You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3439 lines
95KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} option of the ff*
  16. tools, and by the @code{avfilter_graph_parse()} function defined in
  17. @file{libavfilter/avfiltergraph.h}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your FFmpeg build, you can disable any of the
  77. existing filters using @code{--disable-filters}.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section aconvert
  82. Convert the input audio format to the specified formats.
  83. The filter accepts a string of the form:
  84. "@var{sample_format}:@var{channel_layout}".
  85. @var{sample_format} specifies the sample format, and can be a string or the
  86. corresponding numeric value defined in @file{libavutil/samplefmt.h}. Use 'p'
  87. suffix for a planar sample format.
  88. @var{channel_layout} specifies the channel layout, and can be a string
  89. or the corresponding number value defined in @file{libavutil/audioconvert.h}.
  90. The special parameter "auto", signifies that the filter will
  91. automatically select the output format depending on the output filter.
  92. Some examples follow.
  93. @itemize
  94. @item
  95. Convert input to float, planar, stereo:
  96. @example
  97. aconvert=fltp:stereo
  98. @end example
  99. @item
  100. Convert input to unsigned 8-bit, automatically select out channel layout:
  101. @example
  102. aconvert=u8:auto
  103. @end example
  104. @end itemize
  105. @section aformat
  106. Convert the input audio to one of the specified formats. The framework will
  107. negotiate the most appropriate format to minimize conversions.
  108. The filter accepts three lists of formats, separated by ":", in the form:
  109. "@var{sample_formats}:@var{channel_layouts}:@var{packing_formats}".
  110. Elements in each list are separated by "," which has to be escaped in the
  111. filtergraph specification.
  112. The special parameter "all", in place of a list of elements, signifies all
  113. supported formats.
  114. Some examples follow:
  115. @example
  116. aformat=u8\\,s16:mono:packed
  117. aformat=s16:mono\\,stereo:all
  118. @end example
  119. @section amerge
  120. Merge two audio streams into a single multi-channel stream.
  121. This filter does not need any argument.
  122. If the channel layouts of the inputs are disjoint, and therefore compatible,
  123. the channel layout of the output will be set accordingly and the channels
  124. will be reordered as necessary. If the channel layouts of the inputs are not
  125. disjoint, the output will have all the channels of the first input then all
  126. the channels of the second input, in that order, and the channel layout of
  127. the output will be the default value corresponding to the total number of
  128. channels.
  129. For example, if the first input is in 2.1 (FL+FR+LF) and the second input
  130. is FC+BL+BR, then the output will be in 5.1, with the channels in the
  131. following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
  132. first input, b1 is the first channel of the second input).
  133. On the other hand, if both input are in stereo, the output channels will be
  134. in the default order: a1, a2, b1, b2, and the channel layout will be
  135. arbitrarily set to 4.0, which may or may not be the expected value.
  136. Both inputs must have the same sample rate, format and packing.
  137. If inputs do not have the same duration, the output will stop with the
  138. shortest.
  139. Example: merge two mono files into a stereo stream:
  140. @example
  141. amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge
  142. @end example
  143. If you need to do multiple merges (for instance multiple mono audio streams in
  144. a single video media), you can do:
  145. @example
  146. ffmpeg -f lavfi -i "
  147. amovie=input.mkv:si=0 [a0];
  148. amovie=input.mkv:si=1 [a1];
  149. amovie=input.mkv:si=2 [a2];
  150. amovie=input.mkv:si=3 [a3];
  151. amovie=input.mkv:si=4 [a4];
  152. amovie=input.mkv:si=5 [a5];
  153. [a0][a1] amerge [x0];
  154. [x0][a2] amerge [x1];
  155. [x1][a3] amerge [x2];
  156. [x2][a4] amerge [x3];
  157. [x3][a5] amerge" -c:a pcm_s16le output.mkv
  158. @end example
  159. @section anull
  160. Pass the audio source unchanged to the output.
  161. @section aresample
  162. Resample the input audio to the specified sample rate.
  163. The filter accepts exactly one parameter, the output sample rate. If not
  164. specified then the filter will automatically convert between its input
  165. and output sample rates.
  166. For example, to resample the input audio to 44100Hz:
  167. @example
  168. aresample=44100
  169. @end example
  170. @section ashowinfo
  171. Show a line containing various information for each input audio frame.
  172. The input audio is not modified.
  173. The shown line contains a sequence of key/value pairs of the form
  174. @var{key}:@var{value}.
  175. A description of each shown parameter follows:
  176. @table @option
  177. @item n
  178. sequential number of the input frame, starting from 0
  179. @item pts
  180. presentation TimeStamp of the input frame, expressed as a number of
  181. time base units. The time base unit depends on the filter input pad, and
  182. is usually 1/@var{sample_rate}.
  183. @item pts_time
  184. presentation TimeStamp of the input frame, expressed as a number of
  185. seconds
  186. @item pos
  187. position of the frame in the input stream, -1 if this information in
  188. unavailable and/or meaningless (for example in case of synthetic audio)
  189. @item fmt
  190. sample format name
  191. @item chlayout
  192. channel layout description
  193. @item nb_samples
  194. number of samples (per each channel) contained in the filtered frame
  195. @item rate
  196. sample rate for the audio frame
  197. @item planar
  198. if the packing format is planar, 0 if packed
  199. @item checksum
  200. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  201. @item plane_checksum
  202. Adler-32 checksum (printed in hexadecimal) for each input frame plane,
  203. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5}
  204. @var{c6} @var{c7}]"
  205. @end table
  206. @section asplit
  207. Pass on the input audio to two outputs. Both outputs are identical to
  208. the input audio.
  209. For example:
  210. @example
  211. [in] asplit[out0], showaudio[out1]
  212. @end example
  213. will create two separate outputs from the same input, one cropped and
  214. one padded.
  215. @section astreamsync
  216. Forward two audio streams and control the order the buffers are forwarded.
  217. The argument to the filter is an expression deciding which stream should be
  218. forwarded next: if the result is negative, the first stream is forwarded; if
  219. the result is positive or zero, the second stream is forwarded. It can use
  220. the following variables:
  221. @table @var
  222. @item b1 b2
  223. number of buffers forwarded so far on each stream
  224. @item s1 s2
  225. number of samples forwarded so far on each stream
  226. @item t1 t2
  227. current timestamp of each stream
  228. @end table
  229. The default value is @code{t1-t2}, which means to always forward the stream
  230. that has a smaller timestamp.
  231. Example: stress-test @code{amerge} by randomly sending buffers on the wrong
  232. input, while avoiding too much of a desynchronization:
  233. @example
  234. amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
  235. [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
  236. [a2] [b2] amerge
  237. @end example
  238. @section earwax
  239. Make audio easier to listen to on headphones.
  240. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  241. so that when listened to on headphones the stereo image is moved from
  242. inside your head (standard for headphones) to outside and in front of
  243. the listener (standard for speakers).
  244. Ported from SoX.
  245. @section pan
  246. Mix channels with specific gain levels. The filter accepts the output
  247. channel layout followed by a set of channels definitions.
  248. This filter is also designed to remap efficiently the channels of an audio
  249. stream.
  250. The filter accepts parameters of the form:
  251. "@var{l}:@var{outdef}:@var{outdef}:..."
  252. @table @option
  253. @item l
  254. output channel layout or number of channels
  255. @item outdef
  256. output channel specification, of the form:
  257. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  258. @item out_name
  259. output channel to define, either a channel name (FL, FR, etc.) or a channel
  260. number (c0, c1, etc.)
  261. @item gain
  262. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  263. @item in_name
  264. input channel to use, see out_name for details; it is not possible to mix
  265. named and numbered input channels
  266. @end table
  267. If the `=' in a channel specification is replaced by `<', then the gains for
  268. that specification will be renormalized so that the total is 1, thus
  269. avoiding clipping noise.
  270. @subsection Mixing examples
  271. For example, if you want to down-mix from stereo to mono, but with a bigger
  272. factor for the left channel:
  273. @example
  274. pan=1:c0=0.9*c0+0.1*c1
  275. @end example
  276. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  277. 7-channels surround:
  278. @example
  279. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  280. @end example
  281. Note that @command{ffmpeg} integrates a default down-mix (and up-mix) system
  282. that should be preferred (see "-ac" option) unless you have very specific
  283. needs.
  284. @subsection Remapping examples
  285. The channel remapping will be effective if, and only if:
  286. @itemize
  287. @item gain coefficients are zeroes or ones,
  288. @item only one input per channel output,
  289. @end itemize
  290. If all these conditions are satisfied, the filter will notify the user ("Pure
  291. channel mapping detected"), and use an optimized and lossless method to do the
  292. remapping.
  293. For example, if you have a 5.1 source and want a stereo audio stream by
  294. dropping the extra channels:
  295. @example
  296. pan="stereo: c0=FL : c1=FR"
  297. @end example
  298. Given the same source, you can also switch front left and front right channels
  299. and keep the input channel layout:
  300. @example
  301. pan="5.1: c0=c1 : c1=c0 : c2=c2 : c3=c3 : c4=c4 : c5=c5"
  302. @end example
  303. If the input is a stereo audio stream, you can mute the front left channel (and
  304. still keep the stereo channel layout) with:
  305. @example
  306. pan="stereo:c1=c1"
  307. @end example
  308. Still with a stereo audio stream input, you can copy the right channel in both
  309. front left and right:
  310. @example
  311. pan="stereo: c0=FR : c1=FR"
  312. @end example
  313. @section silencedetect
  314. Detect silence in an audio stream.
  315. This filter logs a message when it detects that the input audio volume is less
  316. or equal to a noise tolerance value for a duration greater or equal to the
  317. minimum detected noise duration.
  318. The printed times and duration are expressed in seconds.
  319. @table @option
  320. @item duration, d
  321. Set silence duration until notification (default is 2 seconds).
  322. @item noise, n
  323. Set noise tolerance. Can be specified in dB (in case "dB" is appended to the
  324. specified value) or amplitude ratio. Default is -60dB, or 0.001.
  325. @end table
  326. Detect 5 seconds of silence with -50dB noise tolerance:
  327. @example
  328. silencedetect=n=-50dB:d=5
  329. @end example
  330. Complete example with @command{ffmpeg} to detect silence with 0.0001 noise
  331. tolerance in @file{silence.mp3}:
  332. @example
  333. ffmpeg -f lavfi -i amovie=silence.mp3,silencedetect=noise=0.0001 -f null -
  334. @end example
  335. @section volume
  336. Adjust the input audio volume.
  337. The filter accepts exactly one parameter @var{vol}, which expresses
  338. how the audio volume will be increased or decreased.
  339. Output values are clipped to the maximum value.
  340. If @var{vol} is expressed as a decimal number, the output audio
  341. volume is given by the relation:
  342. @example
  343. @var{output_volume} = @var{vol} * @var{input_volume}
  344. @end example
  345. If @var{vol} is expressed as a decimal number followed by the string
  346. "dB", the value represents the requested change in decibels of the
  347. input audio power, and the output audio volume is given by the
  348. relation:
  349. @example
  350. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  351. @end example
  352. Otherwise @var{vol} is considered an expression and its evaluated
  353. value is used for computing the output audio volume according to the
  354. first relation.
