You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1162 lines
37KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  21. * the algorithm used
  22. */
  23. /**
  24. * @file huffyuv.c
  25. * huffyuv codec for libavcodec.
  26. */
  27. #include "common.h"
  28. #include "avcodec.h"
  29. #include "dsputil.h"
  30. #ifndef INT64_MAX
  31. #define INT64_MAX 9223372036854775807LL
  32. #endif
  33. #define VLC_BITS 11
  34. typedef enum Predictor{
  35. LEFT= 0,
  36. PLANE,
  37. MEDIAN,
  38. } Predictor;
  39. typedef struct HYuvContext{
  40. AVCodecContext *avctx;
  41. Predictor predictor;
  42. GetBitContext gb;
  43. PutBitContext pb;
  44. int interlaced;
  45. int decorrelate;
  46. int bitstream_bpp;
  47. int version;
  48. int yuy2; //use yuy2 instead of 422P
  49. int bgr32; //use bgr32 instead of bgr24
  50. int width, height;
  51. int flags;
  52. int picture_number;
  53. int last_slice_end;
  54. uint8_t __align8 temp[3][2500];
  55. uint64_t stats[3][256];
  56. uint8_t len[3][256];
  57. uint32_t bits[3][256];
  58. VLC vlc[3];
  59. AVFrame picture;
  60. uint8_t __align8 bitstream_buffer[1024*1024*3]; //FIXME dynamic alloc or some other solution
  61. DSPContext dsp;
  62. }HYuvContext;
  63. static const unsigned char classic_shift_luma[] = {
  64. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  65. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  66. 69,68, 0
  67. };
  68. static const unsigned char classic_shift_chroma[] = {
  69. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  70. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  71. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  72. };
  73. static const unsigned char classic_add_luma[256] = {
  74. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  75. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  76. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  77. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  78. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  79. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  80. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  81. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  82. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  83. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  84. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  85. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  86. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  87. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  88. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  89. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  90. };
  91. static const unsigned char classic_add_chroma[256] = {
  92. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  93. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  94. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  95. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  96. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  97. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  98. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  99. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  100. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  101. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  102. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  103. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  104. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  105. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  106. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  107. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  108. };
  109. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  110. int i;
  111. for(i=0; i<w-1; i++){
  112. acc+= src[i];
  113. dst[i]= acc;
  114. i++;
  115. acc+= src[i];
  116. dst[i]= acc;
  117. }
  118. for(; i<w; i++){
  119. acc+= src[i];
  120. dst[i]= acc;
  121. }
  122. return acc;
  123. }
  124. static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
  125. int i;
  126. uint8_t l, lt;
  127. l= *left;
  128. lt= *left_top;
  129. for(i=0; i<w; i++){
  130. l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
  131. lt= src1[i];
  132. dst[i]= l;
  133. }
  134. *left= l;
  135. *left_top= lt;
  136. }
  137. #ifdef CONFIG_ENCODERS
  138. //FIXME optimize
  139. static inline void sub_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *src2, int w, int *left, int *left_top){
  140. int i;
  141. uint8_t l, lt;
  142. l= *left;
  143. lt= *left_top;
  144. for(i=0; i<w; i++){
  145. const int pred= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF);
  146. lt= src1[i];
  147. l= src2[i];
  148. dst[i]= l - pred;
  149. }
  150. *left= l;
  151. *left_top= lt;
  152. }
  153. #endif //CONFIG_ENCODERS
