You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1130 lines
37KB

  1. /*
  2. * AC-3 Audio Decoder
  3. * This code is developed as part of Google Summer of Code 2006 Program.
  4. *
  5. * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
  6. * Copyright (c) 2007 Justin Ruggles
  7. *
  8. * Portions of this code are derived from liba52
  9. * http://liba52.sourceforge.net
  10. * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
  11. * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
  12. *
  13. * This file is part of FFmpeg.
  14. *
  15. * FFmpeg is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public
  17. * License as published by the Free Software Foundation; either
  18. * version 2 of the License, or (at your option) any later version.
  19. *
  20. * FFmpeg is distributed in the hope that it will be useful,
  21. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  22. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  23. * General Public License for more details.
  24. *
  25. * You should have received a copy of the GNU General Public
  26. * License along with FFmpeg; if not, write to the Free Software
  27. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  28. */
  29. #include <stdio.h>
  30. #include <stddef.h>
  31. #include <math.h>
  32. #include <string.h>
  33. #include "avcodec.h"
  34. #include "ac3_parser.h"
  35. #include "bitstream.h"
  36. #include "dsputil.h"
  37. #include "random.h"
  38. /**
  39. * Table of bin locations for rematrixing bands
  40. * reference: Section 7.5.2 Rematrixing : Frequency Band Definitions
  41. */
  42. static const uint8_t rematrix_band_tbl[5] = { 13, 25, 37, 61, 253 };
  43. /* table for exponent to scale_factor mapping
  44. * scale_factor[i] = 2 ^ -(i + 15)
  45. */
  46. static float scale_factors[25];
  47. /** table for grouping exponents */
  48. static uint8_t exp_ungroup_tbl[128][3];
  49. /** tables for ungrouping mantissas */
  50. static float b1_mantissas[32][3];
  51. static float b2_mantissas[128][3];
  52. static float b3_mantissas[8];
  53. static float b4_mantissas[128][2];
  54. static float b5_mantissas[16];
  55. /**
  56. * Quantization table: levels for symmetric. bits for asymmetric.
  57. * reference: Table 7.18 Mapping of bap to Quantizer
  58. */
  59. static const uint8_t qntztab[16] = {
  60. 0, 3, 5, 7, 11, 15,
  61. 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
  62. };
  63. /** dynamic range table. converts codes to scale factors. */
  64. static float dynrng_tbl[256];
  65. /** dialogue normalization table */
  66. static float dialnorm_tbl[32];
  67. /* Adjustmens in dB gain */
  68. #define LEVEL_MINUS_3DB 0.7071067811865476
  69. #define LEVEL_MINUS_4POINT5DB 0.5946035575013605
  70. #define LEVEL_MINUS_6DB 0.5000000000000000
  71. #define LEVEL_MINUS_9DB 0.3535533905932738
  72. #define LEVEL_ZERO 0.0000000000000000
  73. #define LEVEL_ONE 1.0000000000000000
  74. static const float gain_levels[6] = {
  75. LEVEL_ZERO,
  76. LEVEL_ONE,
  77. LEVEL_MINUS_3DB,
  78. LEVEL_MINUS_4POINT5DB,
  79. LEVEL_MINUS_6DB,
  80. LEVEL_MINUS_9DB
  81. };
  82. /**
  83. * Table for center mix levels
  84. * reference: Section 5.4.2.4 cmixlev
  85. */
  86. static const uint8_t clevs[4] = { 2, 3, 4, 3 };
  87. /**
  88. * Table for surround mix levels
  89. * reference: Section 5.4.2.5 surmixlev
  90. */
  91. static const uint8_t slevs[4] = { 2, 4, 0, 4 };
  92. /**
  93. * Table for default stereo downmixing coefficients
  94. * reference: Section 7.8.2 Downmixing Into Two Channels
  95. */
  96. static const uint8_t ac3_default_coeffs[8][5][2] = {
  97. { { 1, 0 }, { 0, 1 }, },
  98. { { 2, 2 }, },
  99. { { 1, 0 }, { 0, 1 }, },
  100. { { 1, 0 }, { 3, 3 }, { 0, 1 }, },
  101. { { 1, 0 }, { 0, 1 }, { 4, 4 }, },
  102. { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 5, 5 }, },
  103. { { 1, 0 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
  104. { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
  105. };
  106. /* override ac3.h to include coupling channel */
  107. #undef AC3_MAX_CHANNELS
  108. #define AC3_MAX_CHANNELS 7
  109. #define CPL_CH 0
  110. #define AC3_OUTPUT_LFEON 8
  111. typedef struct {
  112. int acmod;
  113. int dsurmod;
  114. int blksw[AC3_MAX_CHANNELS];
  115. int dithflag[AC3_MAX_CHANNELS];
  116. int dither_all;
  117. int cplinu;
  118. int chincpl[AC3_MAX_CHANNELS];
  119. int phsflginu;
  120. int cplbndstrc[18];
  121. int rematstr;
  122. int nrematbnd;
  123. int rematflg[4];
  124. int expstr[AC3_MAX_CHANNELS];
  125. int snroffst[AC3_MAX_CHANNELS];
  126. int fgain[AC3_MAX_CHANNELS];
  127. int deltbae[AC3_MAX_CHANNELS];
  128. int deltnseg[AC3_MAX_CHANNELS];
  129. uint8_t deltoffst[AC3_MAX_CHANNELS][8];
  130. uint8_t deltlen[AC3_MAX_CHANNELS][8];
  131. uint8_t deltba[AC3_MAX_CHANNELS][8];
  132. /* Derived Attributes. */
  133. int sampling_rate;
  134. int bit_rate;
  135. int frame_size;
  136. int nchans; //number of total channels
  137. int nfchans; //number of full-bandwidth channels
  138. int lfeon; //lfe channel in use
  139. int lfe_ch; ///< index of LFE channel
  140. int output_mode; ///< output channel configuration
  141. int out_channels; ///< number of output channels
  142. float downmix_coeffs[AC3_MAX_CHANNELS][2]; ///< stereo downmix coefficients
  143. float dialnorm[2]; ///< dialogue normalization
  144. float dynrng[2]; ///< dynamic range
  145. float cplco[AC3_MAX_CHANNELS][18]; //coupling coordinates