  355. Default value for @var{vol} is 1.0.
  356. @subsection Examples
  357. @itemize
  358. @item
  359. Half the input audio volume:
  360. @example
  361. volume=0.5
  362. @end example
  363. The above example is equivalent to:
  364. @example
  365. volume=1/2
  366. @end example
  367. @item
  368. Decrease input audio power by 12 decibels:
  369. @example
  370. volume=-12dB
  371. @end example
  372. @end itemize
  373. @c man end AUDIO FILTERS
  374. @chapter Audio Sources
  375. @c man begin AUDIO SOURCES
  376. Below is a description of the currently available audio sources.
  377. @section abuffer
  378. Buffer audio frames, and make them available to the filter chain.
  379. This source is mainly intended for a programmatic use, in particular
  380. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  381. It accepts the following mandatory parameters:
  382. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}:@var{packing}
  383. @table @option
  384. @item sample_rate
  385. The sample rate of the incoming audio buffers.
  386. @item sample_fmt
  387. The sample format of the incoming audio buffers.
  388. Either a sample format name or its corresponging integer representation from
  389. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  390. @item channel_layout
  391. The channel layout of the incoming audio buffers.
  392. Either a channel layout name from channel_layout_map in
  393. @file{libavutil/audioconvert.c} or its corresponding integer representation
  394. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  395. @item packing
  396. Either "packed" or "planar", or their integer representation: 0 or 1
  397. respectively.
  398. @end table
  399. For example:
  400. @example
  401. abuffer=44100:s16:stereo:planar
  402. @end example
  403. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  404. Since the sample format with name "s16" corresponds to the number
  405. 1 and the "stereo" channel layout corresponds to the value 0x3, this is
  406. equivalent to:
  407. @example
  408. abuffer=44100:1:0x3:1
  409. @end example
  410. @section aevalsrc
  411. Generate an audio signal specified by an expression.
  412. This source accepts in input one or more expressions (one for each
  413. channel), which are evaluated and used to generate a corresponding
  414. audio signal.
  415. It accepts the syntax: @var{exprs}[::@var{options}].
  416. @var{exprs} is a list of expressions separated by ":", one for each
  417. separate channel. The output channel layout depends on the number of
  418. provided expressions, up to 8 channels are supported.
  419. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  420. separated by ":".
  421. The description of the accepted options follows.
  422. @table @option
  423. @item duration, d
  424. Set the minimum duration of the sourced audio. See the function
  425. @code{av_parse_time()} for the accepted format.
  426. Note that the resulting duration may be greater than the specified
  427. duration, as the generated audio is always cut at the end of a
  428. complete frame.
  429. If not specified, or the expressed duration is negative, the audio is
  430. supposed to be generated forever.
  431. @item nb_samples, n
  432. Set the number of samples per channel per each output frame,
  433. default to 1024.
  434. @item sample_rate, s
  435. Specify the sample rate, default to 44100.
  436. @end table
  437. Each expression in @var{exprs} can contain the following constants:
  438. @table @option
  439. @item n
  440. number of the evaluated sample, starting from 0
  441. @item t
  442. time of the evaluated sample expressed in seconds, starting from 0
  443. @item s
  444. sample rate
  445. @end table
  446. @subsection Examples
  447. @itemize
  448. @item
  449. Generate silence:
  450. @example
  451. aevalsrc=0
  452. @end example
  453. @item
  454. Generate a sin signal with frequency of 440 Hz, set sample rate to
  455. 8000 Hz:
  456. @example
  457. aevalsrc="sin(440*2*PI*t)::s=8000"
  458. @end example
  459. @item
  460. Generate white noise:
  461. @example
  462. aevalsrc="-2+random(0)"
  463. @end example
  464. @item
  465. Generate an amplitude modulated signal:
  466. @example
  467. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  468. @end example
  469. @item
  470. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  471. @example
  472. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  473. @end example
  474. @end itemize
  475. @section amovie
  476. Read an audio stream from a movie container.
  477. It accepts the syntax: @var{movie_name}[:@var{options}] where
  478. @var{movie_name} is the name of the resource to read (not necessarily
  479. a file but also a device or a stream accessed through some protocol),
  480. and @var{options} is an optional sequence of @var{key}=@var{value}
  481. pairs, separated by ":".
  482. The description of the accepted options follows.
  483. @table @option
  484. @item format_name, f
  485. Specify the format assumed for the movie to read, and can be either
  486. the name of a container or an input device. If not specified the
  487. format is guessed from @var{movie_name} or by probing.
  488. @item seek_point, sp
  489. Specify the seek point in seconds, the frames will be output
  490. starting from this seek point, the parameter is evaluated with
  491. @code{av_strtod} so the numerical value may be suffixed by an IS
  492. postfix. Default value is "0".
  493. @item stream_index, si
  494. Specify the index of the audio stream to read. If the value is -1,
  495. the best suited audio stream will be automatically selected. Default
  496. value is "-1".
  497. @end table
  498. @section anullsrc
  499. Null audio source, return unprocessed audio frames. It is mainly useful
  500. as a template and to be employed in analysis / debugging tools, or as
  501. the source for filters which ignore the input data (for example the sox
  502. synth filter).
  503. It accepts an optional sequence of @var{key}=@var{value} pairs,
  504. separated by ":".
  505. The description of the accepted options follows.
  506. @table @option
  507. @item sample_rate, s
  508. Specify the sample rate, and defaults to 44100.
  509. @item channel_layout, cl
  510. Specify the channel layout, and can be either an integer or a string
  511. representing a channel layout. The default value of @var{channel_layout}
  512. is "stereo".
  513. Check the channel_layout_map definition in
  514. @file{libavcodec/audioconvert.c} for the mapping between strings and
  515. channel layout values.
  516. @item nb_samples, n
  517. Set the number of samples per requested frames.
  518. @end table
  519. Follow some examples:
  520. @example
  521. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  522. anullsrc=r=48000:cl=4
  523. # same as
  524. anullsrc=r=48000:cl=mono
  525. @end example
  526. @c man end AUDIO SOURCES
  527. @chapter Audio Sinks
  528. @c man begin AUDIO SINKS
  529. Below is a description of the currently available audio sinks.
  530. @section abuffersink
  531. Buffer audio frames, and make them available to the end of filter chain.
  532. This sink is mainly intended for programmatic use, in particular
  533. through the interface defined in @file{libavfilter/buffersink.h}.
  534. It requires a pointer to an AVABufferSinkContext structure, which
  535. defines the incoming buffers' formats, to be passed as the opaque
  536. parameter to @code{avfilter_init_filter} for initialization.
  537. @section anullsink
  538. Null audio sink, do absolutely nothing with the input audio. It is
  539. mainly useful as a template and to be employed in analysis / debugging
  540. tools.
  541. @c man end AUDIO SINKS
  542. @chapter Video Filters
  543. @c man begin VIDEO FILTERS
  544. When you configure your FFmpeg build, you can disable any of the
  545. existing filters using @code{--disable-filters}.
  546. The configure output will show the video filters included in your
  547. build.
  548. Below is a description of the currently available video filters.
  549. @section ass
  550. Draw ASS (Advanced Substation Alpha) subtitles on top of input video
  551. using the libass library.
  552. To enable compilation of this filter you need to configure FFmpeg with
  553. @code{--enable-libass}.
  554. This filter accepts in input the name of the ass file to render.
  555. For example, to render the file @file{sub.ass} on top of the input
  556. video, use the command:
  557. @example
  558. ass=sub.ass
  559. @end example
  560. @section bbox
  561. Compute the bounding box for the non-black pixels in the input frame
  562. luminance plane.
  563. This filter computes the bounding box containing all the pixels with a
  564. luminance value greater than the minimum allowed value.
  565. The parameters describing the bounding box are printed on the filter
  566. log.
  567. @section blackdetect
  568. Detect video intervals that are (almost) completely black. Can be
  569. useful to detect chapter transitions, commercials, or invalid
  570. recordings. Output lines contains the time for the start, end and
  571. duration of the detected black interval expressed in seconds.
  572. In order to display the output lines, you need to set the loglevel at
  573. least to the AV_LOG_INFO value.
  574. This filter accepts a list of options in the form of
  575. @var{key}=@var{value} pairs separated by ":". A description of the
  576. accepted options follows.
  577. @table @option
  578. @item black_min_duration, d
  579. Set the minimum detected black duration expressed in seconds. It must
  580. be a non-negative floating point number.
  581. Default value is 2.0.
  582. @item picture_black_ratio_th, pic_th
  583. Set the threshold for considering a picture "black".
  584. Express the minimum value for the ratio:
  585. @example
  586. @var{nb_black_pixels} / @var{nb_pixels}
  587. @end example
  588. for which a picture is considered black.
  589. Default value is 0.98.
  590. @item pixel_black_th, pix_th
  591. Set the threshold for considering a pixel "black".
  592. The threshold expresses the maximum pixel luminance value for which a
  593. pixel is considered "black". The provided value is scaled according to
  594. the following equation:
  595. @example
  596. @var{absolute_threshold} = @var{luminance_minimum_value} + @var{pixel_black_th} * @var{luminance_range_size}
  597. @end example
  598. @var{luminance_range_size} and @var{luminance_minimum_value} depend on
  599. the input video format, the range is [0-255] for YUV full-range
  600. formats and [16-235] for YUV non full-range formats.
  601. Default value is 0.10.
  602. @end table
  603. The following example sets the maximum pixel threshold to the minimum
  604. value, and detects only black intervals of 2 or more seconds:
  605. @example
  606. blackdetect=d=2:pix_th=0.00
  607. @end example
  608. @section blackframe
  609. Detect frames that are (almost) completely black. Can be useful to
  610. detect chapter transitions or commercials. Output lines consist of
  611. the frame number of the detected frame, the percentage of blackness,
  612. the position in the file if known or -1 and the timestamp in seconds.
  613. In order to display the output lines, you need to set the loglevel at
  614. least to the AV_LOG_INFO value.
  615. The filter accepts the syntax:
  616. @example
  617. blackframe[=@var{amount}:[@var{threshold}]]
  618. @end example
  619. @var{amount} is the percentage of the pixels that have to be below the
  620. threshold, and defaults to 98.
  621. @var{threshold} is the threshold below which a pixel value is
  622. considered black, and defaults to 32.
  623. @section boxblur
  624. Apply boxblur algorithm to the input video.
  625. This filter accepts the parameters:
  626. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  627. Chroma and alpha parameters are optional, if not specified they default
  628. to the corresponding values set for @var{luma_radius} and
  629. @var{luma_power}.
  630. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  631. the radius in pixels of the box used for blurring the corresponding
  632. input plane. They are expressions, and can contain the following
  633. constants:
  634. @table @option
  635. @item w, h
  636. the input width and height in pixels
  637. @item cw, ch
  638. the input chroma image width and height in pixels
  639. @item hsub, vsub
  640. horizontal and vertical chroma subsample values. For example for the
  641. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  642. @end table
  643. The radius must be a non-negative number, and must not be greater than
  644. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  645. and of @code{min(cw,ch)/2} for the chroma planes.
  646. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  647. how many times the boxblur filter is applied to the corresponding
  648. plane.
  649. Some examples follow:
  650. @itemize
  651. @item
  652. Apply a boxblur filter with luma, chroma, and alpha radius
  653. set to 2:
  654. @example
  655. boxblur=2:1
  656. @end example
  657. @item
  658. Set luma radius to 2, alpha and chroma radius to 0
  659. @example
  660. boxblur=2:1:0:0:0:0
  661. @end example
  662. @item
  663. Set luma and chroma radius to a fraction of the video dimension
  664. @example
  665. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  666. @end example
  667. @end itemize
  668. @section copy
  669. Copy the input source unchanged to the output. Mainly useful for
  670. testing purposes.
  671. @section crop
  672. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}:@var{keep_aspect}
  673. The @var{keep_aspect} parameter is optional, if specified and set to a
  674. non-zero value will force the output display aspect ratio to be the
  675. same of the input, by changing the output sample aspect ratio.
  676. The @var{out_w}, @var{out_h}, @var{x}, @var{y} parameters are
  677. expressions containing the following constants:
  678. @table @option
  679. @item x, y
  680. the computed values for @var{x} and @var{y}. They are evaluated for
  681. each new frame.
