You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2890 lines
86KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  18. */
  19. /**
  20. * @file mpegaudiodec.c
  21. * MPEG Audio decoder.
  22. */
  23. //#define DEBUG
  24. #include "avcodec.h"
  25. #include "bitstream.h"
  26. #include "dsputil.h"
  27. /*
  28. * TODO:
  29. * - in low precision mode, use more 16 bit multiplies in synth filter
  30. * - test lsf / mpeg25 extensively.
  31. */
  32. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  33. audio decoder */
  34. #ifdef CONFIG_MPEGAUDIO_HP
  35. # define USE_HIGHPRECISION
  36. #endif
  37. #include "mpegaudio.h"
  38. #define FRAC_ONE (1 << FRAC_BITS)
  39. #ifdef ARCH_X86
  40. # define MULL(ra, rb) \
  41. ({ int rt, dummy; asm (\
  42. "imull %3 \n\t"\
  43. "shrdl %4, %%edx, %%eax \n\t"\
  44. : "=a"(rt), "=d"(dummy)\
  45. : "a" (ra), "rm" (rb), "i"(FRAC_BITS));\
  46. rt; })
  47. # define MUL64(ra, rb) \
  48. ({ int64_t rt; asm ("imull %2\n\t" : "=A"(rt) : "a" (ra), "g" (rb)); rt; })
  49. # define MULH(ra, rb) \
  50. ({ int rt, dummy; asm ("imull %3\n\t" : "=d"(rt), "=a"(dummy): "a" (ra), "rm" (rb)); rt; })
  51. #elif defined(ARCH_ARMV4L)
  52. # define MULL(a, b) \
  53. ({ int lo, hi;\
  54. asm("smull %0, %1, %2, %3 \n\t"\
  55. "mov %0, %0, lsr %4\n\t"\
  56. "add %1, %0, %1, lsl %5\n\t"\
  57. : "=&r"(lo), "=&r"(hi)\
  58. : "r"(b), "r"(a), "i"(FRAC_BITS), "i"(32-FRAC_BITS));\
  59. hi; })
  60. # define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
  61. # define MULH(a, b) ({ int lo, hi; asm ("smull %0, %1, %2, %3" : "=&r"(lo), "=&r"(hi) : "r"(b), "r"(a)); hi; })
  62. #else
  63. # define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  64. # define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
  65. //#define MULH(a,b) (((int64_t)(a) * (int64_t)(b))>>32) //gcc 3.4 creates an incredibly bloated mess out of this
  66. static always_inline int MULH(int a, int b){
  67. return ((int64_t)(a) * (int64_t)(b))>>32;
  68. }
  69. #endif
  70. #define FIX(a) ((int)((a) * FRAC_ONE))
  71. /* WARNING: only correct for posititive numbers */
  72. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  73. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  74. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  75. /****************/
  76. #define HEADER_SIZE 4
  77. #define BACKSTEP_SIZE 512
  78. #define EXTRABYTES 24
  79. struct GranuleDef;
  80. typedef struct MPADecodeContext {
  81. DECLARE_ALIGNED_8(uint8_t, last_buf[2*BACKSTEP_SIZE + EXTRABYTES]);
  82. int last_buf_size;
  83. int frame_size;
  84. /* next header (used in free format parsing) */
  85. uint32_t free_format_next_header;
  86. int error_protection;
  87. int layer;
  88. int sample_rate;
  89. int sample_rate_index; /* between 0 and 8 */
  90. int bit_rate;
  91. GetBitContext gb;
  92. GetBitContext in_gb;
  93. int nb_channels;
  94. int mode;
  95. int mode_ext;
  96. int lsf;
  97. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
  98. int synth_buf_offset[MPA_MAX_CHANNELS];
  99. int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
  100. int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  101. #ifdef DEBUG
  102. int frame_count;
  103. #endif
  104. void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
  105. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  106. unsigned int dither_state;
  107. } MPADecodeContext;
  108. /**
  109. * Context for MP3On4 decoder
  110. */
  111. typedef struct MP3On4DecodeContext {
  112. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  113. int chan_cfg; ///< channel config number
  114. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  115. } MP3On4DecodeContext;
  116. /* layer 3 "granule" */
  117. typedef struct GranuleDef {
  118. uint8_t scfsi;
  119. int part2_3_length;
  120. int big_values;
  121. int global_gain;
  122. int scalefac_compress;
  123. uint8_t block_type;
  124. uint8_t switch_point;
  125. int table_select[3];
  126. int subblock_gain[3];
  127. uint8_t scalefac_scale;
  128. uint8_t count1table_select;
  129. int region_size[3]; /* number of huffman codes in each region */
  130. int preflag;
  131. int short_start, long_end; /* long/short band indexes */
  132. uint8_t scale_factors[40];
  133. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  134. } GranuleDef;
  135. #define MODE_EXT_MS_STEREO 2
  136. #define MODE_EXT_I_STEREO 1
  137. /* layer 3 huffman tables */
  138. typedef struct HuffTable {
  139. int xsize;
  140. const uint8_t *bits;
  141. const uint16_t *codes;
  142. } HuffTable;
  143. #include "mpegaudiodectab.h"
  144. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  145. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  146. /* vlc structure for decoding layer 3 huffman tables */
  147. static VLC huff_vlc[16];
  148. static VLC huff_quad_vlc[2];
  149. /* computed from band_size_long */
  150. static uint16_t band_index_long[9][23];
  151. /* XXX: free when all decoders are closed */
  152. #define TABLE_4_3_SIZE (8191 + 16)*4
  153. static int8_t *table_4_3_exp;
  154. static uint32_t *table_4_3_value;
  155. static uint32_t exp_table[512];
  156. static uint32_t expval_table[512][16];
  157. /* intensity stereo coef table */
  158. static int32_t is_table[2][16];
  159. static int32_t is_table_lsf[2][2][16];
  160. static int32_t csa_table[8][4];
  161. static float csa_table_float[8][4];
  162. static int32_t mdct_win[8][36];
  163. /* lower 2 bits: modulo 3, higher bits: shift */
  164. static uint16_t scale_factor_modshift[64];
  165. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  166. static int32_t scale_factor_mult[15][3];
  167. /* mult table for layer 2 group quantization */
  168. #define SCALE_GEN(v) \
  169. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  170. static const int32_t scale_factor_mult2[3][3] = {
  171. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  172. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  173. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  174. };
  175. static MPA_INT window[512] __attribute__((aligned(16)));
  176. /* layer 1 unscaling */
  177. /* n = number of bits of the mantissa minus 1 */
  178. static inline int l1_unscale(int n, int mant, int scale_factor)
  179. {
  180. int shift, mod;
  181. int64_t val;
  182. shift = scale_factor_modshift[scale_factor];
  183. mod = shift & 3;
  184. shift >>= 2;
  185. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  186. shift += n;
  187. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  188. return (int)((val + (1LL << (shift - 1))) >> shift);
  189. }
  190. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  191. {
  192. int shift, mod, val;
  193. shift = scale_factor_modshift[scale_factor];
  194. mod = shift & 3;
  195. shift >>= 2;
  196. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  197. /* NOTE: at this point, 0 <= shift <= 21 */
  198. if (shift > 0)
  199. val = (val + (1 << (shift - 1))) >> shift;
  200. return val;
  201. }
  202. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  203. static inline int l3_unscale(int value, int exponent)
  204. {
  205. unsigned int m;
  206. int e;
  207. e = table_4_3_exp [4*value + (exponent&3)];
  208. m = table_4_3_value[4*value + (exponent&3)];
  209. e -= (exponent >> 2);
  210. assert(e>=1);
  211. if (e > 31)
  212. return 0;
  213. m = (m + (1 << (e-1))) >> e;
  214. return m;
  215. }
  216. /* all integer n^(4/3) computation code */
  217. #define DEV_ORDER 13
  218. #define POW_FRAC_BITS 24
  219. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  220. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  221. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  222. static int dev_4_3_coefs[DEV_ORDER];
  223. #if 0 /* unused */
  224. static int pow_mult3[3] = {
  225. POW_FIX(1.0),
  226. POW_FIX(1.25992104989487316476),
  227. POW_FIX(1.58740105196819947474),
  228. };
  229. #endif
  230. static void int_pow_init(void)
  231. {
  232. int i, a;
  233. a = POW_FIX(1.0);
  234. for(i=0;i<DEV_ORDER;i++) {
  235. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  236. dev_4_3_coefs[i] = a;
  237. }
  238. }
  239. #if 0 /* unused, remove? */
  240. /* return the mantissa and the binary exponent */
  241. static int int_pow(int i, int *exp_ptr)
  242. {
  243. int e, er, eq, j;
  244. int a, a1;
  245. /* renormalize */
  246. a = i;
  247. e = POW_FRAC_BITS;
  248. while (a < (1 << (POW_FRAC_BITS - 1))) {
  249. a = a << 1;
  250. e--;
  251. }
  252. a -= (1 << POW_FRAC_BITS);
  253. a1 = 0;
  254. for(j = DEV_ORDER - 1; j >= 0; j--)
  255. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  256. a = (1 << POW_FRAC_BITS) + a1;
  257. /* exponent compute (exact) */
  258. e = e * 4;
  259. er = e % 3;
  260. eq = e / 3;
  261. a = POW_MULL(a, pow_mult3[er]);
  262. while (a >= 2 * POW_FRAC_ONE) {
  263. a = a >> 1;
  264. eq++;
  265. }
  266. /* convert to float */
  267. while (a < POW_FRAC_ONE) {
  268. a = a << 1;
  269. eq--;
  270. }
  271. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  272. #if POW_FRAC_BITS > FRAC_BITS
  273. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  274. /* correct overflow */
  275. if (a >= 2 * (1 << FRAC_BITS)) {
  276. a = a >> 1;
  277. eq++;
  278. }
  279. #endif
  280. *exp_ptr = eq;
  281. return a;
  282. }
  283. #endif
  284. static int decode_init(AVCodecContext * avctx)
  285. {
  286. MPADecodeContext *s = avctx->priv_data;
  287. static int init=0;
  288. int i, j, k;
  289. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  290. avctx->sample_fmt= SAMPLE_FMT_S32;
  291. #else
  292. avctx->sample_fmt= SAMPLE_FMT_S16;
  293. #endif
  294. if(avctx->antialias_algo != FF_AA_FLOAT)
  295. s->compute_antialias= compute_antialias_integer;
  296. else
  297. s->compute_antialias= compute_antialias_float;
  298. if (!init && !avctx->parse_only) {
  299. /* scale factors table for layer 1/2 */
  300. for(i=0;i<64;i++) {
  301. int shift, mod;
  302. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  303. shift = (i / 3);
  304. mod = i % 3;
  305. scale_factor_modshift[i] = mod | (shift << 2);
  306. }
  307. /* scale factor multiply for layer 1 */
  308. for(i=0;i<15;i++) {
  309. int n, norm;
  310. n = i + 2;