  146. int ncplbnd; //number of coupling bands
  147. int ncplsubnd; //number of coupling sub bands
  148. int startmant[AC3_MAX_CHANNELS]; ///< start frequency bin
  149. int endmant[AC3_MAX_CHANNELS]; //channel end mantissas
  150. AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters
  151. int8_t dexps[AC3_MAX_CHANNELS][256]; ///< decoded exponents
  152. uint8_t bap[AC3_MAX_CHANNELS][256]; ///< bit allocation pointers
  153. int16_t psd[AC3_MAX_CHANNELS][256]; ///< scaled exponents
  154. int16_t bndpsd[AC3_MAX_CHANNELS][50]; ///< interpolated exponents
  155. int16_t mask[AC3_MAX_CHANNELS][50]; ///< masking curve values
  156. DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]); //transform coefficients
  157. /* For IMDCT. */
  158. MDCTContext imdct_512; //for 512 sample imdct transform
  159. MDCTContext imdct_256; //for 256 sample imdct transform
  160. DSPContext dsp; //for optimization
  161. float add_bias; ///< offset for float_to_int16 conversion
  162. float mul_bias; ///< scaling for float_to_int16 conversion
  163. DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS-1][256]); //output after imdct transform and windowing
  164. DECLARE_ALIGNED_16(short, int_output[AC3_MAX_CHANNELS-1][256]); ///< final 16-bit integer output
  165. DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS-1][256]); //delay - added to the next block
  166. DECLARE_ALIGNED_16(float, tmp_imdct[256]); //temporary storage for imdct transform
  167. DECLARE_ALIGNED_16(float, tmp_output[512]); //temporary storage for output before windowing
  168. DECLARE_ALIGNED_16(float, window[256]); //window coefficients
  169. /* Miscellaneous. */
  170. GetBitContext gb;
  171. AVRandomState dith_state; //for dither generation
  172. AVCodecContext *avctx; ///< parent context
  173. } AC3DecodeContext;
  174. /**
  175. * Generate a Kaiser-Bessel Derived Window.
  176. */
  177. static void ac3_window_init(float *window)
  178. {
  179. int i, j;
  180. double sum = 0.0, bessel, tmp;
  181. double local_window[256];
  182. double alpha2 = (5.0 * M_PI / 256.0) * (5.0 * M_PI / 256.0);
  183. for (i = 0; i < 256; i++) {
  184. tmp = i * (256 - i) * alpha2;
  185. bessel = 1.0;
  186. for (j = 100; j > 0; j--) /* defaul to 100 iterations */
  187. bessel = bessel * tmp / (j * j) + 1;
  188. sum += bessel;
  189. local_window[i] = sum;
  190. }
  191. sum++;
  192. for (i = 0; i < 256; i++)
  193. window[i] = sqrt(local_window[i] / sum);
  194. }
  195. static inline float
  196. symmetric_dequant(int code, int levels)
  197. {
  198. return (code - (levels >> 1)) * (2.0f / levels);
  199. }
  200. /*
  201. * Initialize tables at runtime.
  202. */
  203. static void ac3_tables_init(void)
  204. {
  205. int i;
  206. /* generate grouped mantissa tables
  207. reference: Section 7.3.5 Ungrouping of Mantissas */
  208. for(i=0; i<32; i++) {
  209. /* bap=1 mantissas */
  210. b1_mantissas[i][0] = symmetric_dequant( i / 9 , 3);
  211. b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3);
  212. b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3);
  213. }
  214. for(i=0; i<128; i++) {
  215. /* bap=2 mantissas */
  216. b2_mantissas[i][0] = symmetric_dequant( i / 25 , 5);
  217. b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5);
  218. b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5);
  219. /* bap=4 mantissas */
  220. b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
  221. b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
  222. }
  223. /* generate ungrouped mantissa tables
  224. reference: Tables 7.21 and 7.23 */
  225. for(i=0; i<7; i++) {
  226. /* bap=3 mantissas */
  227. b3_mantissas[i] = symmetric_dequant(i, 7);
  228. }
  229. for(i=0; i<15; i++) {
  230. /* bap=5 mantissas */
  231. b5_mantissas[i] = symmetric_dequant(i, 15);
  232. }
  233. /* generate dynamic range table
  234. reference: Section 7.7.1 Dynamic Range Control */
  235. for(i=0; i<256; i++) {
  236. int v = (i >> 5) - ((i >> 7) << 3) - 5;
  237. dynrng_tbl[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
  238. }
  239. /* generate dialogue normalization table
  240. references: Section 5.4.2.8 dialnorm
  241. Section 7.6 Dialogue Normalization */
  242. for(i=1; i<32; i++) {
  243. dialnorm_tbl[i] = expf((i-31) * M_LN10 / 20.0f);
  244. }
  245. dialnorm_tbl[0] = dialnorm_tbl[31];
  246. //generate scale factors
  247. for (i = 0; i < 25; i++)
  248. scale_factors[i] = pow(2.0, -i);
  249. /* generate exponent tables
  250. reference: Section 7.1.3 Exponent Decoding */
  251. for(i=0; i<128; i++) {
  252. exp_ungroup_tbl[i][0] = i / 25;
  253. exp_ungroup_tbl[i][1] = (i % 25) / 5;
  254. exp_ungroup_tbl[i][2] = (i % 25) % 5;
  255. }
  256. }
  257. static int ac3_decode_init(AVCodecContext *avctx)
  258. {
  259. AC3DecodeContext *ctx = avctx->priv_data;
  260. ctx->avctx = avctx;
  261. ac3_common_init();
  262. ac3_tables_init();
  263. ff_mdct_init(&ctx->imdct_256, 8, 1);
  264. ff_mdct_init(&ctx->imdct_512, 9, 1);
  265. ac3_window_init(ctx->window);
  266. dsputil_init(&ctx->dsp, avctx);
  267. av_init_random(0, &ctx->dith_state);
  268. if(ctx->dsp.float_to_int16 == ff_float_to_int16_c) {
  269. ctx->add_bias = 385.0f;
  270. ctx->mul_bias = 1.0f;
  271. } else {
  272. ctx->add_bias = 0.0f;
  273. ctx->mul_bias = 32767.0f;
  274. }
  275. return 0;
  276. }
  277. /**
  278. * Parses the 'sync info' and 'bit stream info' from the AC-3 bitstream.