  682. @item in_w, in_h
  683. the input width and height
  684. @item iw, ih
  685. same as @var{in_w} and @var{in_h}
  686. @item out_w, out_h
  687. the output (cropped) width and height
  688. @item ow, oh
  689. same as @var{out_w} and @var{out_h}
  690. @item a
  691. same as @var{iw} / @var{ih}
  692. @item sar
  693. input sample aspect ratio
  694. @item dar
  695. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  696. @item hsub, vsub
  697. horizontal and vertical chroma subsample values. For example for the
  698. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  699. @item n
  700. the number of input frame, starting from 0
  701. @item pos
  702. the position in the file of the input frame, NAN if unknown
  703. @item t
  704. timestamp expressed in seconds, NAN if the input timestamp is unknown
  705. @end table
  706. The @var{out_w} and @var{out_h} parameters specify the expressions for
  707. the width and height of the output (cropped) video. They are
  708. evaluated just at the configuration of the filter.
  709. The default value of @var{out_w} is "in_w", and the default value of
  710. @var{out_h} is "in_h".
  711. The expression for @var{out_w} may depend on the value of @var{out_h},
  712. and the expression for @var{out_h} may depend on @var{out_w}, but they
  713. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  714. evaluated after @var{out_w} and @var{out_h}.
  715. The @var{x} and @var{y} parameters specify the expressions for the
  716. position of the top-left corner of the output (non-cropped) area. They
  717. are evaluated for each frame. If the evaluated value is not valid, it
  718. is approximated to the nearest valid value.
  719. The default value of @var{x} is "(in_w-out_w)/2", and the default
  720. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  721. the center of the input image.
  722. The expression for @var{x} may depend on @var{y}, and the expression
  723. for @var{y} may depend on @var{x}.
  724. Follow some examples:
  725. @example
  726. # crop the central input area with size 100x100
  727. crop=100:100
  728. # crop the central input area with size 2/3 of the input video
  729. "crop=2/3*in_w:2/3*in_h"
  730. # crop the input video central square
  731. crop=in_h
  732. # delimit the rectangle with the top-left corner placed at position
  733. # 100:100 and the right-bottom corner corresponding to the right-bottom
  734. # corner of the input image.
  735. crop=in_w-100:in_h-100:100:100
  736. # crop 10 pixels from the left and right borders, and 20 pixels from
  737. # the top and bottom borders
  738. "crop=in_w-2*10:in_h-2*20"
  739. # keep only the bottom right quarter of the input image
  740. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  741. # crop height for getting Greek harmony
  742. "crop=in_w:1/PHI*in_w"
  743. # trembling effect
  744. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  745. # erratic camera effect depending on timestamp
  746. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  747. # set x depending on the value of y
  748. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  749. @end example
  750. @section cropdetect
  751. Auto-detect crop size.
  752. Calculate necessary cropping parameters and prints the recommended
  753. parameters through the logging system. The detected dimensions
  754. correspond to the non-black area of the input video.
  755. It accepts the syntax:
  756. @example
  757. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  758. @end example
  759. @table @option
  760. @item limit
  761. Threshold, which can be optionally specified from nothing (0) to
  762. everything (255), defaults to 24.
  763. @item round
  764. Value which the width/height should be divisible by, defaults to
  765. 16. The offset is automatically adjusted to center the video. Use 2 to
  766. get only even dimensions (needed for 4:2:2 video). 16 is best when
  767. encoding to most video codecs.
  768. @item reset
  769. Counter that determines after how many frames cropdetect will reset
  770. the previously detected largest video area and start over to detect
  771. the current optimal crop area. Defaults to 0.
  772. This can be useful when channel logos distort the video area. 0
  773. indicates never reset and return the largest area encountered during
  774. playback.
  775. @end table
  776. @section delogo
  777. Suppress a TV station logo by a simple interpolation of the surrounding
  778. pixels. Just set a rectangle covering the logo and watch it disappear
  779. (and sometimes something even uglier appear - your mileage may vary).
  780. The filter accepts parameters as a string of the form
  781. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  782. @var{key}=@var{value} pairs, separated by ":".
  783. The description of the accepted parameters follows.
  784. @table @option
  785. @item x, y
  786. Specify the top left corner coordinates of the logo. They must be
  787. specified.
  788. @item w, h
  789. Specify the width and height of the logo to clear. They must be
  790. specified.
  791. @item band, t
  792. Specify the thickness of the fuzzy edge of the rectangle (added to
  793. @var{w} and @var{h}). The default value is 4.
  794. @item show
  795. When set to 1, a green rectangle is drawn on the screen to simplify
  796. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  797. @var{band} is set to 4. The default value is 0.
  798. @end table
  799. Some examples follow.
  800. @itemize
  801. @item
  802. Set a rectangle covering the area with top left corner coordinates 0,0
  803. and size 100x77, setting a band of size 10:
  804. @example
  805. delogo=0:0:100:77:10
  806. @end example
  807. @item
  808. As the previous example, but use named options:
  809. @example
  810. delogo=x=0:y=0:w=100:h=77:band=10
  811. @end example
  812. @end itemize
  813. @section deshake
  814. Attempt to fix small changes in horizontal and/or vertical shift. This
  815. filter helps remove camera shake from hand-holding a camera, bumping a
  816. tripod, moving on a vehicle, etc.
  817. The filter accepts parameters as a string of the form
  818. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  819. A description of the accepted parameters follows.
  820. @table @option
  821. @item x, y, w, h
  822. Specify a rectangular area where to limit the search for motion
  823. vectors.
  824. If desired the search for motion vectors can be limited to a
  825. rectangular area of the frame defined by its top left corner, width
  826. and height. These parameters have the same meaning as the drawbox
  827. filter which can be used to visualise the position of the bounding
  828. box.
  829. This is useful when simultaneous movement of subjects within the frame
  830. might be confused for camera motion by the motion vector search.
  831. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  832. then the full frame is used. This allows later options to be set
  833. without specifying the bounding box for the motion vector search.
  834. Default - search the whole frame.
  835. @item rx, ry
  836. Specify the maximum extent of movement in x and y directions in the
  837. range 0-64 pixels. Default 16.
  838. @item edge
  839. Specify how to generate pixels to fill blanks at the edge of the
  840. frame. An integer from 0 to 3 as follows:
  841. @table @option
  842. @item 0
  843. Fill zeroes at blank locations
  844. @item 1
  845. Original image at blank locations
  846. @item 2
  847. Extruded edge value at blank locations
  848. @item 3
  849. Mirrored edge at blank locations
  850. @end table
  851. The default setting is mirror edge at blank locations.
  852. @item blocksize
  853. Specify the blocksize to use for motion search. Range 4-128 pixels,
  854. default 8.
  855. @item contrast
  856. Specify the contrast threshold for blocks. Only blocks with more than
  857. the specified contrast (difference between darkest and lightest
  858. pixels) will be considered. Range 1-255, default 125.
  859. @item search
  860. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  861. search. Default - exhaustive search.
  862. @item filename
  863. If set then a detailed log of the motion search is written to the
  864. specified file.
  865. @end table
  866. @section drawbox
  867. Draw a colored box on the input image.
  868. It accepts the syntax:
  869. @example
  870. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  871. @end example
  872. @table @option
  873. @item x, y
  874. Specify the top left corner coordinates of the box. Default to 0.
  875. @item width, height
  876. Specify the width and height of the box, if 0 they are interpreted as
  877. the input width and height. Default to 0.
  878. @item color
  879. Specify the color of the box to write, it can be the name of a color
  880. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  881. @end table
  882. Follow some examples:
  883. @example
  884. # draw a black box around the edge of the input image
  885. drawbox
  886. # draw a box with color red and an opacity of 50%
  887. drawbox=10:20:200:60:red@@0.5"
  888. @end example
  889. @section drawtext
  890. Draw text string or text from specified file on top of video using the
  891. libfreetype library.
  892. To enable compilation of this filter you need to configure FFmpeg with
  893. @code{--enable-libfreetype}.
  894. The filter also recognizes strftime() sequences in the provided text
  895. and expands them accordingly. Check the documentation of strftime().
  896. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  897. separated by ":".
  898. The description of the accepted parameters follows.
  899. @table @option
  900. @item fontfile
  901. The font file to be used for drawing text. Path must be included.
  902. This parameter is mandatory.
  903. @item text
  904. The text string to be drawn. The text must be a sequence of UTF-8
  905. encoded characters.
  906. This parameter is mandatory if no file is specified with the parameter
  907. @var{textfile}.
  908. @item textfile
  909. A text file containing text to be drawn. The text must be a sequence
  910. of UTF-8 encoded characters.
  911. This parameter is mandatory if no text string is specified with the
  912. parameter @var{text}.
  913. If both text and textfile are specified, an error is thrown.
  914. @item x, y
  915. The expressions which specify the offsets where text will be drawn
  916. within the video frame. They are relative to the top/left border of the
  917. output image.
  918. The default value of @var{x} and @var{y} is "0".
  919. See below for the list of accepted constants.
  920. @item fontsize
  921. The font size to be used for drawing text.
  922. The default value of @var{fontsize} is 16.
  923. @item fontcolor
  924. The color to be used for drawing fonts.
  925. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  926. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  927. The default value of @var{fontcolor} is "black".
  928. @item boxcolor
  929. The color to be used for drawing box around text.
  930. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  931. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  932. The default value of @var{boxcolor} is "white".
  933. @item box
  934. Used to draw a box around text using background color.
  935. Value should be either 1 (enable) or 0 (disable).
  936. The default value of @var{box} is 0.
  937. @item shadowx, shadowy
  938. The x and y offsets for the text shadow position with respect to the
  939. position of the text. They can be either positive or negative
  940. values. Default value for both is "0".
  941. @item shadowcolor
  942. The color to be used for drawing a shadow behind the drawn text. It
  943. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  944. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  945. The default value of @var{shadowcolor} is "black".
  946. @item ft_load_flags
  947. Flags to be used for loading the fonts.
  948. The flags map the corresponding flags supported by libfreetype, and are
  949. a combination of the following values:
  950. @table @var
  951. @item default
  952. @item no_scale
  953. @item no_hinting
  954. @item render
  955. @item no_bitmap
  956. @item vertical_layout
  957. @item force_autohint
  958. @item crop_bitmap
  959. @item pedantic
  960. @item ignore_global_advance_width
  961. @item no_recurse
  962. @item ignore_transform
  963. @item monochrome
  964. @item linear_design
  965. @item no_autohint
  966. @item end table
  967. @end table
  968. Default value is "render".
  969. For more information consult the documentation for the FT_LOAD_*
  970. libfreetype flags.
  971. @item tabsize
  972. The size in number of spaces to use for rendering the tab.
  973. Default value is 4.
  974. @item fix_bounds
  975. If true, check and fix text coords to avoid clipping.
  976. @end table
  977. The parameters for @var{x} and @var{y} are expressions containing the
  978. following constants:
  979. @table @option
  980. @item W, H
  981. the input width and height
  982. @item tw, text_w
  983. the width of the rendered text
  984. @item th, text_h
  985. the height of the rendered text
  986. @item lh, line_h
  987. the height of each text line
  988. @item sar
  989. input sample aspect ratio
  990. @item dar
  991. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  992. @item hsub, vsub
  993. horizontal and vertical chroma subsample values. For example for the
  994. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  995. @item max_glyph_w
  996. maximum glyph width, that is the maximum width for all the glyphs
  997. contained in the rendered text
  998. @item max_glyph_h
  999. maximum glyph height, that is the maximum height for all the glyphs
  1000. contained in the rendered text, it is equivalent to @var{ascent} -
  1001. @var{descent}.
  1002. @item max_glyph_a, ascent
  1003. the maximum distance from the baseline to the highest/upper grid
  1004. coordinate used to place a glyph outline point, for all the rendered
  1005. glyphs.
  1006. It is a positive value, due to the grid's orientation with the Y axis
  1007. upwards.
