You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1809 lines
64KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #include <assert.h>
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avutil.h"
  39. #include "libavutil/bswap.h"
  40. #include "libavutil/cpu.h"
  41. #include "libavutil/intreadwrite.h"
  42. #include "libavutil/mathematics.h"
  43. #include "libavutil/opt.h"
  44. #include "libavutil/pixdesc.h"
  45. #include "libavutil/ppc/cpu.h"
  46. #include "libavutil/x86/asm.h"
  47. #include "libavutil/x86/cpu.h"
  48. #include "rgb2rgb.h"
  49. #include "swscale.h"
  50. #include "swscale_internal.h"
  51. unsigned swscale_version(void)
  52. {
  53. return LIBSWSCALE_VERSION_INT;
  54. }
  55. const char *swscale_configuration(void)
  56. {
  57. return LIBAV_CONFIGURATION;
  58. }
  59. const char *swscale_license(void)
  60. {
  61. #define LICENSE_PREFIX "libswscale license: "
  62. return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  63. }
  64. #define RET 0xC3 // near return opcode for x86
  65. typedef struct FormatEntry {
  66. uint8_t is_supported_in :1;
  67. uint8_t is_supported_out :1;
  68. uint8_t is_supported_endianness :1;
  69. } FormatEntry;
  70. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  71. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  72. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  73. [AV_PIX_FMT_RGB24] = { 1, 1 },
  74. [AV_PIX_FMT_BGR24] = { 1, 1 },
  75. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  76. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  77. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  78. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  79. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  80. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  81. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  82. [AV_PIX_FMT_PAL8] = { 1, 0 },
  83. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  84. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  85. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  86. [AV_PIX_FMT_YVYU422] = { 1, 1 },
  87. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  88. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  89. [AV_PIX_FMT_BGR8] = { 1, 1 },
  90. [AV_PIX_FMT_BGR4] = { 0, 1 },
  91. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  92. [AV_PIX_FMT_RGB8] = { 1, 1 },
  93. [AV_PIX_FMT_RGB4] = { 0, 1 },
  94. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  95. [AV_PIX_FMT_NV12] = { 1, 1 },
  96. [AV_PIX_FMT_NV21] = { 1, 1 },
  97. [AV_PIX_FMT_ARGB] = { 1, 1 },
  98. [AV_PIX_FMT_RGBA] = { 1, 1 },
  99. [AV_PIX_FMT_ABGR] = { 1, 1 },
  100. [AV_PIX_FMT_BGRA] = { 1, 1 },
  101. [AV_PIX_FMT_GRAY12BE] = { 1, 1 },
  102. [AV_PIX_FMT_GRAY12LE] = { 1, 1 },
  103. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  104. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  105. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  106. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  107. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  108. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  109. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  110. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  111. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  112. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  113. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  114. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  115. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  116. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  117. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  118. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  119. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  120. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  121. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  122. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  123. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  124. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  125. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  126. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  127. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  128. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  129. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  130. [AV_PIX_FMT_RGBA64BE] = { 0, 0, 1 },
  131. [AV_PIX_FMT_RGBA64LE] = { 0, 0, 1 },
  132. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  133. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  134. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  135. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  136. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  137. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  138. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  139. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  140. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  141. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  142. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  143. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  144. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  145. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  146. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  147. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  148. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  149. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  150. [AV_PIX_FMT_YA8] = { 1, 0 },
  151. [AV_PIX_FMT_YA16BE] = { 1, 0 },
  152. [AV_PIX_FMT_YA16LE] = { 1, 0 },
  153. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  154. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  155. [AV_PIX_FMT_BGRA64BE] = { 0, 0, 1 },
