You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1693 lines
63KB

  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AAC Spectral Band Replication decoding functions
  25. * @author Robert Swain ( rob opendot cl )
  26. */
  27. #include "aac.h"
  28. #include "sbr.h"
  29. #include "aacsbr.h"
  30. #include "aacsbrdata.h"
  31. #include "fft.h"
  32. #include "aacps.h"
  33. #include "sbrdsp.h"
  34. #include "libavutil/libm.h"
  35. #include "libavutil/avassert.h"
  36. #include <stdint.h>
  37. #include <float.h>
  38. #include <math.h>
  39. #define ENVELOPE_ADJUSTMENT_OFFSET 2
  40. #define NOISE_FLOOR_OFFSET 6.0f
  41. /**
  42. * SBR VLC tables
  43. */
  44. enum {
  45. T_HUFFMAN_ENV_1_5DB,
  46. F_HUFFMAN_ENV_1_5DB,
  47. T_HUFFMAN_ENV_BAL_1_5DB,
  48. F_HUFFMAN_ENV_BAL_1_5DB,
  49. T_HUFFMAN_ENV_3_0DB,
  50. F_HUFFMAN_ENV_3_0DB,
  51. T_HUFFMAN_ENV_BAL_3_0DB,
  52. F_HUFFMAN_ENV_BAL_3_0DB,
  53. T_HUFFMAN_NOISE_3_0DB,
  54. T_HUFFMAN_NOISE_BAL_3_0DB,
  55. };
  56. /**
  57. * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
  58. */
  59. enum {
  60. FIXFIX,
  61. FIXVAR,
  62. VARFIX,
  63. VARVAR,
  64. };
  65. enum {
  66. EXTENSION_ID_PS = 2,
  67. };
  68. static VLC vlc_sbr[10];
  69. static const int8_t vlc_sbr_lav[10] =
  70. { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
  71. static const DECLARE_ALIGNED(16, float, zero64)[64];
  72. #define SBR_INIT_VLC_STATIC(num, size) \
  73. INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
  74. sbr_tmp[num].sbr_bits , 1, 1, \
  75. sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
  76. size)
  77. #define SBR_VLC_ROW(name) \
  78. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  79. av_cold void ff_aac_sbr_init(void)
  80. {
  81. int n;
  82. static const struct {
  83. const void *sbr_codes, *sbr_bits;
  84. const unsigned int table_size, elem_size;
  85. } sbr_tmp[] = {
  86. SBR_VLC_ROW(t_huffman_env_1_5dB),
  87. SBR_VLC_ROW(f_huffman_env_1_5dB),
  88. SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
  89. SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
  90. SBR_VLC_ROW(t_huffman_env_3_0dB),
  91. SBR_VLC_ROW(f_huffman_env_3_0dB),
  92. SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
  93. SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
  94. SBR_VLC_ROW(t_huffman_noise_3_0dB),
  95. SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
  96. };
  97. // SBR VLC table initialization
  98. SBR_INIT_VLC_STATIC(0, 1098);
  99. SBR_INIT_VLC_STATIC(1, 1092);
  100. SBR_INIT_VLC_STATIC(2, 768);
  101. SBR_INIT_VLC_STATIC(3, 1026);
  102. SBR_INIT_VLC_STATIC(4, 1058);
  103. SBR_INIT_VLC_STATIC(5, 1052);
  104. SBR_INIT_VLC_STATIC(6, 544);
  105. SBR_INIT_VLC_STATIC(7, 544);
  106. SBR_INIT_VLC_STATIC(8, 592);
  107. SBR_INIT_VLC_STATIC(9, 512);
  108. for (n = 1; n < 320; n++)
  109. sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
  110. sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
  111. sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
  112. for (n = 0; n < 320; n++)
  113. sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
  114. ff_ps_init();
  115. }
  116. av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
  117. {
  118. float mdct_scale;
  119. if(sbr->mdct.mdct_bits)
  120. return;
  121. sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
  122. sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
  123. sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  124. sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  125. /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
  126. * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
  127. * and scale back down at synthesis. */
  128. mdct_scale = ac->avctx->sample_fmt == AV_SAMPLE_FMT_FLT ? 32768.0f : 1.0f;
  129. ff_mdct_init(&sbr->mdct, 7, 1, 1.0 / (64 * mdct_scale));
  130. ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * mdct_scale);
  131. ff_ps_ctx_init(&sbr->ps);
  132. ff_sbrdsp_init(&sbr->dsp);
  133. }
  134. av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
  135. {
  136. ff_mdct_end(&sbr->mdct);
  137. ff_mdct_end(&sbr->mdct_ana);
  138. }
  139. static int qsort_comparison_function_int16(const void *a, const void *b)
  140. {
  141. return *(const int16_t *)a - *(const int16_t *)b;
  142. }
  143. static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
  144. {
  145. int i;
  146. for (i = 0; i <= last_el; i++)
  147. if (table[i] == needle)
  148. return 1;
  149. return 0;
  150. }
  151. /// Limiter Frequency Band Table (14496-3 sp04 p198)
  152. static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
  153. {
  154. int k;
  155. if (sbr->bs_limiter_bands > 0) {
  156. static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
  157. 1.18509277094158210129f, //2^(0.49/2)
  158. 1.11987160404675912501f }; //2^(0.49/3)
  159. const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
  160. int16_t patch_borders[7];
  161. uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
  162. patch_borders[0] = sbr->kx[1];
  163. for (k = 1; k <= sbr->num_patches; k++)
  164. patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
  165. memcpy(sbr->f_tablelim, sbr->f_tablelow,
  166. (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
  167. if (sbr->num_patches > 1)
  168. memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
  169. (sbr->num_patches - 1) * sizeof(patch_borders[0]));
  170. qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
  171. sizeof(sbr->f_tablelim[0]),
  172. qsort_comparison_function_int16);
  173. sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
  174. while (out < sbr->f_tablelim + sbr->n_lim) {
  175. if (*in >= *out * lim_bands_per_octave_warped) {
  176. *++out = *in++;
  177. } else if (*in == *out ||
  178. !in_table_int16(patch_borders, sbr->num_patches, *in)) {
  179. in++;
  180. sbr->n_lim--;
  181. } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
  182. *out = *in++;
  183. sbr->n_lim--;
  184. } else {
  185. *++out = *in++;
  186. }
  187. }
  188. } else {
  189. sbr->f_tablelim[0] = sbr->f_tablelow[0];
  190. sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
  191. sbr->n_lim = 1;
  192. }
  193. }
  194. static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
  195. {
  196. unsigned int cnt = get_bits_count(gb);
  197. uint8_t bs_header_extra_1;
  198. uint8_t bs_header_extra_2;
  199. int old_bs_limiter_bands = sbr->bs_limiter_bands;
  200. SpectrumParameters old_spectrum_params;
  201. sbr->start = 1;
  202. // Save last spectrum parameters variables to compare to new ones
  203. memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
  204. sbr->bs_amp_res_header = get_bits1(gb);
  205. sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
  206. sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
  207. sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
  208. skip_bits(gb, 2); // bs_reserved