  279. * GetBitContext within AC3DecodeContext must point to
  280. * start of the synchronized ac3 bitstream.
  281. */
  282. static int ac3_parse_header(AC3DecodeContext *ctx)
  283. {
  284. AC3HeaderInfo hdr;
  285. GetBitContext *gb = &ctx->gb;
  286. float cmixlev, surmixlev;
  287. int err, i;
  288. err = ff_ac3_parse_header(gb->buffer, &hdr);
  289. if(err)
  290. return err;
  291. /* get decoding parameters from header info */
  292. ctx->bit_alloc_params.fscod = hdr.fscod;
  293. ctx->acmod = hdr.acmod;
  294. cmixlev = gain_levels[clevs[hdr.cmixlev]];
  295. surmixlev = gain_levels[slevs[hdr.surmixlev]];
  296. ctx->dsurmod = hdr.dsurmod;
  297. ctx->lfeon = hdr.lfeon;
  298. ctx->bit_alloc_params.halfratecod = hdr.halfratecod;
  299. ctx->sampling_rate = hdr.sample_rate;
  300. ctx->bit_rate = hdr.bit_rate;
  301. ctx->nchans = hdr.channels;
  302. ctx->nfchans = ctx->nchans - ctx->lfeon;
  303. ctx->lfe_ch = ctx->nfchans + 1;
  304. ctx->frame_size = hdr.frame_size;
  305. /* set default output to all source channels */
  306. ctx->out_channels = ctx->nchans;
  307. ctx->output_mode = ctx->acmod;
  308. if(ctx->lfeon)
  309. ctx->output_mode |= AC3_OUTPUT_LFEON;
  310. /* skip over portion of header which has already been read */
  311. skip_bits(gb, 16); //skip the sync_word, sync_info->sync_word = get_bits(gb, 16);
  312. skip_bits(gb, 16); // skip crc1
  313. skip_bits(gb, 8); // skip fscod and frmsizecod
  314. skip_bits(gb, 11); // skip bsid, bsmod, and acmod
  315. if(ctx->acmod == AC3_ACMOD_STEREO) {
  316. skip_bits(gb, 2); // skip dsurmod
  317. } else {
  318. if((ctx->acmod & 1) && ctx->acmod != AC3_ACMOD_MONO)
  319. skip_bits(gb, 2); // skip cmixlev
  320. if(ctx->acmod & 4)
  321. skip_bits(gb, 2); // skip surmixlev
  322. }
  323. skip_bits1(gb); // skip lfeon
  324. /* read the rest of the bsi. read twice for dual mono mode. */
  325. i = !(ctx->acmod);
  326. do {
  327. ctx->dialnorm[i] = dialnorm_tbl[get_bits(gb, 5)]; // dialogue normalization
  328. if (get_bits1(gb))
  329. skip_bits(gb, 8); //skip compression
  330. if (get_bits1(gb))
  331. skip_bits(gb, 8); //skip language code
  332. if (get_bits1(gb))
  333. skip_bits(gb, 7); //skip audio production information
  334. } while (i--);
  335. skip_bits(gb, 2); //skip copyright bit and original bitstream bit
  336. /* FIXME: read & use the xbsi1 downmix levels */
  337. if (get_bits1(gb))
  338. skip_bits(gb, 14); //skip timecode1
  339. if (get_bits1(gb))
  340. skip_bits(gb, 14); //skip timecode2
  341. if (get_bits1(gb)) {
  342. i = get_bits(gb, 6); //additional bsi length
  343. do {
  344. skip_bits(gb, 8);
  345. } while(i--);
  346. }
  347. /* set stereo downmixing coefficients
  348. reference: Section 7.8.2 Downmixing Into Two Channels */
  349. for(i=0; i<ctx->nfchans; i++) {
  350. ctx->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[ctx->acmod][i][0]];
  351. ctx->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[ctx->acmod][i][1]];
  352. }
  353. if(ctx->acmod > 1 && ctx->acmod & 1) {
  354. ctx->downmix_coeffs[1][0] = ctx->downmix_coeffs[1][1] = cmixlev;
  355. }
  356. if(ctx->acmod == AC3_ACMOD_2F1R || ctx->acmod == AC3_ACMOD_3F1R) {
  357. int nf = ctx->acmod - 2;
  358. ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf][1] = surmixlev * LEVEL_MINUS_3DB;
  359. }
  360. if(ctx->acmod == AC3_ACMOD_2F2R || ctx->acmod == AC3_ACMOD_3F2R) {
  361. int nf = ctx->acmod - 4;
  362. ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf+1][1] = surmixlev;
  363. }
  364. return 0;
  365. }
  366. /**
  367. * Decodes the grouped exponents.
  368. * This function decodes the coded exponents according to exponent strategy
  369. * and stores them in the decoded exponents buffer.
