You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2697 lines
80KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. /**
  20. * @file mpegaudiodec.c
  21. * MPEG Audio decoder.
  22. */
  23. //#define DEBUG
  24. #include "avcodec.h"
  25. #include "bitstream.h"
  26. #include "mpegaudio.h"
  27. #include "dsputil.h"
  28. /*
  29. * TODO:
  30. * - in low precision mode, use more 16 bit multiplies in synth filter
  31. * - test lsf / mpeg25 extensively.
  32. */
  33. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  34. audio decoder */
  35. #ifdef CONFIG_MPEGAUDIO_HP
  36. #define USE_HIGHPRECISION
  37. #endif
  38. #ifdef USE_HIGHPRECISION
  39. #define FRAC_BITS 23 /* fractional bits for sb_samples and dct */
  40. #define WFRAC_BITS 16 /* fractional bits for window */
  41. #else
  42. #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
  43. #define WFRAC_BITS 14 /* fractional bits for window */
  44. #endif
  45. #define FRAC_ONE (1 << FRAC_BITS)
  46. #define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  47. #define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
  48. #define FIX(a) ((int)((a) * FRAC_ONE))
  49. /* WARNING: only correct for posititive numbers */
  50. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  51. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  52. #if FRAC_BITS <= 15
  53. typedef int16_t MPA_INT;
  54. #else
  55. typedef int32_t MPA_INT;
  56. #endif
  57. /****************/
  58. #define HEADER_SIZE 4
  59. #define BACKSTEP_SIZE 512
  60. struct GranuleDef;
  61. typedef struct MPADecodeContext {
  62. uint8_t inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */
  63. int inbuf_index;
  64. uint8_t *inbuf_ptr, *inbuf;
  65. int frame_size;
  66. int free_format_frame_size; /* frame size in case of free format
  67. (zero if currently unknown) */
  68. /* next header (used in free format parsing) */
  69. uint32_t free_format_next_header;
  70. int error_protection;
  71. int layer;
  72. int sample_rate;
  73. int sample_rate_index; /* between 0 and 8 */
  74. int bit_rate;
  75. int old_frame_size;
  76. GetBitContext gb;
  77. int nb_channels;
  78. int mode;
  79. int mode_ext;
  80. int lsf;
  81. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
  82. int synth_buf_offset[MPA_MAX_CHANNELS];
  83. int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
  84. int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  85. #ifdef DEBUG
  86. int frame_count;
  87. #endif
  88. void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
  89. } MPADecodeContext;
  90. /* layer 3 "granule" */
  91. typedef struct GranuleDef {
  92. uint8_t scfsi;
  93. int part2_3_length;
  94. int big_values;
  95. int global_gain;
  96. int scalefac_compress;
  97. uint8_t block_type;
  98. uint8_t switch_point;
  99. int table_select[3];
  100. int subblock_gain[3];
  101. uint8_t scalefac_scale;
  102. uint8_t count1table_select;
  103. int region_size[3]; /* number of huffman codes in each region */
  104. int preflag;
  105. int short_start, long_end; /* long/short band indexes */
  106. uint8_t scale_factors[40];
  107. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  108. } GranuleDef;
  109. #define MODE_EXT_MS_STEREO 2
  110. #define MODE_EXT_I_STEREO 1
  111. /* layer 3 huffman tables */
  112. typedef struct HuffTable {
  113. int xsize;
  114. const uint8_t *bits;
  115. const uint16_t *codes;
  116. } HuffTable;
  117. #include "mpegaudiodectab.h"
  118. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  119. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  120. /* vlc structure for decoding layer 3 huffman tables */
  121. static VLC huff_vlc[16];
  122. static uint8_t *huff_code_table[16];
  123. static VLC huff_quad_vlc[2];
  124. /* computed from band_size_long */
  125. static uint16_t band_index_long[9][23];
  126. /* XXX: free when all decoders are closed */
  127. #define TABLE_4_3_SIZE (8191 + 16)
  128. static int8_t *table_4_3_exp;
  129. #if FRAC_BITS <= 15
  130. static uint16_t *table_4_3_value;
  131. #else
  132. static uint32_t *table_4_3_value;
  133. #endif
  134. /* intensity stereo coef table */
  135. static int32_t is_table[2][16];
  136. static int32_t is_table_lsf[2][2][16];
  137. static int32_t csa_table[8][4];
  138. static float csa_table_float[8][4];
  139. static int32_t mdct_win[8][36];
  140. /* lower 2 bits: modulo 3, higher bits: shift */
  141. static uint16_t scale_factor_modshift[64];
  142. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  143. static int32_t scale_factor_mult[15][3];
  144. /* mult table for layer 2 group quantization */
  145. #define SCALE_GEN(v) \
  146. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  147. static int32_t scale_factor_mult2[3][3] = {
  148. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  149. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  150. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  151. };
  152. /* 2^(n/4) */
  153. static uint32_t scale_factor_mult3[4] = {
  154. FIXR(1.0),
  155. FIXR(1.18920711500272106671),
  156. FIXR(1.41421356237309504880),
  157. FIXR(1.68179283050742908605),
  158. };
  159. static MPA_INT window[512] __attribute__((aligned(16)));
  160. /* layer 1 unscaling */
  161. /* n = number of bits of the mantissa minus 1 */
  162. static inline int l1_unscale(int n, int mant, int scale_factor)
  163. {
  164. int shift, mod;
  165. int64_t val;
  166. shift = scale_factor_modshift[scale_factor];
  167. mod = shift & 3;
  168. shift >>= 2;
  169. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  170. shift += n;
  171. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  172. return (int)((val + (1LL << (shift - 1))) >> shift);
  173. }
  174. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  175. {
  176. int shift, mod, val;
  177. shift = scale_factor_modshift[scale_factor];
  178. mod = shift & 3;
  179. shift >>= 2;
  180. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  181. /* NOTE: at this point, 0 <= shift <= 21 */
  182. if (shift > 0)
  183. val = (val + (1 << (shift - 1))) >> shift;
  184. return val;
  185. }
  186. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  187. static inline int l3_unscale(int value, int exponent)
  188. {
  189. #if FRAC_BITS <= 15
  190. unsigned int m;
  191. #else
  192. uint64_t m;
  193. #endif
  194. int e;
  195. e = table_4_3_exp[value];
  196. e += (exponent >> 2);
  197. e = FRAC_BITS - e;
  198. #if FRAC_BITS <= 15
  199. if (e > 31)
  200. e = 31;
  201. #endif
  202. m = table_4_3_value[value];
  203. #if FRAC_BITS <= 15
  204. m = (m * scale_factor_mult3[exponent & 3]);
  205. m = (m + (1 << (e-1))) >> e;
  206. return m;
  207. #else
  208. m = MUL64(m, scale_factor_mult3[exponent & 3]);
  209. m = (m + (uint64_t_C(1) << (e-1))) >> e;
  210. return m;
  211. #endif
  212. }
  213. /* all integer n^(4/3) computation code */
  214. #define DEV_ORDER 13
  215. #define POW_FRAC_BITS 24
  216. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  217. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  218. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  219. static int dev_4_3_coefs[DEV_ORDER];
  220. static int pow_mult3[3] = {
  221. POW_FIX(1.0),
  222. POW_FIX(1.25992104989487316476),
  223. POW_FIX(1.58740105196819947474),
  224. };
  225. static void int_pow_init(void)
  226. {
  227. int i, a;
  228. a = POW_FIX(1.0);
  229. for(i=0;i<DEV_ORDER;i++) {
  230. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  231. dev_4_3_coefs[i] = a;
  232. }
  233. }
  234. /* return the mantissa and the binary exponent */
  235. static int int_pow(int i, int *exp_ptr)
  236. {
  237. int e, er, eq, j;
  238. int a, a1;
  239. /* renormalize */
  240. a = i;
  241. e = POW_FRAC_BITS;
  242. while (a < (1 << (POW_FRAC_BITS - 1))) {
  243. a = a << 1;
  244. e--;
  245. }
  246. a -= (1 << POW_FRAC_BITS);
  247. a1 = 0;
  248. for(j = DEV_ORDER - 1; j >= 0; j--)
  249. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  250. a = (1 << POW_FRAC_BITS) + a1;
  251. /* exponent compute (exact) */
  252. e = e * 4;
  253. er = e % 3;
  254. eq = e / 3;
  255. a = POW_MULL(a, pow_mult3[er]);
  256. while (a >= 2 * POW_FRAC_ONE) {
  257. a = a >> 1;
  258. eq++;
  259. }
  260. /* convert to float */
  261. while (a < POW_FRAC_ONE) {
  262. a = a << 1;
  263. eq--;
  264. }
  265. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  266. #if POW_FRAC_BITS > FRAC_BITS
  267. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  268. /* correct overflow */
  269. if (a >= 2 * (1 << FRAC_BITS)) {
  270. a = a >> 1;
  271. eq++;
  272. }
  273. #endif
  274. *exp_ptr = eq;
  275. return a;
  276. }
  277. static int decode_init(AVCodecContext * avctx)
  278. {
  279. MPADecodeContext *s = avctx->priv_data;
  280. static int init=0;
  281. int i, j, k;
  282. if(avctx->antialias_algo == FF_AA_INT)
  283. s->compute_antialias= compute_antialias_integer;
  284. else
  285. s->compute_antialias= compute_antialias_float;
  286. if (!init && !avctx->parse_only) {
  287. /* scale factors table for layer 1/2 */
  288. for(i=0;i<64;i++) {
  289. int shift, mod;
  290. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  291. shift = (i / 3);
  292. mod = i % 3;
  293. scale_factor_modshift[i] = mod | (shift << 2);
  294. }
  295. /* scale factor multiply for layer 1 */
  296. for(i=0;i<15;i++) {
  297. int n, norm;
  298. n = i + 2;