  154. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  155. int i;
  156. int r,g,b;
  157. r= *red;
  158. g= *green;
  159. b= *blue;
  160. for(i=0; i<w; i++){
  161. b+= src[4*i+0];
  162. g+= src[4*i+1];
  163. r+= src[4*i+2];
  164. dst[4*i+0]= b;
  165. dst[4*i+1]= g;
  166. dst[4*i+2]= r;
  167. }
  168. *red= r;
  169. *green= g;
  170. *blue= b;
  171. }
  172. #ifdef CONFIG_ENCODERS
  173. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  174. int i;
  175. if(w<32){
  176. for(i=0; i<w; i++){
  177. const int temp= src[i];
  178. dst[i]= temp - left;
  179. left= temp;
  180. }
  181. return left;
  182. }else{
  183. for(i=0; i<16; i++){
  184. const int temp= src[i];
  185. dst[i]= temp - left;
  186. left= temp;
  187. }
  188. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  189. return src[w-1];
  190. }
  191. }
  192. #endif //CONFIG_ENCODERS
  193. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  194. int i, val, repeat;
  195. for(i=0; i<256;){
  196. repeat= get_bits(gb, 3);
  197. val = get_bits(gb, 5);
  198. if(repeat==0)
  199. repeat= get_bits(gb, 8);
  200. //printf("%d %d\n", val, repeat);
  201. while (repeat--)
  202. dst[i++] = val;
  203. }
  204. }
  205. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  206. int len, index;
  207. uint32_t bits=0;
  208. for(len=32; len>0; len--){
  209. for(index=0; index<256; index++){
  210. if(len_table[index]==len)
  211. dst[index]= bits++;
  212. }
  213. if(bits & 1){
  214. fprintf(stderr, "Error generating huffman table\n");
  215. return -1;
  216. }
  217. bits >>= 1;
  218. }
  219. return 0;
  220. }
  221. #ifdef CONFIG_ENCODERS
  222. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  223. uint64_t counts[2*size];
  224. int up[2*size];
  225. int offset, i, next;
  226. for(offset=1; ; offset<<=1){
  227. for(i=0; i<size; i++){
  228. counts[i]= stats[i] + offset - 1;
  229. }
  230. for(next=size; next<size*2; next++){
  231. uint64_t min1, min2;
  232. int min1_i, min2_i;
  233. min1=min2= INT64_MAX;
  234. min1_i= min2_i=-1;
  235. for(i=0; i<next; i++){
  236. if(min2 > counts[i]){
  237. if(min1 > counts[i]){
  238. min2= min1;
  239. min2_i= min1_i;
  240. min1= counts[i];
  241. min1_i= i;
  242. }else{
  243. min2= counts[i];
  244. min2_i= i;
  245. }
  246. }
  247. }
  248. if(min2==INT64_MAX) break;
  249. counts[next]= min1 + min2;
  250. counts[min1_i]=
  251. counts[min2_i]= INT64_MAX;
  252. up[min1_i]=
  253. up[min2_i]= next;
  254. up[next]= -1;
  255. }
  256. for(i=0; i<size; i++){
  257. int len;
  258. int index=i;
  259. for(len=0; up[index] != -1; len++)
  260. index= up[index];
  261. if(len > 32) break;
  262. dst[i]= len;
  263. }
  264. if(i==size) break;
  265. }
  266. }
  267. #endif //CONFIG_ENCODERS
  268. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  269. GetBitContext gb;
  270. int i;
  271. init_get_bits(&gb, src, length*8);
  272. for(i=0; i<3; i++){
  273. read_len_table(s->len[i], &gb);
  274. if(generate_bits_table(s->bits[i], s->len[i])<0){
  275. return -1;
  276. }
  277. #if 0
  278. for(j=0; j<256; j++){
  279. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  280. }
  281. #endif
  282. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4);
  283. }
  284. return 0;
  285. }
  286. static int read_old_huffman_tables(HYuvContext *s){
  287. #if 1
  288. GetBitContext gb;
  289. int i;
  290. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  291. read_len_table(s->len[0], &gb);
  292. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  293. read_len_table(s->len[1], &gb);
  294. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  295. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  296. if(s->bitstream_bpp >= 24){
  297. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  298. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  299. }
  300. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  301. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  302. for(i=0; i<3; i++)
  303. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4);
  304. return 0;
  305. #else
  306. fprintf(stderr, "v1 huffyuv is not supported \n");
  307. return -1;
  308. #endif
  309. }
  310. static int decode_init(AVCodecContext *avctx)
  311. {
  312. HYuvContext *s = avctx->priv_data;
  313. int width, height;
  314. s->avctx= avctx;
  315. s->flags= avctx->flags;
  316. dsputil_init(&s->dsp, avctx);
  317. width= s->width= avctx->width;
  318. height= s->height= avctx->height;
  319. avctx->coded_frame= &s->picture;
  320. s->bgr32=1;
  321. assert(width && height);
  322. //if(avctx->extradata)
  323. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  324. if(avctx->extradata_size){
  325. if((avctx->bits_per_sample&7) && avctx->bits_per_sample != 12)
  326. s->version=1; // do such files exist at all?