  311. norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  312. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  313. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  314. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  315. dprintf("%d: norm=%x s=%x %x %x\n",
  316. i, norm,
  317. scale_factor_mult[i][0],
  318. scale_factor_mult[i][1],
  319. scale_factor_mult[i][2]);
  320. }
  321. ff_mpa_synth_init(window);
  322. /* huffman decode tables */
  323. for(i=1;i<16;i++) {
  324. const HuffTable *h = &mpa_huff_tables[i];
  325. int xsize, x, y;
  326. unsigned int n;
  327. uint8_t tmp_bits [512];
  328. uint16_t tmp_codes[512];
  329. memset(tmp_bits , 0, sizeof(tmp_bits ));
  330. memset(tmp_codes, 0, sizeof(tmp_codes));
  331. xsize = h->xsize;
  332. n = xsize * xsize;
  333. j = 0;
  334. for(x=0;x<xsize;x++) {
  335. for(y=0;y<xsize;y++){
  336. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  337. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  338. }
  339. }
  340. /* XXX: fail test */
  341. init_vlc(&huff_vlc[i], 7, 512,
  342. tmp_bits, 1, 1, tmp_codes, 2, 2, 1);
  343. }
  344. for(i=0;i<2;i++) {
  345. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  346. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  347. }
  348. for(i=0;i<9;i++) {
  349. k = 0;
  350. for(j=0;j<22;j++) {
  351. band_index_long[i][j] = k;
  352. k += band_size_long[i][j];
  353. }
  354. band_index_long[i][22] = k;
  355. }
  356. /* compute n ^ (4/3) and store it in mantissa/exp format */
  357. table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]));
  358. if(!table_4_3_exp)
  359. return -1;
  360. table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0]));
  361. if(!table_4_3_value)
  362. return -1;
  363. int_pow_init();
  364. for(i=1;i<TABLE_4_3_SIZE;i++) {
  365. double f, fm;
  366. int e, m;
  367. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  368. fm = frexp(f, &e);
  369. m = (uint32_t)(fm*(1LL<<31) + 0.5);
  370. e+= FRAC_BITS - 31 + 5 - 100;
  371. /* normalized to FRAC_BITS */
  372. table_4_3_value[i] = m;
  373. // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
  374. table_4_3_exp[i] = -e;
  375. }
  376. for(i=0; i<512*16; i++){
  377. int exponent= (i>>4);
  378. double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
  379. expval_table[exponent][i&15]= llrint(f);
  380. if((i&15)==1)
  381. exp_table[exponent]= llrint(f);
  382. }
  383. for(i=0;i<7;i++) {
  384. float f;
  385. int v;
  386. if (i != 6) {
  387. f = tan((double)i * M_PI / 12.0);
  388. v = FIXR(f / (1.0 + f));
  389. } else {
  390. v = FIXR(1.0);
  391. }
  392. is_table[0][i] = v;
  393. is_table[1][6 - i] = v;
  394. }
  395. /* invalid values */
  396. for(i=7;i<16;i++)
  397. is_table[0][i] = is_table[1][i] = 0.0;
  398. for(i=0;i<16;i++) {
  399. double f;
  400. int e, k;
  401. for(j=0;j<2;j++) {
  402. e = -(j + 1) * ((i + 1) >> 1);
  403. f = pow(2.0, e / 4.0);
  404. k = i & 1;
  405. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  406. is_table_lsf[j][k][i] = FIXR(1.0);
  407. dprintf("is_table_lsf %d %d: %x %x\n",
  408. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  409. }
  410. }
  411. for(i=0;i<8;i++) {
  412. float ci, cs, ca;
  413. ci = ci_table[i];
  414. cs = 1.0 / sqrt(1.0 + ci * ci);
  415. ca = cs * ci;
  416. csa_table[i][0] = FIXHR(cs/4);
  417. csa_table[i][1] = FIXHR(ca/4);
  418. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  419. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  420. csa_table_float[i][0] = cs;
  421. csa_table_float[i][1] = ca;
  422. csa_table_float[i][2] = ca + cs;
  423. csa_table_float[i][3] = ca - cs;
  424. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  425. // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
  426. }
  427. /* compute mdct windows */
  428. for(i=0;i<36;i++) {
  429. for(j=0; j<4; j++){
  430. double d;
  431. if(j==2 && i%3 != 1)
  432. continue;
  433. d= sin(M_PI * (i + 0.5) / 36.0);
  434. if(j==1){
  435. if (i>=30) d= 0;
  436. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  437. else if(i>=18) d= 1;
  438. }else if(j==3){
  439. if (i< 6) d= 0;
  440. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  441. else if(i< 18) d= 1;
  442. }
  443. //merge last stage of imdct into the window coefficients
  444. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  445. if(j==2)
  446. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  447. else
  448. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  449. // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
  450. }
  451. }
  452. /* NOTE: we do frequency inversion adter the MDCT by changing
  453. the sign of the right window coefs */
  454. for(j=0;j<4;j++) {
  455. for(i=0;i<36;i+=2) {
  456. mdct_win[j + 4][i] = mdct_win[j][i];
  457. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  458. }
  459. }
  460. #if defined(DEBUG)
  461. for(j=0;j<8;j++) {
  462. av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
  463. for(i=0;i<36;i++)
  464. av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  465. av_log(avctx, AV_LOG_DEBUG, "\n");
  466. }
  467. #endif
  468. init = 1;
  469. }
  470. #ifdef DEBUG
  471. s->frame_count = 0;
  472. #endif
  473. if (avctx->codec_id == CODEC_ID_MP3ADU)
  474. s->adu_mode = 1;
  475. return 0;
  476. }
  477. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  478. /* cos(i*pi/64) */
  479. #define COS0_0 FIXHR(0.50060299823519630134/2)
  480. #define COS0_1 FIXHR(0.50547095989754365998/2)
  481. #define COS0_2 FIXHR(0.51544730992262454697/2)
  482. #define COS0_3 FIXHR(0.53104259108978417447/2)
  483. #define COS0_4 FIXHR(0.55310389603444452782/2)
  484. #define COS0_5 FIXHR(0.58293496820613387367/2)
  485. #define COS0_6 FIXHR(0.62250412303566481615/2)
  486. #define COS0_7 FIXHR(0.67480834145500574602/2)
  487. #define COS0_8 FIXHR(0.74453627100229844977/2)
  488. #define COS0_9 FIXHR(0.83934964541552703873/2)
  489. #define COS0_10 FIXHR(0.97256823786196069369/2)
  490. #define COS0_11 FIXHR(1.16943993343288495515/4)
  491. #define COS0_12 FIXHR(1.48416461631416627724/4)
  492. #define COS0_13 FIXHR(2.05778100995341155085/8)
  493. #define COS0_14 FIXHR(3.40760841846871878570/8)
  494. #define COS0_15 FIXHR(10.19000812354805681150/32)
  495. #define COS1_0 FIXHR(0.50241928618815570551/2)
  496. #define COS1_1 FIXHR(0.52249861493968888062/2)
  497. #define COS1_2 FIXHR(0.56694403481635770368/2)
  498. #define COS1_3 FIXHR(0.64682178335999012954/2)
  499. #define COS1_4 FIXHR(0.78815462345125022473/2)
  500. #define COS1_5 FIXHR(1.06067768599034747134/4)
  501. #define COS1_6 FIXHR(1.72244709823833392782/4)
  502. #define COS1_7 FIXHR(5.10114861868916385802/16)
  503. #define COS2_0 FIXHR(0.50979557910415916894/2)
  504. #define COS2_1 FIXHR(0.60134488693504528054/2)
  505. #define COS2_2 FIXHR(0.89997622313641570463/2)
  506. #define COS2_3 FIXHR(2.56291544774150617881/8)
  507. #define COS3_0 FIXHR(0.54119610014619698439/2)
  508. #define COS3_1 FIXHR(1.30656296487637652785/4)
  509. #define COS4_0 FIXHR(0.70710678118654752439/2)
  510. /* butterfly operator */
  511. #define BF(a, b, c, s)\
  512. {\
  513. tmp0 = tab[a] + tab[b];\
  514. tmp1 = tab[a] - tab[b];\
  515. tab[a] = tmp0;\
  516. tab[b] = MULH(tmp1<<(s), c);\
  517. }
  518. #define BF1(a, b, c, d)\
  519. {\
  520. BF(a, b, COS4_0, 1);\
  521. BF(c, d,-COS4_0, 1);\
  522. tab[c] += tab[d];\
  523. }
  524. #define BF2(a, b, c, d)\
  525. {\
  526. BF(a, b, COS4_0, 1);\
  527. BF(c, d,-COS4_0, 1);\
  528. tab[c] += tab[d];\
  529. tab[a] += tab[c];\
  530. tab[c] += tab[b];\
  531. tab[b] += tab[d];\
  532. }
  533. #define ADD(a, b) tab[a] += tab[b]
  534. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  535. static void dct32(int32_t *out, int32_t *tab)
  536. {
  537. int tmp0, tmp1;
  538. /* pass 1 */
  539. BF( 0, 31, COS0_0 , 1);
  540. BF(15, 16, COS0_15, 5);
  541. /* pass 2 */
  542. BF( 0, 15, COS1_0 , 1);
  543. BF(16, 31,-COS1_0 , 1);
  544. /* pass 1 */
  545. BF( 7, 24, COS0_7 , 1);
  546. BF( 8, 23, COS0_8 , 1);
  547. /* pass 2 */
  548. BF( 7, 8, COS1_7 , 4);
  549. BF(23, 24,-COS1_7 , 4);
  550. /* pass 3 */
  551. BF( 0, 7, COS2_0 , 1);
  552. BF( 8, 15,-COS2_0 , 1);
  553. BF(16, 23, COS2_0 , 1);
  554. BF(24, 31,-COS2_0 , 1);
  555. /* pass 1 */
  556. BF( 3, 28, COS0_3 , 1);
  557. BF(12, 19, COS0_12, 2);
  558. /* pass 2 */
  559. BF( 3, 12, COS1_3 , 1);
  560. BF(19, 28,-COS1_3 , 1);
  561. /* pass 1 */
  562. BF( 4, 27, COS0_4 , 1);
  563. BF(11, 20, COS0_11, 2);
  564. /* pass 2 */
  565. BF( 4, 11, COS1_4 , 1);
  566. BF(20, 27,-COS1_4 , 1);
  567. /* pass 3 */
  568. BF( 3, 4, COS2_3 , 3);
  569. BF(11, 12,-COS2_3 , 3);
  570. BF(19, 20, COS2_3 , 3);
  571. BF(27, 28,-COS2_3 , 3);
  572. /* pass 4 */
  573. BF( 0, 3, COS3_0 , 1);
  574. BF( 4, 7,-COS3_0 , 1);
  575. BF( 8, 11, COS3_0 , 1);
  576. BF(12, 15,-COS3_0 , 1);
  577. BF(16, 19, COS3_0 , 1);
  578. BF(20, 23,-COS3_0 , 1);
  579. BF(24, 27, COS3_0 , 1);
  580. BF(28, 31,-COS3_0 , 1);
  581. /* pass 1 */
  582. BF( 1, 30, COS0_1 , 1);
  583. BF(14, 17, COS0_14, 3);
  584. /* pass 2 */
  585. BF( 1, 14, COS1_1 , 1);
  586. BF(17, 30,-COS1_1 , 1);
  587. /* pass 1 */
  588. BF( 6, 25, COS0_6 , 1);
  589. BF( 9, 22, COS0_9 , 1);
  590. /* pass 2 */
  591. BF( 6, 9, COS1_6 , 2);
  592. BF(22, 25,-COS1_6 , 2);
  593. /* pass 3 */
  594. BF( 1, 6, COS2_1 , 1);
  595. BF( 9, 14,-COS2_1 , 1);
  596. BF(17, 22, COS2_1 , 1);
  597. BF(25, 30,-COS2_1 , 1);
  598. /* pass 1 */
  599. BF( 2, 29, COS0_2 , 1);
  600. BF(13, 18, COS0_13, 3);
  601. /* pass 2 */
  602. BF( 2, 13, COS1_2 , 1);
  603. BF(18, 29,-COS1_2 , 1);
  604. /* pass 1 */
  605. BF( 5, 26, COS0_5 , 1);
  606. BF(10, 21, COS0_10, 1);
  607. /* pass 2 */
  608. BF( 5, 10, COS1_5 , 2);
  609. BF(21, 26,-COS1_5 , 2);
  610. /* pass 3 */
  611. BF( 2, 5, COS2_2 , 1);
  612. BF(10, 13,-COS2_2 , 1);
  613. BF(18, 21, COS2_2 , 1);
  614. BF(26, 29,-COS2_2 , 1);
  615. /* pass 4 */
  616. BF( 1, 2, COS3_1 , 2);
  617. BF( 5, 6,-COS3_1 , 2);
  618. BF( 9, 10, COS3_1 , 2);
  619. BF(13, 14,-COS3_1 , 2);
  620. BF(17, 18, COS3_1 , 2);
  621. BF(21, 22,-COS3_1 , 2);
  622. BF(25, 26, COS3_1 , 2);
  623. BF(29, 30,-COS3_1 , 2);
  624. /* pass 5 */
  625. BF1( 0, 1, 2, 3);
  626. BF2( 4, 5, 6, 7);
  627. BF1( 8, 9, 10, 11);
  628. BF2(12, 13, 14, 15);
  629. BF1(16, 17, 18, 19);
  630. BF2(20, 21, 22, 23);