  299. norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  300. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  301. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  302. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  303. dprintf("%d: norm=%x s=%x %x %x\n",
  304. i, norm,
  305. scale_factor_mult[i][0],
  306. scale_factor_mult[i][1],
  307. scale_factor_mult[i][2]);
  308. }
  309. /* window */
  310. /* max = 18760, max sum over all 16 coefs : 44736 */
  311. for(i=0;i<257;i++) {
  312. int v;
  313. v = mpa_enwindow[i];
  314. #if WFRAC_BITS < 16
  315. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  316. #endif
  317. window[i] = v;
  318. if ((i & 63) != 0)
  319. v = -v;
  320. if (i != 0)
  321. window[512 - i] = v;
  322. }
  323. /* huffman decode tables */
  324. huff_code_table[0] = NULL;
  325. for(i=1;i<16;i++) {
  326. const HuffTable *h = &mpa_huff_tables[i];
  327. int xsize, x, y;
  328. unsigned int n;
  329. uint8_t *code_table;
  330. xsize = h->xsize;
  331. n = xsize * xsize;
  332. /* XXX: fail test */
  333. init_vlc(&huff_vlc[i], 8, n,
  334. h->bits, 1, 1, h->codes, 2, 2, 1);
  335. code_table = av_mallocz(n);
  336. j = 0;
  337. for(x=0;x<xsize;x++) {
  338. for(y=0;y<xsize;y++)
  339. code_table[j++] = (x << 4) | y;
  340. }
  341. huff_code_table[i] = code_table;
  342. }
  343. for(i=0;i<2;i++) {
  344. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  345. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  346. }
  347. for(i=0;i<9;i++) {
  348. k = 0;
  349. for(j=0;j<22;j++) {
  350. band_index_long[i][j] = k;
  351. k += band_size_long[i][j];
  352. }
  353. band_index_long[i][22] = k;
  354. }
  355. /* compute n ^ (4/3) and store it in mantissa/exp format */
  356. table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]));
  357. if(!table_4_3_exp)
  358. return -1;
  359. table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0]));
  360. if(!table_4_3_value)
  361. return -1;
  362. int_pow_init();
  363. for(i=1;i<TABLE_4_3_SIZE;i++) {
  364. int e, m;
  365. m = int_pow(i, &e);
  366. #if 0
  367. /* test code */
  368. {
  369. double f, fm;
  370. int e1, m1;
  371. f = pow((double)i, 4.0 / 3.0);
  372. fm = frexp(f, &e1);
  373. m1 = FIXR(2 * fm);
  374. #if FRAC_BITS <= 15
  375. if ((unsigned short)m1 != m1) {
  376. m1 = m1 >> 1;
  377. e1++;
  378. }
  379. #endif
  380. e1--;
  381. if (m != m1 || e != e1) {
  382. printf("%4d: m=%x m1=%x e=%d e1=%d\n",
  383. i, m, m1, e, e1);
  384. }
  385. }
  386. #endif
  387. /* normalized to FRAC_BITS */
  388. table_4_3_value[i] = m;
  389. table_4_3_exp[i] = e;
  390. }
  391. for(i=0;i<7;i++) {
  392. float f;
  393. int v;
  394. if (i != 6) {
  395. f = tan((double)i * M_PI / 12.0);
  396. v = FIXR(f / (1.0 + f));
  397. } else {
  398. v = FIXR(1.0);
  399. }
  400. is_table[0][i] = v;
  401. is_table[1][6 - i] = v;
  402. }
  403. /* invalid values */
  404. for(i=7;i<16;i++)
  405. is_table[0][i] = is_table[1][i] = 0.0;
  406. for(i=0;i<16;i++) {
  407. double f;
  408. int e, k;
  409. for(j=0;j<2;j++) {
  410. e = -(j + 1) * ((i + 1) >> 1);
  411. f = pow(2.0, e / 4.0);
  412. k = i & 1;
  413. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  414. is_table_lsf[j][k][i] = FIXR(1.0);
  415. dprintf("is_table_lsf %d %d: %x %x\n",
  416. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  417. }
  418. }
  419. for(i=0;i<8;i++) {
  420. float ci, cs, ca;
  421. ci = ci_table[i];
  422. cs = 1.0 / sqrt(1.0 + ci * ci);
  423. ca = cs * ci;
  424. csa_table[i][0] = FIX(cs);
  425. csa_table[i][1] = FIX(ca);
  426. csa_table[i][2] = FIX(ca) + FIX(cs);
  427. csa_table[i][3] = FIX(ca) - FIX(cs);
  428. csa_table_float[i][0] = cs;
  429. csa_table_float[i][1] = ca;
  430. csa_table_float[i][2] = ca + cs;
  431. csa_table_float[i][3] = ca - cs;
  432. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  433. }
  434. /* compute mdct windows */
  435. for(i=0;i<36;i++) {
  436. int v;
  437. v = FIXR(sin(M_PI * (i + 0.5) / 36.0));
  438. mdct_win[0][i] = v;
  439. mdct_win[1][i] = v;
  440. mdct_win[3][i] = v;
  441. }
  442. for(i=0;i<6;i++) {
  443. mdct_win[1][18 + i] = FIXR(1.0);
  444. mdct_win[1][24 + i] = FIXR(sin(M_PI * ((i + 6) + 0.5) / 12.0));
  445. mdct_win[1][30 + i] = FIXR(0.0);
  446. mdct_win[3][i] = FIXR(0.0);
  447. mdct_win[3][6 + i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
  448. mdct_win[3][12 + i] = FIXR(1.0);
  449. }
  450. for(i=0;i<12;i++)
  451. mdct_win[2][i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
  452. /* NOTE: we do frequency inversion adter the MDCT by changing
  453. the sign of the right window coefs */
  454. for(j=0;j<4;j++) {
  455. for(i=0;i<36;i+=2) {
  456. mdct_win[j + 4][i] = mdct_win[j][i];
  457. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  458. }
  459. }
  460. #if defined(DEBUG)
  461. for(j=0;j<8;j++) {
  462. printf("win%d=\n", j);
  463. for(i=0;i<36;i++)
  464. printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  465. printf("\n");
  466. }
  467. #endif
  468. init = 1;
  469. }
  470. s->inbuf_index = 0;
  471. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  472. s->inbuf_ptr = s->inbuf;
  473. #ifdef DEBUG
  474. s->frame_count = 0;
  475. #endif
  476. return 0;
  477. }
  478. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  479. /* cos(i*pi/64) */
  480. #define COS0_0 FIXR(0.50060299823519630134)
  481. #define COS0_1 FIXR(0.50547095989754365998)
  482. #define COS0_2 FIXR(0.51544730992262454697)
  483. #define COS0_3 FIXR(0.53104259108978417447)
  484. #define COS0_4 FIXR(0.55310389603444452782)
  485. #define COS0_5 FIXR(0.58293496820613387367)
  486. #define COS0_6 FIXR(0.62250412303566481615)
  487. #define COS0_7 FIXR(0.67480834145500574602)
  488. #define COS0_8 FIXR(0.74453627100229844977)
  489. #define COS0_9 FIXR(0.83934964541552703873)
  490. #define COS0_10 FIXR(0.97256823786196069369)
  491. #define COS0_11 FIXR(1.16943993343288495515)
  492. #define COS0_12 FIXR(1.48416461631416627724)
  493. #define COS0_13 FIXR(2.05778100995341155085)
  494. #define COS0_14 FIXR(3.40760841846871878570)
  495. #define COS0_15 FIXR(10.19000812354805681150)
  496. #define COS1_0 FIXR(0.50241928618815570551)
  497. #define COS1_1 FIXR(0.52249861493968888062)
  498. #define COS1_2 FIXR(0.56694403481635770368)
  499. #define COS1_3 FIXR(0.64682178335999012954)
  500. #define COS1_4 FIXR(0.78815462345125022473)
  501. #define COS1_5 FIXR(1.06067768599034747134)
  502. #define COS1_6 FIXR(1.72244709823833392782)
  503. #define COS1_7 FIXR(5.10114861868916385802)
  504. #define COS2_0 FIXR(0.50979557910415916894)
  505. #define COS2_1 FIXR(0.60134488693504528054)
  506. #define COS2_2 FIXR(0.89997622313641570463)
  507. #define COS2_3 FIXR(2.56291544774150617881)
  508. #define COS3_0 FIXR(0.54119610014619698439)
  509. #define COS3_1 FIXR(1.30656296487637652785)
  510. #define COS4_0 FIXR(0.70710678118654752439)
  511. /* butterfly operator */
  512. #define BF(a, b, c)\
  513. {\
  514. tmp0 = tab[a] + tab[b];\
  515. tmp1 = tab[a] - tab[b];\
  516. tab[a] = tmp0;\
  517. tab[b] = MULL(tmp1, c);\
  518. }
  519. #define BF1(a, b, c, d)\
  520. {\
  521. BF(a, b, COS4_0);\
  522. BF(c, d, -COS4_0);\
  523. tab[c] += tab[d];\
  524. }
  525. #define BF2(a, b, c, d)\
  526. {\
  527. BF(a, b, COS4_0);\
  528. BF(c, d, -COS4_0);\
  529. tab[c] += tab[d];\
  530. tab[a] += tab[c];\
  531. tab[c] += tab[b];\
  532. tab[b] += tab[d];\
  533. }
  534. #define ADD(a, b) tab[a] += tab[b]
  535. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  536. static void dct32(int32_t *out, int32_t *tab)
  537. {
  538. int tmp0, tmp1;
  539. /* pass 1 */
  540. BF(0, 31, COS0_0);
  541. BF(1, 30, COS0_1);
  542. BF(2, 29, COS0_2);
  543. BF(3, 28, COS0_3);
  544. BF(4, 27, COS0_4);
  545. BF(5, 26, COS0_5);
  546. BF(6, 25, COS0_6);
  547. BF(7, 24, COS0_7);
  548. BF(8, 23, COS0_8);
  549. BF(9, 22, COS0_9);
  550. BF(10, 21, COS0_10);
  551. BF(11, 20, COS0_11);
  552. BF(12, 19, COS0_12);
  553. BF(13, 18, COS0_13);
  554. BF(14, 17, COS0_14);
  555. BF(15, 16, COS0_15);
  556. /* pass 2 */
  557. BF(0, 15, COS1_0);
  558. BF(1, 14, COS1_1);
  559. BF(2, 13, COS1_2);
  560. BF(3, 12, COS1_3);
  561. BF(4, 11, COS1_4);
  562. BF(5, 10, COS1_5);
  563. BF(6, 9, COS1_6);
  564. BF(7, 8, COS1_7);
  565. BF(16, 31, -COS1_0);
  566. BF(17, 30, -COS1_1);
  567. BF(18, 29, -COS1_2);
  568. BF(19, 28, -COS1_3);
  569. BF(20, 27, -COS1_4);
  570. BF(21, 26, -COS1_5);
  571. BF(22, 25, -COS1_6);
  572. BF(23, 24, -COS1_7);
  573. /* pass 3 */
  574. BF(0, 7, COS2_0);
  575. BF(1, 6, COS2_1);
  576. BF(2, 5, COS2_2);
  577. BF(3, 4, COS2_3);
  578. BF(8, 15, -COS2_0);
  579. BF(9, 14, -COS2_1);
  580. BF(10, 13, -COS2_2);
  581. BF(11, 12, -COS2_3);
  582. BF(16, 23, COS2_0);
  583. BF(17, 22, COS2_1);
  584. BF(18, 21, COS2_2);
  585. BF(19, 20, COS2_3);
  586. BF(24, 31, -COS2_0);
  587. BF(25, 30, -COS2_1);
  588. BF(26, 29, -COS2_2);
  589. BF(27, 28, -COS2_3);
  590. /* pass 4 */
  591. BF(0, 3, COS3_0);
  592. BF(1, 2, COS3_1);
  593. BF(4, 7, -COS3_0);
  594. BF(5, 6, -COS3_1);
  595. BF(8, 11, COS3_0);
  596. BF(9, 10, COS3_1);
  597. BF(12, 15, -COS3_0);
  598. BF(13, 14, -COS3_1);
  599. BF(16, 19, COS3_0);
  600. BF(17, 18, COS3_1);
  601. BF(20, 23, -COS3_0);
  602. BF(21, 22, -COS3_1);
  603. BF(24, 27, COS3_0);
  604. BF(25, 26, COS3_1);
  605. BF(28, 31, -COS3_0);
  606. BF(29, 30, -COS3_1);
  607. /* pass 5 */
  608. BF1(0, 1, 2, 3);
  609. BF2(4, 5, 6, 7);
  610. BF1(8, 9, 10, 11);
  611. BF2(12, 13, 14, 15);
  612. BF1(16, 17, 18, 19);
  613. BF2(20, 21, 22, 23);
  614. BF1(24, 25, 26, 27);
  615. BF2(28, 29, 30, 31);
  616. /* pass 6 */