  156. [AV_PIX_FMT_BGRA64LE] = { 0, 0, 1 },
  157. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  158. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  159. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  160. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  161. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  162. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  163. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  164. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  165. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  166. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  167. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  168. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  169. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  170. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  175. [AV_PIX_FMT_GBRP] = { 1, 1 },
  176. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  177. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  178. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  179. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  180. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  181. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  182. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  183. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  184. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  185. [AV_PIX_FMT_GBRAP12LE] = { 1, 1 },
  186. [AV_PIX_FMT_GBRAP12BE] = { 1, 1 },
  187. [AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
  188. [AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
  189. [AV_PIX_FMT_XYZ12BE] = { 0, 0, 1 },
  190. [AV_PIX_FMT_XYZ12LE] = { 0, 0, 1 },
  191. [AV_PIX_FMT_P010LE] = { 1, 0 },
  192. [AV_PIX_FMT_P010BE] = { 1, 0 },
  193. };
  194. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  195. {
  196. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  197. format_entries[pix_fmt].is_supported_in : 0;
  198. }
  199. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  200. {
  201. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  202. format_entries[pix_fmt].is_supported_out : 0;
  203. }
  204. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  205. {
  206. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  207. format_entries[pix_fmt].is_supported_endianness : 0;
  208. }
  209. const char *sws_format_name(enum AVPixelFormat format)
  210. {
  211. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  212. if (desc)
  213. return desc->name;
  214. else
  215. return "Unknown format";
  216. }
  217. static double getSplineCoeff(double a, double b, double c, double d,
  218. double dist)
  219. {
  220. if (dist <= 1.0)
  221. return ((d * dist + c) * dist + b) * dist + a;
  222. else
  223. return getSplineCoeff(0.0,
  224. b + 2.0 * c + 3.0 * d,
  225. c + 3.0 * d,
  226. -b - 3.0 * c - 6.0 * d,
  227. dist - 1.0);
  228. }
  229. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  230. int *outFilterSize, int xInc, int srcW,
  231. int dstW, int filterAlign, int one,
  232. int flags, int cpu_flags,
  233. SwsVector *srcFilter, SwsVector *dstFilter,
  234. double param[2], int is_horizontal)
  235. {
  236. int i;
  237. int filterSize;
  238. int filter2Size;
  239. int minFilterSize;
  240. int64_t *filter = NULL;
  241. int64_t *filter2 = NULL;
  242. const int64_t fone = 1LL << 54;
  243. int ret = -1;
  244. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  245. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  246. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  247. if (FFABS(xInc - 0x10000) < 10) { // unscaled
  248. int i;
  249. filterSize = 1;
  250. FF_ALLOCZ_OR_GOTO(NULL, filter,
  251. dstW * sizeof(*filter) * filterSize, fail);
  252. for (i = 0; i < dstW; i++) {
  253. filter[i * filterSize] = fone;
  254. (*filterPos)[i] = i;
  255. }
  256. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  257. int i;
  258. int xDstInSrc;
  259. filterSize = 1;
  260. FF_ALLOC_OR_GOTO(NULL, filter,
  261. dstW * sizeof(*filter) * filterSize, fail);
  262. xDstInSrc = xInc / 2 - 0x8000;
  263. for (i = 0; i < dstW; i++) {
  264. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  265. (*filterPos)[i] = xx;
  266. filter[i] = fone;
  267. xDstInSrc += xInc;
  268. }
  269. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  270. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  271. int i;
  272. int xDstInSrc;
  273. filterSize = 2;
  274. FF_ALLOC_OR_GOTO(NULL, filter,
  275. dstW * sizeof(*filter) * filterSize, fail);
  276. xDstInSrc = xInc / 2 - 0x8000;
  277. for (i = 0; i < dstW; i++) {
  278. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  279. int j;
  280. (*filterPos)[i] = xx;
  281. // bilinear upscale / linear interpolate / area averaging
  282. for (j = 0; j < filterSize; j++) {
  283. int64_t coeff = fone - FFABS((xx << 16) - xDstInSrc) *
  284. (fone >> 16);
  285. if (coeff < 0)
  286. coeff = 0;
  287. filter[i * filterSize + j] = coeff;
  288. xx++;
  289. }
  290. xDstInSrc += xInc;
  291. }
  292. } else {
  293. int64_t xDstInSrc;
  294. int sizeFactor;
  295. if (flags & SWS_BICUBIC)
  296. sizeFactor = 4;
  297. else if (flags & SWS_X)
  298. sizeFactor = 8;
  299. else if (flags & SWS_AREA)
  300. sizeFactor = 1; // downscale only, for upscale it is bilinear
  301. else if (flags & SWS_GAUSS)
  302. sizeFactor = 8; // infinite ;)
  303. else if (flags & SWS_LANCZOS)
  304. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  305. else if (flags & SWS_SINC)
  306. sizeFactor = 20; // infinite ;)