  631. BF1(24, 25, 26, 27);
  632. BF2(28, 29, 30, 31);
  633. /* pass 6 */
  634. ADD( 8, 12);
  635. ADD(12, 10);
  636. ADD(10, 14);
  637. ADD(14, 9);
  638. ADD( 9, 13);
  639. ADD(13, 11);
  640. ADD(11, 15);
  641. out[ 0] = tab[0];
  642. out[16] = tab[1];
  643. out[ 8] = tab[2];
  644. out[24] = tab[3];
  645. out[ 4] = tab[4];
  646. out[20] = tab[5];
  647. out[12] = tab[6];
  648. out[28] = tab[7];
  649. out[ 2] = tab[8];
  650. out[18] = tab[9];
  651. out[10] = tab[10];
  652. out[26] = tab[11];
  653. out[ 6] = tab[12];
  654. out[22] = tab[13];
  655. out[14] = tab[14];
  656. out[30] = tab[15];
  657. ADD(24, 28);
  658. ADD(28, 26);
  659. ADD(26, 30);
  660. ADD(30, 25);
  661. ADD(25, 29);
  662. ADD(29, 27);
  663. ADD(27, 31);
  664. out[ 1] = tab[16] + tab[24];
  665. out[17] = tab[17] + tab[25];
  666. out[ 9] = tab[18] + tab[26];
  667. out[25] = tab[19] + tab[27];
  668. out[ 5] = tab[20] + tab[28];
  669. out[21] = tab[21] + tab[29];
  670. out[13] = tab[22] + tab[30];
  671. out[29] = tab[23] + tab[31];
  672. out[ 3] = tab[24] + tab[20];
  673. out[19] = tab[25] + tab[21];
  674. out[11] = tab[26] + tab[22];
  675. out[27] = tab[27] + tab[23];
  676. out[ 7] = tab[28] + tab[18];
  677. out[23] = tab[29] + tab[19];
  678. out[15] = tab[30] + tab[17];
  679. out[31] = tab[31];
  680. }
  681. #if FRAC_BITS <= 15
  682. static inline int round_sample(int *sum)
  683. {
  684. int sum1;
  685. sum1 = (*sum) >> OUT_SHIFT;
  686. *sum &= (1<<OUT_SHIFT)-1;
  687. if (sum1 < OUT_MIN)
  688. sum1 = OUT_MIN;
  689. else if (sum1 > OUT_MAX)
  690. sum1 = OUT_MAX;
  691. return sum1;
  692. }
  693. # if defined(ARCH_POWERPC_405)
  694. /* signed 16x16 -> 32 multiply add accumulate */
  695. # define MACS(rt, ra, rb) \
  696. asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));
  697. /* signed 16x16 -> 32 multiply */
  698. # define MULS(ra, rb) \
  699. ({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
  700. # elif defined(HAVE_ARMV5TE)
  701. /* signed 16x16 -> 32 multiply add accumulate */
  702. # define MACS(rt, ra, rb) \
  703. asm ("smlabb %0, %2, %3, %0" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));
  704. /* signed 16x16 -> 32 multiply */
  705. # define MULS(ra, rb) \
  706. ({ int __rt; asm ("smulbb %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
  707. # else
  708. /* signed 16x16 -> 32 multiply add accumulate */
  709. # define MACS(rt, ra, rb) rt += (ra) * (rb)
  710. /* signed 16x16 -> 32 multiply */
  711. # define MULS(ra, rb) ((ra) * (rb))
  712. # endif
  713. #else
  714. static inline int round_sample(int64_t *sum)
  715. {
  716. int sum1;
  717. sum1 = (int)((*sum) >> OUT_SHIFT);
  718. *sum &= (1<<OUT_SHIFT)-1;
  719. if (sum1 < OUT_MIN)
  720. sum1 = OUT_MIN;
  721. else if (sum1 > OUT_MAX)
  722. sum1 = OUT_MAX;
  723. return sum1;
  724. }
  725. # define MULS(ra, rb) MUL64(ra, rb)
  726. #endif
  727. #define SUM8(sum, op, w, p) \
  728. { \
  729. sum op MULS((w)[0 * 64], p[0 * 64]);\
  730. sum op MULS((w)[1 * 64], p[1 * 64]);\
  731. sum op MULS((w)[2 * 64], p[2 * 64]);\
  732. sum op MULS((w)[3 * 64], p[3 * 64]);\
  733. sum op MULS((w)[4 * 64], p[4 * 64]);\
  734. sum op MULS((w)[5 * 64], p[5 * 64]);\
  735. sum op MULS((w)[6 * 64], p[6 * 64]);\
  736. sum op MULS((w)[7 * 64], p[7 * 64]);\
  737. }
  738. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  739. { \
  740. int tmp;\
  741. tmp = p[0 * 64];\
  742. sum1 op1 MULS((w1)[0 * 64], tmp);\
  743. sum2 op2 MULS((w2)[0 * 64], tmp);\
  744. tmp = p[1 * 64];\
  745. sum1 op1 MULS((w1)[1 * 64], tmp);\
  746. sum2 op2 MULS((w2)[1 * 64], tmp);\
  747. tmp = p[2 * 64];\
  748. sum1 op1 MULS((w1)[2 * 64], tmp);\
  749. sum2 op2 MULS((w2)[2 * 64], tmp);\
  750. tmp = p[3 * 64];\
  751. sum1 op1 MULS((w1)[3 * 64], tmp);\
  752. sum2 op2 MULS((w2)[3 * 64], tmp);\
  753. tmp = p[4 * 64];\
  754. sum1 op1 MULS((w1)[4 * 64], tmp);\
  755. sum2 op2 MULS((w2)[4 * 64], tmp);\
  756. tmp = p[5 * 64];\
  757. sum1 op1 MULS((w1)[5 * 64], tmp);\
  758. sum2 op2 MULS((w2)[5 * 64], tmp);\
  759. tmp = p[6 * 64];\
  760. sum1 op1 MULS((w1)[6 * 64], tmp);\
  761. sum2 op2 MULS((w2)[6 * 64], tmp);\
  762. tmp = p[7 * 64];\
  763. sum1 op1 MULS((w1)[7 * 64], tmp);\
  764. sum2 op2 MULS((w2)[7 * 64], tmp);\
  765. }
  766. void ff_mpa_synth_init(MPA_INT *window)
  767. {
  768. int i;
  769. /* max = 18760, max sum over all 16 coefs : 44736 */
  770. for(i=0;i<257;i++) {
  771. int v;
  772. v = mpa_enwindow[i];
  773. #if WFRAC_BITS < 16
  774. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  775. #endif
  776. window[i] = v;
  777. if ((i & 63) != 0)
  778. v = -v;
  779. if (i != 0)
  780. window[512 - i] = v;
  781. }
  782. }
  783. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  784. 32 samples. */
  785. /* XXX: optimize by avoiding ring buffer usage */
  786. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  787. MPA_INT *window, int *dither_state,
  788. OUT_INT *samples, int incr,
  789. int32_t sb_samples[SBLIMIT])
  790. {
  791. int32_t tmp[32];
  792. register MPA_INT *synth_buf;
  793. register const MPA_INT *w, *w2, *p;
  794. int j, offset, v;
  795. OUT_INT *samples2;
  796. #if FRAC_BITS <= 15
  797. int sum, sum2;
  798. #else
  799. int64_t sum, sum2;
  800. #endif
  801. dct32(tmp, sb_samples);
  802. offset = *synth_buf_offset;
  803. synth_buf = synth_buf_ptr + offset;
  804. for(j=0;j<32;j++) {
  805. v = tmp[j];
  806. #if FRAC_BITS <= 15
  807. /* NOTE: can cause a loss in precision if very high amplitude
  808. sound */
  809. if (v > 32767)
  810. v = 32767;
  811. else if (v < -32768)
  812. v = -32768;
  813. #endif
  814. synth_buf[j] = v;
  815. }
  816. /* copy to avoid wrap */
  817. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  818. samples2 = samples + 31 * incr;
  819. w = window;
  820. w2 = window + 31;
  821. sum = *dither_state;
  822. p = synth_buf + 16;
  823. SUM8(sum, +=, w, p);
  824. p = synth_buf + 48;
  825. SUM8(sum, -=, w + 32, p);
  826. *samples = round_sample(&sum);
  827. samples += incr;
  828. w++;
  829. /* we calculate two samples at the same time to avoid one memory
  830. access per two sample */
  831. for(j=1;j<16;j++) {
  832. sum2 = 0;
  833. p = synth_buf + 16 + j;
  834. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  835. p = synth_buf + 48 - j;
  836. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  837. *samples = round_sample(&sum);
  838. samples += incr;
  839. sum += sum2;
  840. *samples2 = round_sample(&sum);
  841. samples2 -= incr;
  842. w++;
  843. w2--;
  844. }
  845. p = synth_buf + 32;
  846. SUM8(sum, -=, w + 32, p);
  847. *samples = round_sample(&sum);
  848. *dither_state= sum;
  849. offset = (offset - 32) & 511;
  850. *synth_buf_offset = offset;
  851. }
  852. #define C3 FIXHR(0.86602540378443864676/2)
  853. /* 0.5 / cos(pi*(2*i+1)/36) */
  854. static const int icos36[9] = {
  855. FIXR(0.50190991877167369479),
  856. FIXR(0.51763809020504152469), //0
  857. FIXR(0.55168895948124587824),
  858. FIXR(0.61038729438072803416),
  859. FIXR(0.70710678118654752439), //1
  860. FIXR(0.87172339781054900991),
  861. FIXR(1.18310079157624925896),
  862. FIXR(1.93185165257813657349), //2
  863. FIXR(5.73685662283492756461),
  864. };
  865. /* 0.5 / cos(pi*(2*i+1)/36) */
  866. static const int icos36h[9] = {
  867. FIXHR(0.50190991877167369479/2),
  868. FIXHR(0.51763809020504152469/2), //0
  869. FIXHR(0.55168895948124587824/2),
  870. FIXHR(0.61038729438072803416/2),
  871. FIXHR(0.70710678118654752439/2), //1
  872. FIXHR(0.87172339781054900991/2),
  873. FIXHR(1.18310079157624925896/4),
  874. FIXHR(1.93185165257813657349/4), //2
  875. // FIXHR(5.73685662283492756461),
  876. };
  877. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  878. cases. */
  879. static void imdct12(int *out, int *in)
  880. {
  881. int in0, in1, in2, in3, in4, in5, t1, t2;
  882. in0= in[0*3];
  883. in1= in[1*3] + in[0*3];
  884. in2= in[2*3] + in[1*3];
  885. in3= in[3*3] + in[2*3];
  886. in4= in[4*3] + in[3*3];
  887. in5= in[5*3] + in[4*3];
  888. in5 += in3;
  889. in3 += in1;
  890. in2= MULH(2*in2, C3);
  891. in3= MULH(4*in3, C3);
  892. t1 = in0 - in4;
  893. t2 = MULH(2*(in1 - in5), icos36h[4]);
  894. out[ 7]=
  895. out[10]= t1 + t2;
  896. out[ 1]=
  897. out[ 4]= t1 - t2;
  898. in0 += in4>>1;
  899. in4 = in0 + in2;
  900. in5 += 2*in1;
  901. in1 = MULH(in5 + in3, icos36h[1]);
  902. out[ 8]=
  903. out[ 9]= in4 + in1;
  904. out[ 2]=
  905. out[ 3]= in4 - in1;
  906. in0 -= in2;
  907. in5 = MULH(2*(in5 - in3), icos36h[7]);
  908. out[ 0]=
  909. out[ 5]= in0 - in5;
  910. out[ 6]=
  911. out[11]= in0 + in5;
  912. }
  913. /* cos(pi*i/18) */
  914. #define C1 FIXHR(0.98480775301220805936/2)
  915. #define C2 FIXHR(0.93969262078590838405/2)
  916. #define C3 FIXHR(0.86602540378443864676/2)
  917. #define C4 FIXHR(0.76604444311897803520/2)
  918. #define C5 FIXHR(0.64278760968653932632/2)
  919. #define C6 FIXHR(0.5/2)
  920. #define C7 FIXHR(0.34202014332566873304/2)
  921. #define C8 FIXHR(0.17364817766693034885/2)
  922. /* using Lee like decomposition followed by hand coded 9 points DCT */
  923. static void imdct36(int *out, int *buf, int *in, int *win)
  924. {
  925. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  926. int tmp[18], *tmp1, *in1;
  927. for(i=17;i>=1;i--)
  928. in[i] += in[i-1];
  929. for(i=17;i>=3;i-=2)
  930. in[i] += in[i-2];
  931. for(j=0;j<2;j++) {
  932. tmp1 = tmp + j;
  933. in1 = in + j;
  934. #if 0
  935. //more accurate but slower
  936. int64_t t0, t1, t2, t3;
  937. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  938. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  939. t1 = in1[2*0] - in1[2*6];
  940. tmp1[ 6] = t1 - (t2>>1);
  941. tmp1[16] = t1 + t2;
  942. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  943. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  944. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  945. tmp1[10] = (t3 - t0 - t2) >> 32;
  946. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  947. tmp1[14] = (t3 + t2 - t1) >> 32;
  948. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  949. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  950. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  951. t0 = MUL64(2*in1[2*3], C3);