  617. ADD( 8, 12);
  618. ADD(12, 10);
  619. ADD(10, 14);
  620. ADD(14, 9);
  621. ADD( 9, 13);
  622. ADD(13, 11);
  623. ADD(11, 15);
  624. out[ 0] = tab[0];
  625. out[16] = tab[1];
  626. out[ 8] = tab[2];
  627. out[24] = tab[3];
  628. out[ 4] = tab[4];
  629. out[20] = tab[5];
  630. out[12] = tab[6];
  631. out[28] = tab[7];
  632. out[ 2] = tab[8];
  633. out[18] = tab[9];
  634. out[10] = tab[10];
  635. out[26] = tab[11];
  636. out[ 6] = tab[12];
  637. out[22] = tab[13];
  638. out[14] = tab[14];
  639. out[30] = tab[15];
  640. ADD(24, 28);
  641. ADD(28, 26);
  642. ADD(26, 30);
  643. ADD(30, 25);
  644. ADD(25, 29);
  645. ADD(29, 27);
  646. ADD(27, 31);
  647. out[ 1] = tab[16] + tab[24];
  648. out[17] = tab[17] + tab[25];
  649. out[ 9] = tab[18] + tab[26];
  650. out[25] = tab[19] + tab[27];
  651. out[ 5] = tab[20] + tab[28];
  652. out[21] = tab[21] + tab[29];
  653. out[13] = tab[22] + tab[30];
  654. out[29] = tab[23] + tab[31];
  655. out[ 3] = tab[24] + tab[20];
  656. out[19] = tab[25] + tab[21];
  657. out[11] = tab[26] + tab[22];
  658. out[27] = tab[27] + tab[23];
  659. out[ 7] = tab[28] + tab[18];
  660. out[23] = tab[29] + tab[19];
  661. out[15] = tab[30] + tab[17];
  662. out[31] = tab[31];
  663. }
  664. #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
  665. #if FRAC_BITS <= 15
  666. static inline int round_sample(int sum)
  667. {
  668. int sum1;
  669. sum1 = (sum + (1 << (OUT_SHIFT - 1))) >> OUT_SHIFT;
  670. if (sum1 < -32768)
  671. sum1 = -32768;
  672. else if (sum1 > 32767)
  673. sum1 = 32767;
  674. return sum1;
  675. }
  676. #if defined(ARCH_POWERPC_405)
  677. /* signed 16x16 -> 32 multiply add accumulate */
  678. #define MACS(rt, ra, rb) \
  679. asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));
  680. /* signed 16x16 -> 32 multiply */
  681. #define MULS(ra, rb) \
  682. ({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
  683. #else
  684. /* signed 16x16 -> 32 multiply add accumulate */
  685. #define MACS(rt, ra, rb) rt += (ra) * (rb)
  686. /* signed 16x16 -> 32 multiply */
  687. #define MULS(ra, rb) ((ra) * (rb))
  688. #endif
  689. #else
  690. static inline int round_sample(int64_t sum)
  691. {
  692. int sum1;
  693. sum1 = (int)((sum + (int64_t_C(1) << (OUT_SHIFT - 1))) >> OUT_SHIFT);
  694. if (sum1 < -32768)
  695. sum1 = -32768;
  696. else if (sum1 > 32767)
  697. sum1 = 32767;
  698. return sum1;
  699. }
  700. #define MULS(ra, rb) MUL64(ra, rb)
  701. #endif
  702. #define SUM8(sum, op, w, p) \
  703. { \
  704. sum op MULS((w)[0 * 64], p[0 * 64]);\
  705. sum op MULS((w)[1 * 64], p[1 * 64]);\
  706. sum op MULS((w)[2 * 64], p[2 * 64]);\
  707. sum op MULS((w)[3 * 64], p[3 * 64]);\
  708. sum op MULS((w)[4 * 64], p[4 * 64]);\
  709. sum op MULS((w)[5 * 64], p[5 * 64]);\
  710. sum op MULS((w)[6 * 64], p[6 * 64]);\
  711. sum op MULS((w)[7 * 64], p[7 * 64]);\
  712. }
  713. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  714. { \
  715. int tmp;\
  716. tmp = p[0 * 64];\
  717. sum1 op1 MULS((w1)[0 * 64], tmp);\
  718. sum2 op2 MULS((w2)[0 * 64], tmp);\
  719. tmp = p[1 * 64];\
  720. sum1 op1 MULS((w1)[1 * 64], tmp);\
  721. sum2 op2 MULS((w2)[1 * 64], tmp);\
  722. tmp = p[2 * 64];\
  723. sum1 op1 MULS((w1)[2 * 64], tmp);\
  724. sum2 op2 MULS((w2)[2 * 64], tmp);\
  725. tmp = p[3 * 64];\
  726. sum1 op1 MULS((w1)[3 * 64], tmp);\
  727. sum2 op2 MULS((w2)[3 * 64], tmp);\
  728. tmp = p[4 * 64];\
  729. sum1 op1 MULS((w1)[4 * 64], tmp);\
  730. sum2 op2 MULS((w2)[4 * 64], tmp);\
  731. tmp = p[5 * 64];\
  732. sum1 op1 MULS((w1)[5 * 64], tmp);\
  733. sum2 op2 MULS((w2)[5 * 64], tmp);\
  734. tmp = p[6 * 64];\
  735. sum1 op1 MULS((w1)[6 * 64], tmp);\
  736. sum2 op2 MULS((w2)[6 * 64], tmp);\
  737. tmp = p[7 * 64];\
  738. sum1 op1 MULS((w1)[7 * 64], tmp);\
  739. sum2 op2 MULS((w2)[7 * 64], tmp);\
  740. }
  741. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  742. 32 samples. */
  743. /* XXX: optimize by avoiding ring buffer usage */
  744. static void synth_filter(MPADecodeContext *s1,
  745. int ch, int16_t *samples, int incr,
  746. int32_t sb_samples[SBLIMIT])
  747. {
  748. int32_t tmp[32];
  749. register MPA_INT *synth_buf;
  750. register const MPA_INT *w, *w2, *p;
  751. int j, offset, v;
  752. int16_t *samples2;
  753. #if FRAC_BITS <= 15
  754. int sum, sum2;
  755. #else
  756. int64_t sum, sum2;
  757. #endif
  758. dct32(tmp, sb_samples);
  759. offset = s1->synth_buf_offset[ch];
  760. synth_buf = s1->synth_buf[ch] + offset;
  761. for(j=0;j<32;j++) {
  762. v = tmp[j];
  763. #if FRAC_BITS <= 15
  764. /* NOTE: can cause a loss in precision if very high amplitude
  765. sound */
  766. if (v > 32767)
  767. v = 32767;
  768. else if (v < -32768)
  769. v = -32768;
  770. #endif
  771. synth_buf[j] = v;
  772. }
  773. /* copy to avoid wrap */
  774. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  775. samples2 = samples + 31 * incr;
  776. w = window;
  777. w2 = window + 31;
  778. sum = 0;
  779. p = synth_buf + 16;
  780. SUM8(sum, +=, w, p);
  781. p = synth_buf + 48;
  782. SUM8(sum, -=, w + 32, p);
  783. *samples = round_sample(sum);
  784. samples += incr;
  785. w++;
  786. /* we calculate two samples at the same time to avoid one memory
  787. access per two sample */
  788. for(j=1;j<16;j++) {
  789. sum = 0;
  790. sum2 = 0;
  791. p = synth_buf + 16 + j;
  792. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  793. p = synth_buf + 48 - j;
  794. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  795. *samples = round_sample(sum);
  796. samples += incr;
  797. *samples2 = round_sample(sum2);
  798. samples2 -= incr;
  799. w++;
  800. w2--;
  801. }
  802. p = synth_buf + 32;
  803. sum = 0;
  804. SUM8(sum, -=, w + 32, p);
  805. *samples = round_sample(sum);
  806. offset = (offset - 32) & 511;
  807. s1->synth_buf_offset[ch] = offset;
  808. }
  809. /* cos(pi*i/24) */
  810. #define C1 FIXR(0.99144486137381041114)
  811. #define C3 FIXR(0.92387953251128675612)
  812. #define C5 FIXR(0.79335334029123516458)
  813. #define C7 FIXR(0.60876142900872063941)
  814. #define C9 FIXR(0.38268343236508977173)
  815. #define C11 FIXR(0.13052619222005159154)
  816. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  817. cases. */
  818. static void imdct12(int *out, int *in)
  819. {
  820. int tmp;
  821. int64_t in1_3, in1_9, in4_3, in4_9;
  822. in1_3 = MUL64(in[1], C3);
  823. in1_9 = MUL64(in[1], C9);
  824. in4_3 = MUL64(in[4], C3);
  825. in4_9 = MUL64(in[4], C9);
  826. tmp = FRAC_RND(MUL64(in[0], C7) - in1_3 - MUL64(in[2], C11) +
  827. MUL64(in[3], C1) - in4_9 - MUL64(in[5], C5));
  828. out[0] = tmp;
  829. out[5] = -tmp;
  830. tmp = FRAC_RND(MUL64(in[0] - in[3], C9) - in1_3 +
  831. MUL64(in[2] + in[5], C3) - in4_9);
  832. out[1] = tmp;
  833. out[4] = -tmp;
  834. tmp = FRAC_RND(MUL64(in[0], C11) - in1_9 + MUL64(in[2], C7) -
  835. MUL64(in[3], C5) + in4_3 - MUL64(in[5], C1));
  836. out[2] = tmp;
  837. out[3] = -tmp;
  838. tmp = FRAC_RND(MUL64(-in[0], C5) + in1_9 + MUL64(in[2], C1) +
  839. MUL64(in[3], C11) - in4_3 - MUL64(in[5], C7));
  840. out[6] = tmp;
  841. out[11] = tmp;
  842. tmp = FRAC_RND(MUL64(-in[0] + in[3], C3) - in1_9 +
  843. MUL64(in[2] + in[5], C9) + in4_3);
  844. out[7] = tmp;
  845. out[10] = tmp;
  846. tmp = FRAC_RND(-MUL64(in[0], C1) - in1_3 - MUL64(in[2], C5) -
  847. MUL64(in[3], C7) - in4_9 - MUL64(in[5], C11));
  848. out[8] = tmp;
  849. out[9] = tmp;
  850. }
  851. #undef C1
  852. #undef C3
  853. #undef C5
  854. #undef C7
  855. #undef C9
  856. #undef C11
  857. /* cos(pi*i/18) */
  858. #define C1 FIXR(0.98480775301220805936)
  859. #define C2 FIXR(0.93969262078590838405)
  860. #define C3 FIXR(0.86602540378443864676)
  861. #define C4 FIXR(0.76604444311897803520)
  862. #define C5 FIXR(0.64278760968653932632)
  863. #define C6 FIXR(0.5)
  864. #define C7 FIXR(0.34202014332566873304)
  865. #define C8 FIXR(0.17364817766693034885)
  866. /* 0.5 / cos(pi*(2*i+1)/36) */
  867. static const int icos36[9] = {
  868. FIXR(0.50190991877167369479),
  869. FIXR(0.51763809020504152469),
  870. FIXR(0.55168895948124587824),
  871. FIXR(0.61038729438072803416),
  872. FIXR(0.70710678118654752439),
  873. FIXR(0.87172339781054900991),
  874. FIXR(1.18310079157624925896),
  875. FIXR(1.93185165257813657349),
  876. FIXR(5.73685662283492756461),
  877. };
  878. static const int icos72[18] = {
  879. /* 0.5 / cos(pi*(2*i+19)/72) */
  880. FIXR(0.74009361646113053152),
  881. FIXR(0.82133981585229078570),
  882. FIXR(0.93057949835178895673),
  883. FIXR(1.08284028510010010928),
  884. FIXR(1.30656296487637652785),
  885. FIXR(1.66275476171152078719),
  886. FIXR(2.31011315767264929558),
  887. FIXR(3.83064878777019433457),
  888. FIXR(11.46279281302667383546),
  889. /* 0.5 / cos(pi*(2*(i + 18) +19)/72) */
  890. FIXR(-0.67817085245462840086),
  891. FIXR(-0.63023620700513223342),
  892. FIXR(-0.59284452371708034528),
  893. FIXR(-0.56369097343317117734),
  894. FIXR(-0.54119610014619698439),
  895. FIXR(-0.52426456257040533932),
  896. FIXR(-0.51213975715725461845),
  897. FIXR(-0.50431448029007636036),
  898. FIXR(-0.50047634258165998492),
  899. };
  900. /* using Lee like decomposition followed by hand coded 9 points DCT */
  901. static void imdct36(int *out, int *in)
  902. {
  903. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  904. int tmp[18], *tmp1, *in1;
  905. int64_t in3_3, in6_6;
  906. for(i=17;i>=1;i--)
  907. in[i] += in[i-1];
  908. for(i=17;i>=3;i-=2)
  909. in[i] += in[i-2];
  910. for(j=0;j<2;j++) {
  911. tmp1 = tmp + j;