  370. *
  371. * @param[in] gb GetBitContext which points to start of coded exponents
  372. * @param[in] expstr Exponent coding strategy
  373. * @param[in] ngrps Number of grouped exponents
  374. * @param[in] absexp Absolute exponent or DC exponent
  375. * @param[out] dexps Decoded exponents are stored in dexps
  376. */
  377. static void decode_exponents(GetBitContext *gb, int expstr, int ngrps,
  378. uint8_t absexp, int8_t *dexps)
  379. {
  380. int i, j, grp, grpsize;
  381. int dexp[256];
  382. int expacc, prevexp;
  383. /* unpack groups */
  384. grpsize = expstr + (expstr == EXP_D45);
  385. for(grp=0,i=0; grp<ngrps; grp++) {
  386. expacc = get_bits(gb, 7);
  387. dexp[i++] = exp_ungroup_tbl[expacc][0];
  388. dexp[i++] = exp_ungroup_tbl[expacc][1];
  389. dexp[i++] = exp_ungroup_tbl[expacc][2];
  390. }
  391. /* convert to absolute exps and expand groups */
  392. prevexp = absexp;
  393. for(i=0; i<ngrps*3; i++) {
  394. prevexp = av_clip(prevexp + dexp[i]-2, 0, 24);
  395. for(j=0; j<grpsize; j++) {
  396. dexps[(i*grpsize)+j] = prevexp;
  397. }
  398. }
  399. }
  400. /**
  401. * Generates transform coefficients for each coupled channel in the coupling
  402. * range using the coupling coefficients and coupling coordinates.
  403. * reference: Section 7.4.3 Coupling Coordinate Format
  404. */
  405. static void uncouple_channels(AC3DecodeContext *ctx)
  406. {
  407. int i, j, ch, bnd, subbnd;
  408. subbnd = -1;
  409. i = ctx->startmant[CPL_CH];
  410. for(bnd=0; bnd<ctx->ncplbnd; bnd++) {
  411. do {
  412. subbnd++;
  413. for(j=0; j<12; j++) {
  414. for(ch=1; ch<=ctx->nfchans; ch++) {
  415. if(ctx->chincpl[ch])
  416. ctx->transform_coeffs[ch][i] = ctx->transform_coeffs[CPL_CH][i] * ctx->cplco[ch][bnd] * 8.0f;
  417. }
  418. i++;
  419. }
  420. } while(ctx->cplbndstrc[subbnd]);
  421. }
  422. }
  423. typedef struct { /* grouped mantissas for 3-level 5-leve and 11-level quantization */
  424. float b1_mant[3];
  425. float b2_mant[3];
  426. float b4_mant[2];
  427. int b1ptr;
  428. int b2ptr;
  429. int b4ptr;
  430. } mant_groups;
  431. /* Get the transform coefficients for particular channel */
  432. static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_groups *m)
  433. {
  434. GetBitContext *gb = &ctx->gb;
  435. int i, gcode, tbap, start, end;
  436. uint8_t *exps;
  437. uint8_t *bap;
  438. float *coeffs;
  439. exps = ctx->dexps[ch_index];
  440. bap = ctx->bap[ch_index];
  441. coeffs = ctx->transform_coeffs[ch_index];
  442. start = ctx->startmant[ch_index];
  443. end = ctx->endmant[ch_index];
  444. for (i = start; i < end; i++) {
  445. tbap = bap[i];
  446. switch (tbap) {
  447. case 0:
  448. coeffs[i] = ((av_random(&ctx->dith_state) & 0xFFFF) * LEVEL_MINUS_3DB) / 32768.0f;
  449. break;
  450. case 1:
  451. if(m->b1ptr > 2) {
  452. gcode = get_bits(gb, 5);
  453. m->b1_mant[0] = b1_mantissas[gcode][0];
  454. m->b1_mant[1] = b1_mantissas[gcode][1];
  455. m->b1_mant[2] = b1_mantissas[gcode][2];
  456. m->b1ptr = 0;
  457. }
  458. coeffs[i] = m->b1_mant[m->b1ptr++];
  459. break;
  460. case 2:
  461. if(m->b2ptr > 2) {
  462. gcode = get_bits(gb, 7);
  463. m->b2_mant[0] = b2_mantissas[gcode][0];
  464. m->b2_mant[1] = b2_mantissas[gcode][1];
  465. m->b2_mant[2] = b2_mantissas[gcode][2];
  466. m->b2ptr = 0;
  467. }
  468. coeffs[i] = m->b2_mant[m->b2ptr++];
  469. break;
  470. case 3:
  471. coeffs[i] = b3_mantissas[get_bits(gb, 3)];
  472. break;
  473. case 4:
  474. if(m->b4ptr > 1) {
  475. gcode = get_bits(gb, 7);
  476. m->b4_mant[0] = b4_mantissas[gcode][0];
  477. m->b4_mant[1] = b4_mantissas[gcode][1];
  478. m->b4ptr = 0;
  479. }
  480. coeffs[i] = m->b4_mant[m->b4ptr++];
  481. break;
  482. case 5:
  483. coeffs[i] = b5_mantissas[get_bits(gb, 4)];
  484. break;
  485. default:
  486. coeffs[i] = get_sbits(gb, qntztab[tbap]) * scale_factors[qntztab[tbap]-1];
  487. break;
  488. }
  489. coeffs[i] *= scale_factors[exps[i]];
  490. }
  491. return 0;
  492. }
  493. /**
  494. * Removes random dithering from coefficients with zero-bit mantissas
  495. * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
  496. */
  497. static void remove_dithering(AC3DecodeContext *ctx) {
  498. int ch, i;
  499. int end=0;
  500. float *coeffs;
  501. uint8_t *bap;
  502. for(ch=1; ch<=ctx->nfchans; ch++) {
  503. if(!ctx->dithflag[ch]) {
  504. coeffs = ctx->transform_coeffs[ch];
  505. bap = ctx->bap[ch];
  506. if(ctx->chincpl[ch])
  507. end = ctx->startmant[CPL_CH];
  508. else
  509. end = ctx->endmant[ch];
  510. for(i=0; i<end; i++) {
  511. if(bap[i] == 0)
  512. coeffs[i] = 0.0f;
  513. }
  514. if(ctx->chincpl[ch]) {
  515. bap = ctx->bap[CPL_CH];
  516. for(; i<ctx->endmant[CPL_CH]; i++) {
  517. if(bap[i] == 0)
  518. coeffs[i] = 0.0f;
  519. }
  520. }
  521. }
  522. }
  523. }
  524. /* Get the transform coefficients.