  952. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  953. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  954. tmp1[12] = (t2 + t1 - t0) >> 32;
  955. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  956. #else
  957. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  958. t3 = in1[2*0] + (in1[2*6]>>1);
  959. t1 = in1[2*0] - in1[2*6];
  960. tmp1[ 6] = t1 - (t2>>1);
  961. tmp1[16] = t1 + t2;
  962. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  963. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  964. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  965. tmp1[10] = t3 - t0 - t2;
  966. tmp1[ 2] = t3 + t0 + t1;
  967. tmp1[14] = t3 + t2 - t1;
  968. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  969. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  970. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  971. t0 = MULH(2*in1[2*3], C3);
  972. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  973. tmp1[ 0] = t2 + t3 + t0;
  974. tmp1[12] = t2 + t1 - t0;
  975. tmp1[ 8] = t3 - t1 - t0;
  976. #endif
  977. }
  978. i = 0;
  979. for(j=0;j<4;j++) {
  980. t0 = tmp[i];
  981. t1 = tmp[i + 2];
  982. s0 = t1 + t0;
  983. s2 = t1 - t0;
  984. t2 = tmp[i + 1];
  985. t3 = tmp[i + 3];
  986. s1 = MULH(2*(t3 + t2), icos36h[j]);
  987. s3 = MULL(t3 - t2, icos36[8 - j]);
  988. t0 = s0 + s1;
  989. t1 = s0 - s1;
  990. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  991. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  992. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  993. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  994. t0 = s2 + s3;
  995. t1 = s2 - s3;
  996. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  997. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  998. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  999. buf[ + j] = MULH(t0, win[18 + j]);
  1000. i += 4;
  1001. }
  1002. s0 = tmp[16];
  1003. s1 = MULH(2*tmp[17], icos36h[4]);
  1004. t0 = s0 + s1;
  1005. t1 = s0 - s1;
  1006. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  1007. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  1008. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  1009. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  1010. }
  1011. /* header decoding. MUST check the header before because no
  1012. consistency check is done there. Return 1 if free format found and
  1013. that the frame size must be computed externally */
  1014. static int decode_header(MPADecodeContext *s, uint32_t header)
  1015. {
  1016. int sample_rate, frame_size, mpeg25, padding;
  1017. int sample_rate_index, bitrate_index;
  1018. if (header & (1<<20)) {
  1019. s->lsf = (header & (1<<19)) ? 0 : 1;
  1020. mpeg25 = 0;
  1021. } else {
  1022. s->lsf = 1;
  1023. mpeg25 = 1;
  1024. }
  1025. s->layer = 4 - ((header >> 17) & 3);
  1026. /* extract frequency */
  1027. sample_rate_index = (header >> 10) & 3;
  1028. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  1029. sample_rate_index += 3 * (s->lsf + mpeg25);
  1030. s->sample_rate_index = sample_rate_index;
  1031. s->error_protection = ((header >> 16) & 1) ^ 1;
  1032. s->sample_rate = sample_rate;
  1033. bitrate_index = (header >> 12) & 0xf;
  1034. padding = (header >> 9) & 1;
  1035. //extension = (header >> 8) & 1;
  1036. s->mode = (header >> 6) & 3;
  1037. s->mode_ext = (header >> 4) & 3;
  1038. //copyright = (header >> 3) & 1;
  1039. //original = (header >> 2) & 1;
  1040. //emphasis = header & 3;
  1041. if (s->mode == MPA_MONO)
  1042. s->nb_channels = 1;
  1043. else
  1044. s->nb_channels = 2;
  1045. if (bitrate_index != 0) {
  1046. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  1047. s->bit_rate = frame_size * 1000;
  1048. switch(s->layer) {
  1049. case 1:
  1050. frame_size = (frame_size * 12000) / sample_rate;
  1051. frame_size = (frame_size + padding) * 4;
  1052. break;
  1053. case 2:
  1054. frame_size = (frame_size * 144000) / sample_rate;
  1055. frame_size += padding;
  1056. break;
  1057. default:
  1058. case 3:
  1059. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  1060. frame_size += padding;
  1061. break;
  1062. }
  1063. s->frame_size = frame_size;
  1064. } else {
  1065. /* if no frame size computed, signal it */
  1066. return 1;
  1067. }
  1068. #if defined(DEBUG)
  1069. dprintf("layer%d, %d Hz, %d kbits/s, ",
  1070. s->layer, s->sample_rate, s->bit_rate);
  1071. if (s->nb_channels == 2) {
  1072. if (s->layer == 3) {
  1073. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1074. dprintf("ms-");
  1075. if (s->mode_ext & MODE_EXT_I_STEREO)
  1076. dprintf("i-");
  1077. }
  1078. dprintf("stereo");
  1079. } else {
  1080. dprintf("mono");
  1081. }
  1082. dprintf("\n");
  1083. #endif
  1084. return 0;
  1085. }
  1086. /* useful helper to get mpeg audio stream infos. Return -1 if error in
  1087. header, otherwise the coded frame size in bytes */
  1088. int mpa_decode_header(AVCodecContext *avctx, uint32_t head)
  1089. {
  1090. MPADecodeContext s1, *s = &s1;
  1091. if (ff_mpa_check_header(head) != 0)
  1092. return -1;
  1093. if (decode_header(s, head) != 0) {
  1094. return -1;
  1095. }
  1096. switch(s->layer) {
  1097. case 1:
  1098. avctx->frame_size = 384;
  1099. break;
  1100. case 2:
  1101. avctx->frame_size = 1152;
  1102. break;
  1103. default:
  1104. case 3:
  1105. if (s->lsf)
  1106. avctx->frame_size = 576;
  1107. else
  1108. avctx->frame_size = 1152;
  1109. break;
  1110. }
  1111. avctx->sample_rate = s->sample_rate;
  1112. avctx->channels = s->nb_channels;
  1113. avctx->bit_rate = s->bit_rate;
  1114. avctx->sub_id = s->layer;
  1115. return s->frame_size;
  1116. }
  1117. /* return the number of decoded frames */
  1118. static int mp_decode_layer1(MPADecodeContext *s)
  1119. {
  1120. int bound, i, v, n, ch, j, mant;
  1121. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1122. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1123. if (s->mode == MPA_JSTEREO)
  1124. bound = (s->mode_ext + 1) * 4;
  1125. else
  1126. bound = SBLIMIT;
  1127. /* allocation bits */
  1128. for(i=0;i<bound;i++) {
  1129. for(ch=0;ch<s->nb_channels;ch++) {
  1130. allocation[ch][i] = get_bits(&s->gb, 4);
  1131. }
  1132. }
  1133. for(i=bound;i<SBLIMIT;i++) {
  1134. allocation[0][i] = get_bits(&s->gb, 4);
  1135. }
  1136. /* scale factors */
  1137. for(i=0;i<bound;i++) {
  1138. for(ch=0;ch<s->nb_channels;ch++) {
  1139. if (allocation[ch][i])
  1140. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1141. }
  1142. }
  1143. for(i=bound;i<SBLIMIT;i++) {
  1144. if (allocation[0][i]) {
  1145. scale_factors[0][i] = get_bits(&s->gb, 6);
  1146. scale_factors[1][i] = get_bits(&s->gb, 6);
  1147. }
  1148. }
  1149. /* compute samples */
  1150. for(j=0;j<12;j++) {
  1151. for(i=0;i<bound;i++) {
  1152. for(ch=0;ch<s->nb_channels;ch++) {
  1153. n = allocation[ch][i];
  1154. if (n) {
  1155. mant = get_bits(&s->gb, n + 1);
  1156. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1157. } else {
  1158. v = 0;
  1159. }
  1160. s->sb_samples[ch][j][i] = v;
  1161. }
  1162. }
  1163. for(i=bound;i<SBLIMIT;i++) {
  1164. n = allocation[0][i];
  1165. if (n) {
  1166. mant = get_bits(&s->gb, n + 1);
  1167. v = l1_unscale(n, mant, scale_factors[0][i]);
  1168. s->sb_samples[0][j][i] = v;
  1169. v = l1_unscale(n, mant, scale_factors[1][i]);
  1170. s->sb_samples[1][j][i] = v;
  1171. } else {
  1172. s->sb_samples[0][j][i] = 0;
  1173. s->sb_samples[1][j][i] = 0;
  1174. }
  1175. }
  1176. }
  1177. return 12;
  1178. }
  1179. /* bitrate is in kb/s */
  1180. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1181. {
  1182. int ch_bitrate, table;
  1183. ch_bitrate = bitrate / nb_channels;
  1184. if (!lsf) {
  1185. if ((freq == 48000 && ch_bitrate >= 56) ||
  1186. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1187. table = 0;
  1188. else if (freq != 48000 && ch_bitrate >= 96)
  1189. table = 1;
  1190. else if (freq != 32000 && ch_bitrate <= 48)
  1191. table = 2;
  1192. else
  1193. table = 3;
  1194. } else {
  1195. table = 4;
  1196. }
  1197. return table;
  1198. }
  1199. static int mp_decode_layer2(MPADecodeContext *s)
  1200. {
  1201. int sblimit; /* number of used subbands */
  1202. const unsigned char *alloc_table;
  1203. int table, bit_alloc_bits, i, j, ch, bound, v;
  1204. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1205. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1206. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1207. int scale, qindex, bits, steps, k, l, m, b;
  1208. /* select decoding table */
  1209. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1210. s->sample_rate, s->lsf);
  1211. sblimit = sblimit_table[table];
  1212. alloc_table = alloc_tables[table];
  1213. if (s->mode == MPA_JSTEREO)
  1214. bound = (s->mode_ext + 1) * 4;
  1215. else
  1216. bound = sblimit;
  1217. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1218. /* sanity check */
  1219. if( bound > sblimit ) bound = sblimit;
  1220. /* parse bit allocation */
  1221. j = 0;
  1222. for(i=0;i<bound;i++) {
  1223. bit_alloc_bits = alloc_table[j];
  1224. for(ch=0;ch<s->nb_channels;ch++) {
  1225. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1226. }
  1227. j += 1 << bit_alloc_bits;
  1228. }
  1229. for(i=bound;i<sblimit;i++) {
  1230. bit_alloc_bits = alloc_table[j];
  1231. v = get_bits(&s->gb, bit_alloc_bits);
  1232. bit_alloc[0][i] = v;
  1233. bit_alloc[1][i] = v;
  1234. j += 1 << bit_alloc_bits;
  1235. }
  1236. #ifdef DEBUG
  1237. {
  1238. for(ch=0;ch<s->nb_channels;ch++) {
  1239. for(i=0;i<sblimit;i++)
  1240. dprintf(" %d", bit_alloc[ch][i]);
  1241. dprintf("\n");
  1242. }
  1243. }
  1244. #endif
  1245. /* scale codes */
  1246. for(i=0;i<sblimit;i++) {
  1247. for(ch=0;ch<s->nb_channels;ch++) {
  1248. if (bit_alloc[ch][i])
  1249. scale_code[ch][i] = get_bits(&s->gb, 2);
  1250. }
  1251. }
  1252. /* scale factors */
  1253. for(i=0;i<sblimit;i++) {
  1254. for(ch=0;ch<s->nb_channels;ch++) {
  1255. if (bit_alloc[ch][i]) {
  1256. sf = scale_factors[ch][i];
  1257. switch(scale_code[ch][i]) {
  1258. default:
  1259. case 0:
  1260. sf[0] = get_bits(&s->gb, 6);
  1261. sf[1] = get_bits(&s->gb, 6);
  1262. sf[2] = get_bits(&s->gb, 6);
  1263. break;
  1264. case 2:
  1265. sf[0] = get_bits(&s->gb, 6);
  1266. sf[1] = sf[0];
  1267. sf[2] = sf[0];
  1268. break;
  1269. case 1:
  1270. sf[0] = get_bits(&s->gb, 6);
  1271. sf[2] = get_bits(&s->gb, 6);
  1272. sf[1] = sf[0];
  1273. break;
  1274. case 3:
  1275. sf[0] = get_bits(&s->gb, 6);
  1276. sf[2] = get_bits(&s->gb, 6);
  1277. sf[1] = sf[2];
  1278. break;
  1279. }
  1280. }
  1281. }
  1282. }
  1283. #ifdef DEBUG
  1284. for(ch=0;ch<s->nb_channels;ch++) {
  1285. for(i=0;i<sblimit;i++) {
  1286. if (bit_alloc[ch][i]) {
  1287. sf = scale_factors[ch][i];
  1288. dprintf(" %d %d %d", sf[0], sf[1], sf[2]);
  1289. } else {
  1290. dprintf(" -");
  1291. }
  1292. }
  1293. dprintf("\n");
  1294. }
  1295. #endif
  1296. /* samples */
  1297. for(k=0;k<3;k++) {
  1298. for(l=0;l<12;l+=3) {
  1299. j = 0;
  1300. for(i=0;i<bound;i++) {
  1301. bit_alloc_bits = alloc_table[j];
  1302. for(ch=0;ch<s->nb_channels;ch++) {
  1303. b = bit_alloc[ch][i];
  1304. if (b) {
  1305. scale = scale_factors[ch][i][k];
  1306. qindex = alloc_table[j+b];
  1307. bits = quant_bits[qindex];
  1308. if (bits < 0) {
  1309. /* 3 values at the same time */
  1310. v = get_bits(&s->gb, -bits);
  1311. steps = quant_steps[qindex];
  1312. s->sb_samples[ch][k * 12 + l + 0][i] =
  1313. l2_unscale_group(steps, v % steps, scale);
  1314. v = v / steps;
  1315. s->sb_samples[ch][k * 12 + l + 1][i] =
  1316. l2_unscale_group(steps, v % steps, scale);
  1317. v = v / steps;
  1318. s->sb_samples[ch][k * 12 + l + 2][i] =
  1319. l2_unscale_group(steps, v, scale);
  1320. } else {
  1321. for(m=0;m<3;m++) {
  1322. v = get_bits(&s->gb, bits);
  1323. v = l1_unscale(bits - 1, v, scale);
  1324. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1325. }
  1326. }
  1327. } else {
  1328. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1329. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1330. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1331. }
  1332. }
  1333. /* next subband in alloc table */
  1334. j += 1 << bit_alloc_bits;
  1335. }
  1336. /* XXX: find a way to avoid this duplication of code */
  1337. for(i=bound;i<sblimit;i++) {
  1338. bit_alloc_bits = alloc_table[j];
  1339. b = bit_alloc[0][i];
  1340. if (b) {
  1341. int mant, scale0, scale1;
  1342. scale0 = scale_factors[0][i][k];
  1343. scale1 = scale_factors[1][i][k];
  1344. qindex = alloc_table[j+b];
  1345. bits = quant_bits[qindex];
  1346. if (bits < 0) {
  1347. /* 3 values at the same time */
  1348. v = get_bits(&s->gb, -bits);
  1349. steps = quant_steps[qindex];
  1350. mant = v % steps;
  1351. v = v / steps;
  1352. s->sb_samples[0][k * 12 + l + 0][i] =
  1353. l2_unscale_group(steps, mant, scale0);
  1354. s->sb_samples[1][k * 12 + l + 0][i] =
  1355. l2_unscale_group(steps, mant, scale1);
  1356. mant = v % steps;
  1357. v = v / steps;
  1358. s->sb_samples[0][k * 12 + l + 1][i] =
  1359. l2_unscale_group(steps, mant, scale0);
  1360. s->sb_samples[1][k * 12 + l + 1][i] =
  1361. l2_unscale_group(steps, mant, scale1);
  1362. s->sb_samples[0][k * 12 + l + 2][i] =
  1363. l2_unscale_group(steps, v, scale0);
  1364. s->sb_samples[1][k * 12 + l + 2][i] =
  1365. l2_unscale_group(steps, v, scale1);
  1366. } else {
  1367. for(m=0;m<3;m++) {
  1368. mant = get_bits(&s->gb, bits);
  1369. s->sb_samples[0][k * 12 + l + m][i] =
  1370. l1_unscale(bits - 1, mant, scale0);
  1371. s->sb_samples[1][k * 12 + l + m][i] =
  1372. l1_unscale(bits - 1, mant, scale1);
  1373. }
  1374. }
  1375. } else {
  1376. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1377. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1378. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1379. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1380. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1381. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1382. }
  1383. /* next subband in alloc table */
  1384. j += 1 << bit_alloc_bits;
  1385. }
  1386. /* fill remaining samples to zero */
  1387. for(i=sblimit;i<SBLIMIT;i++) {
  1388. for(ch=0;ch<s->nb_channels;ch++) {
  1389. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1390. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1391. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1392. }
  1393. }
  1394. }
  1395. }
  1396. return 3 * 12;
  1397. }
  1398. static inline void lsf_sf_expand(int *slen,
  1399. int sf, int n1, int n2, int n3)
  1400. {
  1401. if (n3) {
  1402. slen[3] = sf % n3;
  1403. sf /= n3;
  1404. } else {
  1405. slen[3] = 0;
  1406. }
  1407. if (n2) {
  1408. slen[2] = sf % n2;
  1409. sf /= n2;
  1410. } else {
  1411. slen[2] = 0;
  1412. }
  1413. slen[1] = sf % n1;
  1414. sf /= n1;
  1415. slen[0] = sf;
  1416. }
  1417. static void exponents_from_scale_factors(MPADecodeContext *s,
  1418. GranuleDef *g,
  1419. int16_t *exponents)
  1420. {
  1421. const uint8_t *bstab, *pretab;
  1422. int len, i, j, k, l, v0, shift, gain, gains[3];
  1423. int16_t *exp_ptr;
  1424. exp_ptr = exponents;
  1425. gain = g->global_gain - 210;
  1426. shift = g->scalefac_scale + 1;
  1427. bstab = band_size_long[s->sample_rate_index];
  1428. pretab = mpa_pretab[g->preflag];
  1429. for(i=0;i<g->long_end;i++) {
  1430. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  1431. len = bstab[i];
  1432. for(j=len;j>0;j--)
  1433. *exp_ptr++ = v0;
  1434. }
  1435. if (g->short_start < 13) {
  1436. bstab = band_size_short[s->sample_rate_index];
  1437. gains[0] = gain - (g->subblock_gain[0] << 3);
  1438. gains[1] = gain - (g->subblock_gain[1] << 3);
  1439. gains[2] = gain - (g->subblock_gain[2] << 3);
  1440. k = g->long_end;
  1441. for(i=g->short_start;i<13;i++) {
  1442. len = bstab[i];
  1443. for(l=0;l<3;l++) {
  1444. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  1445. for(j=len;j>0;j--)
  1446. *exp_ptr++ = v0;
  1447. }
  1448. }
  1449. }
  1450. }
  1451. /* handle n = 0 too */
  1452. static inline int get_bitsz(GetBitContext *s, int n)
  1453. {
  1454. if (n == 0)
  1455. return 0;
  1456. else
  1457. return get_bits(s, n);
  1458. }
  1459. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1460. int16_t *exponents, int end_pos2)
  1461. {
  1462. int s_index;
  1463. int i;
  1464. int last_pos, bits_left;
  1465. VLC *vlc;
  1466. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1467. /* low frequencies (called big values) */
  1468. s_index = 0;
  1469. for(i=0;i<3;i++) {
  1470. int j, k, l, linbits;
  1471. j = g->region_size[i];
  1472. if (j == 0)
  1473. continue;
  1474. /* select vlc table */
  1475. k = g->table_select[i];
  1476. l = mpa_huff_data[k][0];
  1477. linbits = mpa_huff_data[k][1];
  1478. vlc = &huff_vlc[l];
  1479. if(!l){
  1480. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1481. s_index += 2*j;
  1482. continue;
  1483. }
  1484. /* read huffcode and compute each couple */
  1485. for(;j>0;j--) {
  1486. int exponent, x, y, v;
  1487. int pos= get_bits_count(&s->gb);
  1488. if (pos >= end_pos){
  1489. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1490. if(s->in_gb.buffer && pos >= s->gb.size_in_bits){
  1491. s->gb= s->in_gb;
  1492. s->in_gb.buffer=NULL;
  1493. assert((get_bits_count(&s->gb) & 7) == 0);
  1494. skip_bits_long(&s->gb, pos - end_pos);
  1495. end_pos2=
  1496. end_pos= end_pos2 + get_bits_count(&s->gb) - pos;
  1497. pos= get_bits_count(&s->gb);
  1498. }
  1499. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1500. if(pos >= end_pos)
  1501. break;
  1502. }
  1503. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1504. if(!y){
  1505. g->sb_hybrid[s_index ] =
  1506. g->sb_hybrid[s_index+1] = 0;
  1507. s_index += 2;
  1508. continue;
  1509. }
  1510. exponent= exponents[s_index];
  1511. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1512. i, g->region_size[i] - j, x, y, exponent);
  1513. if(y&16){
  1514. x = y >> 5;
  1515. y = y & 0x0f;
  1516. if (x < 15){
  1517. v = expval_table[ exponent ][ x ];
  1518. // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
  1519. }else{
  1520. x += get_bitsz(&s->gb, linbits);
  1521. v = l3_unscale(x, exponent);
  1522. }
  1523. if (get_bits1(&s->gb))
  1524. v = -v;
  1525. g->sb_hybrid[s_index] = v;
  1526. if (y < 15){
  1527. v = expval_table[ exponent ][ y ];
  1528. }else{
  1529. y += get_bitsz(&s->gb, linbits);
  1530. v = l3_unscale(y, exponent);
  1531. }
  1532. if (get_bits1(&s->gb))
  1533. v = -v;
  1534. g->sb_hybrid[s_index+1] = v;
  1535. }else{
  1536. x = y >> 5;
  1537. y = y & 0x0f;
  1538. x += y;
  1539. if (x < 15){
  1540. v = expval_table[ exponent ][ x ];
  1541. }else{
  1542. x += get_bitsz(&s->gb, linbits);
  1543. v = l3_unscale(x, exponent);
  1544. }
  1545. if (get_bits1(&s->gb))
  1546. v = -v;
  1547. g->sb_hybrid[s_index+!!y] = v;
  1548. g->sb_hybrid[s_index+ !y] = 0;
  1549. }
  1550. s_index+=2;
  1551. }
  1552. }
  1553. /* high frequencies */
  1554. vlc = &huff_quad_vlc[g->count1table_select];
  1555. last_pos=0;
  1556. while (s_index <= 572) {
  1557. int pos, code;
  1558. pos = get_bits_count(&s->gb);
  1559. if (pos >= end_pos) {
  1560. if (pos > end_pos2 && last_pos){
  1561. /* some encoders generate an incorrect size for this
  1562. part. We must go back into the data */
  1563. s_index -= 4;
  1564. skip_bits_long(&s->gb, last_pos - pos);
  1565. av_log(NULL, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1566. break;
  1567. }
  1568. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1569. if(s->in_gb.buffer && pos >= s->gb.size_in_bits){
  1570. s->gb= s->in_gb;
  1571. s->in_gb.buffer=NULL;
  1572. assert((get_bits_count(&s->gb) & 7) == 0);
  1573. skip_bits_long(&s->gb, pos - end_pos);
  1574. end_pos2=
  1575. end_pos= end_pos2 + get_bits_count(&s->gb) - pos;
  1576. pos= get_bits_count(&s->gb);
  1577. }
  1578. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1579. if(pos >= end_pos)
  1580. break;
  1581. }
  1582. last_pos= pos;
  1583. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1584. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1585. g->sb_hybrid[s_index+0]=
  1586. g->sb_hybrid[s_index+1]=
  1587. g->sb_hybrid[s_index+2]=
  1588. g->sb_hybrid[s_index+3]= 0;
  1589. while(code){
  1590. const static int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1591. int v;
  1592. int pos= s_index+idxtab[code];
  1593. code ^= 8>>idxtab[code];
  1594. v = exp_table[ exponents[pos] ];
  1595. // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
  1596. if(get_bits1(&s->gb))
  1597. v = -v;