  1008. @item max_glyph_d, descent
  1009. the maximum distance from the baseline to the lowest grid coordinate
  1010. used to place a glyph outline point, for all the rendered glyphs.
  1011. This is a negative value, due to the grid's orientation, with the Y axis
  1012. upwards.
  1013. @item n
  1014. the number of input frame, starting from 0
  1015. @item t
  1016. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1017. @item timecode
  1018. initial timecode representation in "hh:mm:ss[:;.]ff" format. It can be used
  1019. with or without text parameter. @var{rate} option must be specified.
  1020. @item r, rate
  1021. frame rate (timecode only)
  1022. @end table
  1023. Some examples follow.
  1024. @itemize
  1025. @item
  1026. Draw "Test Text" with font FreeSerif, using the default values for the
  1027. optional parameters.
  1028. @example
  1029. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  1030. @end example
  1031. @item
  1032. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  1033. and y=50 (counting from the top-left corner of the screen), text is
  1034. yellow with a red box around it. Both the text and the box have an
  1035. opacity of 20%.
  1036. @example
  1037. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  1038. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  1039. @end example
  1040. Note that the double quotes are not necessary if spaces are not used
  1041. within the parameter list.
  1042. @item
  1043. Show the text at the center of the video frame:
  1044. @example
  1045. drawtext=fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  1046. @end example
  1047. @item
  1048. Show a text line sliding from right to left in the last row of the video
  1049. frame. The file @file{LONG_LINE} is assumed to contain a single line
  1050. with no newlines.
  1051. @example
  1052. drawtext=fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t
  1053. @end example
  1054. @item
  1055. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  1056. @example
  1057. drawtext=fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  1058. @end example
  1059. @item
  1060. Draw a single green letter "g", at the center of the input video.
  1061. The glyph baseline is placed at half screen height.
  1062. @example
  1063. drawtext=fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent
  1064. @end example
  1065. @end itemize
  1066. For more information about libfreetype, check:
  1067. @url{http://www.freetype.org/}.
  1068. @section fade
  1069. Apply fade-in/out effect to input video.
  1070. It accepts the parameters:
  1071. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  1072. @var{type} specifies if the effect type, can be either "in" for
  1073. fade-in, or "out" for a fade-out effect.
  1074. @var{start_frame} specifies the number of the start frame for starting
  1075. to apply the fade effect.
  1076. @var{nb_frames} specifies the number of frames for which the fade
  1077. effect has to last. At the end of the fade-in effect the output video
  1078. will have the same intensity as the input video, at the end of the
  1079. fade-out transition the output video will be completely black.
  1080. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  1081. separated by ":". The description of the accepted options follows.
  1082. @table @option
  1083. @item type, t
  1084. See @var{type}.
  1085. @item start_frame, s
  1086. See @var{start_frame}.
  1087. @item nb_frames, n
  1088. See @var{nb_frames}.
  1089. @item alpha
  1090. If set to 1, fade only alpha channel, if one exists on the input.
  1091. Default value is 0.
  1092. @end table
  1093. A few usage examples follow, usable too as test scenarios.
  1094. @example
  1095. # fade in first 30 frames of video
  1096. fade=in:0:30
  1097. # fade out last 45 frames of a 200-frame video
  1098. fade=out:155:45
  1099. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  1100. fade=in:0:25, fade=out:975:25
  1101. # make first 5 frames black, then fade in from frame 5-24
  1102. fade=in:5:20
  1103. # fade in alpha over first 25 frames of video
  1104. fade=in:0:25:alpha=1
  1105. @end example
  1106. @section fieldorder
  1107. Transform the field order of the input video.
  1108. It accepts one parameter which specifies the required field order that
  1109. the input interlaced video will be transformed to. The parameter can
  1110. assume one of the following values:
  1111. @table @option
  1112. @item 0 or bff
  1113. output bottom field first
  1114. @item 1 or tff
  1115. output top field first
  1116. @end table
  1117. Default value is "tff".
  1118. Transformation is achieved by shifting the picture content up or down
  1119. by one line, and filling the remaining line with appropriate picture content.
  1120. This method is consistent with most broadcast field order converters.
  1121. If the input video is not flagged as being interlaced, or it is already
  1122. flagged as being of the required output field order then this filter does
  1123. not alter the incoming video.
  1124. This filter is very useful when converting to or from PAL DV material,
  1125. which is bottom field first.
  1126. For example:
  1127. @example
  1128. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  1129. @end example
  1130. @section fifo
  1131. Buffer input images and send them when they are requested.
  1132. This filter is mainly useful when auto-inserted by the libavfilter
  1133. framework.
  1134. The filter does not take parameters.
  1135. @section format
  1136. Convert the input video to one of the specified pixel formats.
  1137. Libavfilter will try to pick one that is supported for the input to
  1138. the next filter.
  1139. The filter accepts a list of pixel format names, separated by ":",
  1140. for example "yuv420p:monow:rgb24".
  1141. Some examples follow:
  1142. @example
  1143. # convert the input video to the format "yuv420p"
  1144. format=yuv420p
  1145. # convert the input video to any of the formats in the list
  1146. format=yuv420p:yuv444p:yuv410p
  1147. @end example
  1148. @anchor{frei0r}
  1149. @section frei0r
  1150. Apply a frei0r effect to the input video.
  1151. To enable compilation of this filter you need to install the frei0r
  1152. header and configure FFmpeg with @code{--enable-frei0r}.
  1153. The filter supports the syntax:
  1154. @example
  1155. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  1156. @end example
  1157. @var{filter_name} is the name to the frei0r effect to load. If the
  1158. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  1159. is searched in each one of the directories specified by the colon
  1160. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  1161. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  1162. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  1163. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  1164. for the frei0r effect.
  1165. A frei0r effect parameter can be a boolean (whose values are specified
  1166. with "y" and "n"), a double, a color (specified by the syntax
  1167. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  1168. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1169. description), a position (specified by the syntax @var{X}/@var{Y},
  1170. @var{X} and @var{Y} being float numbers) and a string.
  1171. The number and kind of parameters depend on the loaded effect. If an
  1172. effect parameter is not specified the default value is set.
  1173. Some examples follow:
  1174. @example
  1175. # apply the distort0r effect, set the first two double parameters
  1176. frei0r=distort0r:0.5:0.01
  1177. # apply the colordistance effect, takes a color as first parameter
  1178. frei0r=colordistance:0.2/0.3/0.4
  1179. frei0r=colordistance:violet
  1180. frei0r=colordistance:0x112233
  1181. # apply the perspective effect, specify the top left and top right
  1182. # image positions
  1183. frei0r=perspective:0.2/0.2:0.8/0.2
  1184. @end example
  1185. For more information see:
  1186. @url{http://piksel.org/frei0r}
  1187. @section gradfun
  1188. Fix the banding artifacts that are sometimes introduced into nearly flat
  1189. regions by truncation to 8bit color depth.
  1190. Interpolate the gradients that should go where the bands are, and
  1191. dither them.
  1192. This filter is designed for playback only. Do not use it prior to
  1193. lossy compression, because compression tends to lose the dither and
  1194. bring back the bands.
  1195. The filter takes two optional parameters, separated by ':':
  1196. @var{strength}:@var{radius}
  1197. @var{strength} is the maximum amount by which the filter will change
  1198. any one pixel. Also the threshold for detecting nearly flat
  1199. regions. Acceptable values range from .51 to 255, default value is
  1200. 1.2, out-of-range values will be clipped to the valid range.
  1201. @var{radius} is the neighborhood to fit the gradient to. A larger
  1202. radius makes for smoother gradients, but also prevents the filter from
  1203. modifying the pixels near detailed regions. Acceptable values are
  1204. 8-32, default value is 16, out-of-range values will be clipped to the
  1205. valid range.
  1206. @example
  1207. # default parameters
  1208. gradfun=1.2:16
  1209. # omitting radius
  1210. gradfun=1.2
  1211. @end example
  1212. @section hflip
  1213. Flip the input video horizontally.
  1214. For example to horizontally flip the input video with @command{ffmpeg}:
  1215. @example
  1216. ffmpeg -i in.avi -vf "hflip" out.avi
  1217. @end example
  1218. @section hqdn3d
  1219. High precision/quality 3d denoise filter. This filter aims to reduce
  1220. image noise producing smooth images and making still images really
  1221. still. It should enhance compressibility.
  1222. It accepts the following optional parameters:
  1223. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1224. @table @option
  1225. @item luma_spatial
  1226. a non-negative float number which specifies spatial luma strength,
  1227. defaults to 4.0
  1228. @item chroma_spatial
  1229. a non-negative float number which specifies spatial chroma strength,
  1230. defaults to 3.0*@var{luma_spatial}/4.0
  1231. @item luma_tmp
  1232. a float number which specifies luma temporal strength, defaults to
  1233. 6.0*@var{luma_spatial}/4.0
  1234. @item chroma_tmp
  1235. a float number which specifies chroma temporal strength, defaults to
  1236. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1237. @end table
  1238. @section lut, lutrgb, lutyuv
  1239. Compute a look-up table for binding each pixel component input value
  1240. to an output value, and apply it to input video.
  1241. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1242. to an RGB input video.
  1243. These filters accept in input a ":"-separated list of options, which
  1244. specify the expressions used for computing the lookup table for the
  1245. corresponding pixel component values.
  1246. The @var{lut} filter requires either YUV or RGB pixel formats in
  1247. input, and accepts the options:
  1248. @table @option
  1249. @item c0
  1250. first pixel component
  1251. @item c1
  1252. second pixel component
  1253. @item c2
  1254. third pixel component
  1255. @item c3
  1256. fourth pixel component, corresponds to the alpha component
  1257. @end table
  1258. The exact component associated to each option depends on the format in
  1259. input.
  1260. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1261. accepts the options:
  1262. @table @option
  1263. @item r
  1264. red component
  1265. @item g
  1266. green component
  1267. @item b
  1268. blue component
  1269. @item a
  1270. alpha component
  1271. @end table
  1272. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1273. accepts the options:
  1274. @table @option
  1275. @item y
  1276. Y/luminance component
  1277. @item u
  1278. U/Cb component
  1279. @item v
  1280. V/Cr component
  1281. @item a
  1282. alpha component
  1283. @end table
  1284. The expressions can contain the following constants and functions:
  1285. @table @option
  1286. @item w, h
  1287. the input width and height
  1288. @item val
  1289. input value for the pixel component
  1290. @item clipval
  1291. the input value clipped in the @var{minval}-@var{maxval} range
  1292. @item maxval
  1293. maximum value for the pixel component
  1294. @item minval
  1295. minimum value for the pixel component
  1296. @item negval
  1297. the negated value for the pixel component value clipped in the
  1298. @var{minval}-@var{maxval} range , it corresponds to the expression
  1299. "maxval-clipval+minval"
  1300. @item clip(val)
  1301. the computed value in @var{val} clipped in the
  1302. @var{minval}-@var{maxval} range
  1303. @item gammaval(gamma)
  1304. the computed gamma correction value of the pixel component value
  1305. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1306. expression
  1307. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1308. @end table
  1309. All expressions default to "val".
  1310. Some examples follow:
  1311. @example
  1312. # negate input video
  1313. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1314. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1315. # the above is the same as
  1316. lutrgb="r=negval:g=negval:b=negval"
  1317. lutyuv="y=negval:u=negval:v=negval"
  1318. # negate luminance
  1319. lutyuv=y=negval
  1320. # remove chroma components, turns the video into a graytone image
  1321. lutyuv="u=128:v=128"
  1322. # apply a luma burning effect
  1323. lutyuv="y=2*val"
  1324. # remove green and blue components
  1325. lutrgb="g=0:b=0"
  1326. # set a constant alpha channel value on input
  1327. format=rgba,lutrgb=a="maxval-minval/2"
  1328. # correct luminance gamma by a 0.5 factor
  1329. lutyuv=y=gammaval(0.5)
  1330. @end example
  1331. @section mp
  1332. Apply an MPlayer filter to the input video.
  1333. This filter provides a wrapper around most of the filters of
  1334. MPlayer/MEncoder.
  1335. This wrapper is considered experimental. Some of the wrapped filters
  1336. may not work properly and we may drop support for them, as they will
  1337. be implemented natively into FFmpeg. Thus you should avoid
  1338. depending on them when writing portable scripts.