  525. * This function extracts the tranform coefficients form the ac3 bitstream.
  526. * This function is called after bit allocation is performed.
  527. */
  528. static int get_transform_coeffs(AC3DecodeContext * ctx)
  529. {
  530. int ch, end;
  531. int got_cplchan = 0;
  532. mant_groups m;
  533. m.b1ptr = m.b2ptr = m.b4ptr = 3;
  534. for (ch = 1; ch <= ctx->nchans; ch++) {
  535. /* transform coefficients for individual channel */
  536. if (get_transform_coeffs_ch(ctx, ch, &m))
  537. return -1;
  538. /* tranform coefficients for coupling channels */
  539. if (ctx->chincpl[ch]) {
  540. if (!got_cplchan) {
  541. if (get_transform_coeffs_ch(ctx, CPL_CH, &m)) {
  542. av_log(ctx->avctx, AV_LOG_ERROR, "error in decoupling channels\n");
  543. return -1;
  544. }
  545. uncouple_channels(ctx);
  546. got_cplchan = 1;
  547. }
  548. end = ctx->endmant[CPL_CH];
  549. } else {
  550. end = ctx->endmant[ch];
  551. }
  552. do
  553. ctx->transform_coeffs[ch][end] = 0;
  554. while(++end < 256);
  555. }
  556. /* if any channel doesn't use dithering, zero appropriate coefficients */
  557. if(!ctx->dither_all)
  558. remove_dithering(ctx);
  559. return 0;
  560. }
  561. /**
  562. * Performs stereo rematrixing.
  563. * reference: Section 7.5.4 Rematrixing : Decoding Technique
  564. */
  565. static void do_rematrixing(AC3DecodeContext *ctx)
  566. {
  567. int bnd, i;
  568. int end, bndend;
  569. float tmp0, tmp1;
  570. end = FFMIN(ctx->endmant[1], ctx->endmant[2]);
  571. for(bnd=0; bnd<ctx->nrematbnd; bnd++) {
  572. if(ctx->rematflg[bnd]) {
  573. bndend = FFMIN(end, rematrix_band_tbl[bnd+1]);
  574. for(i=rematrix_band_tbl[bnd]; i<bndend; i++) {
  575. tmp0 = ctx->transform_coeffs[1][i];
  576. tmp1 = ctx->transform_coeffs[2][i];
  577. ctx->transform_coeffs[1][i] = tmp0 + tmp1;
  578. ctx->transform_coeffs[2][i] = tmp0 - tmp1;
  579. }
  580. }
  581. }
  582. }
  583. /* This function performs the imdct on 256 sample transform
  584. * coefficients.
  585. */
  586. static void do_imdct_256(AC3DecodeContext *ctx, int chindex)
  587. {
  588. int i, k;
  589. DECLARE_ALIGNED_16(float, x[128]);
  590. FFTComplex z[2][64];
  591. float *o_ptr = ctx->tmp_output;
  592. for(i=0; i<2; i++) {
  593. /* de-interleave coefficients */
  594. for(k=0; k<128; k++) {
  595. x[k] = ctx->transform_coeffs[chindex][2*k+i];
  596. }
  597. /* run standard IMDCT */
  598. ctx->imdct_256.fft.imdct_calc(&ctx->imdct_256, o_ptr, x, ctx->tmp_imdct);
  599. /* reverse the post-rotation & reordering from standard IMDCT */
  600. for(k=0; k<32; k++) {
  601. z[i][32+k].re = -o_ptr[128+2*k];
  602. z[i][32+k].im = -o_ptr[2*k];
  603. z[i][31-k].re = o_ptr[2*k+1];
  604. z[i][31-k].im = o_ptr[128+2*k+1];
  605. }
  606. }
  607. /* apply AC-3 post-rotation & reordering */
  608. for(k=0; k<64; k++) {
  609. o_ptr[ 2*k ] = -z[0][ k].im;
  610. o_ptr[ 2*k+1] = z[0][63-k].re;
  611. o_ptr[128+2*k ] = -z[0][ k].re;
  612. o_ptr[128+2*k+1] = z[0][63-k].im;
  613. o_ptr[256+2*k ] = -z[1][ k].re;
  614. o_ptr[256+2*k+1] = z[1][63-k].im;
  615. o_ptr[384+2*k ] = z[1][ k].im;
  616. o_ptr[384+2*k+1] = -z[1][63-k].re;
  617. }
  618. }
  619. /* IMDCT Transform. */
  620. static inline void do_imdct(AC3DecodeContext *ctx)
  621. {
  622. int ch;
  623. int nchans;
  624. nchans = ctx->nfchans;
  625. if(ctx->output_mode & AC3_OUTPUT_LFEON)
  626. nchans++;
  627. for (ch=1; ch<=nchans; ch++) {
  628. if (ctx->blksw[ch]) {
  629. do_imdct_256(ctx, ch);
  630. } else {
  631. ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output,
  632. ctx->transform_coeffs[ch],
  633. ctx->tmp_imdct);
  634. }
  635. ctx->dsp.vector_fmul_add_add(ctx->output[ch-1], ctx->tmp_output,
  636. ctx->window, ctx->delay[ch-1], 0, 256, 1);
  637. ctx->dsp.vector_fmul_reverse(ctx->delay[ch-1], ctx->tmp_output+256,
  638. ctx->window, 256);
  639. }
  640. }
  641. /**
  642. * Downmixes the output to stereo.
