];
- }
- }
- }
-
- if (acmod == AC3_ACMOD_STEREO) {/* rematrixing */
- ctx->rematstr = get_bits1(gb);
- if (ctx->rematstr) {
- ctx->nrematbnd = 4;
- if(ctx->cplinu && ctx->startmant[CPL_CH] <= 61)
- ctx->nrematbnd -= 1 + (ctx->startmant[CPL_CH] == 37);
- for(bnd=0; bnd<ctx->nrematbnd; bnd++)
- ctx->rematflg[bnd] = get_bits1(gb);
- }
- }
-
- ctx->expstr[CPL_CH] = EXP_REUSE;
- ctx->expstr[ctx->lfe_ch] = EXP_REUSE;
- for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) {
- if(ch == ctx->lfe_ch)
- ctx->expstr[ch] = get_bits(gb, 1);
- else
- ctx->expstr[ch] = get_bits(gb, 2);
- if(ctx->expstr[ch] != EXP_REUSE)
- bit_alloc_stages[ch] = 3;
- }
-
- for (ch = 1; ch <= nfchans; ch++) { /* channel bandwidth code */
- ctx->startmant[ch] = 0;
- if (ctx->expstr[ch] != EXP_REUSE) {
- int prev = ctx->endmant[ch];
- if (ctx->chincpl[ch])
- ctx->endmant[ch] = ctx->startmant[CPL_CH];
- else {
- int chbwcod = get_bits(gb, 6);
- if (chbwcod > 60) {
- av_log(ctx->avctx, AV_LOG_ERROR, "chbwcod = %d > 60", chbwcod);
- return -1;
- }
- ctx->endmant[ch] = chbwcod * 3 + 73;
- }
- if(blk > 0 && ctx->endmant[ch] != prev)
- memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
- }
- }
- ctx->startmant[ctx->lfe_ch] = 0;
- ctx->endmant[ctx->lfe_ch] = 7;
-
- for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) {
- if (ctx->expstr[ch] != EXP_REUSE) {
- int grpsize, ngrps;
- grpsize = 3 << (ctx->expstr[ch] - 1);
- if(ch == CPL_CH)
- ngrps = (ctx->endmant[ch] - ctx->startmant[ch]) / grpsize;
- else if(ch == ctx->lfe_ch)
- ngrps = 2;
- else
- ngrps = (ctx->endmant[ch] + grpsize - 4) / grpsize;
- ctx->dexps[ch][0] = get_bits(gb, 4) << !ch;
- decode_exponents(gb, ctx->expstr[ch], ngrps, ctx->dexps[ch][0],
- &ctx->dexps[ch][ctx->startmant[ch]+!!ch]);
- if(ch != CPL_CH && ch != ctx->lfe_ch)
- skip_bits(gb, 2); /* skip gainrng */
- }
- }
-
- if (get_bits1(gb)) { /* bit allocation information */
- ctx->bit_alloc_params.sdecay = ff_sdecaytab[get_bits(gb, 2)];
- ctx->bit_alloc_params.fdecay = ff_fdecaytab[get_bits(gb, 2)];
- ctx->bit_alloc_params.sgain = ff_sgaintab[get_bits(gb, 2)];
- ctx->bit_alloc_params.dbknee = ff_dbkneetab[get_bits(gb, 2)];
- ctx->bit_alloc_params.floor = ff_floortab[get_bits(gb, 3)];
- for(ch=!ctx->cplinu; ch<=ctx->nchans; ch++) {
- bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
- }
- }
-
- if (get_bits1(gb)) { /* snroffset */
- int csnr;
- csnr = (get_bits(gb, 6) - 15) << 4;
- for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) { /* snr offset and fast gain */
- ctx->snroffst[ch] = (csnr + get_bits(gb, 4)) << 2;
- ctx->fgain[ch] = ff_fgaintab[get_bits(gb, 3)];
- }
- memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
- }
-
- if (ctx->cplinu && get_bits1(gb)) { /* coupling leak information */
- ctx->bit_alloc_params.cplfleak = get_bits(gb, 3);
- ctx->bit_alloc_params.cplsleak = get_bits(gb, 3);
- bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
- }
-
- if (get_bits1(gb)) { /* delta bit allocation information */
- for (ch = !ctx->cplinu; ch <= nfchans; ch++) {
- ctx->deltbae[ch] = get_bits(gb, 2);
- if (ctx->deltbae[ch] == DBA_RESERVED) {
- av_log(ctx->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
- return -1;
- }
- bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
- }
- for (ch = !ctx->cplinu; ch <= nfchans; ch++) {
- if (ctx->deltbae[ch] == DBA_NEW) {/*channel delta offset, len and bit allocation */
- ctx->deltnseg[ch] = get_bits(gb, 3);
- for (seg = 0; seg <= ctx->deltnseg[ch]; seg++) {
- ctx->deltoffst[ch][seg] = get_bits(gb, 5);
- ctx->deltlen[ch][seg] = get_bits(gb, 4);
- ctx->deltba[ch][seg] = get_bits(gb, 3);
- }
- }
- }
- } else if(blk == 0) {
- for(ch=0; ch<=ctx->nchans; ch++) {
- ctx->deltbae[ch] = DBA_NONE;
- }
- }
-
- for(ch=!ctx->cplinu; ch<=ctx->nchans; ch++) {
- if(bit_alloc_stages[ch] > 2) {
- /* Exponent mapping into PSD and PSD integration */
- ff_ac3_bit_alloc_calc_psd(ctx->dexps[ch],
- ctx->startmant[ch], ctx->endmant[ch],
- ctx->psd[ch], ctx->bndpsd[ch]);
- }
- if(bit_alloc_stages[ch] > 1) {
- /* Compute excitation function, Compute masking curve, and
- Apply delta bit allocation */
- ff_ac3_bit_alloc_calc_mask(&ctx->bit_alloc_params, ctx->bndpsd[ch],
- ctx->startmant[ch], ctx->endmant[ch],
- ctx->fgain[ch], (ch == ctx->lfe_ch),
- ctx->deltbae[ch], ctx->deltnseg[ch],
- ctx->deltoffst[ch], ctx->deltlen[ch],
- ctx->deltba[ch], ctx->mask[ch]);
- }
- if(bit_alloc_stages[ch] > 0) {
- /* Compute bit allocation */
- ff_ac3_bit_alloc_calc_bap(ctx->mask[ch], ctx->psd[ch],
- ctx->startmant[ch], ctx->endmant[ch],
- ctx->snroffst[ch],
- ctx->bit_alloc_params.floor,
- ctx->bap[ch]);
- }
- }
-
- if (get_bits1(gb)) { /* unused dummy data */
- int skipl = get_bits(gb, 9);
- while(skipl--)
- skip_bits(gb, 8);
- }
-
- /* unpack the transform coefficients
- * * this also uncouples channels if coupling is in use.