  912. in1 = in + j;
  913. in3_3 = MUL64(in1[2*3], C3);
  914. in6_6 = MUL64(in1[2*6], C6);
  915. tmp1[0] = FRAC_RND(MUL64(in1[2*1], C1) + in3_3 +
  916. MUL64(in1[2*5], C5) + MUL64(in1[2*7], C7));
  917. tmp1[2] = in1[2*0] + FRAC_RND(MUL64(in1[2*2], C2) +
  918. MUL64(in1[2*4], C4) + in6_6 +
  919. MUL64(in1[2*8], C8));
  920. tmp1[4] = FRAC_RND(MUL64(in1[2*1] - in1[2*5] - in1[2*7], C3));
  921. tmp1[6] = FRAC_RND(MUL64(in1[2*2] - in1[2*4] - in1[2*8], C6)) -
  922. in1[2*6] + in1[2*0];
  923. tmp1[8] = FRAC_RND(MUL64(in1[2*1], C5) - in3_3 -
  924. MUL64(in1[2*5], C7) + MUL64(in1[2*7], C1));
  925. tmp1[10] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C8) -
  926. MUL64(in1[2*4], C2) + in6_6 +
  927. MUL64(in1[2*8], C4));
  928. tmp1[12] = FRAC_RND(MUL64(in1[2*1], C7) - in3_3 +
  929. MUL64(in1[2*5], C1) -
  930. MUL64(in1[2*7], C5));
  931. tmp1[14] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C4) +
  932. MUL64(in1[2*4], C8) + in6_6 -
  933. MUL64(in1[2*8], C2));
  934. tmp1[16] = in1[2*0] - in1[2*2] + in1[2*4] - in1[2*6] + in1[2*8];
  935. }
  936. i = 0;
  937. for(j=0;j<4;j++) {
  938. t0 = tmp[i];
  939. t1 = tmp[i + 2];
  940. s0 = t1 + t0;
  941. s2 = t1 - t0;
  942. t2 = tmp[i + 1];
  943. t3 = tmp[i + 3];
  944. s1 = MULL(t3 + t2, icos36[j]);
  945. s3 = MULL(t3 - t2, icos36[8 - j]);
  946. t0 = MULL(s0 + s1, icos72[9 + 8 - j]);
  947. t1 = MULL(s0 - s1, icos72[8 - j]);
  948. out[18 + 9 + j] = t0;
  949. out[18 + 8 - j] = t0;
  950. out[9 + j] = -t1;
  951. out[8 - j] = t1;
  952. t0 = MULL(s2 + s3, icos72[9+j]);
  953. t1 = MULL(s2 - s3, icos72[j]);
  954. out[18 + 9 + (8 - j)] = t0;
  955. out[18 + j] = t0;
  956. out[9 + (8 - j)] = -t1;
  957. out[j] = t1;
  958. i += 4;
  959. }
  960. s0 = tmp[16];
  961. s1 = MULL(tmp[17], icos36[4]);
  962. t0 = MULL(s0 + s1, icos72[9 + 4]);
  963. t1 = MULL(s0 - s1, icos72[4]);
  964. out[18 + 9 + 4] = t0;
  965. out[18 + 8 - 4] = t0;
  966. out[9 + 4] = -t1;
  967. out[8 - 4] = t1;
  968. }
  969. /* fast header check for resync */
  970. static int check_header(uint32_t header)
  971. {
  972. /* header */
  973. if ((header & 0xffe00000) != 0xffe00000)
  974. return -1;
  975. /* layer check */
  976. if (((header >> 17) & 3) == 0)
  977. return -1;
  978. /* bit rate */
  979. if (((header >> 12) & 0xf) == 0xf)
  980. return -1;
  981. /* frequency */
  982. if (((header >> 10) & 3) == 3)
  983. return -1;
  984. return 0;
  985. }
  986. /* header + layer + bitrate + freq + lsf/mpeg25 */
  987. #define SAME_HEADER_MASK \
  988. (0xffe00000 | (3 << 17) | (0xf << 12) | (3 << 10) | (3 << 19))
  989. /* header decoding. MUST check the header before because no
  990. consistency check is done there. Return 1 if free format found and
  991. that the frame size must be computed externally */
  992. static int decode_header(MPADecodeContext *s, uint32_t header)
  993. {
  994. int sample_rate, frame_size, mpeg25, padding;
  995. int sample_rate_index, bitrate_index;
  996. if (header & (1<<20)) {
  997. s->lsf = (header & (1<<19)) ? 0 : 1;
  998. mpeg25 = 0;
  999. } else {
  1000. s->lsf = 1;
  1001. mpeg25 = 1;
  1002. }
  1003. s->layer = 4 - ((header >> 17) & 3);
  1004. /* extract frequency */
  1005. sample_rate_index = (header >> 10) & 3;
  1006. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  1007. sample_rate_index += 3 * (s->lsf + mpeg25);
  1008. s->sample_rate_index = sample_rate_index;
  1009. s->error_protection = ((header >> 16) & 1) ^ 1;
  1010. s->sample_rate = sample_rate;
  1011. bitrate_index = (header >> 12) & 0xf;
  1012. padding = (header >> 9) & 1;
  1013. //extension = (header >> 8) & 1;
  1014. s->mode = (header >> 6) & 3;
  1015. s->mode_ext = (header >> 4) & 3;
  1016. //copyright = (header >> 3) & 1;
  1017. //original = (header >> 2) & 1;
  1018. //emphasis = header & 3;
  1019. if (s->mode == MPA_MONO)
  1020. s->nb_channels = 1;
  1021. else
  1022. s->nb_channels = 2;
  1023. if (bitrate_index != 0) {
  1024. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  1025. s->bit_rate = frame_size * 1000;
  1026. switch(s->layer) {
  1027. case 1:
  1028. frame_size = (frame_size * 12000) / sample_rate;
  1029. frame_size = (frame_size + padding) * 4;
  1030. break;
  1031. case 2:
  1032. frame_size = (frame_size * 144000) / sample_rate;
  1033. frame_size += padding;
  1034. break;
  1035. default:
  1036. case 3:
  1037. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  1038. frame_size += padding;
  1039. break;
  1040. }
  1041. s->frame_size = frame_size;
  1042. } else {
  1043. /* if no frame size computed, signal it */
  1044. if (!s->free_format_frame_size)
  1045. return 1;
  1046. /* free format: compute bitrate and real frame size from the
  1047. frame size we extracted by reading the bitstream */
  1048. s->frame_size = s->free_format_frame_size;
  1049. switch(s->layer) {
  1050. case 1:
  1051. s->frame_size += padding * 4;
  1052. s->bit_rate = (s->frame_size * sample_rate) / 48000;
  1053. break;
  1054. case 2:
  1055. s->frame_size += padding;
  1056. s->bit_rate = (s->frame_size * sample_rate) / 144000;
  1057. break;
  1058. default:
  1059. case 3:
  1060. s->frame_size += padding;
  1061. s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
  1062. break;
  1063. }
  1064. }
  1065. #if defined(DEBUG)
  1066. printf("layer%d, %d Hz, %d kbits/s, ",
  1067. s->layer, s->sample_rate, s->bit_rate);
  1068. if (s->nb_channels == 2) {
  1069. if (s->layer == 3) {
  1070. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1071. printf("ms-");
  1072. if (s->mode_ext & MODE_EXT_I_STEREO)
  1073. printf("i-");
  1074. }
  1075. printf("stereo");
  1076. } else {
  1077. printf("mono");
  1078. }
  1079. printf("\n");
  1080. #endif
  1081. return 0;
  1082. }
  1083. /* useful helper to get mpeg audio stream infos. Return -1 if error in
  1084. header, otherwise the coded frame size in bytes */
  1085. int mpa_decode_header(AVCodecContext *avctx, uint32_t head)
  1086. {
  1087. MPADecodeContext s1, *s = &s1;
  1088. memset( s, 0, sizeof(MPADecodeContext) );
  1089. if (check_header(head) != 0)
  1090. return -1;
  1091. if (decode_header(s, head) != 0) {
  1092. return -1;
  1093. }
  1094. switch(s->layer) {
  1095. case 1:
  1096. avctx->frame_size = 384;
  1097. break;
  1098. case 2:
  1099. avctx->frame_size = 1152;
  1100. break;
  1101. default:
  1102. case 3:
  1103. if (s->lsf)
  1104. avctx->frame_size = 576;
  1105. else
  1106. avctx->frame_size = 1152;
  1107. break;
  1108. }
  1109. avctx->sample_rate = s->sample_rate;
  1110. avctx->channels = s->nb_channels;
  1111. avctx->bit_rate = s->bit_rate;
  1112. avctx->sub_id = s->layer;
  1113. return s->frame_size;
  1114. }
  1115. /* return the number of decoded frames */
  1116. static int mp_decode_layer1(MPADecodeContext *s)
  1117. {
  1118. int bound, i, v, n, ch, j, mant;
  1119. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1120. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1121. if (s->mode == MPA_JSTEREO)
  1122. bound = (s->mode_ext + 1) * 4;
  1123. else
  1124. bound = SBLIMIT;
  1125. /* allocation bits */
  1126. for(i=0;i<bound;i++) {
  1127. for(ch=0;ch<s->nb_channels;ch++) {
  1128. allocation[ch][i] = get_bits(&s->gb, 4);
  1129. }
  1130. }
  1131. for(i=bound;i<SBLIMIT;i++) {
  1132. allocation[0][i] = get_bits(&s->gb, 4);
  1133. }
  1134. /* scale factors */
  1135. for(i=0;i<bound;i++) {
  1136. for(ch=0;ch<s->nb_channels;ch++) {
  1137. if (allocation[ch][i])
  1138. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1139. }
  1140. }
  1141. for(i=bound;i<SBLIMIT;i++) {
  1142. if (allocation[0][i]) {
  1143. scale_factors[0][i] = get_bits(&s->gb, 6);
  1144. scale_factors[1][i] = get_bits(&s->gb, 6);
  1145. }
  1146. }
  1147. /* compute samples */
  1148. for(j=0;j<12;j++) {
  1149. for(i=0;i<bound;i++) {
  1150. for(ch=0;ch<s->nb_channels;ch++) {
  1151. n = allocation[ch][i];
  1152. if (n) {
  1153. mant = get_bits(&s->gb, n + 1);
  1154. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1155. } else {
  1156. v = 0;
  1157. }
  1158. s->sb_samples[ch][j][i] = v;
  1159. }
  1160. }
  1161. for(i=bound;i<SBLIMIT;i++) {
  1162. n = allocation[0][i];
  1163. if (n) {
  1164. mant = get_bits(&s->gb, n + 1);
  1165. v = l1_unscale(n, mant, scale_factors[0][i]);
  1166. s->sb_samples[0][j][i] = v;
  1167. v = l1_unscale(n, mant, scale_factors[1][i]);
  1168. s->sb_samples[1][j][i] = v;
  1169. } else {
  1170. s->sb_samples[0][j][i] = 0;
  1171. s->sb_samples[1][j][i] = 0;
  1172. }
  1173. }
  1174. }
  1175. return 12;
  1176. }
  1177. /* bitrate is in kb/s */
  1178. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1179. {
  1180. int ch_bitrate, table;
  1181. ch_bitrate = bitrate / nb_channels;
  1182. if (!lsf) {
  1183. if ((freq == 48000 && ch_bitrate >= 56) ||
  1184. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1185. table = 0;
  1186. else if (freq != 48000 && ch_bitrate >= 96)
  1187. table = 1;
  1188. else if (freq != 32000 && ch_bitrate <= 48)
  1189. table = 2;
  1190. else
  1191. table = 3;
  1192. } else {
  1193. table = 4;
  1194. }
  1195. return table;
  1196. }
  1197. static int mp_decode_layer2(MPADecodeContext *s)
  1198. {
  1199. int sblimit; /* number of used subbands */
  1200. const unsigned char *alloc_table;
  1201. int table, bit_alloc_bits, i, j, ch, bound, v;
  1202. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1203. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1204. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1205. int scale, qindex, bits, steps, k, l, m, b;