  643. */
  644. static void ac3_downmix(float samples[AC3_MAX_CHANNELS][256], int nfchans,
  645. int output_mode, float coef[AC3_MAX_CHANNELS][2])
  646. {
  647. int i, j;
  648. float v0, v1, s0, s1;
  649. for(i=0; i<256; i++) {
  650. v0 = v1 = s0 = s1 = 0.0f;
  651. for(j=0; j<nfchans; j++) {
  652. v0 += samples[j][i] * coef[j][0];
  653. v1 += samples[j][i] * coef[j][1];
  654. s0 += coef[j][0];
  655. s1 += coef[j][1];
  656. }
  657. v0 /= s0;
  658. v1 /= s1;
  659. if(output_mode == AC3_ACMOD_MONO) {
  660. samples[0][i] = (v0 + v1) * LEVEL_MINUS_3DB;
  661. } else if(output_mode == AC3_ACMOD_STEREO) {
  662. samples[0][i] = v0;
  663. samples[1][i] = v1;
  664. }
  665. }
  666. }
  667. /* Parse the audio block from ac3 bitstream.
  668. * This function extract the audio block from the ac3 bitstream
  669. * and produces the output for the block. This function must
  670. * be called for each of the six audio block in the ac3 bitstream.
  671. */
  672. static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk)
  673. {
  674. int nfchans = ctx->nfchans;
  675. int acmod = ctx->acmod;
  676. int i, bnd, seg, ch;
  677. GetBitContext *gb = &ctx->gb;
  678. uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
  679. memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
  680. for (ch = 1; ch <= nfchans; ch++) /*block switch flag */
  681. ctx->blksw[ch] = get_bits1(gb);
  682. ctx->dither_all = 1;
  683. for (ch = 1; ch <= nfchans; ch++) { /* dithering flag */
  684. ctx->dithflag[ch] = get_bits1(gb);
  685. if(!ctx->dithflag[ch])
  686. ctx->dither_all = 0;
  687. }
  688. /* dynamic range */
  689. i = !(ctx->acmod);
  690. do {
  691. if(get_bits1(gb)) {
  692. ctx->dynrng[i] = dynrng_tbl[get_bits(gb, 8)];
  693. } else if(blk == 0) {
  694. ctx->dynrng[i] = 1.0f;
  695. }
  696. } while(i--);
  697. if (get_bits1(gb)) { /* coupling strategy */
  698. memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
  699. ctx->cplinu = get_bits1(gb);
  700. if (ctx->cplinu) { /* coupling in use */
  701. int cplbegf, cplendf;
  702. for (ch = 1; ch <= nfchans; ch++)
  703. ctx->chincpl[ch] = get_bits1(gb);
  704. if (acmod == AC3_ACMOD_STEREO)
  705. ctx->phsflginu = get_bits1(gb); //phase flag in use
  706. cplbegf = get_bits(gb, 4);
  707. cplendf = get_bits(gb, 4);
  708. if (3 + cplendf - cplbegf < 0) {
  709. av_log(ctx->avctx, AV_LOG_ERROR, "cplendf = %d < cplbegf = %d\n", cplendf, cplbegf);
  710. return -1;
  711. }
  712. ctx->ncplbnd = ctx->ncplsubnd = 3 + cplendf - cplbegf;
  713. ctx->startmant[CPL_CH] = cplbegf * 12 + 37;
  714. ctx->endmant[CPL_CH] = cplendf * 12 + 73;
  715. for (bnd = 0; bnd < ctx->ncplsubnd - 1; bnd++) { /* coupling band structure */
  716. if (get_bits1(gb)) {
  717. ctx->cplbndstrc[bnd] = 1;
  718. ctx->ncplbnd--;
  719. }
  720. }
  721. } else {
  722. for (ch = 1; ch <= nfchans; ch++)
  723. ctx->chincpl[ch] = 0;
  724. }
  725. }
  726. if (ctx->cplinu) {
  727. int cplcoe = 0;
  728. for (ch = 1; ch <= nfchans; ch++) {
  729. if (ctx->chincpl[ch]) {
  730. if (get_bits1(gb)) { /* coupling co-ordinates */
  731. int mstrcplco, cplcoexp, cplcomant;
  732. cplcoe = 1;
  733. mstrcplco = 3 * get_bits(gb, 2);
  734. for (bnd = 0; bnd < ctx->ncplbnd; bnd++) {
  735. cplcoexp = get_bits(gb, 4);
  736. cplcomant = get_bits(gb, 4);
  737. if (cplcoexp == 15)
  738. ctx->cplco[ch][bnd] = cplcomant / 16.0f;
  739. else
  740. ctx->cplco[ch][bnd] = (cplcomant + 16.0f) / 32.0f;
  741. ctx->cplco[ch][bnd] *= scale_factors[cplcoexp + mstrcplco];
  742. }
  743. }
  744. }
  745. }
  746. if (acmod == AC3_ACMOD_STEREO && ctx->phsflginu && cplcoe) {
  747. for (bnd = 0; bnd < ctx->ncplbnd; bnd++) {
  748. if (get_bits1(gb))
  749. ctx->cplco[2][bnd] = -ctx->cplco[2][bnd];
  750. }
  751. }
  752. }
  753. if (acmod == AC3_ACMOD_STEREO) {/* rematrixing */
  754. ctx->rematstr = get_bits1(gb);
  755. if (ctx->rematstr) {
  756. ctx->nrematbnd = 4;
  757. if(ctx->cplinu && ctx->startmant[CPL_CH] <= 61)
  758. ctx->nrematbnd -= 1 + (ctx->startmant[CPL_CH] == 37);
  759. for(bnd=0; bnd<ctx->nrematbnd; bnd++)
  760. ctx->rematflg[bnd] = get_bits1(gb);
  761. }
  762. }
  763. ctx->expstr[CPL_CH] = EXP_REUSE;
  764. ctx->expstr[ctx->lfe_ch] = EXP_REUSE;
  765. for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) {
  766. if(ch == ctx->lfe_ch)
  767. ctx->expstr[ch] = get_bits(gb, 1);
  768. else
  769. ctx->expstr[ch] = get_bits(gb, 2);
  770. if(ctx->expstr[ch] != EXP_REUSE)
  771. bit_alloc_stages[ch] = 3;
  772. }
  773. for (ch = 1; ch <= nfchans; ch++) { /* channel bandwidth code */
  774. ctx->startmant[ch] = 0;