  1598. g->sb_hybrid[pos] = v;
  1599. }
  1600. s_index+=4;
  1601. }
  1602. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1603. /* skip extension bits */
  1604. bits_left = end_pos - get_bits_count(&s->gb);
  1605. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1606. if (bits_left < 0) {
  1607. dprintf("bits_left=%d\n", bits_left);
  1608. return -1;
  1609. }
  1610. skip_bits_long(&s->gb, bits_left);
  1611. return 0;
  1612. }
  1613. /* Reorder short blocks from bitstream order to interleaved order. It
  1614. would be faster to do it in parsing, but the code would be far more
  1615. complicated */
  1616. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1617. {
  1618. int i, j, len;
  1619. int32_t *ptr, *dst, *ptr1;
  1620. int32_t tmp[576];
  1621. if (g->block_type != 2)
  1622. return;
  1623. if (g->switch_point) {
  1624. if (s->sample_rate_index != 8) {
  1625. ptr = g->sb_hybrid + 36;
  1626. } else {
  1627. ptr = g->sb_hybrid + 48;
  1628. }
  1629. } else {
  1630. ptr = g->sb_hybrid;
  1631. }
  1632. for(i=g->short_start;i<13;i++) {
  1633. len = band_size_short[s->sample_rate_index][i];
  1634. ptr1 = ptr;
  1635. dst = tmp;
  1636. for(j=len;j>0;j--) {
  1637. *dst++ = ptr[0*len];
  1638. *dst++ = ptr[1*len];
  1639. *dst++ = ptr[2*len];
  1640. ptr++;
  1641. }
  1642. ptr+=2*len;
  1643. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1644. }
  1645. }
  1646. #define ISQRT2 FIXR(0.70710678118654752440)
  1647. static void compute_stereo(MPADecodeContext *s,
  1648. GranuleDef *g0, GranuleDef *g1)
  1649. {
  1650. int i, j, k, l;
  1651. int32_t v1, v2;
  1652. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1653. int32_t (*is_tab)[16];
  1654. int32_t *tab0, *tab1;
  1655. int non_zero_found_short[3];
  1656. /* intensity stereo */
  1657. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1658. if (!s->lsf) {
  1659. is_tab = is_table;
  1660. sf_max = 7;
  1661. } else {
  1662. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1663. sf_max = 16;
  1664. }
  1665. tab0 = g0->sb_hybrid + 576;
  1666. tab1 = g1->sb_hybrid + 576;
  1667. non_zero_found_short[0] = 0;
  1668. non_zero_found_short[1] = 0;
  1669. non_zero_found_short[2] = 0;
  1670. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1671. for(i = 12;i >= g1->short_start;i--) {
  1672. /* for last band, use previous scale factor */
  1673. if (i != 11)
  1674. k -= 3;
  1675. len = band_size_short[s->sample_rate_index][i];
  1676. for(l=2;l>=0;l--) {
  1677. tab0 -= len;
  1678. tab1 -= len;
  1679. if (!non_zero_found_short[l]) {
  1680. /* test if non zero band. if so, stop doing i-stereo */
  1681. for(j=0;j<len;j++) {
  1682. if (tab1[j] != 0) {
  1683. non_zero_found_short[l] = 1;
  1684. goto found1;
  1685. }
  1686. }
  1687. sf = g1->scale_factors[k + l];
  1688. if (sf >= sf_max)
  1689. goto found1;
  1690. v1 = is_tab[0][sf];
  1691. v2 = is_tab[1][sf];
  1692. for(j=0;j<len;j++) {
  1693. tmp0 = tab0[j];
  1694. tab0[j] = MULL(tmp0, v1);
  1695. tab1[j] = MULL(tmp0, v2);
  1696. }
  1697. } else {
  1698. found1:
  1699. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1700. /* lower part of the spectrum : do ms stereo
  1701. if enabled */
  1702. for(j=0;j<len;j++) {
  1703. tmp0 = tab0[j];
  1704. tmp1 = tab1[j];
  1705. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1706. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1707. }
  1708. }
  1709. }
  1710. }
  1711. }
  1712. non_zero_found = non_zero_found_short[0] |
  1713. non_zero_found_short[1] |
  1714. non_zero_found_short[2];
  1715. for(i = g1->long_end - 1;i >= 0;i--) {
  1716. len = band_size_long[s->sample_rate_index][i];
  1717. tab0 -= len;
  1718. tab1 -= len;
  1719. /* test if non zero band. if so, stop doing i-stereo */
  1720. if (!non_zero_found) {
  1721. for(j=0;j<len;j++) {
  1722. if (tab1[j] != 0) {
  1723. non_zero_found = 1;
  1724. goto found2;
  1725. }
  1726. }
  1727. /* for last band, use previous scale factor */
  1728. k = (i == 21) ? 20 : i;
  1729. sf = g1->scale_factors[k];
  1730. if (sf >= sf_max)
  1731. goto found2;
  1732. v1 = is_tab[0][sf];
  1733. v2 = is_tab[1][sf];
  1734. for(j=0;j<len;j++) {
  1735. tmp0 = tab0[j];
  1736. tab0[j] = MULL(tmp0, v1);
  1737. tab1[j] = MULL(tmp0, v2);
  1738. }
  1739. } else {
  1740. found2:
  1741. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1742. /* lower part of the spectrum : do ms stereo
  1743. if enabled */
  1744. for(j=0;j<len;j++) {
  1745. tmp0 = tab0[j];
  1746. tmp1 = tab1[j];
  1747. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1748. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1749. }
  1750. }
  1751. }
  1752. }
  1753. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1754. /* ms stereo ONLY */
  1755. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1756. global gain */
  1757. tab0 = g0->sb_hybrid;
  1758. tab1 = g1->sb_hybrid;
  1759. for(i=0;i<576;i++) {
  1760. tmp0 = tab0[i];
  1761. tmp1 = tab1[i];
  1762. tab0[i] = tmp0 + tmp1;
  1763. tab1[i] = tmp0 - tmp1;
  1764. }
  1765. }
  1766. }
  1767. static void compute_antialias_integer(MPADecodeContext *s,
  1768. GranuleDef *g)
  1769. {
  1770. int32_t *ptr, *csa;
  1771. int n, i;
  1772. /* we antialias only "long" bands */
  1773. if (g->block_type == 2) {
  1774. if (!g->switch_point)
  1775. return;
  1776. /* XXX: check this for 8000Hz case */
  1777. n = 1;
  1778. } else {
  1779. n = SBLIMIT - 1;
  1780. }
  1781. ptr = g->sb_hybrid + 18;
  1782. for(i = n;i > 0;i--) {
  1783. int tmp0, tmp1, tmp2;
  1784. csa = &csa_table[0][0];
  1785. #define INT_AA(j) \
  1786. tmp0 = ptr[-1-j];\
  1787. tmp1 = ptr[ j];\
  1788. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1789. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1790. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1791. INT_AA(0)
  1792. INT_AA(1)
  1793. INT_AA(2)
  1794. INT_AA(3)
  1795. INT_AA(4)
  1796. INT_AA(5)
  1797. INT_AA(6)
  1798. INT_AA(7)
  1799. ptr += 18;
  1800. }
  1801. }
  1802. static void compute_antialias_float(MPADecodeContext *s,
  1803. GranuleDef *g)
  1804. {
  1805. int32_t *ptr;
  1806. int n, i;
  1807. /* we antialias only "long" bands */
  1808. if (g->block_type == 2) {
  1809. if (!g->switch_point)
  1810. return;
  1811. /* XXX: check this for 8000Hz case */
  1812. n = 1;
  1813. } else {
  1814. n = SBLIMIT - 1;
  1815. }
  1816. ptr = g->sb_hybrid + 18;
  1817. for(i = n;i > 0;i--) {
  1818. float tmp0, tmp1;
  1819. float *csa = &csa_table_float[0][0];
  1820. #define FLOAT_AA(j)\
  1821. tmp0= ptr[-1-j];\
  1822. tmp1= ptr[ j];\
  1823. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1824. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1825. FLOAT_AA(0)
  1826. FLOAT_AA(1)
  1827. FLOAT_AA(2)
  1828. FLOAT_AA(3)
  1829. FLOAT_AA(4)
  1830. FLOAT_AA(5)
  1831. FLOAT_AA(6)
  1832. FLOAT_AA(7)
  1833. ptr += 18;
  1834. }
  1835. }
  1836. static void compute_imdct(MPADecodeContext *s,
  1837. GranuleDef *g,
  1838. int32_t *sb_samples,
  1839. int32_t *mdct_buf)
  1840. {
  1841. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1842. int32_t out2[12];
  1843. int i, j, mdct_long_end, v, sblimit;
  1844. /* find last non zero block */
  1845. ptr = g->sb_hybrid + 576;
  1846. ptr1 = g->sb_hybrid + 2 * 18;
  1847. while (ptr >= ptr1) {
  1848. ptr -= 6;
  1849. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1850. if (v != 0)
  1851. break;
  1852. }
  1853. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1854. if (g->block_type == 2) {
  1855. /* XXX: check for 8000 Hz */
  1856. if (g->switch_point)
  1857. mdct_long_end = 2;
  1858. else
  1859. mdct_long_end = 0;
  1860. } else {
  1861. mdct_long_end = sblimit;
  1862. }
  1863. buf = mdct_buf;
  1864. ptr = g->sb_hybrid;
  1865. for(j=0;j<mdct_long_end;j++) {
  1866. /* apply window & overlap with previous buffer */
  1867. out_ptr = sb_samples + j;
  1868. /* select window */
  1869. if (g->switch_point && j < 2)
  1870. win1 = mdct_win[0];
  1871. else
  1872. win1 = mdct_win[g->block_type];
  1873. /* select frequency inversion */
  1874. win = win1 + ((4 * 36) & -(j & 1));
  1875. imdct36(out_ptr, buf, ptr, win);
  1876. out_ptr += 18*SBLIMIT;
  1877. ptr += 18;
  1878. buf += 18;
  1879. }
  1880. for(j=mdct_long_end;j<sblimit;j++) {
  1881. /* select frequency inversion */
  1882. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1883. out_ptr = sb_samples + j;
  1884. for(i=0; i<6; i++){
  1885. *out_ptr = buf[i];
  1886. out_ptr += SBLIMIT;
  1887. }
  1888. imdct12(out2, ptr + 0);
  1889. for(i=0;i<6;i++) {
  1890. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1891. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1892. out_ptr += SBLIMIT;
  1893. }
  1894. imdct12(out2, ptr + 1);
  1895. for(i=0;i<6;i++) {
  1896. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1897. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1898. out_ptr += SBLIMIT;
  1899. }
  1900. imdct12(out2, ptr + 2);
  1901. for(i=0;i<6;i++) {
  1902. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1903. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1904. buf[i + 6*2] = 0;
  1905. }
  1906. ptr += 18;
  1907. buf += 18;
  1908. }
  1909. /* zero bands */
  1910. for(j=sblimit;j<SBLIMIT;j++) {
  1911. /* overlap */
  1912. out_ptr = sb_samples + j;
  1913. for(i=0;i<18;i++) {
  1914. *out_ptr = buf[i];
  1915. buf[i] = 0;
  1916. out_ptr += SBLIMIT;
  1917. }
  1918. buf += 18;
  1919. }
  1920. }
  1921. #if defined(DEBUG)
  1922. void sample_dump(int fnum, int32_t *tab, int n)
  1923. {
  1924. static FILE *files[16], *f;
  1925. char buf[512];
  1926. int i;
  1927. int32_t v;
  1928. f = files[fnum];
  1929. if (!f) {
  1930. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1931. fnum,
  1932. #ifdef USE_HIGHPRECISION
  1933. "hp"
  1934. #else
  1935. "lp"
  1936. #endif
  1937. );
  1938. f = fopen(buf, "w");
  1939. if (!f)
  1940. return;
  1941. files[fnum] = f;
  1942. }
  1943. if (fnum == 0) {
  1944. static int pos = 0;
  1945. av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
  1946. for(i=0;i<n;i++) {
  1947. av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
  1948. if ((i % 18) == 17)
  1949. av_log(NULL, AV_LOG_DEBUG, "\n");
  1950. }
  1951. pos += n;
  1952. }
  1953. for(i=0;i<n;i++) {
  1954. /* normalize to 23 frac bits */