  327. else
  328. s->version=2;
  329. }else
  330. s->version=0;
  331. if(s->version==2){
  332. int method;
  333. method= ((uint8_t*)avctx->extradata)[0];
  334. s->decorrelate= method&64 ? 1 : 0;
  335. s->predictor= method&63;
  336. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  337. if(s->bitstream_bpp==0)
  338. s->bitstream_bpp= avctx->bits_per_sample&~7;
  339. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  340. return -1;
  341. }else{
  342. switch(avctx->bits_per_sample&7){
  343. case 1:
  344. s->predictor= LEFT;
  345. s->decorrelate= 0;
  346. break;
  347. case 2:
  348. s->predictor= LEFT;
  349. s->decorrelate= 1;
  350. break;
  351. case 3:
  352. s->predictor= PLANE;
  353. s->decorrelate= avctx->bits_per_sample >= 24;
  354. break;
  355. case 4:
  356. s->predictor= MEDIAN;
  357. s->decorrelate= 0;
  358. break;
  359. default:
  360. s->predictor= LEFT; //OLD
  361. s->decorrelate= 0;
  362. break;
  363. }
  364. s->bitstream_bpp= avctx->bits_per_sample & ~7;
  365. if(read_old_huffman_tables(s) < 0)
  366. return -1;
  367. }
  368. s->interlaced= height > 288;
  369. switch(s->bitstream_bpp){
  370. case 12:
  371. avctx->pix_fmt = PIX_FMT_YUV420P;
  372. break;
  373. case 16:
  374. if(s->yuy2){
  375. avctx->pix_fmt = PIX_FMT_YUV422;
  376. }else{
  377. avctx->pix_fmt = PIX_FMT_YUV422P;
  378. }
  379. break;
  380. case 24:
  381. case 32:
  382. if(s->bgr32){
  383. avctx->pix_fmt = PIX_FMT_RGBA32;
  384. }else{
  385. avctx->pix_fmt = PIX_FMT_BGR24;
  386. }
  387. break;
  388. default:
  389. assert(0);
  390. }
  391. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  392. return 0;
  393. }
  394. #ifdef CONFIG_ENCODERS
  395. static void store_table(HYuvContext *s, uint8_t *len){
  396. int i;
  397. int index= s->avctx->extradata_size;
  398. for(i=0; i<256;){
  399. int cur=i;
  400. int val= len[i];
  401. int repeat;
  402. for(; i<256 && len[i]==val; i++);
  403. repeat= i - cur;
  404. if(repeat>7){
  405. ((uint8_t*)s->avctx->extradata)[index++]= val;
  406. ((uint8_t*)s->avctx->extradata)[index++]= repeat;
  407. }else{
  408. ((uint8_t*)s->avctx->extradata)[index++]= val | (repeat<<5);
  409. }
  410. }
  411. s->avctx->extradata_size= index;
  412. }
  413. static int encode_init(AVCodecContext *avctx)
  414. {
  415. HYuvContext *s = avctx->priv_data;
  416. int i, j, width, height;
  417. s->avctx= avctx;
  418. s->flags= avctx->flags;
  419. dsputil_init(&s->dsp, avctx);
  420. width= s->width= avctx->width;
  421. height= s->height= avctx->height;
  422. assert(width && height);
  423. avctx->extradata= av_mallocz(1024*10);
  424. avctx->stats_out= av_mallocz(1024*10);
  425. s->version=2;
  426. avctx->coded_frame= &s->picture;
  427. switch(avctx->pix_fmt){
  428. case PIX_FMT_YUV420P:
  429. if(avctx->strict_std_compliance>=0){
  430. fprintf(stderr, "YV12-huffyuv is experimental, there WILL be no compatbility! (use (v)strict=-1)\n");
  431. return -1;
  432. }
  433. s->bitstream_bpp= 12;
  434. break;
  435. case PIX_FMT_YUV422P:
  436. s->bitstream_bpp= 16;
  437. break;
  438. default:
  439. fprintf(stderr, "format not supported\n");
  440. return -1;
  441. }
  442. avctx->bits_per_sample= s->bitstream_bpp;
  443. s->decorrelate= s->bitstream_bpp >= 24;
  444. s->predictor= avctx->prediction_method;
  445. ((uint8_t*)avctx->extradata)[0]= s->predictor;
  446. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  447. ((uint8_t*)avctx->extradata)[2]=
  448. ((uint8_t*)avctx->extradata)[3]= 0;
  449. s->avctx->extradata_size= 4;
  450. if(avctx->stats_in){
  451. char *p= avctx->stats_in;
  452. for(i=0; i<3; i++)
  453. for(j=0; j<256; j++)
  454. s->stats[i][j]= 1;
  455. for(;;){
  456. for(i=0; i<3; i++){
  457. char *next;
  458. for(j=0; j<256; j++){
  459. s->stats[i][j]+= strtol(p, &next, 0);
  460. if(next==p) return -1;
  461. p=next;
  462. }
  463. }
  464. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  465. }
  466. }else{
  467. for(i=0; i<3; i++)
  468. for(j=0; j<256; j++){
  469. int d= FFMIN(j, 256-j);
  470. s->stats[i][j]= 100000000/(d+1);
  471. }
  472. }
  473. for(i=0; i<3; i++){
  474. generate_len_table(s->len[i], s->stats[i], 256);
  475. if(generate_bits_table(s->bits[i], s->len[i])<0){
  476. return -1;
  477. }