  775. if (ctx->expstr[ch] != EXP_REUSE) {
  776. int prev = ctx->endmant[ch];
  777. if (ctx->chincpl[ch])
  778. ctx->endmant[ch] = ctx->startmant[CPL_CH];
  779. else {
  780. int chbwcod = get_bits(gb, 6);
  781. if (chbwcod > 60) {
  782. av_log(ctx->avctx, AV_LOG_ERROR, "chbwcod = %d > 60", chbwcod);
  783. return -1;
  784. }
  785. ctx->endmant[ch] = chbwcod * 3 + 73;
  786. }
  787. if(blk > 0 && ctx->endmant[ch] != prev)
  788. memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
  789. }
  790. }
  791. ctx->startmant[ctx->lfe_ch] = 0;
  792. ctx->endmant[ctx->lfe_ch] = 7;
  793. for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) {
  794. if (ctx->expstr[ch] != EXP_REUSE) {
  795. int grpsize, ngrps;
  796. grpsize = 3 << (ctx->expstr[ch] - 1);
  797. if(ch == CPL_CH)
  798. ngrps = (ctx->endmant[ch] - ctx->startmant[ch]) / grpsize;
  799. else if(ch == ctx->lfe_ch)
  800. ngrps = 2;
  801. else
  802. ngrps = (ctx->endmant[ch] + grpsize - 4) / grpsize;
  803. ctx->dexps[ch][0] = get_bits(gb, 4) << !ch;
  804. decode_exponents(gb, ctx->expstr[ch], ngrps, ctx->dexps[ch][0],
  805. &ctx->dexps[ch][ctx->startmant[ch]+!!ch]);
  806. if(ch != CPL_CH && ch != ctx->lfe_ch)
  807. skip_bits(gb, 2); /* skip gainrng */
  808. }
  809. }
  810. if (get_bits1(gb)) { /* bit allocation information */
  811. ctx->bit_alloc_params.sdecay = ff_sdecaytab[get_bits(gb, 2)];
  812. ctx->bit_alloc_params.fdecay = ff_fdecaytab[get_bits(gb, 2)];
  813. ctx->bit_alloc_params.sgain = ff_sgaintab[get_bits(gb, 2)];
  814. ctx->bit_alloc_params.dbknee = ff_dbkneetab[get_bits(gb, 2)];
  815. ctx->bit_alloc_params.floor = ff_floortab[get_bits(gb, 3)];
  816. for(ch=!ctx->cplinu; ch<=ctx->nchans; ch++) {
  817. bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
  818. }
  819. }
  820. if (get_bits1(gb)) { /* snroffset */
  821. int csnr;
  822. csnr = (get_bits(gb, 6) - 15) << 4;
  823. for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) { /* snr offset and fast gain */
  824. ctx->snroffst[ch] = (csnr + get_bits(gb, 4)) << 2;
  825. ctx->fgain[ch] = ff_fgaintab[get_bits(gb, 3)];
  826. }
  827. memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
  828. }
  829. if (ctx->cplinu && get_bits1(gb)) { /* coupling leak information */
  830. ctx->bit_alloc_params.cplfleak = get_bits(gb, 3);
  831. ctx->bit_alloc_params.cplsleak = get_bits(gb, 3);
  832. bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
  833. }
  834. if (get_bits1(gb)) { /* delta bit allocation information */
  835. for (ch = !ctx->cplinu; ch <= nfchans; ch++) {
  836. ctx->deltbae[ch] = get_bits(gb, 2);
  837. if (ctx->deltbae[ch] == DBA_RESERVED) {
  838. av_log(ctx->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
  839. return -1;
  840. }
  841. bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
  842. }
  843. for (ch = !ctx->cplinu; ch <= nfchans; ch++) {
  844. if (ctx->deltbae[ch] == DBA_NEW) {/*channel delta offset, len and bit allocation */
  845. ctx->deltnseg[ch] = get_bits(gb, 3);
  846. for (seg = 0; seg <= ctx->deltnseg[ch]; seg++) {
  847. ctx->deltoffst[ch][seg] = get_bits(gb, 5);
  848. ctx->deltlen[ch][seg] = get_bits(gb, 4);
  849. ctx->deltba[ch][seg] = get_bits(gb, 3);
  850. }
  851. }
  852. }
  853. } else if(blk == 0) {
  854. for(ch=0; ch<=ctx->nchans; ch++) {
  855. ctx->deltbae[ch] = DBA_NONE;
  856. }
  857. }
  858. for(ch=!ctx->cplinu; ch<=ctx->nchans; ch++) {
  859. if(bit_alloc_stages[ch] > 2) {
  860. /* Exponent mapping into PSD and PSD integration */
  861. ff_ac3_bit_alloc_calc_psd(ctx->dexps[ch],
  862. ctx->startmant[ch], ctx->endmant[ch],
  863. ctx->psd[ch], ctx->bndpsd[ch]);
  864. }
  865. if(bit_alloc_stages[ch] > 1) {
  866. /* Compute excitation function, Compute masking curve, and
  867. Apply delta bit allocation */
  868. ff_ac3_bit_alloc_calc_mask(&ctx->bit_alloc_params, ctx->bndpsd[ch],
  869. ctx->startmant[ch], ctx->endmant[ch],
  870. ctx->fgain[ch], (ch == ctx->lfe_ch),
  871. ctx->deltbae[ch], ctx->deltnseg[ch],
  872. ctx->deltoffst[ch], ctx->deltlen[ch],
  873. ctx->deltba[ch], ctx->mask[ch]);
  874. }
  875. if(bit_alloc_stages[ch] > 0) {
  876. /* Compute bit allocation */
  877. ff_ac3_bit_alloc_calc_bap(ctx->mask[ch], ctx->psd[ch],
  878. ctx->startmant[ch], ctx->endmant[ch],
  879. ctx->snroffst[ch],
  880. ctx->bit_alloc_params.floor,
  881. ctx->bap[ch]);
  882. }
  883. }
  884. if (get_bits1(gb)) { /* unused dummy data */
  885. int skipl = get_bits(gb, 9);
  886. while(skipl--)
  887. skip_bits(gb, 8);
  888. }
  889. /* unpack the transform coefficients
  890. * * this also uncouples channels if coupling is in use.