  209. bs_header_extra_1 = get_bits1(gb);
  210. bs_header_extra_2 = get_bits1(gb);
  211. if (bs_header_extra_1) {
  212. sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
  213. sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
  214. sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
  215. } else {
  216. sbr->spectrum_params.bs_freq_scale = 2;
  217. sbr->spectrum_params.bs_alter_scale = 1;
  218. sbr->spectrum_params.bs_noise_bands = 2;
  219. }
  220. // Check if spectrum parameters changed
  221. if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
  222. sbr->reset = 1;
  223. if (bs_header_extra_2) {
  224. sbr->bs_limiter_bands = get_bits(gb, 2);
  225. sbr->bs_limiter_gains = get_bits(gb, 2);
  226. sbr->bs_interpol_freq = get_bits1(gb);
  227. sbr->bs_smoothing_mode = get_bits1(gb);
  228. } else {
  229. sbr->bs_limiter_bands = 2;
  230. sbr->bs_limiter_gains = 2;
  231. sbr->bs_interpol_freq = 1;
  232. sbr->bs_smoothing_mode = 1;
  233. }
  234. if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
  235. sbr_make_f_tablelim(sbr);
  236. return get_bits_count(gb) - cnt;
  237. }
  238. static int array_min_int16(const int16_t *array, int nel)
  239. {
  240. int i, min = array[0];
  241. for (i = 1; i < nel; i++)
  242. min = FFMIN(array[i], min);
  243. return min;
  244. }
  245. static void make_bands(int16_t* bands, int start, int stop, int num_bands)
  246. {
  247. int k, previous, present;
  248. float base, prod;
  249. base = powf((float)stop / start, 1.0f / num_bands);
  250. prod = start;
  251. previous = start;
  252. for (k = 0; k < num_bands-1; k++) {
  253. prod *= base;
  254. present = lrintf(prod);
  255. bands[k] = present - previous;
  256. previous = present;
  257. }
  258. bands[num_bands-1] = stop - previous;
  259. }
  260. static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
  261. {
  262. // Requirements (14496-3 sp04 p205)
  263. if (n_master <= 0) {
  264. av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
  265. return -1;
  266. }
  267. if (bs_xover_band >= n_master) {
  268. av_log(avctx, AV_LOG_ERROR,
  269. "Invalid bitstream, crossover band index beyond array bounds: %d\n",
  270. bs_xover_band);
  271. return -1;
  272. }
  273. return 0;
  274. }
  275. /// Master Frequency Band Table (14496-3 sp04 p194)
  276. static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
  277. SpectrumParameters *spectrum)
  278. {
  279. unsigned int temp, max_qmf_subbands;
  280. unsigned int start_min, stop_min;
  281. int k;
  282. const int8_t *sbr_offset_ptr;
  283. int16_t stop_dk[13];
  284. if (sbr->sample_rate < 32000) {
  285. temp = 3000;
  286. } else if (sbr->sample_rate < 64000) {
  287. temp = 4000;
  288. } else
  289. temp = 5000;
  290. start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  291. stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  292. switch (sbr->sample_rate) {
  293. case 16000:
  294. sbr_offset_ptr = sbr_offset[0];
  295. break;
  296. case 22050:
  297. sbr_offset_ptr = sbr_offset[1];
  298. break;
  299. case 24000:
  300. sbr_offset_ptr = sbr_offset[2];
  301. break;
  302. case 32000:
  303. sbr_offset_ptr = sbr_offset[3];
  304. break;
  305. case 44100: case 48000: case 64000:
  306. sbr_offset_ptr = sbr_offset[4];
  307. break;
  308. case 88200: case 96000: case 128000: case 176400: case 192000:
  309. sbr_offset_ptr = sbr_offset[5];
  310. break;
  311. default:
  312. av_log(ac->avctx, AV_LOG_ERROR,
  313. "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
  314. return -1;
  315. }
  316. sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
  317. if (spectrum->bs_stop_freq < 14) {
  318. sbr->k[2] = stop_min;
  319. make_bands(stop_dk, stop_min, 64, 13);
  320. qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
  321. for (k = 0; k < spectrum->bs_stop_freq; k++)
  322. sbr->k[2] += stop_dk[k];
  323. } else if (spectrum->bs_stop_freq == 14) {
  324. sbr->k[2] = 2*sbr->k[0];
  325. } else if (spectrum->bs_stop_freq == 15) {
  326. sbr->k[2] = 3*sbr->k[0];
  327. } else {
  328. av_log(ac->avctx, AV_LOG_ERROR,
  329. "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
  330. return -1;
  331. }
  332. sbr->k[2] = FFMIN(64, sbr->k[2]);
  333. // Requirements (14496-3 sp04 p205)
  334. if (sbr->sample_rate <= 32000) {
  335. max_qmf_subbands = 48;
  336. } else if (sbr->sample_rate == 44100) {
  337. max_qmf_subbands = 35;
  338. } else if (sbr->sample_rate >= 48000)
  339. max_qmf_subbands = 32;
  340. if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
  341. av_log(ac->avctx, AV_LOG_ERROR,
  342. "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
  343. return -1;
  344. }
  345. if (!spectrum->bs_freq_scale) {
  346. int dk, k2diff;
  347. dk = spectrum->bs_alter_scale + 1;
  348. sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
  349. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  350. return -1;
  351. for (k = 1; k <= sbr->n_master; k++)
  352. sbr->f_master[k] = dk;
  353. k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
  354. if (k2diff < 0) {
  355. sbr->f_master[1]--;
  356. sbr->f_master[2]-= (k2diff < -1);
  357. } else if (k2diff) {
  358. sbr->f_master[sbr->n_master]++;
  359. }
  360. sbr->f_master[0] = sbr->k[0];
  361. for (k = 1; k <= sbr->n_master; k++)
  362. sbr->f_master[k] += sbr->f_master[k - 1];
  363. } else {
  364. int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
  365. int two_regions, num_bands_0;
  366. int vdk0_max, vdk1_min;
  367. int16_t vk0[49];
  368. if (49 * sbr->k[2] > 110 * sbr->k[0]) {
  369. two_regions = 1;
  370. sbr->k[1] = 2 * sbr->k[0];
  371. } else {
  372. two_regions = 0;
  373. sbr->k[1] = sbr->k[2];
  374. }
  375. num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
  376. if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
  377. av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
  378. return -1;
  379. }
  380. vk0[0] = 0;
  381. make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
  382. qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
  383. vdk0_max = vk0[num_bands_0];
  384. vk0[0] = sbr->k[0];
  385. for (k = 1; k <= num_bands_0; k++) {
  386. if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
  387. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
  388. return -1;
  389. }
  390. vk0[k] += vk0[k-1];
  391. }
  392. if (two_regions) {
  393. int16_t vk1[49];
  394. float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
  395. : 1.0f; // bs_alter_scale = {0,1}
  396. int num_bands_1 = lrintf(half_bands * invwarp *
  397. log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
  398. make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
  399. vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
  400. if (vdk1_min < vdk0_max) {
  401. int change;
  402. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  403. change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