  478. store_table(s, s->len[i]);
  479. }
  480. for(i=0; i<3; i++)
  481. for(j=0; j<256; j++)
  482. s->stats[i][j]= 0;
  483. s->interlaced= height > 288;
  484. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  485. s->picture_number=0;
  486. return 0;
  487. }
  488. #endif //CONFIG_ENCODERS
  489. static void decode_422_bitstream(HYuvContext *s, int count){
  490. int i;
  491. count/=2;
  492. for(i=0; i<count; i++){
  493. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  494. s->temp[1][ i ]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  495. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  496. s->temp[2][ i ]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  497. }
  498. }
  499. static void decode_gray_bitstream(HYuvContext *s, int count){
  500. int i;
  501. count/=2;
  502. for(i=0; i<count; i++){
  503. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  504. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  505. }
  506. }
  507. #ifdef CONFIG_ENCODERS
  508. static void encode_422_bitstream(HYuvContext *s, int count){
  509. int i;
  510. count/=2;
  511. if(s->flags&CODEC_FLAG_PASS1){
  512. for(i=0; i<count; i++){
  513. s->stats[0][ s->temp[0][2*i ] ]++;
  514. s->stats[1][ s->temp[1][ i ] ]++;
  515. s->stats[0][ s->temp[0][2*i+1] ]++;
  516. s->stats[2][ s->temp[2][ i ] ]++;
  517. }
  518. }else{
  519. for(i=0; i<count; i++){
  520. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  521. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  522. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  523. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  524. }
  525. }
  526. }
  527. static void encode_gray_bitstream(HYuvContext *s, int count){
  528. int i;
  529. count/=2;
  530. if(s->flags&CODEC_FLAG_PASS1){
  531. for(i=0; i<count; i++){
  532. s->stats[0][ s->temp[0][2*i ] ]++;
  533. s->stats[0][ s->temp[0][2*i+1] ]++;
  534. }
  535. }else{
  536. for(i=0; i<count; i++){
  537. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  538. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  539. }
  540. }
  541. }
  542. #endif //CONFIG_ENCODERS
  543. static void decode_bgr_bitstream(HYuvContext *s, int count){
  544. int i;
  545. if(s->decorrelate){
  546. if(s->bitstream_bpp==24){
  547. for(i=0; i<count; i++){
  548. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  549. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  550. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  551. }
  552. }else{
  553. for(i=0; i<count; i++){
  554. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  555. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  556. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  557. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  558. }
  559. }
  560. }else{
  561. if(s->bitstream_bpp==24){
  562. for(i=0; i<count; i++){
  563. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  564. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  565. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  566. }
  567. }else{
  568. for(i=0; i<count; i++){
  569. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  570. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  571. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  572. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  573. }
  574. }
  575. }
  576. }
  577. static void draw_slice(HYuvContext *s, int y){
  578. int h, cy;
  579. uint8_t *src_ptr[3];
  580. if(s->avctx->draw_horiz_band==NULL)
  581. return;
  582. h= y - s->last_slice_end;
  583. y -= h;
  584. if(s->bitstream_bpp==12){
  585. cy= y>>1;
  586. }else{
  587. cy= y;
  588. }
  589. src_ptr[0] = s->picture.data[0] + s->picture.linesize[0]*y;
  590. src_ptr[1] = s->picture.data[1] + s->picture.linesize[1]*cy;
  591. src_ptr[2] = s->picture.data[2] + s->picture.linesize[2]*cy;
  592. emms_c();
  593. s->avctx->draw_horiz_band(s->avctx, src_ptr, s->picture.linesize[0], y, s->width, h);
  594. s->last_slice_end= y + h;
  595. }
  596. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
  597. HYuvContext *s = avctx->priv_data;
  598. const int width= s->width;
  599. const int width2= s->width>>1;
  600. const int height= s->height;
  601. int fake_ystride, fake_ustride, fake_vstride;