  307. else if (flags & SWS_SPLINE)
  308. sizeFactor = 20; // infinite ;)
  309. else if (flags & SWS_BILINEAR)
  310. sizeFactor = 2;
  311. else {
  312. sizeFactor = 0; // GCC warning killer
  313. assert(0);
  314. }
  315. if (xInc <= 1 << 16)
  316. filterSize = 1 + sizeFactor; // upscale
  317. else
  318. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  319. filterSize = FFMIN(filterSize, srcW - 2);
  320. filterSize = FFMAX(filterSize, 1);
  321. FF_ALLOC_OR_GOTO(NULL, filter,
  322. dstW * sizeof(*filter) * filterSize, fail);
  323. xDstInSrc = xInc - 0x10000;
  324. for (i = 0; i < dstW; i++) {
  325. int xx = (xDstInSrc - ((int64_t)(filterSize - 2) << 16)) / (1 << 17);
  326. int j;
  327. (*filterPos)[i] = xx;
  328. for (j = 0; j < filterSize; j++) {
  329. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  330. double floatd;
  331. int64_t coeff;
  332. if (xInc > 1 << 16)
  333. d = d * dstW / srcW;
  334. floatd = d * (1.0 / (1 << 30));
  335. if (flags & SWS_BICUBIC) {
  336. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  337. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  338. if (d >= 1LL << 31) {
  339. coeff = 0.0;
  340. } else {
  341. int64_t dd = (d * d) >> 30;
  342. int64_t ddd = (dd * d) >> 30;
  343. if (d < 1LL << 30)
  344. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  345. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  346. (6 * (1 << 24) - 2 * B) * (1 << 30);
  347. else
  348. coeff = (-B - 6 * C) * ddd +
  349. (6 * B + 30 * C) * dd +
  350. (-12 * B - 48 * C) * d +
  351. (8 * B + 24 * C) * (1 << 30);
  352. }
  353. coeff *= fone >> (30 + 24);
  354. }
  355. else if (flags & SWS_X) {
  356. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  357. double c;
  358. if (floatd < 1.0)
  359. c = cos(floatd * M_PI);
  360. else
  361. c = -1.0;
  362. if (c < 0.0)
  363. c = -pow(-c, A);
  364. else
  365. c = pow(c, A);
  366. coeff = (c * 0.5 + 0.5) * fone;
  367. } else if (flags & SWS_AREA) {
  368. int64_t d2 = d - (1 << 29);
  369. if (d2 * xInc < -(1LL << (29 + 16)))
  370. coeff = 1.0 * (1LL << (30 + 16));
  371. else if (d2 * xInc < (1LL << (29 + 16)))
  372. coeff = -d2 * xInc + (1LL << (29 + 16));
  373. else
  374. coeff = 0.0;
  375. coeff *= fone >> (30 + 16);
  376. } else if (flags & SWS_GAUSS) {
  377. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  378. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  379. } else if (flags & SWS_SINC) {
  380. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  381. } else if (flags & SWS_LANCZOS) {
  382. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  383. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  384. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  385. if (floatd > p)
  386. coeff = 0;
  387. } else if (flags & SWS_BILINEAR) {
  388. coeff = (1 << 30) - d;
  389. if (coeff < 0)
  390. coeff = 0;
  391. coeff *= fone >> 30;
  392. } else if (flags & SWS_SPLINE) {
  393. double p = -2.196152422706632;
  394. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  395. } else {
  396. coeff = 0.0; // GCC warning killer
  397. assert(0);
  398. }
  399. filter[i * filterSize + j] = coeff;
  400. xx++;
  401. }
  402. xDstInSrc += 2 * xInc;
  403. }
  404. }
  405. /* apply src & dst Filter to filter -> filter2
  406. * av_free(filter);
  407. */
  408. assert(filterSize > 0);
  409. filter2Size = filterSize;
  410. if (srcFilter)
  411. filter2Size += srcFilter->length - 1;
  412. if (dstFilter)
  413. filter2Size += dstFilter->length - 1;
  414. assert(filter2Size > 0);
  415. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  416. for (i = 0; i < dstW; i++) {
  417. int j, k;
  418. if (srcFilter) {
  419. for (k = 0; k < srcFilter->length; k++) {
  420. for (j = 0; j < filterSize; j++)
  421. filter2[i * filter2Size + k + j] +=
  422. srcFilter->coeff[k] * filter[i * filterSize + j];
  423. }
  424. } else {
  425. for (j = 0; j < filterSize; j++)
  426. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  427. }
  428. // FIXME dstFilter
  429. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  430. }
  431. av_freep(&filter);
  432. /* try to reduce the filter-size (step1 find size and shift left) */
  433. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  434. minFilterSize = 0;
  435. for (i = dstW - 1; i >= 0; i--) {
  436. int min = filter2Size;
  437. int j;
  438. int64_t cutOff = 0.0;
  439. /* get rid of near zero elements on the left by shifting left */
  440. for (j = 0; j < filter2Size; j++) {
  441. int k;
  442. cutOff += FFABS(filter2[i * filter2Size]);
  443. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  444. break;
  445. /* preserve monotonicity because the core can't handle the
  446. * filter otherwise */
  447. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  448. break;
  449. // move filter coefficients left
  450. for (k = 1; k < filter2Size; k++)
  451. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  452. filter2[i * filter2Size + k - 1] = 0;
  453. (*filterPos)[i]++;
  454. }
  455. cutOff = 0;
  456. /* count near zeros on the right */
  457. for (j = filter2Size - 1; j > 0; j--) {
  458. cutOff += FFABS(filter2[i * filter2Size + j]);
  459. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  460. break;
  461. min--;
  462. }
  463. if (min > minFilterSize)
  464. minFilterSize = min;
  465. }
  466. if (PPC_ALTIVEC(cpu_flags)) {
  467. // we can handle the special case 4, so we don't want to go the full 8
  468. if (minFilterSize < 5)
  469. filterAlign = 4;
  470. /* We really don't want to waste our time doing useless computation, so
  471. * fall back on the scalar C code for very small filters.