  404. vk1[1] += change;
  405. vk1[num_bands_1] -= change;
  406. }
  407. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  408. vk1[0] = sbr->k[1];
  409. for (k = 1; k <= num_bands_1; k++) {
  410. if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
  411. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
  412. return -1;
  413. }
  414. vk1[k] += vk1[k-1];
  415. }
  416. sbr->n_master = num_bands_0 + num_bands_1;
  417. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  418. return -1;
  419. memcpy(&sbr->f_master[0], vk0,
  420. (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  421. memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
  422. num_bands_1 * sizeof(sbr->f_master[0]));
  423. } else {
  424. sbr->n_master = num_bands_0;
  425. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  426. return -1;
  427. memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  428. }
  429. }
  430. return 0;
  431. }
  432. /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
  433. static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
  434. {
  435. int i, k, sb = 0;
  436. int msb = sbr->k[0];
  437. int usb = sbr->kx[1];
  438. int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  439. sbr->num_patches = 0;
  440. if (goal_sb < sbr->kx[1] + sbr->m[1]) {
  441. for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
  442. } else
  443. k = sbr->n_master;
  444. do {
  445. int odd = 0;
  446. for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
  447. sb = sbr->f_master[i];
  448. odd = (sb + sbr->k[0]) & 1;
  449. }
  450. // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
  451. // After this check the final number of patches can still be six which is
  452. // illegal however the Coding Technologies decoder check stream has a final
  453. // count of 6 patches
  454. if (sbr->num_patches > 5) {
  455. av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
  456. return -1;
  457. }
  458. sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
  459. sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
  460. if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
  461. usb = sb;
  462. msb = sb;
  463. sbr->num_patches++;
  464. } else
  465. msb = sbr->kx[1];
  466. if (sbr->f_master[k] - sb < 3)
  467. k = sbr->n_master;
  468. } while (sb != sbr->kx[1] + sbr->m[1]);
  469. if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
  470. sbr->num_patches--;
  471. return 0;
  472. }
  473. /// Derived Frequency Band Tables (14496-3 sp04 p197)
  474. static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
  475. {
  476. int k, temp;
  477. sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
  478. sbr->n[0] = (sbr->n[1] + 1) >> 1;
  479. memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
  480. (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
  481. sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
  482. sbr->kx[1] = sbr->f_tablehigh[0];
  483. // Requirements (14496-3 sp04 p205)
  484. if (sbr->kx[1] + sbr->m[1] > 64) {
  485. av_log(ac->avctx, AV_LOG_ERROR,
  486. "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
  487. return -1;
  488. }
  489. if (sbr->kx[1] > 32) {
  490. av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
  491. return -1;
  492. }
  493. sbr->f_tablelow[0] = sbr->f_tablehigh[0];
  494. temp = sbr->n[1] & 1;
  495. for (k = 1; k <= sbr->n[0]; k++)
  496. sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
  497. sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
  498. log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
  499. if (sbr->n_q > 5) {
  500. av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
  501. return -1;
  502. }
  503. sbr->f_tablenoise[0] = sbr->f_tablelow[0];
  504. temp = 0;
  505. for (k = 1; k <= sbr->n_q; k++) {
  506. temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
  507. sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
  508. }
  509. if (sbr_hf_calc_npatches(ac, sbr) < 0)
  510. return -1;
  511. sbr_make_f_tablelim(sbr);
  512. sbr->data[0].f_indexnoise = 0;
  513. sbr->data[1].f_indexnoise = 0;
  514. return 0;
  515. }
  516. static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
  517. int elements)
  518. {
  519. int i;
  520. for (i = 0; i < elements; i++) {
  521. vec[i] = get_bits1(gb);
  522. }
  523. }
  524. /** ceil(log2(index+1)) */
  525. static const int8_t ceil_log2[] = {
  526. 0, 1, 2, 2, 3, 3,
  527. };
  528. static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
  529. GetBitContext *gb, SBRData *ch_data)
  530. {
  531. int i;
  532. unsigned bs_pointer = 0;
  533. // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
  534. int abs_bord_trail = 16;
  535. int num_rel_lead, num_rel_trail;
  536. unsigned bs_num_env_old = ch_data->bs_num_env;
  537. ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
  538. ch_data->bs_amp_res = sbr->bs_amp_res_header;
  539. ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
  540. switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
  541. case FIXFIX:
  542. ch_data->bs_num_env = 1 << get_bits(gb, 2);
  543. num_rel_lead = ch_data->bs_num_env - 1;
  544. if (ch_data->bs_num_env == 1)
  545. ch_data->bs_amp_res = 0;
  546. if (ch_data->bs_num_env > 4) {
  547. av_log(ac->avctx, AV_LOG_ERROR,
  548. "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
  549. ch_data->bs_num_env);
  550. return -1;
  551. }
  552. ch_data->t_env[0] = 0;
  553. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  554. abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
  555. ch_data->bs_num_env;
  556. for (i = 0; i < num_rel_lead; i++)
  557. ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
  558. ch_data->bs_freq_res[1] = get_bits1(gb);
  559. for (i = 1; i < ch_data->bs_num_env; i++)
  560. ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
  561. break;
  562. case FIXVAR:
  563. abs_bord_trail += get_bits(gb, 2);
  564. num_rel_trail = get_bits(gb, 2);
  565. ch_data->bs_num_env = num_rel_trail + 1;
  566. ch_data->t_env[0] = 0;
  567. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  568. for (i = 0; i < num_rel_trail; i++)
  569. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  570. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  571. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  572. for (i = 0; i < ch_data->bs_num_env; i++)
  573. ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
  574. break;
  575. case VARFIX:
  576. ch_data->t_env[0] = get_bits(gb, 2);
  577. num_rel_lead = get_bits(gb, 2);
  578. ch_data->bs_num_env = num_rel_lead + 1;
  579. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  580. for (i = 0; i < num_rel_lead; i++)
  581. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  582. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  583. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  584. break;
  585. case VARVAR:
  586. ch_data->t_env[0] = get_bits(gb, 2);
  587. abs_bord_trail += get_bits(gb, 2);
  588. num_rel_lead = get_bits(gb, 2);
  589. num_rel_trail = get_bits(gb, 2);
  590. ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
  591. if (ch_data->bs_num_env > 5) {
  592. av_log(ac->avctx, AV_LOG_ERROR,
  593. "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
  594. ch_data->bs_num_env);
  595. return -1;
  596. }
  597. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  598. for (i = 0; i < num_rel_lead; i++)
  599. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  600. for (i = 0; i < num_rel_trail; i++)
  601. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  602. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  603. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  604. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  605. break;
  606. }
  607. if (bs_pointer > ch_data->bs_num_env + 1) {
  608. av_log(ac->avctx, AV_LOG_ERROR,
  609. "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
  610. bs_pointer);
  611. return -1;
  612. }
  613. for (i = 1; i <= ch_data->bs_num_env; i++) {
  614. if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
  615. av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
  616. return -1;
  617. }
  618. }
  619. ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
  620. ch_data->t_q[0] = ch_data->t_env[0];
  621. ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
  622. if (ch_data->bs_num_noise > 1) {
  623. unsigned int idx;
  624. if (ch_data->bs_frame_class == FIXFIX) {
  625. idx = ch_data->bs_num_env >> 1;
  626. } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
  627. idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
  628. } else { // VARFIX
  629. if (!bs_pointer)
  630. idx = 1;
  631. else if (bs_pointer == 1)
  632. idx = ch_data->bs_num_env - 1;
  633. else // bs_pointer > 1
  634. idx = bs_pointer - 1;
  635. }
  636. ch_data->t_q[1] = ch_data->t_env[idx];
  637. }
  638. ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
  639. ch_data->e_a[1] = -1;
  640. if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
  641. ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
  642. } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
  643. ch_data->e_a[1] = bs_pointer - 1;
  644. return 0;
  645. }
  646. static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
  647. //These variables are saved from the previous frame rather than copied
  648. dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
  649. dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
  650. dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
  651. //These variables are read from the bitstream and therefore copied
  652. memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
  653. memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
  654. memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
  655. dst->bs_num_env = src->bs_num_env;
  656. dst->bs_amp_res = src->bs_amp_res;
  657. dst->bs_num_noise = src->bs_num_noise;
  658. dst->bs_frame_class = src->bs_frame_class;
  659. dst->e_a[1] = src->e_a[1];
  660. }
  661. /// Read how the envelope and noise floor data is delta coded
  662. static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
  663. SBRData *ch_data)
  664. {
  665. get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
  666. get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
  667. }
  668. /// Read inverse filtering data
  669. static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
  670. SBRData *ch_data)
  671. {
  672. int i;
  673. memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
  674. for (i = 0; i < sbr->n_q; i++)
  675. ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
  676. }
  677. static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
  678. SBRData *ch_data, int ch)
  679. {
  680. int bits;
  681. int i, j, k;
  682. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  683. int t_lav, f_lav;
  684. const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  685. const int odd = sbr->n[1] & 1;
  686. if (sbr->bs_coupling && ch) {
  687. if (ch_data->bs_amp_res) {
  688. bits = 5;
  689. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
  690. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
  691. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  692. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  693. } else {
  694. bits = 6;
  695. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
  696. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
  697. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
  698. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
  699. }
  700. } else {
  701. if (ch_data->bs_amp_res) {
  702. bits = 6;
  703. t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
  704. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
  705. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  706. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  707. } else {
  708. bits = 7;
  709. t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
  710. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
  711. f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
  712. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
  713. }
  714. }
  715. for (i = 0; i < ch_data->bs_num_env; i++) {
  716. if (ch_data->bs_df_env[i]) {
  717. // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
  718. if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
  719. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  720. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  721. } else if (ch_data->bs_freq_res[i + 1]) {
  722. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  723. k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
  724. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  725. }
  726. } else {
  727. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  728. k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
  729. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  730. }
  731. }
  732. } else {
  733. ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
  734. for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  735. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  736. }
  737. }
  738. //assign 0th elements of env_facs from last elements
  739. memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
  740. sizeof(ch_data->env_facs[0]));
  741. }
  742. static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
  743. SBRData *ch_data, int ch)
  744. {
  745. int i, j;
  746. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  747. int t_lav, f_lav;
  748. int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  749. if (sbr->bs_coupling && ch) {
  750. t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
  751. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