  602. AVFrame * const p= &s->picture;
  603. AVFrame *picture = data;
  604. *data_size = 0;
  605. /* no supplementary picture */
  606. if (buf_size == 0)
  607. return 0;
  608. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  609. init_get_bits(&s->gb, s->bitstream_buffer, buf_size*8);
  610. if(p->data[0])
  611. avctx->release_buffer(avctx, p);
  612. p->reference= 0;
  613. if(avctx->get_buffer(avctx, p) < 0){
  614. fprintf(stderr, "get_buffer() failed\n");
  615. return -1;
  616. }
  617. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  618. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  619. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  620. s->last_slice_end= 0;
  621. if(s->bitstream_bpp<24){
  622. int y, cy;
  623. int lefty, leftu, leftv;
  624. int lefttopy, lefttopu, lefttopv;
  625. if(s->yuy2){
  626. p->data[0][3]= get_bits(&s->gb, 8);
  627. p->data[0][2]= get_bits(&s->gb, 8);
  628. p->data[0][1]= get_bits(&s->gb, 8);
  629. p->data[0][0]= get_bits(&s->gb, 8);
  630. fprintf(stderr, "YUY2 output isnt implemenetd yet\n");
  631. return -1;
  632. }else{
  633. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  634. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  635. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  636. p->data[0][0]= get_bits(&s->gb, 8);
  637. switch(s->predictor){
  638. case LEFT:
  639. case PLANE:
  640. decode_422_bitstream(s, width-2);
  641. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  642. if(!(s->flags&CODEC_FLAG_GRAY)){
  643. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  644. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  645. }
  646. for(cy=y=1; y<s->height; y++,cy++){
  647. uint8_t *ydst, *udst, *vdst;
  648. if(s->bitstream_bpp==12){
  649. decode_gray_bitstream(s, width);
  650. ydst= p->data[0] + p->linesize[0]*y;
  651. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  652. if(s->predictor == PLANE){
  653. if(y>s->interlaced)
  654. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  655. }
  656. y++;
  657. if(y>=s->height) break;
  658. }
  659. draw_slice(s, y);
  660. ydst= p->data[0] + p->linesize[0]*y;
  661. udst= p->data[1] + p->linesize[1]*cy;
  662. vdst= p->data[2] + p->linesize[2]*cy;
  663. decode_422_bitstream(s, width);
  664. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  665. if(!(s->flags&CODEC_FLAG_GRAY)){
  666. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  667. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  668. }
  669. if(s->predictor == PLANE){
  670. if(cy>s->interlaced){
  671. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  672. if(!(s->flags&CODEC_FLAG_GRAY)){
  673. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  674. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  675. }
  676. }
  677. }
  678. }
  679. draw_slice(s, height);
  680. break;
  681. case MEDIAN:
  682. /* first line except first 2 pixels is left predicted */
  683. decode_422_bitstream(s, width-2);
  684. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  685. if(!(s->flags&CODEC_FLAG_GRAY)){
  686. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  687. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  688. }
  689. cy=y=1;
  690. /* second line is left predicted for interlaced case */
  691. if(s->interlaced){
  692. decode_422_bitstream(s, width);
  693. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  694. if(!(s->flags&CODEC_FLAG_GRAY)){
  695. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  696. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  697. }
  698. y++; cy++;
  699. }
  700. /* next 4 pixels are left predicted too */
  701. decode_422_bitstream(s, 4);
  702. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  703. if(!(s->flags&CODEC_FLAG_GRAY)){
  704. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  705. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  706. }
  707. /* next line except the first 4 pixels is median predicted */
  708. lefttopy= p->data[0][3];
  709. decode_422_bitstream(s, width-4);
  710. add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  711. if(!(s->flags&CODEC_FLAG_GRAY)){
  712. lefttopu= p->data[1][1];
  713. lefttopv= p->data[2][1];
  714. add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  715. add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  716. }