  1339. The filters accepts the parameters:
  1340. @var{filter_name}[:=]@var{filter_params}
  1341. @var{filter_name} is the name of a supported MPlayer filter,
  1342. @var{filter_params} is a string containing the parameters accepted by
  1343. the named filter.
  1344. The list of the currently supported filters follows:
  1345. @table @var
  1346. @item 2xsai
  1347. @item decimate
  1348. @item denoise3d
  1349. @item detc
  1350. @item dint
  1351. @item divtc
  1352. @item down3dright
  1353. @item dsize
  1354. @item eq2
  1355. @item eq
  1356. @item field
  1357. @item fil
  1358. @item fixpts
  1359. @item framestep
  1360. @item fspp
  1361. @item geq
  1362. @item harddup
  1363. @item hqdn3d
  1364. @item hue
  1365. @item il
  1366. @item ilpack
  1367. @item ivtc
  1368. @item kerndeint
  1369. @item mcdeint
  1370. @item mirror
  1371. @item noise
  1372. @item ow
  1373. @item palette
  1374. @item perspective
  1375. @item phase
  1376. @item pp7
  1377. @item pullup
  1378. @item qp
  1379. @item rectangle
  1380. @item remove-logo
  1381. @item rotate
  1382. @item sab
  1383. @item screenshot
  1384. @item smartblur
  1385. @item softpulldown
  1386. @item softskip
  1387. @item spp
  1388. @item telecine
  1389. @item tile
  1390. @item tinterlace
  1391. @item unsharp
  1392. @item uspp
  1393. @item yuvcsp
  1394. @item yvu9
  1395. @end table
  1396. The parameter syntax and behavior for the listed filters are the same
  1397. of the corresponding MPlayer filters. For detailed instructions check
  1398. the "VIDEO FILTERS" section in the MPlayer manual.
  1399. Some examples follow:
  1400. @example
  1401. # remove a logo by interpolating the surrounding pixels
  1402. mp=delogo=200:200:80:20:1
  1403. # adjust gamma, brightness, contrast
  1404. mp=eq2=1.0:2:0.5
  1405. # tweak hue and saturation
  1406. mp=hue=100:-10
  1407. @end example
  1408. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1409. @section negate
  1410. Negate input video.
  1411. This filter accepts an integer in input, if non-zero it negates the
  1412. alpha component (if available). The default value in input is 0.
  1413. @section noformat
  1414. Force libavfilter not to use any of the specified pixel formats for the
  1415. input to the next filter.
  1416. The filter accepts a list of pixel format names, separated by ":",
  1417. for example "yuv420p:monow:rgb24".
  1418. Some examples follow:
  1419. @example
  1420. # force libavfilter to use a format different from "yuv420p" for the
  1421. # input to the vflip filter
  1422. noformat=yuv420p,vflip
  1423. # convert the input video to any of the formats not contained in the list
  1424. noformat=yuv420p:yuv444p:yuv410p
  1425. @end example
  1426. @section null
  1427. Pass the video source unchanged to the output.
  1428. @section ocv
  1429. Apply video transform using libopencv.
  1430. To enable this filter install libopencv library and headers and
  1431. configure FFmpeg with @code{--enable-libopencv}.
  1432. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1433. @var{filter_name} is the name of the libopencv filter to apply.
  1434. @var{filter_params} specifies the parameters to pass to the libopencv
  1435. filter. If not specified the default values are assumed.
  1436. Refer to the official libopencv documentation for more precise
  1437. information:
  1438. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1439. Follows the list of supported libopencv filters.
  1440. @anchor{dilate}
  1441. @subsection dilate
  1442. Dilate an image by using a specific structuring element.
  1443. This filter corresponds to the libopencv function @code{cvDilate}.
  1444. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1445. @var{struct_el} represents a structuring element, and has the syntax:
  1446. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1447. @var{cols} and @var{rows} represent the number of columns and rows of
  1448. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1449. point, and @var{shape} the shape for the structuring element, and
  1450. can be one of the values "rect", "cross", "ellipse", "custom".
  1451. If the value for @var{shape} is "custom", it must be followed by a
  1452. string of the form "=@var{filename}". The file with name
  1453. @var{filename} is assumed to represent a binary image, with each
  1454. printable character corresponding to a bright pixel. When a custom
  1455. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1456. or columns and rows of the read file are assumed instead.
  1457. The default value for @var{struct_el} is "3x3+0x0/rect".
  1458. @var{nb_iterations} specifies the number of times the transform is
  1459. applied to the image, and defaults to 1.
  1460. Follow some example:
  1461. @example
  1462. # use the default values
  1463. ocv=dilate
  1464. # dilate using a structuring element with a 5x5 cross, iterate two times
  1465. ocv=dilate=5x5+2x2/cross:2
  1466. # read the shape from the file diamond.shape, iterate two times
  1467. # the file diamond.shape may contain a pattern of characters like this:
  1468. # *
  1469. # ***
  1470. # *****
  1471. # ***
  1472. # *
  1473. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1474. ocv=0x0+2x2/custom=diamond.shape:2
  1475. @end example
  1476. @subsection erode
  1477. Erode an image by using a specific structuring element.
  1478. This filter corresponds to the libopencv function @code{cvErode}.
  1479. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1480. with the same syntax and semantics as the @ref{dilate} filter.
  1481. @subsection smooth
  1482. Smooth the input video.
  1483. The filter takes the following parameters:
  1484. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1485. @var{type} is the type of smooth filter to apply, and can be one of
  1486. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1487. "bilateral". The default value is "gaussian".
  1488. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1489. parameters whose meanings depend on smooth type. @var{param1} and
  1490. @var{param2} accept integer positive values or 0, @var{param3} and
  1491. @var{param4} accept float values.
  1492. The default value for @var{param1} is 3, the default value for the
  1493. other parameters is 0.
  1494. These parameters correspond to the parameters assigned to the
  1495. libopencv function @code{cvSmooth}.
  1496. @anchor{overlay}
  1497. @section overlay
  1498. Overlay one video on top of another.
  1499. It takes two inputs and one output, the first input is the "main"
  1500. video on which the second input is overlayed.
  1501. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  1502. @var{x} is the x coordinate of the overlayed video on the main video,
  1503. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  1504. the following parameters:
  1505. @table @option
  1506. @item main_w, main_h
  1507. main input width and height
  1508. @item W, H
  1509. same as @var{main_w} and @var{main_h}
  1510. @item overlay_w, overlay_h
  1511. overlay input width and height
  1512. @item w, h
  1513. same as @var{overlay_w} and @var{overlay_h}
  1514. @end table
  1515. @var{options} is an optional list of @var{key}=@var{value} pairs,
  1516. separated by ":".
  1517. The description of the accepted options follows.
  1518. @table @option
  1519. @item rgb
  1520. If set to 1, force the filter to accept inputs in the RGB
  1521. color space. Default value is 0.
  1522. @end table
  1523. Be aware that frames are taken from each input video in timestamp
  1524. order, hence, if their initial timestamps differ, it is a a good idea
  1525. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1526. have them begin in the same zero timestamp, as it does the example for
  1527. the @var{movie} filter.
  1528. Follow some examples:
  1529. @example
  1530. # draw the overlay at 10 pixels from the bottom right
  1531. # corner of the main video.
  1532. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1533. # insert a transparent PNG logo in the bottom left corner of the input
  1534. movie=logo.png [logo];
  1535. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  1536. # insert 2 different transparent PNG logos (second logo on bottom
  1537. # right corner):
  1538. movie=logo1.png [logo1];
  1539. movie=logo2.png [logo2];
  1540. [in][logo1] overlay=10:H-h-10 [in+logo1];
  1541. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  1542. # add a transparent color layer on top of the main video,
  1543. # WxH specifies the size of the main input to the overlay filter
  1544. color=red@.3:WxH [over]; [in][over] overlay [out]
  1545. @end example
  1546. You can chain together more overlays but the efficiency of such
  1547. approach is yet to be tested.
  1548. @section pad
  1549. Add paddings to the input image, and places the original input at the
  1550. given coordinates @var{x}, @var{y}.
  1551. It accepts the following parameters:
  1552. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1553. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1554. expressions containing the following constants:
  1555. @table @option
  1556. @item in_w, in_h
  1557. the input video width and height
  1558. @item iw, ih
  1559. same as @var{in_w} and @var{in_h}
  1560. @item out_w, out_h
  1561. the output width and height, that is the size of the padded area as
  1562. specified by the @var{width} and @var{height} expressions
  1563. @item ow, oh
  1564. same as @var{out_w} and @var{out_h}
  1565. @item x, y
  1566. x and y offsets as specified by the @var{x} and @var{y}
  1567. expressions, or NAN if not yet specified
  1568. @item a
  1569. same as @var{iw} / @var{ih}
  1570. @item sar
  1571. input sample aspect ratio
  1572. @item dar
  1573. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1574. @item hsub, vsub
  1575. horizontal and vertical chroma subsample values. For example for the
  1576. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1577. @end table
  1578. Follows the description of the accepted parameters.
  1579. @table @option
  1580. @item width, height
  1581. Specify the size of the output image with the paddings added. If the
  1582. value for @var{width} or @var{height} is 0, the corresponding input size
  1583. is used for the output.
  1584. The @var{width} expression can reference the value set by the
  1585. @var{height} expression, and vice versa.
  1586. The default value of @var{width} and @var{height} is 0.
  1587. @item x, y
  1588. Specify the offsets where to place the input image in the padded area
  1589. with respect to the top/left border of the output image.
  1590. The @var{x} expression can reference the value set by the @var{y}
  1591. expression, and vice versa.
  1592. The default value of @var{x} and @var{y} is 0.
  1593. @item color
  1594. Specify the color of the padded area, it can be the name of a color
  1595. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1596. The default value of @var{color} is "black".
  1597. @end table
  1598. Some examples follow:
  1599. @example
  1600. # Add paddings with color "violet" to the input video. Output video
  1601. # size is 640x480, the top-left corner of the input video is placed at
  1602. # column 0, row 40.
  1603. pad=640:480:0:40:violet
  1604. # pad the input to get an output with dimensions increased bt 3/2,
  1605. # and put the input video at the center of the padded area
  1606. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1607. # pad the input to get a squared output with size equal to the maximum
  1608. # value between the input width and height, and put the input video at
  1609. # the center of the padded area
  1610. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1611. # pad the input to get a final w/h ratio of 16:9
  1612. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1613. # for anamorphic video, in order to set the output display aspect ratio,
  1614. # it is necessary to use sar in the expression, according to the relation:
  1615. # (ih * X / ih) * sar = output_dar
  1616. # X = output_dar / sar
  1617. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  1618. # double output size and put the input video in the bottom-right
  1619. # corner of the output padded area
  1620. pad="2*iw:2*ih:ow-iw:oh-ih"
  1621. @end example
  1622. @section pixdesctest
  1623. Pixel format descriptor test filter, mainly useful for internal
  1624. testing. The output video should be equal to the input video.
  1625. For example:
  1626. @example
  1627. format=monow, pixdesctest
  1628. @end example
  1629. can be used to test the monowhite pixel format descriptor definition.
  1630. @section scale
  1631. Scale the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  1632. The scale filter forces the output display aspect ratio to be the same
  1633. of the input, by changing the output sample aspect ratio.