  752. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  753. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  754. } else {
  755. t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
  756. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
  757. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  758. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  759. }
  760. for (i = 0; i < ch_data->bs_num_noise; i++) {
  761. if (ch_data->bs_df_noise[i]) {
  762. for (j = 0; j < sbr->n_q; j++)
  763. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
  764. } else {
  765. ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
  766. for (j = 1; j < sbr->n_q; j++)
  767. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  768. }
  769. }
  770. //assign 0th elements of noise_facs from last elements
  771. memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
  772. sizeof(ch_data->noise_facs[0]));
  773. }
  774. static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  775. GetBitContext *gb,
  776. int bs_extension_id, int *num_bits_left)
  777. {
  778. switch (bs_extension_id) {
  779. case EXTENSION_ID_PS:
  780. if (!ac->m4ac.ps) {
  781. av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
  782. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  783. *num_bits_left = 0;
  784. } else {
  785. #if 1
  786. *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
  787. #else
  788. av_log_missing_feature(ac->avctx, "Parametric Stereo is", 0);
  789. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  790. *num_bits_left = 0;
  791. #endif
  792. }
  793. break;
  794. default:
  795. av_log_missing_feature(ac->avctx, "Reserved SBR extensions are", 1);
  796. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  797. *num_bits_left = 0;
  798. break;
  799. }
  800. }
  801. static int read_sbr_single_channel_element(AACContext *ac,
  802. SpectralBandReplication *sbr,
  803. GetBitContext *gb)
  804. {
  805. if (get_bits1(gb)) // bs_data_extra
  806. skip_bits(gb, 4); // bs_reserved
  807. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  808. return -1;
  809. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  810. read_sbr_invf(sbr, gb, &sbr->data[0]);
  811. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  812. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  813. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  814. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  815. return 0;
  816. }
  817. static int read_sbr_channel_pair_element(AACContext *ac,
  818. SpectralBandReplication *sbr,
  819. GetBitContext *gb)
  820. {
  821. if (get_bits1(gb)) // bs_data_extra
  822. skip_bits(gb, 8); // bs_reserved
  823. if ((sbr->bs_coupling = get_bits1(gb))) {
  824. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  825. return -1;
  826. copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
  827. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  828. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  829. read_sbr_invf(sbr, gb, &sbr->data[0]);
  830. memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  831. memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  832. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  833. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  834. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  835. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  836. } else {
  837. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
  838. read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
  839. return -1;
  840. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  841. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  842. read_sbr_invf(sbr, gb, &sbr->data[0]);
  843. read_sbr_invf(sbr, gb, &sbr->data[1]);
  844. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  845. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  846. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  847. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  848. }
  849. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  850. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  851. if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
  852. get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
  853. return 0;
  854. }
  855. static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
  856. GetBitContext *gb, int id_aac)
  857. {
  858. unsigned int cnt = get_bits_count(gb);
  859. if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
  860. if (read_sbr_single_channel_element(ac, sbr, gb)) {
  861. sbr->start = 0;
  862. return get_bits_count(gb) - cnt;
  863. }
  864. } else if (id_aac == TYPE_CPE) {
  865. if (read_sbr_channel_pair_element(ac, sbr, gb)) {
  866. sbr->start = 0;
  867. return get_bits_count(gb) - cnt;
  868. }
  869. } else {
  870. av_log(ac->avctx, AV_LOG_ERROR,
  871. "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
  872. sbr->start = 0;
  873. return get_bits_count(gb) - cnt;
  874. }
  875. if (get_bits1(gb)) { // bs_extended_data
  876. int num_bits_left = get_bits(gb, 4); // bs_extension_size
  877. if (num_bits_left == 15)
  878. num_bits_left += get_bits(gb, 8); // bs_esc_count
  879. num_bits_left <<= 3;
  880. while (num_bits_left > 7) {
  881. num_bits_left -= 2;
  882. read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
  883. }
  884. if (num_bits_left < 0) {
  885. av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
  886. }
  887. if (num_bits_left > 0)
  888. skip_bits(gb, num_bits_left);
  889. }
  890. return get_bits_count(gb) - cnt;
  891. }
  892. static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
  893. {
  894. int err;
  895. err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
  896. if (err >= 0)
  897. err = sbr_make_f_derived(ac, sbr);
  898. if (err < 0) {
  899. av_log(ac->avctx, AV_LOG_ERROR,
  900. "SBR reset failed. Switching SBR to pure upsampling mode.\n");
  901. sbr->start = 0;
  902. }
  903. }
  904. /**
  905. * Decode Spectral Band Replication extension data; reference: table 4.55.
  906. *
  907. * @param crc flag indicating the presence of CRC checksum
  908. * @param cnt length of TYPE_FIL syntactic element in bytes
  909. *
  910. * @return Returns number of bytes consumed from the TYPE_FIL element.
  911. */
  912. int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  913. GetBitContext *gb_host, int crc, int cnt, int id_aac)
  914. {
  915. unsigned int num_sbr_bits = 0, num_align_bits;
  916. unsigned bytes_read;
  917. GetBitContext gbc = *gb_host, *gb = &gbc;
  918. skip_bits_long(gb_host, cnt*8 - 4);
  919. sbr->reset = 0;
  920. if (!sbr->sample_rate)
  921. sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
  922. if (!ac->m4ac.ext_sample_rate)
  923. ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
  924. if (crc) {
  925. skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
  926. num_sbr_bits += 10;
  927. }
  928. //Save some state from the previous frame.