  717. y++; cy++;
  718. for(; y<height; y++,cy++){
  719. uint8_t *ydst, *udst, *vdst;
  720. if(s->bitstream_bpp==12){
  721. while(2*cy > y){
  722. decode_gray_bitstream(s, width);
  723. ydst= p->data[0] + p->linesize[0]*y;
  724. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  725. y++;
  726. }
  727. if(y>=height) break;
  728. }
  729. draw_slice(s, y);
  730. decode_422_bitstream(s, width);
  731. ydst= p->data[0] + p->linesize[0]*y;
  732. udst= p->data[1] + p->linesize[1]*cy;
  733. vdst= p->data[2] + p->linesize[2]*cy;
  734. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  735. if(!(s->flags&CODEC_FLAG_GRAY)){
  736. add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  737. add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  738. }
  739. }
  740. draw_slice(s, height);
  741. break;
  742. }
  743. }
  744. }else{
  745. int y;
  746. int leftr, leftg, leftb;
  747. const int last_line= (height-1)*p->linesize[0];
  748. if(s->bitstream_bpp==32){
  749. p->data[0][last_line+3]= get_bits(&s->gb, 8);
  750. leftr= p->data[0][last_line+2]= get_bits(&s->gb, 8);
  751. leftg= p->data[0][last_line+1]= get_bits(&s->gb, 8);
  752. leftb= p->data[0][last_line+0]= get_bits(&s->gb, 8);
  753. }else{
  754. leftr= p->data[0][last_line+2]= get_bits(&s->gb, 8);
  755. leftg= p->data[0][last_line+1]= get_bits(&s->gb, 8);
  756. leftb= p->data[0][last_line+0]= get_bits(&s->gb, 8);
  757. skip_bits(&s->gb, 8);
  758. }
  759. if(s->bgr32){
  760. switch(s->predictor){
  761. case LEFT:
  762. case PLANE:
  763. decode_bgr_bitstream(s, width-1);
  764. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  765. for(y=s->height-2; y>=0; y--){ //yes its stored upside down
  766. decode_bgr_bitstream(s, width);
  767. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  768. if(s->predictor == PLANE){
  769. if((y&s->interlaced)==0){
  770. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  771. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  772. }
  773. }
  774. }
  775. draw_slice(s, height); // just 1 large slice as this isnt possible in reverse order
  776. break;
  777. default:
  778. fprintf(stderr, "prediction type not supported!\n");
  779. }
  780. }else{
  781. fprintf(stderr, "BGR24 output isnt implemenetd yet\n");
  782. return -1;
  783. }
  784. }
  785. emms_c();
  786. *picture= *p;
  787. *data_size = sizeof(AVFrame);
  788. return (get_bits_count(&s->gb)+31)/32*4;
  789. }
  790. static int decode_end(AVCodecContext *avctx)
  791. {
  792. HYuvContext *s = avctx->priv_data;
  793. int i;
  794. for(i=0; i<3; i++){
  795. free_vlc(&s->vlc[i]);
  796. }
  797. avcodec_default_free_buffers(avctx);
  798. return 0;
  799. }
  800. #ifdef CONFIG_ENCODERS
  801. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  802. HYuvContext *s = avctx->priv_data;
  803. AVFrame *pict = data;
  804. const int width= s->width;
  805. const int width2= s->width>>1;
  806. const int height= s->height;
  807. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  808. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  809. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  810. AVFrame * const p= &s->picture;
  811. int i, size;
  812. init_put_bits(&s->pb, buf, buf_size, NULL, NULL);
  813. *p = *pict;
  814. p->pict_type= FF_I_TYPE;
  815. p->key_frame= 1;
  816. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  817. int lefty, leftu, leftv, y, cy;
  818. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  819. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  820. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  821. put_bits(&s->pb, 8, p->data[0][0]);
  822. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  823. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  824. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  825. encode_422_bitstream(s, width-2);
  826. if(s->predictor==MEDIAN){
  827. int lefttopy, lefttopu, lefttopv;
  828. cy=y=1;
  829. if(s->interlaced){
  830. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  831. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  832. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  833. encode_422_bitstream(s, width);
  834. y++; cy++;
  835. }