  1955. v = tab[i] << (23 - FRAC_BITS);
  1956. fwrite(&v, 1, sizeof(int32_t), f);
  1957. }
  1958. }
  1959. #endif
  1960. /* main layer3 decoding function */
  1961. static int mp_decode_layer3(MPADecodeContext *s)
  1962. {
  1963. int nb_granules, main_data_begin, private_bits;
  1964. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1965. GranuleDef granules[2][2], *g;
  1966. int16_t exponents[576];
  1967. /* read side info */
  1968. if (s->lsf) {
  1969. main_data_begin = get_bits(&s->gb, 8);
  1970. private_bits = get_bits(&s->gb, s->nb_channels);
  1971. nb_granules = 1;
  1972. } else {
  1973. main_data_begin = get_bits(&s->gb, 9);
  1974. if (s->nb_channels == 2)
  1975. private_bits = get_bits(&s->gb, 3);
  1976. else
  1977. private_bits = get_bits(&s->gb, 5);
  1978. nb_granules = 2;
  1979. for(ch=0;ch<s->nb_channels;ch++) {
  1980. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1981. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1982. }
  1983. }
  1984. for(gr=0;gr<nb_granules;gr++) {
  1985. for(ch=0;ch<s->nb_channels;ch++) {
  1986. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  1987. g = &granules[ch][gr];
  1988. g->part2_3_length = get_bits(&s->gb, 12);
  1989. g->big_values = get_bits(&s->gb, 9);
  1990. g->global_gain = get_bits(&s->gb, 8);
  1991. /* if MS stereo only is selected, we precompute the
  1992. 1/sqrt(2) renormalization factor */
  1993. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1994. MODE_EXT_MS_STEREO)
  1995. g->global_gain -= 2;
  1996. if (s->lsf)
  1997. g->scalefac_compress = get_bits(&s->gb, 9);
  1998. else
  1999. g->scalefac_compress = get_bits(&s->gb, 4);
  2000. blocksplit_flag = get_bits(&s->gb, 1);
  2001. if (blocksplit_flag) {
  2002. g->block_type = get_bits(&s->gb, 2);
  2003. if (g->block_type == 0)
  2004. return -1;
  2005. g->switch_point = get_bits(&s->gb, 1);
  2006. for(i=0;i<2;i++)
  2007. g->table_select[i] = get_bits(&s->gb, 5);
  2008. for(i=0;i<3;i++)
  2009. g->subblock_gain[i] = get_bits(&s->gb, 3);
  2010. /* compute huffman coded region sizes */
  2011. if (g->block_type == 2)
  2012. g->region_size[0] = (36 / 2);
  2013. else {
  2014. if (s->sample_rate_index <= 2)
  2015. g->region_size[0] = (36 / 2);
  2016. else if (s->sample_rate_index != 8)
  2017. g->region_size[0] = (54 / 2);
  2018. else
  2019. g->region_size[0] = (108 / 2);
  2020. }
  2021. g->region_size[1] = (576 / 2);
  2022. } else {
  2023. int region_address1, region_address2, l;
  2024. g->block_type = 0;
  2025. g->switch_point = 0;
  2026. for(i=0;i<3;i++)
  2027. g->table_select[i] = get_bits(&s->gb, 5);
  2028. /* compute huffman coded region sizes */
  2029. region_address1 = get_bits(&s->gb, 4);
  2030. region_address2 = get_bits(&s->gb, 3);
  2031. dprintf("region1=%d region2=%d\n",
  2032. region_address1, region_address2);
  2033. g->region_size[0] =
  2034. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  2035. l = region_address1 + region_address2 + 2;
  2036. /* should not overflow */
  2037. if (l > 22)
  2038. l = 22;
  2039. g->region_size[1] =
  2040. band_index_long[s->sample_rate_index][l] >> 1;
  2041. }
  2042. /* convert region offsets to region sizes and truncate
  2043. size to big_values */
  2044. g->region_size[2] = (576 / 2);
  2045. j = 0;
  2046. for(i=0;i<3;i++) {
  2047. k = FFMIN(g->region_size[i], g->big_values);
  2048. g->region_size[i] = k - j;
  2049. j = k;
  2050. }
  2051. /* compute band indexes */
  2052. if (g->block_type == 2) {
  2053. if (g->switch_point) {
  2054. /* if switched mode, we handle the 36 first samples as
  2055. long blocks. For 8000Hz, we handle the 48 first
  2056. exponents as long blocks (XXX: check this!) */
  2057. if (s->sample_rate_index <= 2)
  2058. g->long_end = 8;
  2059. else if (s->sample_rate_index != 8)
  2060. g->long_end = 6;
  2061. else
  2062. g->long_end = 4; /* 8000 Hz */
  2063. g->short_start = 2 + (s->sample_rate_index != 8);
  2064. } else {
  2065. g->long_end = 0;
  2066. g->short_start = 0;
  2067. }
  2068. } else {
  2069. g->short_start = 13;
  2070. g->long_end = 22;
  2071. }
  2072. g->preflag = 0;
  2073. if (!s->lsf)
  2074. g->preflag = get_bits(&s->gb, 1);
  2075. g->scalefac_scale = get_bits(&s->gb, 1);
  2076. g->count1table_select = get_bits(&s->gb, 1);
  2077. dprintf("block_type=%d switch_point=%d\n",
  2078. g->block_type, g->switch_point);
  2079. }
  2080. }
  2081. if (!s->adu_mode) {
  2082. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  2083. assert((get_bits_count(&s->gb) & 7) == 0);
  2084. /* now we get bits from the main_data_begin offset */
  2085. dprintf("seekback: %d\n", main_data_begin);
  2086. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  2087. if(main_data_begin > s->last_buf_size){
  2088. av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  2089. s->last_buf_size= main_data_begin;
  2090. }
  2091. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  2092. s->in_gb= s->gb;
  2093. init_get_bits(&s->gb, s->last_buf + s->last_buf_size - main_data_begin, main_data_begin*8);
  2094. }
  2095. for(gr=0;gr<nb_granules;gr++) {
  2096. for(ch=0;ch<s->nb_channels;ch++) {
  2097. g = &granules[ch][gr];
  2098. bits_pos = get_bits_count(&s->gb);
  2099. if (!s->lsf) {
  2100. uint8_t *sc;
  2101. int slen, slen1, slen2;
  2102. /* MPEG1 scale factors */
  2103. slen1 = slen_table[0][g->scalefac_compress];
  2104. slen2 = slen_table[1][g->scalefac_compress];
  2105. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  2106. if (g->block_type == 2) {
  2107. n = g->switch_point ? 17 : 18;
  2108. j = 0;
  2109. if(slen1){
  2110. for(i=0;i<n;i++)
  2111. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  2112. }else{
  2113. for(i=0;i<n;i++)
  2114. g->scale_factors[j++] = 0;
  2115. }
  2116. if(slen2){
  2117. for(i=0;i<18;i++)
  2118. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  2119. for(i=0;i<3;i++)
  2120. g->scale_factors[j++] = 0;
  2121. }else{
  2122. for(i=0;i<21;i++)
  2123. g->scale_factors[j++] = 0;
  2124. }
  2125. } else {
  2126. sc = granules[ch][0].scale_factors;
  2127. j = 0;
  2128. for(k=0;k<4;k++) {
  2129. n = (k == 0 ? 6 : 5);
  2130. if ((g->scfsi & (0x8 >> k)) == 0) {
  2131. slen = (k < 2) ? slen1 : slen2;
  2132. if(slen){
  2133. for(i=0;i<n;i++)
  2134. g->scale_factors[j++] = get_bits(&s->gb, slen);
  2135. }else{
  2136. for(i=0;i<n;i++)
  2137. g->scale_factors[j++] = 0;
  2138. }
  2139. } else {
  2140. /* simply copy from last granule */
  2141. for(i=0;i<n;i++) {
  2142. g->scale_factors[j] = sc[j];
  2143. j++;
  2144. }
  2145. }
  2146. }
  2147. g->scale_factors[j++] = 0;
  2148. }
  2149. #if defined(DEBUG)
  2150. {
  2151. dprintf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  2152. g->scfsi, gr, ch);
  2153. for(i=0;i<j;i++)
  2154. dprintf(" %d", g->scale_factors[i]);
  2155. dprintf("\n");
  2156. }
  2157. #endif
  2158. } else {
  2159. int tindex, tindex2, slen[4], sl, sf;
  2160. /* LSF scale factors */
  2161. if (g->block_type == 2) {
  2162. tindex = g->switch_point ? 2 : 1;
  2163. } else {
  2164. tindex = 0;
  2165. }
  2166. sf = g->scalefac_compress;
  2167. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  2168. /* intensity stereo case */
  2169. sf >>= 1;
  2170. if (sf < 180) {
  2171. lsf_sf_expand(slen, sf, 6, 6, 0);
  2172. tindex2 = 3;
  2173. } else if (sf < 244) {
  2174. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2175. tindex2 = 4;
  2176. } else {
  2177. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2178. tindex2 = 5;
  2179. }
  2180. } else {
  2181. /* normal case */
  2182. if (sf < 400) {
  2183. lsf_sf_expand(slen, sf, 5, 4, 4);
  2184. tindex2 = 0;
  2185. } else if (sf < 500) {
  2186. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2187. tindex2 = 1;
  2188. } else {
  2189. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2190. tindex2 = 2;
  2191. g->preflag = 1;
  2192. }
  2193. }
  2194. j = 0;
  2195. for(k=0;k<4;k++) {
  2196. n = lsf_nsf_table[tindex2][tindex][k];
  2197. sl = slen[k];
  2198. if(sl){
  2199. for(i=0;i<n;i++)
  2200. g->scale_factors[j++] = get_bits(&s->gb, sl);
  2201. }else{
  2202. for(i=0;i<n;i++)
  2203. g->scale_factors[j++] = 0;
  2204. }
  2205. }
  2206. /* XXX: should compute exact size */
  2207. for(;j<40;j++)
  2208. g->scale_factors[j] = 0;
  2209. #if defined(DEBUG)
  2210. {
  2211. dprintf("gr=%d ch=%d scale_factors:\n",
  2212. gr, ch);
  2213. for(i=0;i<40;i++)
  2214. dprintf(" %d", g->scale_factors[i]);
  2215. dprintf("\n");
  2216. }
  2217. #endif
  2218. }
  2219. exponents_from_scale_factors(s, g, exponents);
  2220. /* read Huffman coded residue */
  2221. if (huffman_decode(s, g, exponents,
  2222. bits_pos + g->part2_3_length) < 0)
  2223. return -1;
  2224. #if defined(DEBUG)
  2225. sample_dump(0, g->sb_hybrid, 576);
  2226. #endif
  2227. } /* ch */
  2228. if (s->nb_channels == 2)
  2229. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2230. for(ch=0;ch<s->nb_channels;ch++) {
  2231. g = &granules[ch][gr];
  2232. reorder_block(s, g);
  2233. #if defined(DEBUG)
  2234. sample_dump(0, g->sb_hybrid, 576);
  2235. #endif
  2236. s->compute_antialias(s, g);
  2237. #if defined(DEBUG)
  2238. sample_dump(1, g->sb_hybrid, 576);
  2239. #endif
  2240. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2241. #if defined(DEBUG)
  2242. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2243. #endif
  2244. }
  2245. } /* gr */
  2246. return nb_granules * 18;
  2247. }
  2248. static int mp_decode_frame(MPADecodeContext *s,
  2249. OUT_INT *samples, const uint8_t *buf, int buf_size)
  2250. {
  2251. int i, nb_frames, ch;
  2252. OUT_INT *samples_ptr;
  2253. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  2254. /* skip error protection field */
  2255. if (s->error_protection)
  2256. get_bits(&s->gb, 16);
  2257. dprintf("frame %d:\n", s->frame_count);
  2258. switch(s->layer) {
  2259. case 1:
  2260. nb_frames = mp_decode_layer1(s);
  2261. break;
  2262. case 2:
  2263. nb_frames = mp_decode_layer2(s);
  2264. break;
  2265. case 3:
  2266. default:
  2267. nb_frames = mp_decode_layer3(s);
  2268. s->last_buf_size=0;
  2269. if(s->in_gb.buffer){
  2270. align_get_bits(&s->gb);
  2271. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2272. if(i >= 0 && i <= BACKSTEP_SIZE){