  929. sbr->kx[0] = sbr->kx[1];
  930. sbr->m[0] = sbr->m[1];
  931. num_sbr_bits++;
  932. if (get_bits1(gb)) // bs_header_flag
  933. num_sbr_bits += read_sbr_header(sbr, gb);
  934. if (sbr->reset)
  935. sbr_reset(ac, sbr);
  936. if (sbr->start)
  937. num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
  938. num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
  939. bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
  940. if (bytes_read > cnt) {
  941. av_log(ac->avctx, AV_LOG_ERROR,
  942. "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
  943. }
  944. return cnt;
  945. }
  946. /// Dequantization and stereo decoding (14496-3 sp04 p203)
  947. static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
  948. {
  949. int k, e;
  950. int ch;
  951. if (id_aac == TYPE_CPE && sbr->bs_coupling) {
  952. float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
  953. float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
  954. for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
  955. for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
  956. float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
  957. float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
  958. float fac = temp1 / (1.0f + temp2);
  959. sbr->data[0].env_facs[e][k] = fac;
  960. sbr->data[1].env_facs[e][k] = fac * temp2;
  961. }
  962. }
  963. for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
  964. for (k = 0; k < sbr->n_q; k++) {
  965. float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
  966. float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
  967. float fac = temp1 / (1.0f + temp2);
  968. sbr->data[0].noise_facs[e][k] = fac;
  969. sbr->data[1].noise_facs[e][k] = fac * temp2;
  970. }
  971. }
  972. } else { // SCE or one non-coupled CPE
  973. for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
  974. float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
  975. for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
  976. for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
  977. sbr->data[ch].env_facs[e][k] =
  978. exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
  979. for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
  980. for (k = 0; k < sbr->n_q; k++)
  981. sbr->data[ch].noise_facs[e][k] =
  982. exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
  983. }
  984. }
  985. }
  986. /**
  987. * Analysis QMF Bank (14496-3 sp04 p206)
  988. *
  989. * @param x pointer to the beginning of the first sample window
  990. * @param W array of complex-valued samples split into subbands
  991. */
  992. static void sbr_qmf_analysis(DSPContext *dsp, FFTContext *mdct,
  993. SBRDSPContext *sbrdsp, const float *in, float *x,
  994. float z[320], float W[2][32][32][2])
  995. {
  996. int i;
  997. memcpy(W[0], W[1], sizeof(W[0]));
  998. memcpy(x , x+1024, (320-32)*sizeof(x[0]));
  999. memcpy(x+288, in, 1024*sizeof(x[0]));
  1000. for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
  1001. // are not supported
  1002. dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
  1003. sbrdsp->sum64x5(z);
  1004. sbrdsp->qmf_pre_shuffle(z);
  1005. mdct->imdct_half(mdct, z, z+64);
  1006. sbrdsp->qmf_post_shuffle(W[1][i], z);
  1007. x += 32;
  1008. }
  1009. }
  1010. /**
  1011. * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
  1012. * (14496-3 sp04 p206)
  1013. */
  1014. static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
  1015. SBRDSPContext *sbrdsp,
  1016. float *out, float X[2][38][64],
  1017. float mdct_buf[2][64],
  1018. float *v0, int *v_off, const unsigned int div)
  1019. {
  1020. int i, n;
  1021. const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
  1022. const int step = 128 >> div;
  1023. float *v;
  1024. for (i = 0; i < 32; i++) {
  1025. if (*v_off < step) {
  1026. int saved_samples = (1280 - 128) >> div;
  1027. memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
  1028. *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
  1029. } else {
  1030. *v_off -= step;
  1031. }
  1032. v = v0 + *v_off;
  1033. if (div) {
  1034. for (n = 0; n < 32; n++) {
  1035. X[0][i][ n] = -X[0][i][n];
  1036. X[0][i][32+n] = X[1][i][31-n];
  1037. }
  1038. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1039. sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
  1040. } else {
  1041. sbrdsp->neg_odd_64(X[1][i]);
  1042. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1043. mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
  1044. sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
  1045. }
  1046. dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
  1047. dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
  1048. dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
  1049. dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
  1050. dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
  1051. dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
  1052. dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
  1053. dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
  1054. dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
  1055. dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
  1056. out += 64 >> div;
  1057. }
  1058. }
  1059. /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
  1060. * (14496-3 sp04 p214)
  1061. * Warning: This routine does not seem numerically stable.
  1062. */
  1063. static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
  1064. float (*alpha0)[2], float (*alpha1)[2],
  1065. const float X_low[32][40][2], int k0)
  1066. {
  1067. int k;
  1068. for (k = 0; k < k0; k++) {
  1069. LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
  1070. float dk;
  1071. dsp->autocorrelate(X_low[k], phi);
  1072. dk = phi[2][1][0] * phi[1][0][0] -
  1073. (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
  1074. if (!dk) {
  1075. alpha1[k][0] = 0;
  1076. alpha1[k][1] = 0;
  1077. } else {
  1078. float temp_real, temp_im;
  1079. temp_real = phi[0][0][0] * phi[1][1][0] -
  1080. phi[0][0][1] * phi[1][1][1] -
  1081. phi[0][1][0] * phi[1][0][0];
  1082. temp_im = phi[0][0][0] * phi[1][1][1] +
  1083. phi[0][0][1] * phi[1][1][0] -
  1084. phi[0][1][1] * phi[1][0][0];
  1085. alpha1[k][0] = temp_real / dk;
  1086. alpha1[k][1] = temp_im / dk;
  1087. }
  1088. if (!phi[1][0][0]) {
  1089. alpha0[k][0] = 0;
  1090. alpha0[k][1] = 0;
  1091. } else {
  1092. float temp_real, temp_im;
  1093. temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
  1094. alpha1[k][1] * phi[1][1][1];
  1095. temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
  1096. alpha1[k][0] * phi[1][1][1];
  1097. alpha0[k][0] = -temp_real / phi[1][0][0];
  1098. alpha0[k][1] = -temp_im / phi[1][0][0];
  1099. }
  1100. if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
  1101. alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
  1102. alpha1[k][0] = 0;
  1103. alpha1[k][1] = 0;
  1104. alpha0[k][0] = 0;
  1105. alpha0[k][1] = 0;
  1106. }
  1107. }
  1108. }
  1109. /// Chirp Factors (14496-3 sp04 p214)
  1110. static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
  1111. {
  1112. int i;
  1113. float new_bw;
  1114. static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