  836. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  837. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ystride, 2, leftu);
  838. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_ystride, 2, leftv);
  839. encode_422_bitstream(s, 4);
  840. lefttopy= p->data[0][3];
  841. lefttopu= p->data[1][1];
  842. lefttopv= p->data[2][1];
  843. sub_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  844. sub_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  845. sub_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  846. encode_422_bitstream(s, width-4);
  847. y++; cy++;
  848. for(; y<height; y++,cy++){
  849. uint8_t *ydst, *udst, *vdst;
  850. if(s->bitstream_bpp==12){
  851. while(2*cy > y){
  852. ydst= p->data[0] + p->linesize[0]*y;
  853. sub_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  854. encode_gray_bitstream(s, width);
  855. y++;
  856. }
  857. if(y>=height) break;
  858. }
  859. ydst= p->data[0] + p->linesize[0]*y;
  860. udst= p->data[1] + p->linesize[1]*cy;
  861. vdst= p->data[2] + p->linesize[2]*cy;
  862. sub_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  863. sub_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  864. sub_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  865. encode_422_bitstream(s, width);
  866. }
  867. }else{
  868. for(cy=y=1; y<height; y++,cy++){
  869. uint8_t *ydst, *udst, *vdst;
  870. /* encode a luma only line & y++ */
  871. if(s->bitstream_bpp==12){
  872. ydst= p->data[0] + p->linesize[0]*y;
  873. if(s->predictor == PLANE && s->interlaced < y){
  874. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  875. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  876. }else{
  877. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  878. }
  879. encode_gray_bitstream(s, width);
  880. y++;
  881. if(y>=height) break;
  882. }
  883. ydst= p->data[0] + p->linesize[0]*y;
  884. udst= p->data[1] + p->linesize[1]*cy;
  885. vdst= p->data[2] + p->linesize[2]*cy;
  886. if(s->predictor == PLANE && s->interlaced < cy){
  887. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  888. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  889. s->dsp.diff_bytes(s->temp[3], vdst, vdst - fake_vstride, width2);
  890. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  891. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  892. leftv= sub_left_prediction(s, s->temp[2], s->temp[3], width2, leftv);
  893. }else{
  894. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  895. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  896. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  897. }
  898. encode_422_bitstream(s, width);
  899. }
  900. }
  901. }else{
  902. fprintf(stderr, "Format not supported!\n");
  903. }
  904. emms_c();
  905. size= (get_bit_count(&s->pb)+31)/32;
  906. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  907. int j;
  908. char *p= avctx->stats_out;
  909. for(i=0; i<3; i++){
  910. for(j=0; j<256; j++){
  911. sprintf(p, "%llu ", s->stats[i][j]);
  912. p+= strlen(p);
  913. s->stats[i][j]= 0;
  914. }
  915. sprintf(p, "\n");
  916. p++;
  917. }
  918. }else{
  919. flush_put_bits(&s->pb);
  920. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  921. }
  922. s->picture_number++;
  923. return size*4;
  924. }
  925. static int encode_end(AVCodecContext *avctx)
  926. {
  927. // HYuvContext *s = avctx->priv_data;
  928. av_freep(&avctx->extradata);
  929. av_freep(&avctx->stats_out);
  930. return 0;
  931. }
  932. static const AVOption huffyuv_options[] =
  933. {
  934. AVOPTION_CODEC_INT("prediction_method", "prediction_method", prediction_method, 0, 2, 0),
  935. AVOPTION_END()
  936. };
  937. #endif //CONFIG_ENCODERS
  938. AVCodec huffyuv_decoder = {
  939. "huffyuv",
  940. CODEC_TYPE_VIDEO,
  941. CODEC_ID_HUFFYUV,
  942. sizeof(HYuvContext),
  943. decode_init,
  944. NULL,
  945. decode_end,
  946. decode_frame,
  947. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  948. NULL
  949. };
  950. #ifdef CONFIG_ENCODERS
  951. AVCodec huffyuv_encoder = {
  952. "huffyuv",
  953. CODEC_TYPE_VIDEO,
  954. CODEC_ID_HUFFYUV,
  955. sizeof(HYuvContext),
  956. encode_init,
  957. encode_frame,
  958. encode_end,
  959. .options = huffyuv_options,
  960. };
  961. #endif //CONFIG_ENCODERS