  2273. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  2274. s->last_buf_size=i;
  2275. }else
  2276. av_log(NULL, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  2277. s->gb= s->in_gb;
  2278. }
  2279. align_get_bits(&s->gb);
  2280. assert((get_bits_count(&s->gb) & 7) == 0);
  2281. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2282. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  2283. av_log(NULL, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  2284. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  2285. }
  2286. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  2287. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  2288. s->last_buf_size += i;
  2289. break;
  2290. }
  2291. #if defined(DEBUG)
  2292. for(i=0;i<nb_frames;i++) {
  2293. for(ch=0;ch<s->nb_channels;ch++) {
  2294. int j;
  2295. dprintf("%d-%d:", i, ch);
  2296. for(j=0;j<SBLIMIT;j++)
  2297. dprintf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2298. dprintf("\n");
  2299. }
  2300. }
  2301. #endif
  2302. /* apply the synthesis filter */
  2303. for(ch=0;ch<s->nb_channels;ch++) {
  2304. samples_ptr = samples + ch;
  2305. for(i=0;i<nb_frames;i++) {
  2306. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2307. window, &s->dither_state,
  2308. samples_ptr, s->nb_channels,
  2309. s->sb_samples[ch][i]);
  2310. samples_ptr += 32 * s->nb_channels;
  2311. }
  2312. }
  2313. #ifdef DEBUG
  2314. s->frame_count++;
  2315. #endif
  2316. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2317. }
  2318. static int decode_frame(AVCodecContext * avctx,
  2319. void *data, int *data_size,
  2320. uint8_t * buf, int buf_size)
  2321. {
  2322. MPADecodeContext *s = avctx->priv_data;
  2323. uint32_t header;
  2324. int out_size;
  2325. OUT_INT *out_samples = data;
  2326. retry:
  2327. if(buf_size < HEADER_SIZE)
  2328. return -1;
  2329. header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
  2330. if(ff_mpa_check_header(header) < 0){
  2331. buf++;
  2332. // buf_size--;
  2333. av_log(avctx, AV_LOG_ERROR, "header missing skiping one byte\n");
  2334. goto retry;
  2335. }
  2336. if (decode_header(s, header) == 1) {
  2337. /* free format: prepare to compute frame size */
  2338. s->frame_size = -1;
  2339. return -1;
  2340. }
  2341. /* update codec info */
  2342. avctx->sample_rate = s->sample_rate;
  2343. avctx->channels = s->nb_channels;
  2344. avctx->bit_rate = s->bit_rate;
  2345. avctx->sub_id = s->layer;
  2346. switch(s->layer) {
  2347. case 1:
  2348. avctx->frame_size = 384;
  2349. break;
  2350. case 2:
  2351. avctx->frame_size = 1152;
  2352. break;
  2353. case 3:
  2354. if (s->lsf)
  2355. avctx->frame_size = 576;
  2356. else
  2357. avctx->frame_size = 1152;
  2358. break;
  2359. }
  2360. if(s->frame_size<=0 || s->frame_size > buf_size){
  2361. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  2362. return -1;
  2363. }else if(s->frame_size < buf_size){
  2364. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  2365. }
  2366. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2367. if(out_size>=0)
  2368. *data_size = out_size;
  2369. else
  2370. av_log(avctx, AV_LOG_DEBUG, "Error while decoding mpeg audio frame\n"); //FIXME return -1 / but also return the number of bytes consumed
  2371. s->frame_size = 0;
  2372. return buf_size;
  2373. }
  2374. static int decode_frame_adu(AVCodecContext * avctx,
  2375. void *data, int *data_size,
  2376. uint8_t * buf, int buf_size)
  2377. {
  2378. MPADecodeContext *s = avctx->priv_data;
  2379. uint32_t header;
  2380. int len, out_size;
  2381. OUT_INT *out_samples = data;
  2382. len = buf_size;
  2383. // Discard too short frames
  2384. if (buf_size < HEADER_SIZE) {
  2385. *data_size = 0;
  2386. return buf_size;
  2387. }
  2388. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2389. len = MPA_MAX_CODED_FRAME_SIZE;
  2390. // Get header and restore sync word
  2391. header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3] | 0xffe00000;
  2392. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2393. *data_size = 0;
  2394. return buf_size;
  2395. }
  2396. decode_header(s, header);
  2397. /* update codec info */
  2398. avctx->sample_rate = s->sample_rate;
  2399. avctx->channels = s->nb_channels;
  2400. avctx->bit_rate = s->bit_rate;
  2401. avctx->sub_id = s->layer;
  2402. avctx->frame_size=s->frame_size = len;
  2403. if (avctx->parse_only) {
  2404. out_size = buf_size;
  2405. } else {
  2406. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2407. }
  2408. *data_size = out_size;
  2409. return buf_size;
  2410. }
  2411. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2412. static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */
  2413. static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */
  2414. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2415. static int chan_offset[9][5] = {
  2416. {0},
  2417. {0}, // C
  2418. {0}, // FLR
  2419. {2,0}, // C FLR
  2420. {2,0,3}, // C FLR BS
  2421. {4,0,2}, // C FLR BLRS
  2422. {4,0,2,5}, // C FLR BLRS LFE
  2423. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2424. {0,2} // FLR BLRS
  2425. };
  2426. static int decode_init_mp3on4(AVCodecContext * avctx)
  2427. {
  2428. MP3On4DecodeContext *s = avctx->priv_data;
  2429. int i;
  2430. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2431. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2432. return -1;
  2433. }
  2434. s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
  2435. s->frames = mp3Frames[s->chan_cfg];
  2436. if(!s->frames) {
  2437. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2438. return -1;
  2439. }
  2440. avctx->channels = mp3Channels[s->chan_cfg];
  2441. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2442. * We replace avctx->priv_data with the context of the first decoder so that
  2443. * decode_init() does not have to be changed.
  2444. * Other decoders will be inited here copying data from the first context
  2445. */
  2446. // Allocate zeroed memory for the first decoder context
  2447. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2448. // Put decoder context in place to make init_decode() happy
  2449. avctx->priv_data = s->mp3decctx[0];
  2450. decode_init(avctx);
  2451. // Restore mp3on4 context pointer
  2452. avctx->priv_data = s;
  2453. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2454. /* Create a separate codec/context for each frame (first is already ok).
  2455. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2456. */
  2457. for (i = 1; i < s->frames; i++) {
  2458. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2459. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2460. s->mp3decctx[i]->adu_mode = 1;
  2461. }
  2462. return 0;
  2463. }
  2464. static int decode_close_mp3on4(AVCodecContext * avctx)
  2465. {
  2466. MP3On4DecodeContext *s = avctx->priv_data;
  2467. int i;
  2468. for (i = 0; i < s->frames; i++)
  2469. if (s->mp3decctx[i])
  2470. av_free(s->mp3decctx[i]);
  2471. return 0;
  2472. }
  2473. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2474. void *data, int *data_size,
  2475. uint8_t * buf, int buf_size)
  2476. {
  2477. MP3On4DecodeContext *s = avctx->priv_data;
  2478. MPADecodeContext *m;
  2479. int len, out_size = 0;
  2480. uint32_t header;
  2481. OUT_INT *out_samples = data;
  2482. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2483. OUT_INT *outptr, *bp;
  2484. int fsize;
  2485. unsigned char *start2 = buf, *start;
  2486. int fr, i, j, n;
  2487. int off = avctx->channels;
  2488. int *coff = chan_offset[s->chan_cfg];
  2489. len = buf_size;
  2490. // Discard too short frames
  2491. if (buf_size < HEADER_SIZE) {
  2492. *data_size = 0;
  2493. return buf_size;
  2494. }
  2495. // If only one decoder interleave is not needed
  2496. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2497. for (fr = 0; fr < s->frames; fr++) {
  2498. start = start2;
  2499. fsize = (start[0] << 4) | (start[1] >> 4);
  2500. start2 += fsize;
  2501. if (fsize > len)
  2502. fsize = len;
  2503. len -= fsize;
  2504. if (fsize > MPA_MAX_CODED_FRAME_SIZE)
  2505. fsize = MPA_MAX_CODED_FRAME_SIZE;
  2506. m = s->mp3decctx[fr];
  2507. assert (m != NULL);
  2508. // Get header
  2509. header = (start[0] << 24) | (start[1] << 16) | (start[2] << 8) | start[3] | 0xfff00000;
  2510. if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
  2511. *data_size = 0;
  2512. return buf_size;
  2513. }
  2514. decode_header(m, header);
  2515. mp_decode_frame(m, decoded_buf, start, fsize);
  2516. n = MPA_FRAME_SIZE * m->nb_channels;
  2517. out_size += n * sizeof(OUT_INT);
  2518. if(s->frames > 1) {
  2519. /* interleave output data */
  2520. bp = out_samples + coff[fr];
  2521. if(m->nb_channels == 1) {
  2522. for(j = 0; j < n; j++) {
  2523. *bp = decoded_buf[j];
  2524. bp += off;
  2525. }
  2526. } else {
  2527. for(j = 0; j < n; j++) {
  2528. bp[0] = decoded_buf[j++];
  2529. bp[1] = decoded_buf[j];
  2530. bp += off;
  2531. }
  2532. }
  2533. }
  2534. }
  2535. /* update codec info */
  2536. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2537. avctx->frame_size= buf_size;
  2538. avctx->bit_rate = 0;
  2539. for (i = 0; i < s->frames; i++)
  2540. avctx->bit_rate += s->mp3decctx[i]->bit_rate;
  2541. *data_size = out_size;
  2542. return buf_size;
  2543. }
  2544. AVCodec mp2_decoder =
  2545. {
  2546. "mp2",
  2547. CODEC_TYPE_AUDIO,
  2548. CODEC_ID_MP2,
  2549. sizeof(MPADecodeContext),
  2550. decode_init,
  2551. NULL,
  2552. NULL,
  2553. decode_frame,
  2554. CODEC_CAP_PARSE_ONLY,
  2555. };
  2556. AVCodec mp3_decoder =
  2557. {
  2558. "mp3",
  2559. CODEC_TYPE_AUDIO,
  2560. CODEC_ID_MP3,
  2561. sizeof(MPADecodeContext),
  2562. decode_init,
  2563. NULL,
  2564. NULL,
  2565. decode_frame,
  2566. CODEC_CAP_PARSE_ONLY,
  2567. };
  2568. AVCodec mp3adu_decoder =
  2569. {
  2570. "mp3adu",
  2571. CODEC_TYPE_AUDIO,
  2572. CODEC_ID_MP3ADU,
  2573. sizeof(MPADecodeContext),
  2574. decode_init,
  2575. NULL,
  2576. NULL,
  2577. decode_frame_adu,
  2578. CODEC_CAP_PARSE_ONLY,
  2579. };
  2580. AVCodec mp3on4_decoder =
  2581. {
  2582. "mp3on4",
  2583. CODEC_TYPE_AUDIO,
  2584. CODEC_ID_MP3ON4,
  2585. sizeof(MP3On4DecodeContext),
  2586. decode_init_mp3on4,
  2587. NULL,
  2588. decode_close_mp3on4,
  2589. decode_frame_mp3on4,
  2590. 0
  2591. };