  1115. for (i = 0; i < sbr->n_q; i++) {
  1116. if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
  1117. new_bw = 0.6f;
  1118. } else
  1119. new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
  1120. if (new_bw < ch_data->bw_array[i]) {
  1121. new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
  1122. } else
  1123. new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
  1124. ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
  1125. }
  1126. }
  1127. /// Generate the subband filtered lowband
  1128. static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1129. float X_low[32][40][2], const float W[2][32][32][2])
  1130. {
  1131. int i, k;
  1132. const int t_HFGen = 8;
  1133. const int i_f = 32;
  1134. memset(X_low, 0, 32*sizeof(*X_low));
  1135. for (k = 0; k < sbr->kx[1]; k++) {
  1136. for (i = t_HFGen; i < i_f + t_HFGen; i++) {
  1137. X_low[k][i][0] = W[1][i - t_HFGen][k][0];
  1138. X_low[k][i][1] = W[1][i - t_HFGen][k][1];
  1139. }
  1140. }
  1141. for (k = 0; k < sbr->kx[0]; k++) {
  1142. for (i = 0; i < t_HFGen; i++) {
  1143. X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
  1144. X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
  1145. }
  1146. }
  1147. return 0;
  1148. }
  1149. /// High Frequency Generator (14496-3 sp04 p215)
  1150. static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1151. float X_high[64][40][2], const float X_low[32][40][2],
  1152. const float (*alpha0)[2], const float (*alpha1)[2],
  1153. const float bw_array[5], const uint8_t *t_env,
  1154. int bs_num_env)
  1155. {
  1156. int j, x;
  1157. int g = 0;
  1158. int k = sbr->kx[1];
  1159. for (j = 0; j < sbr->num_patches; j++) {
  1160. for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
  1161. const int p = sbr->patch_start_subband[j] + x;
  1162. while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
  1163. g++;
  1164. g--;
  1165. if (g < 0) {
  1166. av_log(ac->avctx, AV_LOG_ERROR,
  1167. "ERROR : no subband found for frequency %d\n", k);
  1168. return -1;
  1169. }
  1170. sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
  1171. X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
  1172. alpha0[p], alpha1[p], bw_array[g],
  1173. 2 * t_env[0], 2 * t_env[bs_num_env]);
  1174. }
  1175. }
  1176. if (k < sbr->m[1] + sbr->kx[1])
  1177. memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
  1178. return 0;
  1179. }
  1180. /// Generate the subband filtered lowband
  1181. static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
  1182. const float Y0[38][64][2], const float Y1[38][64][2],
  1183. const float X_low[32][40][2], int ch)
  1184. {
  1185. int k, i;
  1186. const int i_f = 32;
  1187. const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
  1188. memset(X, 0, 2*sizeof(*X));
  1189. for (k = 0; k < sbr->kx[0]; k++) {
  1190. for (i = 0; i < i_Temp; i++) {
  1191. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1192. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1193. }
  1194. }
  1195. for (; k < sbr->kx[0] + sbr->m[0]; k++) {
  1196. for (i = 0; i < i_Temp; i++) {
  1197. X[0][i][k] = Y0[i + i_f][k][0];
  1198. X[1][i][k] = Y0[i + i_f][k][1];
  1199. }
  1200. }
  1201. for (k = 0; k < sbr->kx[1]; k++) {
  1202. for (i = i_Temp; i < 38; i++) {
  1203. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1204. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1205. }
  1206. }
  1207. for (; k < sbr->kx[1] + sbr->m[1]; k++) {
  1208. for (i = i_Temp; i < i_f; i++) {
  1209. X[0][i][k] = Y1[i][k][0];
  1210. X[1][i][k] = Y1[i][k][1];
  1211. }
  1212. }
  1213. return 0;
  1214. }
  1215. /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
  1216. * (14496-3 sp04 p217)
  1217. */
  1218. static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
  1219. SBRData *ch_data, int e_a[2])
  1220. {
  1221. int e, i, m;
  1222. memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
  1223. for (e = 0; e < ch_data->bs_num_env; e++) {
  1224. const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
  1225. uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1226. int k;
  1227. av_assert0(sbr->kx[1] <= table[0]);
  1228. for (i = 0; i < ilim; i++)
  1229. for (m = table[i]; m < table[i + 1]; m++)
  1230. sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
  1231. // ch_data->bs_num_noise > 1 => 2 noise floors
  1232. k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
  1233. for (i = 0; i < sbr->n_q; i++)
  1234. for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
  1235. sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
  1236. for (i = 0; i < sbr->n[1]; i++) {
  1237. if (ch_data->bs_add_harmonic_flag) {
  1238. const unsigned int m_midpoint =
  1239. (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
  1240. ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
  1241. (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
  1242. }
  1243. }
  1244. for (i = 0; i < ilim; i++) {
  1245. int additional_sinusoid_present = 0;
  1246. for (m = table[i]; m < table[i + 1]; m++) {
  1247. if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
  1248. additional_sinusoid_present = 1;
  1249. break;
  1250. }
  1251. }
  1252. memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
  1253. (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
  1254. }
  1255. }
  1256. memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
  1257. }
  1258. /// Estimation of current envelope (14496-3 sp04 p218)
  1259. static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
  1260. SpectralBandReplication *sbr, SBRData *ch_data)
  1261. {
  1262. int e, m;
  1263. int kx1 = sbr->kx[1];
  1264. if (sbr->bs_interpol_freq) {
  1265. for (e = 0; e < ch_data->bs_num_env; e++) {
  1266. const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1267. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1268. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1269. for (m = 0; m < sbr->m[1]; m++) {
  1270. float sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
  1271. e_curr[e][m] = sum * recip_env_size;
  1272. }
  1273. }
  1274. } else {
  1275. int k, p;
  1276. for (e = 0; e < ch_data->bs_num_env; e++) {
  1277. const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1278. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1279. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1280. const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1281. for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
  1282. float sum = 0.0f;
  1283. const int den = env_size * (table[p + 1] - table[p]);
  1284. for (k = table[p]; k < table[p + 1]; k++) {
  1285. sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
  1286. }
  1287. sum /= den;
  1288. for (k = table[p]; k < table[p + 1]; k++) {
  1289. e_curr[e][k - kx1] = sum;
  1290. }
  1291. }
  1292. }
  1293. }
  1294. }
  1295. /**
  1296. * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
  1297. * and Calculation of gain (14496-3 sp04 p219)
  1298. */
  1299. static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
  1300. SBRData *ch_data, const int e_a[2])
  1301. {
  1302. int e, k, m;
  1303. // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