  891. */
  892. if (get_transform_coeffs(ctx)) {
  893. av_log(ctx->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n");
  894. return -1;
  895. }
  896. /* recover coefficients if rematrixing is in use */
  897. if(ctx->acmod == AC3_ACMOD_STEREO)
  898. do_rematrixing(ctx);
  899. /* apply scaling to coefficients (headroom, dialnorm, dynrng) */
  900. for(ch=1; ch<=ctx->nchans; ch++) {
  901. float gain = 2.0f * ctx->mul_bias;
  902. if(ctx->acmod == AC3_ACMOD_DUALMONO) {
  903. gain *= ctx->dialnorm[ch-1] * ctx->dynrng[ch-1];
  904. } else {
  905. gain *= ctx->dialnorm[0] * ctx->dynrng[0];
  906. }
  907. for(i=0; i<ctx->endmant[ch]; i++) {
  908. ctx->transform_coeffs[ch][i] *= gain;
  909. }
  910. }
  911. do_imdct(ctx);
  912. /* downmix output if needed */
  913. if(ctx->nchans != ctx->out_channels && !((ctx->output_mode & AC3_OUTPUT_LFEON) &&
  914. ctx->nfchans == ctx->out_channels)) {
  915. ac3_downmix(ctx->output, ctx->nfchans, ctx->output_mode,
  916. ctx->downmix_coeffs);
  917. }
  918. /* convert float to 16-bit integer */
  919. for(ch=0; ch<ctx->out_channels; ch++) {
  920. for(i=0; i<256; i++) {
  921. ctx->output[ch][i] += ctx->add_bias;
  922. }
  923. ctx->dsp.float_to_int16(ctx->int_output[ch], ctx->output[ch], 256);
  924. }
  925. return 0;
  926. }
  927. /* Decode ac3 frame.
  928. *
  929. * @param avctx Pointer to AVCodecContext
  930. * @param data Pointer to pcm smaples
  931. * @param data_size Set to number of pcm samples produced by decoding
  932. * @param buf Data to be decoded
  933. * @param buf_size Size of the buffer
  934. */
  935. static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size)
  936. {
  937. AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
  938. int16_t *out_samples = (int16_t *)data;
  939. int i, blk, ch;
  940. //Initialize the GetBitContext with the start of valid AC3 Frame.
  941. init_get_bits(&ctx->gb, buf, buf_size * 8);
  942. //Parse the syncinfo.
  943. if (ac3_parse_header(ctx)) {
  944. av_log(avctx, AV_LOG_ERROR, "\n");
  945. *data_size = 0;
  946. return buf_size;
  947. }
  948. avctx->sample_rate = ctx->sampling_rate;
  949. avctx->bit_rate = ctx->bit_rate;
  950. /* channel config */
  951. ctx->out_channels = ctx->nchans;
  952. if (avctx->channels == 0) {
  953. avctx->channels = ctx->out_channels;
  954. } else if(ctx->out_channels < avctx->channels) {
  955. av_log(avctx, AV_LOG_ERROR, "Cannot upmix AC3 from %d to %d channels.\n",
  956. ctx->out_channels, avctx->channels);
  957. return -1;
  958. }
  959. if(avctx->channels == 2) {
  960. ctx->output_mode = AC3_ACMOD_STEREO;
  961. } else if(avctx->channels == 1) {
  962. ctx->output_mode = AC3_ACMOD_MONO;
  963. } else if(avctx->channels != ctx->out_channels) {
  964. av_log(avctx, AV_LOG_ERROR, "Cannot downmix AC3 from %d to %d channels.\n",
  965. ctx->out_channels, avctx->channels);
  966. return -1;
  967. }
  968. ctx->out_channels = avctx->channels;
  969. //Parse the Audio Blocks.
  970. for (blk = 0; blk < NB_BLOCKS; blk++) {
  971. if (ac3_parse_audio_block(ctx, blk)) {
  972. av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n");
  973. *data_size = 0;
  974. return ctx->frame_size;
  975. }
  976. for (i = 0; i < 256; i++)
  977. for (ch = 0; ch < ctx->out_channels; ch++)
  978. *(out_samples++) = ctx->int_output[ch][i];
  979. }
  980. *data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t);
  981. return ctx->frame_size;
  982. }
  983. /* Uninitialize ac3 decoder.
  984. */
  985. static int ac3_decode_end(AVCodecContext *avctx)
  986. {
  987. AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
  988. ff_mdct_end(&ctx->imdct_512);
  989. ff_mdct_end(&ctx->imdct_256);
  990. return 0;
  991. }
  992. AVCodec ac3_decoder = {
  993. .name = "ac3",
  994. .type = CODEC_TYPE_AUDIO,
  995. .id = CODEC_ID_AC3,
  996. .priv_data_size = sizeof (AC3DecodeContext),
  997. .init = ac3_decode_init,
  998. .close = ac3_decode_end,
  999. .decode = ac3_decode_frame,
  1000. };