  1206. /* select decoding table */
  1207. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1208. s->sample_rate, s->lsf);
  1209. sblimit = sblimit_table[table];
  1210. alloc_table = alloc_tables[table];
  1211. if (s->mode == MPA_JSTEREO)
  1212. bound = (s->mode_ext + 1) * 4;
  1213. else
  1214. bound = sblimit;
  1215. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1216. /* sanity check */
  1217. if( bound > sblimit ) bound = sblimit;
  1218. /* parse bit allocation */
  1219. j = 0;
  1220. for(i=0;i<bound;i++) {
  1221. bit_alloc_bits = alloc_table[j];
  1222. for(ch=0;ch<s->nb_channels;ch++) {
  1223. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1224. }
  1225. j += 1 << bit_alloc_bits;
  1226. }
  1227. for(i=bound;i<sblimit;i++) {
  1228. bit_alloc_bits = alloc_table[j];
  1229. v = get_bits(&s->gb, bit_alloc_bits);
  1230. bit_alloc[0][i] = v;
  1231. bit_alloc[1][i] = v;
  1232. j += 1 << bit_alloc_bits;
  1233. }
  1234. #ifdef DEBUG
  1235. {
  1236. for(ch=0;ch<s->nb_channels;ch++) {
  1237. for(i=0;i<sblimit;i++)
  1238. printf(" %d", bit_alloc[ch][i]);
  1239. printf("\n");
  1240. }
  1241. }
  1242. #endif
  1243. /* scale codes */
  1244. for(i=0;i<sblimit;i++) {
  1245. for(ch=0;ch<s->nb_channels;ch++) {
  1246. if (bit_alloc[ch][i])
  1247. scale_code[ch][i] = get_bits(&s->gb, 2);
  1248. }
  1249. }
  1250. /* scale factors */
  1251. for(i=0;i<sblimit;i++) {
  1252. for(ch=0;ch<s->nb_channels;ch++) {
  1253. if (bit_alloc[ch][i]) {
  1254. sf = scale_factors[ch][i];
  1255. switch(scale_code[ch][i]) {
  1256. default:
  1257. case 0:
  1258. sf[0] = get_bits(&s->gb, 6);
  1259. sf[1] = get_bits(&s->gb, 6);
  1260. sf[2] = get_bits(&s->gb, 6);
  1261. break;
  1262. case 2:
  1263. sf[0] = get_bits(&s->gb, 6);
  1264. sf[1] = sf[0];
  1265. sf[2] = sf[0];
  1266. break;
  1267. case 1:
  1268. sf[0] = get_bits(&s->gb, 6);
  1269. sf[2] = get_bits(&s->gb, 6);
  1270. sf[1] = sf[0];
  1271. break;
  1272. case 3:
  1273. sf[0] = get_bits(&s->gb, 6);
  1274. sf[2] = get_bits(&s->gb, 6);
  1275. sf[1] = sf[2];
  1276. break;
  1277. }
  1278. }
  1279. }
  1280. }
  1281. #ifdef DEBUG
  1282. for(ch=0;ch<s->nb_channels;ch++) {
  1283. for(i=0;i<sblimit;i++) {
  1284. if (bit_alloc[ch][i]) {
  1285. sf = scale_factors[ch][i];
  1286. printf(" %d %d %d", sf[0], sf[1], sf[2]);
  1287. } else {
  1288. printf(" -");
  1289. }
  1290. }
  1291. printf("\n");
  1292. }
  1293. #endif
  1294. /* samples */
  1295. for(k=0;k<3;k++) {
  1296. for(l=0;l<12;l+=3) {
  1297. j = 0;
  1298. for(i=0;i<bound;i++) {
  1299. bit_alloc_bits = alloc_table[j];
  1300. for(ch=0;ch<s->nb_channels;ch++) {
  1301. b = bit_alloc[ch][i];
  1302. if (b) {
  1303. scale = scale_factors[ch][i][k];
  1304. qindex = alloc_table[j+b];
  1305. bits = quant_bits[qindex];
  1306. if (bits < 0) {
  1307. /* 3 values at the same time */
  1308. v = get_bits(&s->gb, -bits);
  1309. steps = quant_steps[qindex];
  1310. s->sb_samples[ch][k * 12 + l + 0][i] =
  1311. l2_unscale_group(steps, v % steps, scale);
  1312. v = v / steps;
  1313. s->sb_samples[ch][k * 12 + l + 1][i] =
  1314. l2_unscale_group(steps, v % steps, scale);
  1315. v = v / steps;
  1316. s->sb_samples[ch][k * 12 + l + 2][i] =
  1317. l2_unscale_group(steps, v, scale);
  1318. } else {
  1319. for(m=0;m<3;m++) {
  1320. v = get_bits(&s->gb, bits);
  1321. v = l1_unscale(bits - 1, v, scale);
  1322. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1323. }
  1324. }
  1325. } else {
  1326. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1327. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1328. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1329. }
  1330. }
  1331. /* next subband in alloc table */
  1332. j += 1 << bit_alloc_bits;
  1333. }
  1334. /* XXX: find a way to avoid this duplication of code */
  1335. for(i=bound;i<sblimit;i++) {
  1336. bit_alloc_bits = alloc_table[j];
  1337. b = bit_alloc[0][i];
  1338. if (b) {
  1339. int mant, scale0, scale1;
  1340. scale0 = scale_factors[0][i][k];
  1341. scale1 = scale_factors[1][i][k];
  1342. qindex = alloc_table[j+b];
  1343. bits = quant_bits[qindex];
  1344. if (bits < 0) {
  1345. /* 3 values at the same time */
  1346. v = get_bits(&s->gb, -bits);
  1347. steps = quant_steps[qindex];
  1348. mant = v % steps;
  1349. v = v / steps;
  1350. s->sb_samples[0][k * 12 + l + 0][i] =
  1351. l2_unscale_group(steps, mant, scale0);
  1352. s->sb_samples[1][k * 12 + l + 0][i] =
  1353. l2_unscale_group(steps, mant, scale1);
  1354. mant = v % steps;
  1355. v = v / steps;
  1356. s->sb_samples[0][k * 12 + l + 1][i] =
  1357. l2_unscale_group(steps, mant, scale0);
  1358. s->sb_samples[1][k * 12 + l + 1][i] =
  1359. l2_unscale_group(steps, mant, scale1);
  1360. s->sb_samples[0][k * 12 + l + 2][i] =
  1361. l2_unscale_group(steps, v, scale0);
  1362. s->sb_samples[1][k * 12 + l + 2][i] =
  1363. l2_unscale_group(steps, v, scale1);
  1364. } else {
  1365. for(m=0;m<3;m++) {
  1366. mant = get_bits(&s->gb, bits);
  1367. s->sb_samples[0][k * 12 + l + m][i] =
  1368. l1_unscale(bits - 1, mant, scale0);
  1369. s->sb_samples[1][k * 12 + l + m][i] =
  1370. l1_unscale(bits - 1, mant, scale1);
  1371. }
  1372. }
  1373. } else {
  1374. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1375. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1376. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1377. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1378. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1379. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1380. }
  1381. /* next subband in alloc table */
  1382. j += 1 << bit_alloc_bits;
  1383. }
  1384. /* fill remaining samples to zero */
  1385. for(i=sblimit;i<SBLIMIT;i++) {
  1386. for(ch=0;ch<s->nb_channels;ch++) {
  1387. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1388. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1389. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1390. }
  1391. }
  1392. }
  1393. }
  1394. return 3 * 12;
  1395. }
  1396. /*
  1397. * Seek back in the stream for backstep bytes (at most 511 bytes)
  1398. */
  1399. static void seek_to_maindata(MPADecodeContext *s, unsigned int backstep)
  1400. {
  1401. uint8_t *ptr;
  1402. /* compute current position in stream */
  1403. ptr = (uint8_t *)(s->gb.buffer + (get_bits_count(&s->gb)>>3));
  1404. /* copy old data before current one */
  1405. ptr -= backstep;
  1406. memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] +
  1407. BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
  1408. /* init get bits again */
  1409. init_get_bits(&s->gb, ptr, (s->frame_size + backstep)*8);
  1410. /* prepare next buffer */
  1411. s->inbuf_index ^= 1;
  1412. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  1413. s->old_frame_size = s->frame_size;
  1414. }
  1415. static inline void lsf_sf_expand(int *slen,
  1416. int sf, int n1, int n2, int n3)
  1417. {
  1418. if (n3) {
  1419. slen[3] = sf % n3;
  1420. sf /= n3;
  1421. } else {
  1422. slen[3] = 0;
  1423. }
  1424. if (n2) {
  1425. slen[2] = sf % n2;
  1426. sf /= n2;
  1427. } else {
  1428. slen[2] = 0;
  1429. }
  1430. slen[1] = sf % n1;
  1431. sf /= n1;
  1432. slen[0] = sf;
  1433. }
  1434. static void exponents_from_scale_factors(MPADecodeContext *s,
  1435. GranuleDef *g,
  1436. int16_t *exponents)
  1437. {
  1438. const uint8_t *bstab, *pretab;
  1439. int len, i, j, k, l, v0, shift, gain, gains[3];
  1440. int16_t *exp_ptr;
  1441. exp_ptr = exponents;
  1442. gain = g->global_gain - 210;
  1443. shift = g->scalefac_scale + 1;
  1444. bstab = band_size_long[s->sample_rate_index];
  1445. pretab = mpa_pretab[g->preflag];
  1446. for(i=0;i<g->long_end;i++) {
  1447. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
  1448. len = bstab[i];
  1449. for(j=len;j>0;j--)
  1450. *exp_ptr++ = v0;
  1451. }
  1452. if (g->short_start < 13) {
  1453. bstab = band_size_short[s->sample_rate_index];
  1454. gains[0] = gain - (g->subblock_gain[0] << 3);
  1455. gains[1] = gain - (g->subblock_gain[1] << 3);
  1456. gains[2] = gain - (g->subblock_gain[2] << 3);
  1457. k = g->long_end;
  1458. for(i=g->short_start;i<13;i++) {
  1459. len = bstab[i];
  1460. for(l=0;l<3;l++) {
  1461. v0 = gains[l] - (g->scale_factors[k++] << shift);
  1462. for(j=len;j>0;j--)
  1463. *exp_ptr++ = v0;
  1464. }
  1465. }
  1466. }
  1467. }
  1468. /* handle n = 0 too */
  1469. static inline int get_bitsz(GetBitContext *s, int n)
  1470. {
  1471. if (n == 0)
  1472. return 0;
  1473. else
  1474. return get_bits(s, n);
  1475. }
  1476. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1477. int16_t *exponents, int end_pos)
  1478. {
  1479. int s_index;
  1480. int linbits, code, x, y, l, v, i, j, k, pos;
  1481. GetBitContext last_gb;
  1482. VLC *vlc;
  1483. uint8_t *code_table;
  1484. /* low frequencies (called big values) */
  1485. s_index = 0;
  1486. for(i=0;i<3;i++) {
  1487. j = g->region_size[i];
  1488. if (j == 0)
  1489. continue;
  1490. /* select vlc table */
  1491. k = g->table_select[i];
  1492. l = mpa_huff_data[k][0];
  1493. linbits = mpa_huff_data[k][1];
  1494. vlc = &huff_vlc[l];
  1495. code_table = huff_code_table[l];
  1496. /* read huffcode and compute each couple */
  1497. for(;j>0;j--) {
  1498. if (get_bits_count(&s->gb) >= end_pos)
  1499. break;
  1500. if (code_table) {
  1501. code = get_vlc(&s->gb, vlc);
  1502. if (code < 0)
  1503. return -1;
  1504. y = code_table[code];
  1505. x = y >> 4;
  1506. y = y & 0x0f;
  1507. } else {