  1304. static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
  1305. for (e = 0; e < ch_data->bs_num_env; e++) {
  1306. int delta = !((e == e_a[1]) || (e == e_a[0]));
  1307. for (k = 0; k < sbr->n_lim; k++) {
  1308. float gain_boost, gain_max;
  1309. float sum[2] = { 0.0f, 0.0f };
  1310. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1311. const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
  1312. sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
  1313. sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
  1314. if (!sbr->s_mapped[e][m]) {
  1315. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
  1316. ((1.0f + sbr->e_curr[e][m]) *
  1317. (1.0f + sbr->q_mapped[e][m] * delta)));
  1318. } else {
  1319. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
  1320. ((1.0f + sbr->e_curr[e][m]) *
  1321. (1.0f + sbr->q_mapped[e][m])));
  1322. }
  1323. }
  1324. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1325. sum[0] += sbr->e_origmapped[e][m];
  1326. sum[1] += sbr->e_curr[e][m];
  1327. }
  1328. gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1329. gain_max = FFMIN(100000.f, gain_max);
  1330. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1331. float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
  1332. sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
  1333. sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
  1334. }
  1335. sum[0] = sum[1] = 0.0f;
  1336. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1337. sum[0] += sbr->e_origmapped[e][m];
  1338. sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
  1339. + sbr->s_m[e][m] * sbr->s_m[e][m]
  1340. + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
  1341. }
  1342. gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1343. gain_boost = FFMIN(1.584893192f, gain_boost);
  1344. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1345. sbr->gain[e][m] *= gain_boost;
  1346. sbr->q_m[e][m] *= gain_boost;
  1347. sbr->s_m[e][m] *= gain_boost;
  1348. }
  1349. }
  1350. }
  1351. }
  1352. /// Assembling HF Signals (14496-3 sp04 p220)
  1353. static void sbr_hf_assemble(float Y1[38][64][2],
  1354. const float X_high[64][40][2],
  1355. SpectralBandReplication *sbr, SBRData *ch_data,
  1356. const int e_a[2])
  1357. {
  1358. int e, i, j, m;
  1359. const int h_SL = 4 * !sbr->bs_smoothing_mode;
  1360. const int kx = sbr->kx[1];
  1361. const int m_max = sbr->m[1];
  1362. static const float h_smooth[5] = {
  1363. 0.33333333333333,
  1364. 0.30150283239582,
  1365. 0.21816949906249,
  1366. 0.11516383427084,
  1367. 0.03183050093751,
  1368. };
  1369. static const int8_t phi[2][4] = {
  1370. { 1, 0, -1, 0}, // real
  1371. { 0, 1, 0, -1}, // imaginary
  1372. };
  1373. float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
  1374. int indexnoise = ch_data->f_indexnoise;
  1375. int indexsine = ch_data->f_indexsine;
  1376. if (sbr->reset) {
  1377. for (i = 0; i < h_SL; i++) {
  1378. memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
  1379. memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
  1380. }
  1381. } else if (h_SL) {
  1382. memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
  1383. memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
  1384. }
  1385. for (e = 0; e < ch_data->bs_num_env; e++) {
  1386. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1387. memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
  1388. memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
  1389. }
  1390. }
  1391. for (e = 0; e < ch_data->bs_num_env; e++) {
  1392. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1393. int phi_sign = (1 - 2*(kx & 1));
  1394. LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
  1395. LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
  1396. float *g_filt, *q_filt;
  1397. if (h_SL && e != e_a[0] && e != e_a[1]) {
  1398. g_filt = g_filt_tab;
  1399. q_filt = q_filt_tab;
  1400. for (m = 0; m < m_max; m++) {
  1401. const int idx1 = i + h_SL;
  1402. g_filt[m] = 0.0f;
  1403. q_filt[m] = 0.0f;
  1404. for (j = 0; j <= h_SL; j++) {
  1405. g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
  1406. q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
  1407. }
  1408. }
  1409. } else {
  1410. g_filt = g_temp[i + h_SL];
  1411. q_filt = q_temp[i];
  1412. }
  1413. sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
  1414. i + ENVELOPE_ADJUSTMENT_OFFSET);
  1415. if (e != e_a[0] && e != e_a[1]) {
  1416. sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
  1417. q_filt, indexnoise,
  1418. kx, m_max);
  1419. } else {
  1420. for (m = 0; m < m_max; m++) {
  1421. Y1[i][m + kx][0] +=
  1422. sbr->s_m[e][m] * phi[0][indexsine];
  1423. Y1[i][m + kx][1] +=
  1424. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1425. phi_sign = -phi_sign;
  1426. }
  1427. }
  1428. indexnoise = (indexnoise + m_max) & 0x1ff;
  1429. indexsine = (indexsine + 1) & 3;
  1430. }
  1431. }
  1432. ch_data->f_indexnoise = indexnoise;
  1433. ch_data->f_indexsine = indexsine;
  1434. }
  1435. void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
  1436. float* L, float* R)
  1437. {
  1438. int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
  1439. int ch;
  1440. int nch = (id_aac == TYPE_CPE) ? 2 : 1;
  1441. if (sbr->start) {
  1442. sbr_dequant(sbr, id_aac);
  1443. }
  1444. for (ch = 0; ch < nch; ch++) {
  1445. /* decode channel */
  1446. sbr_qmf_analysis(&ac->dsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
  1447. (float*)sbr->qmf_filter_scratch,
  1448. sbr->data[ch].W);
  1449. sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
  1450. if (sbr->start) {
  1451. sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
  1452. sbr_chirp(sbr, &sbr->data[ch]);
  1453. sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
  1454. sbr->data[ch].bw_array, sbr->data[ch].t_env,
  1455. sbr->data[ch].bs_num_env);
  1456. // hf_adj
  1457. sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1458. sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
  1459. sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1460. sbr->data[ch].Ypos ^= 1;
  1461. sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
  1462. sbr->X_high, sbr, &sbr->data[ch],
  1463. sbr->data[ch].e_a);
  1464. }
  1465. /* synthesis */
  1466. sbr_x_gen(sbr, sbr->X[ch],
  1467. sbr->data[ch].Y[1-sbr->data[ch].Ypos],
  1468. sbr->data[ch].Y[ sbr->data[ch].Ypos],
  1469. sbr->X_low, ch);
  1470. }
  1471. if (ac->m4ac.ps == 1) {
  1472. if (sbr->ps.start) {
  1473. ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
  1474. } else {
  1475. memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
  1476. }
  1477. nch = 2;
  1478. }
  1479. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, &sbr->dsp, L, sbr->X[0], sbr->qmf_filter_scratch,
  1480. sbr->data[0].synthesis_filterbank_samples,
  1481. &sbr->data[0].synthesis_filterbank_samples_offset,
  1482. downsampled);
  1483. if (nch == 2)
  1484. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, &sbr->dsp, R, sbr->X[1], sbr->qmf_filter_scratch,
  1485. sbr->data[1].synthesis_filterbank_samples,
  1486. &sbr->data[1].synthesis_filterbank_samples_offset,
  1487. downsampled);
  1488. }