  1634. The parameters @var{width} and @var{height} are expressions containing
  1635. the following constants:
  1636. @table @option
  1637. @item in_w, in_h
  1638. the input width and height
  1639. @item iw, ih
  1640. same as @var{in_w} and @var{in_h}
  1641. @item out_w, out_h
  1642. the output (cropped) width and height
  1643. @item ow, oh
  1644. same as @var{out_w} and @var{out_h}
  1645. @item a
  1646. same as @var{iw} / @var{ih}
  1647. @item sar
  1648. input sample aspect ratio
  1649. @item dar
  1650. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1651. @item hsub, vsub
  1652. horizontal and vertical chroma subsample values. For example for the
  1653. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1654. @end table
  1655. If the input image format is different from the format requested by
  1656. the next filter, the scale filter will convert the input to the
  1657. requested format.
  1658. If the value for @var{width} or @var{height} is 0, the respective input
  1659. size is used for the output.
  1660. If the value for @var{width} or @var{height} is -1, the scale filter will
  1661. use, for the respective output size, a value that maintains the aspect
  1662. ratio of the input image.
  1663. The default value of @var{width} and @var{height} is 0.
  1664. Valid values for the optional parameter @var{interl} are:
  1665. @table @option
  1666. @item 1
  1667. force interlaced aware scaling
  1668. @item -1
  1669. select interlaced aware scaling depending on whether the source frames
  1670. are flagged as interlaced or not
  1671. @end table
  1672. Some examples follow:
  1673. @example
  1674. # scale the input video to a size of 200x100.
  1675. scale=200:100
  1676. # scale the input to 2x
  1677. scale=2*iw:2*ih
  1678. # the above is the same as
  1679. scale=2*in_w:2*in_h
  1680. # scale the input to half size
  1681. scale=iw/2:ih/2
  1682. # increase the width, and set the height to the same size
  1683. scale=3/2*iw:ow
  1684. # seek for Greek harmony
  1685. scale=iw:1/PHI*iw
  1686. scale=ih*PHI:ih
  1687. # increase the height, and set the width to 3/2 of the height
  1688. scale=3/2*oh:3/5*ih
  1689. # increase the size, but make the size a multiple of the chroma
  1690. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1691. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1692. scale='min(500\, iw*3/2):-1'
  1693. @end example
  1694. @section select
  1695. Select frames to pass in output.
  1696. It accepts in input an expression, which is evaluated for each input
  1697. frame. If the expression is evaluated to a non-zero value, the frame
  1698. is selected and passed to the output, otherwise it is discarded.
  1699. The expression can contain the following constants:
  1700. @table @option
  1701. @item n
  1702. the sequential number of the filtered frame, starting from 0
  1703. @item selected_n
  1704. the sequential number of the selected frame, starting from 0
  1705. @item prev_selected_n
  1706. the sequential number of the last selected frame, NAN if undefined
  1707. @item TB
  1708. timebase of the input timestamps
  1709. @item pts
  1710. the PTS (Presentation TimeStamp) of the filtered video frame,
  1711. expressed in @var{TB} units, NAN if undefined
  1712. @item t
  1713. the PTS (Presentation TimeStamp) of the filtered video frame,
  1714. expressed in seconds, NAN if undefined
  1715. @item prev_pts
  1716. the PTS of the previously filtered video frame, NAN if undefined
  1717. @item prev_selected_pts
  1718. the PTS of the last previously filtered video frame, NAN if undefined
  1719. @item prev_selected_t
  1720. the PTS of the last previously selected video frame, NAN if undefined
  1721. @item start_pts
  1722. the PTS of the first video frame in the video, NAN if undefined
  1723. @item start_t
  1724. the time of the first video frame in the video, NAN if undefined
  1725. @item pict_type
  1726. the type of the filtered frame, can assume one of the following
  1727. values:
  1728. @table @option
  1729. @item I
  1730. @item P
  1731. @item B
  1732. @item S
  1733. @item SI
  1734. @item SP
  1735. @item BI
  1736. @end table
  1737. @item interlace_type
  1738. the frame interlace type, can assume one of the following values:
  1739. @table @option
  1740. @item PROGRESSIVE
  1741. the frame is progressive (not interlaced)
  1742. @item TOPFIRST
  1743. the frame is top-field-first
  1744. @item BOTTOMFIRST
  1745. the frame is bottom-field-first
  1746. @end table
  1747. @item key
  1748. 1 if the filtered frame is a key-frame, 0 otherwise
  1749. @item pos
  1750. the position in the file of the filtered frame, -1 if the information
  1751. is not available (e.g. for synthetic video)
  1752. @end table
  1753. The default value of the select expression is "1".
  1754. Some examples follow:
  1755. @example
  1756. # select all frames in input
  1757. select
  1758. # the above is the same as:
  1759. select=1
  1760. # skip all frames:
  1761. select=0
  1762. # select only I-frames
  1763. select='eq(pict_type\,I)'
  1764. # select one frame every 100
  1765. select='not(mod(n\,100))'
  1766. # select only frames contained in the 10-20 time interval
  1767. select='gte(t\,10)*lte(t\,20)'
  1768. # select only I frames contained in the 10-20 time interval
  1769. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1770. # select frames with a minimum distance of 10 seconds
  1771. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1772. @end example
  1773. @section setdar, setsar
  1774. The @code{setdar} filter sets the Display Aspect Ratio for the filter
  1775. output video.
  1776. This is done by changing the specified Sample (aka Pixel) Aspect
  1777. Ratio, according to the following equation:
  1778. @example
  1779. @var{DAR} = @var{HORIZONTAL_RESOLUTION} / @var{VERTICAL_RESOLUTION} * @var{SAR}
  1780. @end example
  1781. Keep in mind that the @code{setdar} filter does not modify the pixel
  1782. dimensions of the video frame. Also the display aspect ratio set by
  1783. this filter may be changed by later filters in the filterchain,
  1784. e.g. in case of scaling or if another "setdar" or a "setsar" filter is
  1785. applied.
  1786. The @code{setsar} filter sets the Sample (aka Pixel) Aspect Ratio for
  1787. the filter output video.
  1788. Note that as a consequence of the application of this filter, the
  1789. output display aspect ratio will change according to the equation
  1790. above.
  1791. Keep in mind that the sample aspect ratio set by the @code{setsar}
  1792. filter may be changed by later filters in the filterchain, e.g. if
  1793. another "setsar" or a "setdar" filter is applied.
  1794. The @code{setdar} and @code{setsar} filters accept a parameter string
  1795. which represents the wanted aspect ratio. The parameter can
  1796. be a floating point number string, an expression, or a string of the form
  1797. @var{num}:@var{den}, where @var{num} and @var{den} are the numerator
  1798. and denominator of the aspect ratio. If the parameter is not
  1799. specified, it is assumed the value "0:1".
  1800. For example to change the display aspect ratio to 16:9, specify:
  1801. @example
  1802. setdar=16:9
  1803. @end example
  1804. The example above is equivalent to:
  1805. @example
  1806. setdar=1.77777
  1807. @end example
  1808. To change the sample aspect ratio to 10:11, specify:
  1809. @example
  1810. setsar=10:11
  1811. @end example
  1812. @section setfield
  1813. Force field for the output video frame.
  1814. The @code{setfield} filter marks the interlace type field for the
  1815. output frames. It does not change the input frame, but only sets the
  1816. corresponding property, which affects how the frame is treated by
  1817. followig filters (e.g. @code{fieldorder} or @code{yadif}).
  1818. It accepts a parameter representing an integer or a string, which can
  1819. assume the following values:
  1820. @table @samp
  1821. @item -1, auto
  1822. Keep the same field property.
  1823. @item 0, bff
  1824. Mark the frame as bottom-field-first.
  1825. @item 1, tff
  1826. Mark the frame as top-field-first.
  1827. @end table
  1828. @section setpts
  1829. Change the PTS (presentation timestamp) of the input video frames.
  1830. Accept in input an expression evaluated through the eval API, which
  1831. can contain the following constants:
  1832. @table @option
  1833. @item PTS
  1834. the presentation timestamp in input
  1835. @item N
  1836. the count of the input frame, starting from 0.
  1837. @item STARTPTS
  1838. the PTS of the first video frame
  1839. @item INTERLACED
  1840. tell if the current frame is interlaced
  1841. @item POS
  1842. original position in the file of the frame, or undefined if undefined
  1843. for the current frame
  1844. @item PREV_INPTS
  1845. previous input PTS
  1846. @item PREV_OUTPTS
  1847. previous output PTS
  1848. @end table
  1849. Some examples follow:
  1850. @example
  1851. # start counting PTS from zero
  1852. setpts=PTS-STARTPTS
  1853. # fast motion
  1854. setpts=0.5*PTS
  1855. # slow motion
  1856. setpts=2.0*PTS
  1857. # fixed rate 25 fps
  1858. setpts=N/(25*TB)
  1859. # fixed rate 25 fps with some jitter
  1860. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1861. @end example
  1862. @section settb
  1863. Set the timebase to use for the output frames timestamps.
  1864. It is mainly useful for testing timebase configuration.
  1865. It accepts in input an arithmetic expression representing a rational.
  1866. The expression can contain the constants "AVTB" (the
  1867. default timebase), and "intb" (the input timebase).
  1868. The default value for the input is "intb".
  1869. Follow some examples.
  1870. @example
  1871. # set the timebase to 1/25
  1872. settb=1/25
  1873. # set the timebase to 1/10
  1874. settb=0.1
  1875. #set the timebase to 1001/1000
  1876. settb=1+0.001
  1877. #set the timebase to 2*intb
  1878. settb=2*intb
  1879. #set the default timebase value
  1880. settb=AVTB
  1881. @end example
  1882. @section showinfo
  1883. Show a line containing various information for each input video frame.
  1884. The input video is not modified.
  1885. The shown line contains a sequence of key/value pairs of the form
  1886. @var{key}:@var{value}.
  1887. A description of each shown parameter follows:
  1888. @table @option
  1889. @item n
  1890. sequential number of the input frame, starting from 0
  1891. @item pts
  1892. Presentation TimeStamp of the input frame, expressed as a number of
  1893. time base units. The time base unit depends on the filter input pad.
  1894. @item pts_time
  1895. Presentation TimeStamp of the input frame, expressed as a number of
  1896. seconds
  1897. @item pos
  1898. position of the frame in the input stream, -1 if this information in
  1899. unavailable and/or meaningless (for example in case of synthetic video)
  1900. @item fmt
  1901. pixel format name
  1902. @item sar
  1903. sample aspect ratio of the input frame, expressed in the form
  1904. @var{num}/@var{den}
  1905. @item s
  1906. size of the input frame, expressed in the form
  1907. @var{width}x@var{height}
  1908. @item i
  1909. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1910. for bottom field first)
  1911. @item iskey
  1912. 1 if the frame is a key frame, 0 otherwise
  1913. @item type
  1914. picture type of the input frame ("I" for an I-frame, "P" for a
  1915. P-frame, "B" for a B-frame, "?" for unknown type).
  1916. Check also the documentation of the @code{AVPictureType} enum and of
  1917. the @code{av_get_picture_type_char} function defined in
  1918. @file{libavutil/avutil.h}.
  1919. @item checksum
  1920. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  1921. @item plane_checksum
  1922. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  1923. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1924. @end table
  1925. @section slicify
  1926. Pass the images of input video on to next video filter as multiple
  1927. slices.
  1928. @example
  1929. ffmpeg -i in.avi -vf "slicify=32" out.avi
  1930. @end example
  1931. The filter accepts the slice height as parameter. If the parameter is
  1932. not specified it will use the default value of 16.
  1933. Adding this in the beginning of filter chains should make filtering
  1934. faster due to better use of the memory cache.
  1935. @section split
  1936. Pass on the input video to two outputs. Both outputs are identical to
  1937. the input video.