  1508. x = 0;
  1509. y = 0;
  1510. }
  1511. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1512. i, g->region_size[i] - j, x, y, exponents[s_index]);
  1513. if (x) {
  1514. if (x == 15)
  1515. x += get_bitsz(&s->gb, linbits);
  1516. v = l3_unscale(x, exponents[s_index]);
  1517. if (get_bits1(&s->gb))
  1518. v = -v;
  1519. } else {
  1520. v = 0;
  1521. }
  1522. g->sb_hybrid[s_index++] = v;
  1523. if (y) {
  1524. if (y == 15)
  1525. y += get_bitsz(&s->gb, linbits);
  1526. v = l3_unscale(y, exponents[s_index]);
  1527. if (get_bits1(&s->gb))
  1528. v = -v;
  1529. } else {
  1530. v = 0;
  1531. }
  1532. g->sb_hybrid[s_index++] = v;
  1533. }
  1534. }
  1535. /* high frequencies */
  1536. vlc = &huff_quad_vlc[g->count1table_select];
  1537. last_gb.buffer = NULL;
  1538. while (s_index <= 572) {
  1539. pos = get_bits_count(&s->gb);
  1540. if (pos >= end_pos) {
  1541. if (pos > end_pos && last_gb.buffer != NULL) {
  1542. /* some encoders generate an incorrect size for this
  1543. part. We must go back into the data */
  1544. s_index -= 4;
  1545. s->gb = last_gb;
  1546. }
  1547. break;
  1548. }
  1549. last_gb= s->gb;
  1550. code = get_vlc(&s->gb, vlc);
  1551. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1552. if (code < 0)
  1553. return -1;
  1554. for(i=0;i<4;i++) {
  1555. if (code & (8 >> i)) {
  1556. /* non zero value. Could use a hand coded function for
  1557. 'one' value */
  1558. v = l3_unscale(1, exponents[s_index]);
  1559. if(get_bits1(&s->gb))
  1560. v = -v;
  1561. } else {
  1562. v = 0;
  1563. }
  1564. g->sb_hybrid[s_index++] = v;
  1565. }
  1566. }
  1567. while (s_index < 576)
  1568. g->sb_hybrid[s_index++] = 0;
  1569. return 0;
  1570. }
  1571. /* Reorder short blocks from bitstream order to interleaved order. It
  1572. would be faster to do it in parsing, but the code would be far more
  1573. complicated */
  1574. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1575. {
  1576. int i, j, k, len;
  1577. int32_t *ptr, *dst, *ptr1;
  1578. int32_t tmp[576];
  1579. if (g->block_type != 2)
  1580. return;
  1581. if (g->switch_point) {
  1582. if (s->sample_rate_index != 8) {
  1583. ptr = g->sb_hybrid + 36;
  1584. } else {
  1585. ptr = g->sb_hybrid + 48;
  1586. }
  1587. } else {
  1588. ptr = g->sb_hybrid;
  1589. }
  1590. for(i=g->short_start;i<13;i++) {
  1591. len = band_size_short[s->sample_rate_index][i];
  1592. ptr1 = ptr;
  1593. for(k=0;k<3;k++) {
  1594. dst = tmp + k;
  1595. for(j=len;j>0;j--) {
  1596. *dst = *ptr++;
  1597. dst += 3;
  1598. }
  1599. }
  1600. memcpy(ptr1, tmp, len * 3 * sizeof(int32_t));
  1601. }
  1602. }
  1603. #define ISQRT2 FIXR(0.70710678118654752440)
  1604. static void compute_stereo(MPADecodeContext *s,
  1605. GranuleDef *g0, GranuleDef *g1)
  1606. {
  1607. int i, j, k, l;
  1608. int32_t v1, v2;
  1609. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1610. int32_t (*is_tab)[16];
  1611. int32_t *tab0, *tab1;
  1612. int non_zero_found_short[3];
  1613. /* intensity stereo */
  1614. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1615. if (!s->lsf) {
  1616. is_tab = is_table;
  1617. sf_max = 7;
  1618. } else {
  1619. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1620. sf_max = 16;
  1621. }
  1622. tab0 = g0->sb_hybrid + 576;
  1623. tab1 = g1->sb_hybrid + 576;
  1624. non_zero_found_short[0] = 0;
  1625. non_zero_found_short[1] = 0;
  1626. non_zero_found_short[2] = 0;
  1627. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1628. for(i = 12;i >= g1->short_start;i--) {
  1629. /* for last band, use previous scale factor */
  1630. if (i != 11)
  1631. k -= 3;
  1632. len = band_size_short[s->sample_rate_index][i];
  1633. for(l=2;l>=0;l--) {
  1634. tab0 -= len;
  1635. tab1 -= len;
  1636. if (!non_zero_found_short[l]) {
  1637. /* test if non zero band. if so, stop doing i-stereo */
  1638. for(j=0;j<len;j++) {
  1639. if (tab1[j] != 0) {
  1640. non_zero_found_short[l] = 1;
  1641. goto found1;
  1642. }
  1643. }
  1644. sf = g1->scale_factors[k + l];
  1645. if (sf >= sf_max)
  1646. goto found1;
  1647. v1 = is_tab[0][sf];
  1648. v2 = is_tab[1][sf];
  1649. for(j=0;j<len;j++) {
  1650. tmp0 = tab0[j];
  1651. tab0[j] = MULL(tmp0, v1);
  1652. tab1[j] = MULL(tmp0, v2);
  1653. }
  1654. } else {
  1655. found1:
  1656. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1657. /* lower part of the spectrum : do ms stereo
  1658. if enabled */
  1659. for(j=0;j<len;j++) {
  1660. tmp0 = tab0[j];
  1661. tmp1 = tab1[j];
  1662. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1663. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1664. }
  1665. }
  1666. }
  1667. }
  1668. }
  1669. non_zero_found = non_zero_found_short[0] |
  1670. non_zero_found_short[1] |
  1671. non_zero_found_short[2];
  1672. for(i = g1->long_end - 1;i >= 0;i--) {
  1673. len = band_size_long[s->sample_rate_index][i];
  1674. tab0 -= len;
  1675. tab1 -= len;
  1676. /* test if non zero band. if so, stop doing i-stereo */
  1677. if (!non_zero_found) {
  1678. for(j=0;j<len;j++) {
  1679. if (tab1[j] != 0) {
  1680. non_zero_found = 1;
  1681. goto found2;
  1682. }
  1683. }
  1684. /* for last band, use previous scale factor */
  1685. k = (i == 21) ? 20 : i;
  1686. sf = g1->scale_factors[k];
  1687. if (sf >= sf_max)
  1688. goto found2;
  1689. v1 = is_tab[0][sf];
  1690. v2 = is_tab[1][sf];
  1691. for(j=0;j<len;j++) {
  1692. tmp0 = tab0[j];
  1693. tab0[j] = MULL(tmp0, v1);
  1694. tab1[j] = MULL(tmp0, v2);
  1695. }
  1696. } else {
  1697. found2:
  1698. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1699. /* lower part of the spectrum : do ms stereo
  1700. if enabled */
  1701. for(j=0;j<len;j++) {
  1702. tmp0 = tab0[j];
  1703. tmp1 = tab1[j];
  1704. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1705. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1706. }
  1707. }
  1708. }
  1709. }
  1710. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1711. /* ms stereo ONLY */
  1712. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1713. global gain */
  1714. tab0 = g0->sb_hybrid;
  1715. tab1 = g1->sb_hybrid;
  1716. for(i=0;i<576;i++) {
  1717. tmp0 = tab0[i];
  1718. tmp1 = tab1[i];
  1719. tab0[i] = tmp0 + tmp1;
  1720. tab1[i] = tmp0 - tmp1;
  1721. }
  1722. }
  1723. }
  1724. static void compute_antialias_integer(MPADecodeContext *s,
  1725. GranuleDef *g)
  1726. {
  1727. int32_t *ptr, *p0, *p1, *csa;
  1728. int n, i, j;
  1729. /* we antialias only "long" bands */
  1730. if (g->block_type == 2) {
  1731. if (!g->switch_point)
  1732. return;
  1733. /* XXX: check this for 8000Hz case */
  1734. n = 1;
  1735. } else {
  1736. n = SBLIMIT - 1;
  1737. }
  1738. ptr = g->sb_hybrid + 18;
  1739. for(i = n;i > 0;i--) {
  1740. p0 = ptr - 1;
  1741. p1 = ptr;
  1742. csa = &csa_table[0][0];
  1743. for(j=0;j<4;j++) {
  1744. int tmp0 = *p0;
  1745. int tmp1 = *p1;
  1746. #if 0
  1747. *p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1]));
  1748. *p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0]));
  1749. #else
  1750. int64_t tmp2= MUL64(tmp0 + tmp1, csa[0]);
  1751. *p0 = FRAC_RND(tmp2 - MUL64(tmp1, csa[2]));
  1752. *p1 = FRAC_RND(tmp2 + MUL64(tmp0, csa[3]));
  1753. #endif
  1754. p0--; p1++;
  1755. csa += 4;
  1756. tmp0 = *p0;
  1757. tmp1 = *p1;
  1758. #if 0
  1759. *p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1]));
  1760. *p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0]));
  1761. #else
  1762. tmp2= MUL64(tmp0 + tmp1, csa[0]);
  1763. *p0 = FRAC_RND(tmp2 - MUL64(tmp1, csa[2]));
  1764. *p1 = FRAC_RND(tmp2 + MUL64(tmp0, csa[3]));
  1765. #endif
  1766. p0--; p1++;
  1767. csa += 4;
  1768. }
  1769. ptr += 18;
  1770. }
  1771. }
  1772. static void compute_antialias_float(MPADecodeContext *s,
  1773. GranuleDef *g)
  1774. {
  1775. int32_t *ptr, *p0, *p1;
  1776. int n, i, j;
  1777. /* we antialias only "long" bands */
  1778. if (g->block_type == 2) {
  1779. if (!g->switch_point)
  1780. return;
  1781. /* XXX: check this for 8000Hz case */
  1782. n = 1;
  1783. } else {
  1784. n = SBLIMIT - 1;
  1785. }
  1786. ptr = g->sb_hybrid + 18;
  1787. for(i = n;i > 0;i--) {
  1788. float *csa = &csa_table_float[0][0];
  1789. p0 = ptr - 1;
  1790. p1 = ptr;
  1791. for(j=0;j<4;j++) {
  1792. float tmp0 = *p0;
  1793. float tmp1 = *p1;
  1794. #if 1
  1795. *p0 = lrintf(tmp0 * csa[0] - tmp1 * csa[1]);
  1796. *p1 = lrintf(tmp0 * csa[1] + tmp1 * csa[0]);
  1797. #else
  1798. float tmp2= (tmp0 + tmp1) * csa[0];
  1799. *p0 = lrintf(tmp2 - tmp1 * csa[2]);
  1800. *p1 = lrintf(tmp2 + tmp0 * csa[3]);
  1801. #endif
  1802. p0--; p1++;
  1803. csa += 4;
  1804. tmp0 = *p0;
  1805. tmp1 = *p1;
  1806. #if 1
  1807. *p0 = lrintf(tmp0 * csa[0] - tmp1 * csa[1]);
  1808. *p1 = lrintf(tmp0 * csa[1] + tmp1 * csa[0]);
  1809. #else
  1810. tmp2= (tmp0 + tmp1) * csa[0];
  1811. *p0 = lrintf(tmp2 - tmp1 * csa[2]);
  1812. *p1 = lrintf(tmp2 + tmp0 * csa[3]);
  1813. #endif
  1814. p0--; p1++;
  1815. csa += 4;
  1816. }
  1817. ptr += 18;
  1818. }
  1819. }
  1820. static void compute_imdct(MPADecodeContext *s,
  1821. GranuleDef *g,
  1822. int32_t *sb_samples,
  1823. int32_t *mdct_buf)
  1824. {
  1825. int32_t *ptr, *win, *win1, *buf, *buf2, *out_ptr, *ptr1;
  1826. int32_t in[6];
  1827. int32_t out[36];
  1828. int32_t out2[12];
  1829. int i, j, k, mdct_long_end, v, sblimit;
  1830. /* find last non zero block */
  1831. ptr = g->sb_hybrid + 576;
  1832. ptr1 = g->sb_hybrid + 2 * 18;
  1833. while (ptr >= ptr1) {
  1834. ptr -= 6;