- */
- if (get_transform_coeffs(ctx)) {
- av_log(ctx->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n");
- return -1;
- }
-
- /* recover coefficients if rematrixing is in use */
- if(ctx->acmod == AC3_ACMOD_STEREO)
- do_rematrixing(ctx);
-
- /* apply scaling to coefficients (headroom, dialnorm, dynrng) */
- for(ch=1; ch<=ctx->nchans; ch++) {
- float gain = 2.0f * ctx->mul_bias;
- if(ctx->acmod == AC3_ACMOD_DUALMONO) {
- gain *= ctx->dialnorm[ch-1] * ctx->dynrng[ch-1];
- } else {
- gain *= ctx->dialnorm[0] * ctx->dynrng[0];
- }
- for(i=0; i<ctx->endmant[ch]; i++) {
- ctx->transform_coeffs[ch][i] *= gain;
- }
- }
-
- do_imdct(ctx);
-
- /* downmix output if needed */
- if(ctx->nchans != ctx->out_channels && !((ctx->output_mode & AC3_OUTPUT_LFEON) &&
- ctx->nfchans == ctx->out_channels)) {
- ac3_downmix(ctx->output, ctx->nfchans, ctx->output_mode,
- ctx->downmix_coeffs);
- }
-
- /* convert float to 16-bit integer */
- for(ch=0; ch<ctx->out_channels; ch++) {
- for(i=0; i<256; i++) {
- ctx->output[ch][i] += ctx->add_bias;
- }
- ctx->dsp.float_to_int16(ctx->int_output[ch], ctx->output[ch], 256);
- }
-
- return 0;
- }
-
- /* Decode ac3 frame.
- *
- * @param avctx Pointer to AVCodecContext
- * @param data Pointer to pcm smaples
- * @param data_size Set to number of pcm samples produced by decoding
- * @param buf Data to be decoded
- * @param buf_size Size of the buffer
- */
- static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size)
- {
- AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
- int16_t *out_samples = (int16_t *)data;
- int i, blk, ch;
-
- //Initialize the GetBitContext with the start of valid AC3 Frame.
- init_get_bits(&ctx->gb, buf, buf_size * 8);
-
- //Parse the syncinfo.
- if (ac3_parse_header(ctx)) {
- av_log(avctx, AV_LOG_ERROR, "\n");
- *data_size = 0;
- return buf_size;
- }
-
- avctx->sample_rate = ctx->sampling_rate;
- avctx->bit_rate = ctx->bit_rate;
-
- /* channel config */
- ctx->out_channels = ctx->nchans;
- if (avctx->channels == 0) {
- avctx->channels = ctx->out_channels;
- } else if(ctx->out_channels < avctx->channels) {
- av_log(avctx, AV_LOG_ERROR, "Cannot upmix AC3 from %d to %d channels.\n",
- ctx->out_channels, avctx->channels);
- return -1;
- }
- if(avctx->channels == 2) {
- ctx->output_mode = AC3_ACMOD_STEREO;
- } else if(avctx->channels == 1) {
- ctx->output_mode = AC3_ACMOD_MONO;
- } else if(avctx->channels != ctx->out_channels) {
- av_log(avctx, AV_LOG_ERROR, "Cannot downmix AC3 from %d to %d channels.\n",
- ctx->out_channels, avctx->channels);
- return -1;
- }
- ctx->out_channels = avctx->channels;
-
- //Parse the Audio Blocks.
- for (blk = 0; blk < NB_BLOCKS; blk++) {
- if (ac3_parse_audio_block(ctx, blk)) {
- av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n");
- *data_size = 0;
- return ctx->frame_size;
- }
- for (i = 0; i < 256; i++)
- for (ch = 0; ch < ctx->out_channels; ch++)
- *(out_samples++) = ctx->int_output[ch][i];
- }
- *data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t);
- return ctx->frame_size;
- }
-
- /* Uninitialize ac3 decoder.
- */
- static int ac3_decode_end(AVCodecContext *avctx)
- {
- AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
- ff_mdct_end(&ctx->imdct_512);
- ff_mdct_end(&ctx->imdct_256);
-
- return 0;
- }
-
- AVCodec ac3_decoder = {
- .name = "ac3",
- .type = CODEC_TYPE_AUDIO,
- .id = CODEC_ID_AC3,
- .priv_data_size = sizeof (AC3DecodeContext),
- .init = ac3_decode_init,
- .close = ac3_decode_end,
- .decode = ac3_decode_frame,
- };
|