  1938. For example:
  1939. @example
  1940. [in] split [splitout1][splitout2];
  1941. [splitout1] crop=100:100:0:0 [cropout];
  1942. [splitout2] pad=200:200:100:100 [padout];
  1943. @end example
  1944. will create two separate outputs from the same input, one cropped and
  1945. one padded.
  1946. @section swapuv
  1947. Swap U & V plane.
  1948. @section thumbnail
  1949. Select the most representative frame in a given sequence of consecutive frames.
  1950. It accepts as argument the frames batch size to analyze (default @var{N}=100);
  1951. in a set of @var{N} frames, the filter will pick one of them, and then handle
  1952. the next batch of @var{N} frames until the end.
  1953. Since the filter keeps track of the whole frames sequence, a bigger @var{N}
  1954. value will result in a higher memory usage, so a high value is not recommended.
  1955. The following example extract one picture each 50 frames:
  1956. @example
  1957. thumbnail=50
  1958. @end example
  1959. Complete example of a thumbnail creation with @command{ffmpeg}:
  1960. @example
  1961. ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png
  1962. @end example
  1963. @section tinterlace
  1964. Perform various types of temporal field interlacing.
  1965. Frames are counted starting from 1, so the first input frame is
  1966. considered odd.
  1967. This filter accepts a single parameter specifying the mode. Available
  1968. modes are:
  1969. @table @samp
  1970. @item 0
  1971. Move odd frames into the upper field, even into the lower field,
  1972. generating a double height frame at half framerate.
  1973. @item 1
  1974. Only output even frames, odd frames are dropped, generating a frame with
  1975. unchanged height at half framerate.
  1976. @item 2
  1977. Only output odd frames, even frames are dropped, generating a frame with
  1978. unchanged height at half framerate.
  1979. @item 3
  1980. Expand each frame to full height, but pad alternate lines with black,
  1981. generating a frame with double height at the same input framerate.
  1982. @item 4
  1983. Interleave the upper field from odd frames with the lower field from
  1984. even frames, generating a frame with unchanged height at half framerate.
  1985. @item 5
  1986. Interleave the lower field from odd frames with the upper field from
  1987. even frames, generating a frame with unchanged height at half framerate.
  1988. @end table
  1989. Default mode is 0.
  1990. @section transpose
  1991. Transpose rows with columns in the input video and optionally flip it.
  1992. It accepts a parameter representing an integer, which can assume the
  1993. values:
  1994. @table @samp
  1995. @item 0
  1996. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1997. @example
  1998. L.R L.l
  1999. . . -> . .
  2000. l.r R.r
  2001. @end example
  2002. @item 1
  2003. Rotate by 90 degrees clockwise, that is:
  2004. @example
  2005. L.R l.L
  2006. . . -> . .
  2007. l.r r.R
  2008. @end example
  2009. @item 2
  2010. Rotate by 90 degrees counterclockwise, that is:
  2011. @example
  2012. L.R R.r
  2013. . . -> . .
  2014. l.r L.l
  2015. @end example
  2016. @item 3
  2017. Rotate by 90 degrees clockwise and vertically flip, that is:
  2018. @example
  2019. L.R r.R
  2020. . . -> . .
  2021. l.r l.L
  2022. @end example
  2023. @end table
  2024. @section unsharp
  2025. Sharpen or blur the input video.
  2026. It accepts the following parameters:
  2027. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  2028. Negative values for the amount will blur the input video, while positive
  2029. values will sharpen. All parameters are optional and default to the
  2030. equivalent of the string '5:5:1.0:5:5:0.0'.
  2031. @table @option
  2032. @item luma_msize_x
  2033. Set the luma matrix horizontal size. It can be an integer between 3
  2034. and 13, default value is 5.
  2035. @item luma_msize_y
  2036. Set the luma matrix vertical size. It can be an integer between 3
  2037. and 13, default value is 5.
  2038. @item luma_amount
  2039. Set the luma effect strength. It can be a float number between -2.0
  2040. and 5.0, default value is 1.0.
  2041. @item chroma_msize_x
  2042. Set the chroma matrix horizontal size. It can be an integer between 3
  2043. and 13, default value is 5.
  2044. @item chroma_msize_y
  2045. Set the chroma matrix vertical size. It can be an integer between 3
  2046. and 13, default value is 5.
  2047. @item chroma_amount
  2048. Set the chroma effect strength. It can be a float number between -2.0
  2049. and 5.0, default value is 0.0.
  2050. @end table
  2051. @example
  2052. # Strong luma sharpen effect parameters
  2053. unsharp=7:7:2.5
  2054. # Strong blur of both luma and chroma parameters
  2055. unsharp=7:7:-2:7:7:-2
  2056. # Use the default values with @command{ffmpeg}
  2057. ffmpeg -i in.avi -vf "unsharp" out.mp4
  2058. @end example
  2059. @section vflip
  2060. Flip the input video vertically.
  2061. @example
  2062. ffmpeg -i in.avi -vf "vflip" out.avi
  2063. @end example
  2064. @section yadif
  2065. Deinterlace the input video ("yadif" means "yet another deinterlacing
  2066. filter").
  2067. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  2068. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  2069. following values:
  2070. @table @option
  2071. @item 0
  2072. output 1 frame for each frame
  2073. @item 1
  2074. output 1 frame for each field
  2075. @item 2
  2076. like 0 but skips spatial interlacing check
  2077. @item 3
  2078. like 1 but skips spatial interlacing check
  2079. @end table
  2080. Default value is 0.
  2081. @var{parity} specifies the picture field parity assumed for the input
  2082. interlaced video, accepts one of the following values:
  2083. @table @option
  2084. @item 0
  2085. assume top field first
  2086. @item 1
  2087. assume bottom field first
  2088. @item -1
  2089. enable automatic detection
  2090. @end table
  2091. Default value is -1.
  2092. If interlacing is unknown or decoder does not export this information,
  2093. top field first will be assumed.
  2094. @var{auto} specifies if deinterlacer should trust the interlaced flag
  2095. and only deinterlace frames marked as interlaced
  2096. @table @option
  2097. @item 0
  2098. deinterlace all frames
  2099. @item 1
  2100. only deinterlace frames marked as interlaced
  2101. @end table
  2102. Default value is 0.
  2103. @c man end VIDEO FILTERS
  2104. @chapter Video Sources
  2105. @c man begin VIDEO SOURCES
  2106. Below is a description of the currently available video sources.
  2107. @section buffer
  2108. Buffer video frames, and make them available to the filter chain.
  2109. This source is mainly intended for a programmatic use, in particular
  2110. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  2111. It accepts the following parameters:
  2112. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}:@var{scale_params}
  2113. All the parameters but @var{scale_params} need to be explicitly
  2114. defined.
  2115. Follows the list of the accepted parameters.
  2116. @table @option
  2117. @item width, height
  2118. Specify the width and height of the buffered video frames.
  2119. @item pix_fmt_string
  2120. A string representing the pixel format of the buffered video frames.
  2121. It may be a number corresponding to a pixel format, or a pixel format
  2122. name.
  2123. @item timebase_num, timebase_den
  2124. Specify numerator and denomitor of the timebase assumed by the
  2125. timestamps of the buffered frames.
  2126. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  2127. Specify numerator and denominator of the sample aspect ratio assumed
  2128. by the video frames.
  2129. @item scale_params
  2130. Specify the optional parameters to be used for the scale filter which
  2131. is automatically inserted when an input change is detected in the
  2132. input size or format.
  2133. @end table
  2134. For example:
  2135. @example
  2136. buffer=320:240:yuv410p:1:24:1:1
  2137. @end example
  2138. will instruct the source to accept video frames with size 320x240 and
  2139. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  2140. square pixels (1:1 sample aspect ratio).
  2141. Since the pixel format with name "yuv410p" corresponds to the number 6
  2142. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  2143. this example corresponds to:
  2144. @example
  2145. buffer=320:240:6:1:24:1:1
  2146. @end example
  2147. @section cellauto
  2148. Create a pattern generated by an elementary cellular automaton.
  2149. The initial state of the cellular automaton can be defined through the
  2150. @option{filename}, and @option{pattern} options. If such options are
  2151. not specified an initial state is created randomly.
  2152. At each new frame a new row in the video is filled with the result of
  2153. the cellular automaton next generation. The behavior when the whole
  2154. frame is filled is defined by the @option{scroll} option.
  2155. This source accepts a list of options in the form of
  2156. @var{key}=@var{value} pairs separated by ":". A description of the
  2157. accepted options follows.
  2158. @table @option
  2159. @item filename, f
  2160. Read the initial cellular automaton state, i.e. the starting row, from
  2161. the specified file.
  2162. In the file, each non-whitespace character is considered an alive
  2163. cell, a newline will terminate the row, and further characters in the
  2164. file will be ignored.
  2165. @item pattern, p
  2166. Read the initial cellular automaton state, i.e. the starting row, from
  2167. the specified string.
  2168. Each non-whitespace character in the string is considered an alive
  2169. cell, a newline will terminate the row, and further characters in the
  2170. string will be ignored.
  2171. @item rate, r
  2172. Set the video rate, that is the number of frames generated per second.
  2173. Default is 25.
  2174. @item random_fill_ratio, ratio
  2175. Set the random fill ratio for the initial cellular automaton row. It
  2176. is a floating point number value ranging from 0 to 1, defaults to
  2177. 1/PHI.
  2178. This option is ignored when a file or a pattern is specified.
  2179. @item random_seed, seed
  2180. Set the seed for filling randomly the initial row, must be an integer
  2181. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2182. set to -1, the filter will try to use a good random seed on a best
  2183. effort basis.
  2184. @item rule
  2185. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  2186. Default value is 110.
  2187. @item size, s
  2188. Set the size of the output video.
  2189. If @option{filename} or @option{pattern} is specified, the size is set
  2190. by default to the width of the specified initial state row, and the
  2191. height is set to @var{width} * PHI.
  2192. If @option{size} is set, it must contain the width of the specified
  2193. pattern string, and the specified pattern will be centered in the
  2194. larger row.
  2195. If a filename or a pattern string is not specified, the size value
  2196. defaults to "320x518" (used for a randomly generated initial state).
  2197. @item scroll
  2198. If set to 1, scroll the output upward when all the rows in the output
  2199. have been already filled. If set to 0, the new generated row will be
  2200. written over the top row just after the bottom row is filled.
  2201. Defaults to 1.
  2202. @item start_full, full
  2203. If set to 1, completely fill the output with generated rows before
  2204. outputting the first frame.
  2205. This is the default behavior, for disabling set the value to 0.
  2206. @item stitch
  2207. If set to 1, stitch the left and right row edges together.
  2208. This is the default behavior, for disabling set the value to 0.
  2209. @end table
  2210. @subsection Examples
  2211. @itemize
  2212. @item
  2213. Read the initial state from @file{pattern}, and specify an output of
  2214. size 200x400.
  2215. @example
  2216. cellauto=f=pattern:s=200x400
  2217. @end example
  2218. @item
  2219. Generate a random initial row with a width of 200 cells, with a fill
  2220. ratio of 2/3:
  2221. @example
  2222. cellauto=ratio=2/3:s=200x200
  2223. @end example
  2224. @item
  2225. Create a pattern generated by rule 18 starting by a single alive cell
  2226. centered on an initial row with width 100:
  2227. @example
  2228. cellauto=p=@@:s=100x400:full=0:rule=18
  2229. @end example
  2230. @item
  2231. Specify a more elaborated initial pattern:
  2232. @example
  2233. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  2234. @end example
  2235. @end itemize
  2236. @section color
  2237. Provide an uniformly colored input.
  2238. It accepts the following parameters:
  2239. @var{color}:@var{frame_size}:@var{frame_rate}
  2240. Follows the description of the accepted parameters.
  2241. @table @option
  2242. @item color
  2243. Specify the color of the source. It can be the name of a color (case
  2244. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  2245. alpha specifier. The default value is "black".