  1835. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1836. if (v != 0)
  1837. break;
  1838. }
  1839. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1840. if (g->block_type == 2) {
  1841. /* XXX: check for 8000 Hz */
  1842. if (g->switch_point)
  1843. mdct_long_end = 2;
  1844. else
  1845. mdct_long_end = 0;
  1846. } else {
  1847. mdct_long_end = sblimit;
  1848. }
  1849. buf = mdct_buf;
  1850. ptr = g->sb_hybrid;
  1851. for(j=0;j<mdct_long_end;j++) {
  1852. imdct36(out, ptr);
  1853. /* apply window & overlap with previous buffer */
  1854. out_ptr = sb_samples + j;
  1855. /* select window */
  1856. if (g->switch_point && j < 2)
  1857. win1 = mdct_win[0];
  1858. else
  1859. win1 = mdct_win[g->block_type];
  1860. /* select frequency inversion */
  1861. win = win1 + ((4 * 36) & -(j & 1));
  1862. for(i=0;i<18;i++) {
  1863. *out_ptr = MULL(out[i], win[i]) + buf[i];
  1864. buf[i] = MULL(out[i + 18], win[i + 18]);
  1865. out_ptr += SBLIMIT;
  1866. }
  1867. ptr += 18;
  1868. buf += 18;
  1869. }
  1870. for(j=mdct_long_end;j<sblimit;j++) {
  1871. for(i=0;i<6;i++) {
  1872. out[i] = 0;
  1873. out[6 + i] = 0;
  1874. out[30+i] = 0;
  1875. }
  1876. /* select frequency inversion */
  1877. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1878. buf2 = out + 6;
  1879. for(k=0;k<3;k++) {
  1880. /* reorder input for short mdct */
  1881. ptr1 = ptr + k;
  1882. for(i=0;i<6;i++) {
  1883. in[i] = *ptr1;
  1884. ptr1 += 3;
  1885. }
  1886. imdct12(out2, in);
  1887. /* apply 12 point window and do small overlap */
  1888. for(i=0;i<6;i++) {
  1889. buf2[i] = MULL(out2[i], win[i]) + buf2[i];
  1890. buf2[i + 6] = MULL(out2[i + 6], win[i + 6]);
  1891. }
  1892. buf2 += 6;
  1893. }
  1894. /* overlap */
  1895. out_ptr = sb_samples + j;
  1896. for(i=0;i<18;i++) {
  1897. *out_ptr = out[i] + buf[i];
  1898. buf[i] = out[i + 18];
  1899. out_ptr += SBLIMIT;
  1900. }
  1901. ptr += 18;
  1902. buf += 18;
  1903. }
  1904. /* zero bands */
  1905. for(j=sblimit;j<SBLIMIT;j++) {
  1906. /* overlap */
  1907. out_ptr = sb_samples + j;
  1908. for(i=0;i<18;i++) {
  1909. *out_ptr = buf[i];
  1910. buf[i] = 0;
  1911. out_ptr += SBLIMIT;
  1912. }
  1913. buf += 18;
  1914. }
  1915. }
  1916. #if defined(DEBUG)
  1917. void sample_dump(int fnum, int32_t *tab, int n)
  1918. {
  1919. static FILE *files[16], *f;
  1920. char buf[512];
  1921. int i;
  1922. int32_t v;
  1923. f = files[fnum];
  1924. if (!f) {
  1925. sprintf(buf, "/tmp/out%d.%s.pcm",
  1926. fnum,
  1927. #ifdef USE_HIGHPRECISION
  1928. "hp"
  1929. #else
  1930. "lp"
  1931. #endif
  1932. );
  1933. f = fopen(buf, "w");
  1934. if (!f)
  1935. return;
  1936. files[fnum] = f;
  1937. }
  1938. if (fnum == 0) {
  1939. static int pos = 0;
  1940. printf("pos=%d\n", pos);
  1941. for(i=0;i<n;i++) {
  1942. printf(" %0.4f", (double)tab[i] / FRAC_ONE);
  1943. if ((i % 18) == 17)
  1944. printf("\n");
  1945. }
  1946. pos += n;
  1947. }
  1948. for(i=0;i<n;i++) {
  1949. /* normalize to 23 frac bits */
  1950. v = tab[i] << (23 - FRAC_BITS);
  1951. fwrite(&v, 1, sizeof(int32_t), f);
  1952. }
  1953. }
  1954. #endif
  1955. /* main layer3 decoding function */
  1956. static int mp_decode_layer3(MPADecodeContext *s)
  1957. {
  1958. int nb_granules, main_data_begin, private_bits;
  1959. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
  1960. GranuleDef granules[2][2], *g;
  1961. int16_t exponents[576];
  1962. /* read side info */
  1963. if (s->lsf) {
  1964. main_data_begin = get_bits(&s->gb, 8);
  1965. if (s->nb_channels == 2)
  1966. private_bits = get_bits(&s->gb, 2);
  1967. else
  1968. private_bits = get_bits(&s->gb, 1);
  1969. nb_granules = 1;
  1970. } else {
  1971. main_data_begin = get_bits(&s->gb, 9);
  1972. if (s->nb_channels == 2)
  1973. private_bits = get_bits(&s->gb, 3);
  1974. else
  1975. private_bits = get_bits(&s->gb, 5);
  1976. nb_granules = 2;
  1977. for(ch=0;ch<s->nb_channels;ch++) {
  1978. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1979. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1980. }
  1981. }
  1982. for(gr=0;gr<nb_granules;gr++) {
  1983. for(ch=0;ch<s->nb_channels;ch++) {
  1984. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  1985. g = &granules[ch][gr];
  1986. g->part2_3_length = get_bits(&s->gb, 12);
  1987. g->big_values = get_bits(&s->gb, 9);
  1988. g->global_gain = get_bits(&s->gb, 8);
  1989. /* if MS stereo only is selected, we precompute the
  1990. 1/sqrt(2) renormalization factor */
  1991. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1992. MODE_EXT_MS_STEREO)
  1993. g->global_gain -= 2;
  1994. if (s->lsf)
  1995. g->scalefac_compress = get_bits(&s->gb, 9);
  1996. else
  1997. g->scalefac_compress = get_bits(&s->gb, 4);
  1998. blocksplit_flag = get_bits(&s->gb, 1);
  1999. if (blocksplit_flag) {
  2000. g->block_type = get_bits(&s->gb, 2);
  2001. if (g->block_type == 0)
  2002. return -1;
  2003. g->switch_point = get_bits(&s->gb, 1);
  2004. for(i=0;i<2;i++)
  2005. g->table_select[i] = get_bits(&s->gb, 5);
  2006. for(i=0;i<3;i++)
  2007. g->subblock_gain[i] = get_bits(&s->gb, 3);
  2008. /* compute huffman coded region sizes */
  2009. if (g->block_type == 2)
  2010. g->region_size[0] = (36 / 2);
  2011. else {
  2012. if (s->sample_rate_index <= 2)
  2013. g->region_size[0] = (36 / 2);
  2014. else if (s->sample_rate_index != 8)
  2015. g->region_size[0] = (54 / 2);
  2016. else
  2017. g->region_size[0] = (108 / 2);
  2018. }
  2019. g->region_size[1] = (576 / 2);
  2020. } else {
  2021. int region_address1, region_address2, l;
  2022. g->block_type = 0;
  2023. g->switch_point = 0;
  2024. for(i=0;i<3;i++)
  2025. g->table_select[i] = get_bits(&s->gb, 5);
  2026. /* compute huffman coded region sizes */
  2027. region_address1 = get_bits(&s->gb, 4);
  2028. region_address2 = get_bits(&s->gb, 3);
  2029. dprintf("region1=%d region2=%d\n",
  2030. region_address1, region_address2);
  2031. g->region_size[0] =
  2032. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  2033. l = region_address1 + region_address2 + 2;
  2034. /* should not overflow */
  2035. if (l > 22)
  2036. l = 22;
  2037. g->region_size[1] =
  2038. band_index_long[s->sample_rate_index][l] >> 1;
  2039. }
  2040. /* convert region offsets to region sizes and truncate
  2041. size to big_values */
  2042. g->region_size[2] = (576 / 2);
  2043. j = 0;
  2044. for(i=0;i<3;i++) {
  2045. k = g->region_size[i];
  2046. if (k > g->big_values)
  2047. k = g->big_values;
  2048. g->region_size[i] = k - j;
  2049. j = k;
  2050. }
  2051. /* compute band indexes */
  2052. if (g->block_type == 2) {
  2053. if (g->switch_point) {
  2054. /* if switched mode, we handle the 36 first samples as
  2055. long blocks. For 8000Hz, we handle the 48 first
  2056. exponents as long blocks (XXX: check this!) */
  2057. if (s->sample_rate_index <= 2)
  2058. g->long_end = 8;
  2059. else if (s->sample_rate_index != 8)
  2060. g->long_end = 6;
  2061. else
  2062. g->long_end = 4; /* 8000 Hz */
  2063. if (s->sample_rate_index != 8)
  2064. g->short_start = 3;
  2065. else
  2066. g->short_start = 2;
  2067. } else {
  2068. g->long_end = 0;
  2069. g->short_start = 0;
  2070. }
  2071. } else {
  2072. g->short_start = 13;
  2073. g->long_end = 22;
  2074. }
  2075. g->preflag = 0;
  2076. if (!s->lsf)
  2077. g->preflag = get_bits(&s->gb, 1);
  2078. g->scalefac_scale = get_bits(&s->gb, 1);
  2079. g->count1table_select = get_bits(&s->gb, 1);
  2080. dprintf("block_type=%d switch_point=%d\n",
  2081. g->block_type, g->switch_point);
  2082. }
  2083. }
  2084. /* now we get bits from the main_data_begin offset */
  2085. dprintf("seekback: %d\n", main_data_begin);
  2086. seek_to_maindata(s, main_data_begin);
  2087. for(gr=0;gr<nb_granules;gr++) {
  2088. for(ch=0;ch<s->nb_channels;ch++) {
  2089. g = &granules[ch][gr];
  2090. bits_pos = get_bits_count(&s->gb);
  2091. if (!s->lsf) {
  2092. uint8_t *sc;
  2093. int slen, slen1, slen2;
  2094. /* MPEG1 scale factors */
  2095. slen1 = slen_table[0][g->scalefac_compress];
  2096. slen2 = slen_table[1][g->scalefac_compress];
  2097. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  2098. if (g->block_type == 2) {
  2099. n = g->switch_point ? 17 : 18;
  2100. j = 0;
  2101. for(i=0;i<n;i++)
  2102. g->scale_factors[j++] = get_bitsz(&s->gb, slen1);
  2103. for(i=0;i<18;i++)
  2104. g->scale_factors[j++] = get_bitsz(&s->gb, slen2);
  2105. for(i=0;i<3;i++)
  2106. g->scale_factors[j++] = 0;
  2107. } else {
  2108. sc = granules[ch][0].scale_factors;
  2109. j = 0;
  2110. for(k=0;k<4;k++) {
  2111. n = (k == 0 ? 6 : 5);
  2112. if ((g->scfsi & (0x8 >> k)) == 0) {
  2113. slen = (k < 2) ? slen1 : slen2;
  2114. for(i=0;i<n;i++)
  2115. g->scale_factors[j++] = get_bitsz(&s->gb, slen);
  2116. } else {
  2117. /* simply copy from last granule */
  2118. for(i=0;i<n;i++) {
  2119. g->scale_factors[j] = sc[j];
  2120. j++;
  2121. }
  2122. }
  2123. }
  2124. g->scale_factors[j++] = 0;
  2125. }
  2126. #if defined(DEBUG)
  2127. {
  2128. printf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  2129. g->scfsi, gr, ch);
  2130. for(i=0;i<j;i++)
  2131. printf(" %d", g->scale_factors[i]);
  2132. printf("\n");
  2133. }
  2134. #endif
  2135. } else {
  2136. int tindex, tindex2, slen[4], sl, sf;
  2137. /* LSF scale factors */
  2138. if (g->block_type == 2) {
  2139. tindex = g->switch_point ? 2 : 1;
  2140. } else {
  2141. tindex = 0;
  2142. }
  2143. sf = g->scalefac_compress;
  2144. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  2145. /* intensity stereo case */
  2146. sf >>= 1;
  2147. if (sf < 180) {
  2148. lsf_sf_expand(slen, sf, 6, 6, 0);
  2149. tindex2 = 3;
  2150. } else if (sf < 244) {
  2151. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2152. tindex2 = 4;
  2153. } else {
  2154. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2155. tindex2 = 5;
  2156. }
  2157. } else {
  2158. /* normal case */
  2159. if (sf < 400) {
  2160. lsf_sf_expand(slen, sf, 5, 4, 4);
  2161. tindex2 = 0;
  2162. } else if (sf < 500) {
  2163. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2164. tindex2 = 1;
  2165. } else {
  2166. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2167. tindex2 = 2;
  2168. g->preflag = 1;
  2169. }
  2170. }
  2171. j = 0;
  2172. for(k=0;k<4;k++) {
  2173. n = lsf_nsf_table[tindex2][tindex][k];
  2174. sl = slen[k];
  2175. for(i=0;i<n;i++)
  2176. g->scale_factors[j++] = get_bitsz(&s->gb, sl);
  2177. }
  2178. /* XXX: should compute exact size */
  2179. for(;j<40;j++)
  2180. g->scale_factors[j] = 0;
  2181. #if defined(DEBUG)
  2182. {
  2183. printf("gr=%d ch=%d scale_factors:\n",
  2184. gr, ch);
  2185. for(i=0;i<40;i++)
  2186. printf(" %d", g->scale_factors[i]);
  2187. printf("\n");
  2188. }
  2189. #endif
  2190. }
  2191. exponents_from_scale_factors(s, g, exponents);
  2192. /* read Huffman coded residue */
  2193. if (huffman_decode(s, g, exponents,
  2194. bits_pos + g->part2_3_length) < 0)
  2195. return -1;
  2196. #if defined(DEBUG)
  2197. sample_dump(0, g->sb_hybrid, 576);
  2198. #endif
  2199. /* skip extension bits */
  2200. bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
  2201. if (bits_left < 0) {
  2202. dprintf("bits_left=%d\n", bits_left);
  2203. return -1;
  2204. }
  2205. while (bits_left >= 16) {
  2206. skip_bits(&s->gb, 16);
  2207. bits_left -= 16;
  2208. }
  2209. if (bits_left > 0)
  2210. skip_bits(&s->gb, bits_left);
  2211. } /* ch */
  2212. if (s->nb_channels == 2)
  2213. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2214. for(ch=0;ch<s->nb_channels;ch++) {
  2215. g = &granules[ch][gr];
  2216. reorder_block(s, g);
  2217. #if defined(DEBUG)
  2218. sample_dump(0, g->sb_hybrid, 576);
  2219. #endif
  2220. s->compute_antialias(s, g);
  2221. #if defined(DEBUG)
  2222. sample_dump(1, g->sb_hybrid, 576);
  2223. #endif
  2224. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2225. #if defined(DEBUG)
  2226. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2227. #endif
  2228. }
  2229. } /* gr */
  2230. return nb_granules * 18;
  2231. }
  2232. static int mp_decode_frame(MPADecodeContext *s,
  2233. short *samples)
  2234. {
  2235. int i, nb_frames, ch;
  2236. short *samples_ptr;
  2237. init_get_bits(&s->gb, s->inbuf + HEADER_SIZE,
  2238. (s->inbuf_ptr - s->inbuf - HEADER_SIZE)*8);
  2239. /* skip error protection field */
  2240. if (s->error_protection)
  2241. get_bits(&s->gb, 16);
  2242. dprintf("frame %d:\n", s->frame_count);
  2243. switch(s->layer) {
  2244. case 1:
  2245. nb_frames = mp_decode_layer1(s);
  2246. break;
  2247. case 2:
  2248. nb_frames = mp_decode_layer2(s);
  2249. break;
  2250. case 3:
  2251. default:
  2252. nb_frames = mp_decode_layer3(s);
  2253. break;
  2254. }
  2255. #if defined(DEBUG)
  2256. for(i=0;i<nb_frames;i++) {
  2257. for(ch=0;ch<s->nb_channels;ch++) {
  2258. int j;
  2259. printf("%d-%d:", i, ch);
  2260. for(j=0;j<SBLIMIT;j++)
  2261. printf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2262. printf("\n");
  2263. }
  2264. }
  2265. #endif
  2266. /* apply the synthesis filter */
  2267. for(ch=0;ch<s->nb_channels;ch++) {
  2268. samples_ptr = samples + ch;
  2269. for(i=0;i<nb_frames;i++) {
  2270. synth_filter(s, ch, samples_ptr, s->nb_channels,
  2271. s->sb_samples[ch][i]);
  2272. samples_ptr += 32 * s->nb_channels;
  2273. }
  2274. }
  2275. #ifdef DEBUG
  2276. s->frame_count++;
  2277. #endif
  2278. return nb_frames * 32 * sizeof(short) * s->nb_channels;
  2279. }
  2280. static int decode_frame(AVCodecContext * avctx,
  2281. void *data, int *data_size,
  2282. uint8_t * buf, int buf_size)
  2283. {
  2284. MPADecodeContext *s = avctx->priv_data;
  2285. uint32_t header;
  2286. uint8_t *buf_ptr;
  2287. int len, out_size;
  2288. short *out_samples = data;
  2289. buf_ptr = buf;
  2290. while (buf_size > 0) {
  2291. len = s->inbuf_ptr - s->inbuf;
  2292. if (s->frame_size == 0) {
  2293. /* special case for next header for first frame in free
  2294. format case (XXX: find a simpler method) */
  2295. if (s->free_format_next_header != 0) {
  2296. s->inbuf[0] = s->free_format_next_header >> 24;
  2297. s->inbuf[1] = s->free_format_next_header >> 16;
  2298. s->inbuf[2] = s->free_format_next_header >> 8;
  2299. s->inbuf[3] = s->free_format_next_header;
  2300. s->inbuf_ptr = s->inbuf + 4;
  2301. s->free_format_next_header = 0;
  2302. goto got_header;
  2303. }
  2304. /* no header seen : find one. We need at least HEADER_SIZE
  2305. bytes to parse it */
  2306. len = HEADER_SIZE - len;
  2307. if (len > buf_size)
  2308. len = buf_size;
  2309. if (len > 0) {
  2310. memcpy(s->inbuf_ptr, buf_ptr, len);
  2311. buf_ptr += len;
  2312. buf_size -= len;
  2313. s->inbuf_ptr += len;
  2314. }
  2315. if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) {
  2316. got_header:
  2317. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2318. (s->inbuf[2] << 8) | s->inbuf[3];
  2319. if (check_header(header) < 0) {
  2320. /* no sync found : move by one byte (inefficient, but simple!) */
  2321. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2322. s->inbuf_ptr--;
  2323. dprintf("skip %x\n", header);
  2324. /* reset free format frame size to give a chance
  2325. to get a new bitrate */
  2326. s->free_format_frame_size = 0;
  2327. } else {
  2328. if (decode_header(s, header) == 1) {
  2329. /* free format: prepare to compute frame size */
  2330. s->frame_size = -1;
  2331. }
  2332. /* update codec info */
  2333. avctx->sample_rate = s->sample_rate;
  2334. avctx->channels = s->nb_channels;
  2335. avctx->bit_rate = s->bit_rate;
  2336. avctx->sub_id = s->layer;
  2337. switch(s->layer) {
  2338. case 1:
  2339. avctx->frame_size = 384;
  2340. break;
  2341. case 2:
  2342. avctx->frame_size = 1152;
  2343. break;
  2344. case 3:
  2345. if (s->lsf)
  2346. avctx->frame_size = 576;
  2347. else
  2348. avctx->frame_size = 1152;
  2349. break;
  2350. }
  2351. }
  2352. }
  2353. } else if (s->frame_size == -1) {
  2354. /* free format : find next sync to compute frame size */
  2355. len = MPA_MAX_CODED_FRAME_SIZE - len;
  2356. if (len > buf_size)
  2357. len = buf_size;
  2358. if (len == 0) {
  2359. /* frame too long: resync */
  2360. s->frame_size = 0;
  2361. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2362. s->inbuf_ptr--;
  2363. } else {
  2364. uint8_t *p, *pend;
  2365. uint32_t header1;
  2366. int padding;
  2367. memcpy(s->inbuf_ptr, buf_ptr, len);
  2368. /* check for header */
  2369. p = s->inbuf_ptr - 3;
  2370. pend = s->inbuf_ptr + len - 4;
  2371. while (p <= pend) {
  2372. header = (p[0] << 24) | (p[1] << 16) |
  2373. (p[2] << 8) | p[3];
  2374. header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2375. (s->inbuf[2] << 8) | s->inbuf[3];
  2376. /* check with high probability that we have a
  2377. valid header */
  2378. if ((header & SAME_HEADER_MASK) ==
  2379. (header1 & SAME_HEADER_MASK)) {
  2380. /* header found: update pointers */
  2381. len = (p + 4) - s->inbuf_ptr;
  2382. buf_ptr += len;
  2383. buf_size -= len;
  2384. s->inbuf_ptr = p;
  2385. /* compute frame size */
  2386. s->free_format_next_header = header;
  2387. s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
  2388. padding = (header1 >> 9) & 1;
  2389. if (s->layer == 1)
  2390. s->free_format_frame_size -= padding * 4;
  2391. else
  2392. s->free_format_frame_size -= padding;
  2393. dprintf("free frame size=%d padding=%d\n",
  2394. s->free_format_frame_size, padding);
  2395. decode_header(s, header1);
  2396. goto next_data;
  2397. }
  2398. p++;
  2399. }
  2400. /* not found: simply increase pointers */
  2401. buf_ptr += len;
  2402. s->inbuf_ptr += len;
  2403. buf_size -= len;
  2404. }
  2405. } else if (len < s->frame_size) {
  2406. if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE)
  2407. s->frame_size = MPA_MAX_CODED_FRAME_SIZE;
  2408. len = s->frame_size - len;
  2409. if (len > buf_size)
  2410. len = buf_size;
  2411. memcpy(s->inbuf_ptr, buf_ptr, len);
  2412. buf_ptr += len;
  2413. s->inbuf_ptr += len;
  2414. buf_size -= len;
  2415. }
  2416. next_data:
  2417. if (s->frame_size > 0 &&
  2418. (s->inbuf_ptr - s->inbuf) >= s->frame_size) {
  2419. if (avctx->parse_only) {
  2420. /* simply return the frame data */
  2421. *(uint8_t **)data = s->inbuf;
  2422. out_size = s->inbuf_ptr - s->inbuf;
  2423. } else {
  2424. out_size = mp_decode_frame(s, out_samples);
  2425. }
  2426. s->inbuf_ptr = s->inbuf;
  2427. s->frame_size = 0;
  2428. *data_size = out_size;
  2429. break;
  2430. }
  2431. }
  2432. return buf_ptr - buf;
  2433. }
  2434. AVCodec mp2_decoder =
  2435. {
  2436. "mp2",
  2437. CODEC_TYPE_AUDIO,
  2438. CODEC_ID_MP2,
  2439. sizeof(MPADecodeContext),
  2440. decode_init,
  2441. NULL,
  2442. NULL,
  2443. decode_frame,
  2444. CODEC_CAP_PARSE_ONLY,
  2445. };
  2446. AVCodec mp3_decoder =
  2447. {
  2448. "mp3",
  2449. CODEC_TYPE_AUDIO,
  2450. CODEC_ID_MP3,
  2451. sizeof(MPADecodeContext),
  2452. decode_init,
  2453. NULL,
  2454. NULL,
  2455. decode_frame,
  2456. CODEC_CAP_PARSE_ONLY,
  2457. };