  2246. @item frame_size
  2247. Specify the size of the sourced video, it may be a string of the form
  2248. @var{width}x@var{height}, or the name of a size abbreviation. The
  2249. default value is "320x240".
  2250. @item frame_rate
  2251. Specify the frame rate of the sourced video, as the number of frames
  2252. generated per second. It has to be a string in the format
  2253. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2254. number or a valid video frame rate abbreviation. The default value is
  2255. "25".
  2256. @end table
  2257. For example the following graph description will generate a red source
  2258. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  2259. frames per second, which will be overlayed over the source connected
  2260. to the pad with identifier "in".
  2261. @example
  2262. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  2263. @end example
  2264. @section movie
  2265. Read a video stream from a movie container.
  2266. It accepts the syntax: @var{movie_name}[:@var{options}] where
  2267. @var{movie_name} is the name of the resource to read (not necessarily
  2268. a file but also a device or a stream accessed through some protocol),
  2269. and @var{options} is an optional sequence of @var{key}=@var{value}
  2270. pairs, separated by ":".
  2271. The description of the accepted options follows.
  2272. @table @option
  2273. @item format_name, f
  2274. Specifies the format assumed for the movie to read, and can be either
  2275. the name of a container or an input device. If not specified the
  2276. format is guessed from @var{movie_name} or by probing.
  2277. @item seek_point, sp
  2278. Specifies the seek point in seconds, the frames will be output
  2279. starting from this seek point, the parameter is evaluated with
  2280. @code{av_strtod} so the numerical value may be suffixed by an IS
  2281. postfix. Default value is "0".
  2282. @item stream_index, si
  2283. Specifies the index of the video stream to read. If the value is -1,
  2284. the best suited video stream will be automatically selected. Default
  2285. value is "-1".
  2286. @end table
  2287. This filter allows to overlay a second video on top of main input of
  2288. a filtergraph as shown in this graph:
  2289. @example
  2290. input -----------> deltapts0 --> overlay --> output
  2291. ^
  2292. |
  2293. movie --> scale--> deltapts1 -------+
  2294. @end example
  2295. Some examples follow:
  2296. @example
  2297. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  2298. # on top of the input labelled as "in".
  2299. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2300. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2301. # read from a video4linux2 device, and overlay it on top of the input
  2302. # labelled as "in"
  2303. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2304. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2305. @end example
  2306. @section mptestsrc
  2307. Generate various test patterns, as generated by the MPlayer test filter.
  2308. The size of the generated video is fixed, and is 256x256.
  2309. This source is useful in particular for testing encoding features.
  2310. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  2311. separated by ":". The description of the accepted options follows.
  2312. @table @option
  2313. @item rate, r
  2314. Specify the frame rate of the sourced video, as the number of frames
  2315. generated per second. It has to be a string in the format
  2316. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2317. number or a valid video frame rate abbreviation. The default value is
  2318. "25".
  2319. @item duration, d
  2320. Set the video duration of the sourced video. The accepted syntax is:
  2321. @example
  2322. [-]HH[:MM[:SS[.m...]]]
  2323. [-]S+[.m...]
  2324. @end example
  2325. See also the function @code{av_parse_time()}.
  2326. If not specified, or the expressed duration is negative, the video is
  2327. supposed to be generated forever.
  2328. @item test, t
  2329. Set the number or the name of the test to perform. Supported tests are:
  2330. @table @option
  2331. @item dc_luma
  2332. @item dc_chroma
  2333. @item freq_luma
  2334. @item freq_chroma
  2335. @item amp_luma
  2336. @item amp_chroma
  2337. @item cbp
  2338. @item mv
  2339. @item ring1
  2340. @item ring2
  2341. @item all
  2342. @end table
  2343. Default value is "all", which will cycle through the list of all tests.
  2344. @end table
  2345. For example the following:
  2346. @example
  2347. testsrc=t=dc_luma
  2348. @end example
  2349. will generate a "dc_luma" test pattern.
  2350. @section frei0r_src
  2351. Provide a frei0r source.
  2352. To enable compilation of this filter you need to install the frei0r
  2353. header and configure FFmpeg with @code{--enable-frei0r}.
  2354. The source supports the syntax:
  2355. @example
  2356. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  2357. @end example
  2358. @var{size} is the size of the video to generate, may be a string of the
  2359. form @var{width}x@var{height} or a frame size abbreviation.
  2360. @var{rate} is the rate of the video to generate, may be a string of
  2361. the form @var{num}/@var{den} or a frame rate abbreviation.
  2362. @var{src_name} is the name to the frei0r source to load. For more
  2363. information regarding frei0r and how to set the parameters read the
  2364. section @ref{frei0r} in the description of the video filters.
  2365. Some examples follow:
  2366. @example
  2367. # generate a frei0r partik0l source with size 200x200 and frame rate 10
  2368. # which is overlayed on the overlay filter main input
  2369. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  2370. @end example
  2371. @section life
  2372. Generate a life pattern.
  2373. This source is based on a generalization of John Conway's life game.
  2374. The sourced input represents a life grid, each pixel represents a cell
  2375. which can be in one of two possible states, alive or dead. Every cell
  2376. interacts with its eight neighbours, which are the cells that are
  2377. horizontally, vertically, or diagonally adjacent.
  2378. At each interaction the grid evolves according to the adopted rule,
  2379. which specifies the number of neighbor alive cells which will make a
  2380. cell stay alive or born. The @option{rule} option allows to specify
  2381. the rule to adopt.
  2382. This source accepts a list of options in the form of
  2383. @var{key}=@var{value} pairs separated by ":". A description of the
  2384. accepted options follows.
  2385. @table @option
  2386. @item filename, f
  2387. Set the file from which to read the initial grid state. In the file,
  2388. each non-whitespace character is considered an alive cell, and newline
  2389. is used to delimit the end of each row.
  2390. If this option is not specified, the initial grid is generated
  2391. randomly.
  2392. @item rate, r
  2393. Set the video rate, that is the number of frames generated per second.
  2394. Default is 25.
  2395. @item random_fill_ratio, ratio
  2396. Set the random fill ratio for the initial random grid. It is a
  2397. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  2398. It is ignored when a file is specified.
  2399. @item random_seed, seed
  2400. Set the seed for filling the initial random grid, must be an integer
  2401. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2402. set to -1, the filter will try to use a good random seed on a best
  2403. effort basis.
  2404. @item rule
  2405. Set the life rule.
  2406. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  2407. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  2408. @var{NS} specifies the number of alive neighbor cells which make a
  2409. live cell stay alive, and @var{NB} the number of alive neighbor cells
  2410. which make a dead cell to become alive (i.e. to "born").
  2411. "s" and "b" can be used in place of "S" and "B", respectively.
  2412. Alternatively a rule can be specified by an 18-bits integer. The 9
  2413. high order bits are used to encode the next cell state if it is alive
  2414. for each number of neighbor alive cells, the low order bits specify
  2415. the rule for "borning" new cells. Higher order bits encode for an
  2416. higher number of neighbor cells.
  2417. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  2418. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  2419. Default value is "S23/B3", which is the original Conway's game of life
  2420. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  2421. cells, and will born a new cell if there are three alive cells around
  2422. a dead cell.
  2423. @item size, s
  2424. Set the size of the output video.
  2425. If @option{filename} is specified, the size is set by default to the
  2426. same size of the input file. If @option{size} is set, it must contain
  2427. the size specified in the input file, and the initial grid defined in
  2428. that file is centered in the larger resulting area.
  2429. If a filename is not specified, the size value defaults to "320x240"
  2430. (used for a randomly generated initial grid).
  2431. @item stitch
  2432. If set to 1, stitch the left and right grid edges together, and the
  2433. top and bottom edges also. Defaults to 1.
  2434. @item mold
  2435. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  2436. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  2437. value from 0 to 255.
  2438. @item life_color
  2439. Set the color of living (or new born) cells.
  2440. @item death_color
  2441. Set the color of dead cells. If @option{mold} is set, this is the first color
  2442. used to represent a dead cell.
  2443. @item mold_color
  2444. Set mold color, for definitely dead and moldy cells.
  2445. @end table
  2446. @subsection Examples
  2447. @itemize
  2448. @item
  2449. Read a grid from @file{pattern}, and center it on a grid of size
  2450. 300x300 pixels:
  2451. @example
  2452. life=f=pattern:s=300x300
  2453. @end example
  2454. @item
  2455. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  2456. @example
  2457. life=ratio=2/3:s=200x200
  2458. @end example
  2459. @item
  2460. Specify a custom rule for evolving a randomly generated grid:
  2461. @example
  2462. life=rule=S14/B34
  2463. @end example
  2464. @item
  2465. Full example with slow death effect (mold) using @command{ffplay}:
  2466. @example
  2467. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  2468. @end example
  2469. @end itemize
  2470. @section nullsrc, rgbtestsrc, testsrc
  2471. The @code{nullsrc} source returns unprocessed video frames. It is
  2472. mainly useful to be employed in analysis / debugging tools, or as the
  2473. source for filters which ignore the input data.
  2474. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  2475. detecting RGB vs BGR issues. You should see a red, green and blue
  2476. stripe from top to bottom.
  2477. The @code{testsrc} source generates a test video pattern, showing a
  2478. color pattern, a scrolling gradient and a timestamp. This is mainly
  2479. intended for testing purposes.
  2480. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  2481. separated by ":". The description of the accepted options follows.
  2482. @table @option
  2483. @item size, s
  2484. Specify the size of the sourced video, it may be a string of the form
  2485. @var{width}x@var{height}, or the name of a size abbreviation. The
  2486. default value is "320x240".
  2487. @item rate, r
  2488. Specify the frame rate of the sourced video, as the number of frames
  2489. generated per second. It has to be a string in the format
  2490. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2491. number or a valid video frame rate abbreviation. The default value is
  2492. "25".
  2493. @item sar
  2494. Set the sample aspect ratio of the sourced video.
  2495. @item duration, d
  2496. Set the video duration of the sourced video. The accepted syntax is:
  2497. @example
  2498. [-]HH[:MM[:SS[.m...]]]
  2499. [-]S+[.m...]
  2500. @end example
  2501. See also the function @code{av_parse_time()}.
  2502. If not specified, or the expressed duration is negative, the video is
  2503. supposed to be generated forever.
  2504. @item decimals, n
  2505. Set the number of decimals to show in the timestamp, only used in the
  2506. @code{testsrc} source.
  2507. The displayed timestamp value will correspond to the original
  2508. timestamp value multiplied by the power of 10 of the specified
  2509. value. Default value is 0.
  2510. @end table
  2511. For example the following:
  2512. @example
  2513. testsrc=duration=5.3:size=qcif:rate=10
  2514. @end example
  2515. will generate a video with a duration of 5.3 seconds, with size
  2516. 176x144 and a frame rate of 10 frames per second.
  2517. If the input content is to be ignored, @code{nullsrc} can be used. The
  2518. following command generates noise in the luminance plane by employing
  2519. the @code{mp=geq} filter:
  2520. @example
  2521. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  2522. @end example
  2523. @c man end VIDEO SOURCES
  2524. @chapter Video Sinks
  2525. @c man begin VIDEO SINKS
  2526. Below is a description of the currently available video sinks.
  2527. @section buffersink
  2528. Buffer video frames, and make them available to the end of the filter
  2529. graph.
  2530. This sink is mainly intended for a programmatic use, in particular
  2531. through the interface defined in @file{libavfilter/buffersink.h}.
  2532. It does not require a string parameter in input, but you need to
  2533. specify a pointer to a list of supported pixel formats terminated by
  2534. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  2535. when initializing this sink.
  2536. @section nullsink
  2537. Null video sink, do absolutely nothing with the input video. It is
  2538. mainly useful as a template and to be employed in analysis / debugging
  2539. tools.
  2540. @c man end VIDEO SINKS