  472. * Vectorizing is worth it only if you have a decent-sized vector. */
  473. if (minFilterSize < 3)
  474. filterAlign = 1;
  475. }
  476. if (INLINE_MMX(cpu_flags)) {
  477. // special case for unscaled vertical filtering
  478. if (minFilterSize == 1 && filterAlign == 2)
  479. filterAlign = 1;
  480. }
  481. assert(minFilterSize > 0);
  482. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  483. assert(filterSize > 0);
  484. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  485. if (filterSize >= MAX_FILTER_SIZE * 16 /
  486. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  487. goto fail;
  488. *outFilterSize = filterSize;
  489. if (flags & SWS_PRINT_INFO)
  490. av_log(NULL, AV_LOG_VERBOSE,
  491. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  492. filter2Size, filterSize);
  493. /* try to reduce the filter-size (step2 reduce it) */
  494. for (i = 0; i < dstW; i++) {
  495. int j;
  496. for (j = 0; j < filterSize; j++) {
  497. if (j >= filter2Size)
  498. filter[i * filterSize + j] = 0;
  499. else
  500. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  501. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  502. filter[i * filterSize + j] = 0;
  503. }
  504. }
  505. // FIXME try to align filterPos if possible
  506. // fix borders
  507. if (is_horizontal) {
  508. for (i = 0; i < dstW; i++) {
  509. int j;
  510. if ((*filterPos)[i] < 0) {
  511. // move filter coefficients left to compensate for filterPos
  512. for (j = 1; j < filterSize; j++) {
  513. int left = FFMAX(j + (*filterPos)[i], 0);
  514. filter[i * filterSize + left] += filter[i * filterSize + j];
  515. filter[i * filterSize + j] = 0;
  516. }
  517. (*filterPos)[i] = 0;
  518. }
  519. if ((*filterPos)[i] + filterSize > srcW) {
  520. int shift = (*filterPos)[i] + filterSize - srcW;
  521. // move filter coefficients right to compensate for filterPos
  522. for (j = filterSize - 2; j >= 0; j--) {
  523. int right = FFMIN(j + shift, filterSize - 1);
  524. filter[i * filterSize + right] += filter[i * filterSize + j];
  525. filter[i * filterSize + j] = 0;
  526. }
  527. (*filterPos)[i] = srcW - filterSize;
  528. }
  529. }
  530. }
  531. // Note the +1 is for the MMX scaler which reads over the end
  532. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  533. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  534. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  535. /* normalize & store in outFilter */
  536. for (i = 0; i < dstW; i++) {
  537. int j;
  538. int64_t error = 0;
  539. int64_t sum = 0;
  540. for (j = 0; j < filterSize; j++) {
  541. sum += filter[i * filterSize + j];
  542. }
  543. sum = (sum + one / 2) / one;
  544. for (j = 0; j < *outFilterSize; j++) {
  545. int64_t v = filter[i * filterSize + j] + error;
  546. int intV = ROUNDED_DIV(v, sum);
  547. (*outFilter)[i * (*outFilterSize) + j] = intV;
  548. error = v - intV * sum;
  549. }
  550. }
  551. (*filterPos)[dstW + 0] =
  552. (*filterPos)[dstW + 1] =
  553. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  554. * read over the end */
  555. for (i = 0; i < *outFilterSize; i++) {
  556. int k = (dstW - 1) * (*outFilterSize) + i;
  557. (*outFilter)[k + 1 * (*outFilterSize)] =
  558. (*outFilter)[k + 2 * (*outFilterSize)] =
  559. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  560. }
  561. ret = 0;
  562. fail:
  563. av_free(filter);
  564. av_free(filter2);
  565. return ret;
  566. }
  567. #if HAVE_MMXEXT_INLINE
  568. static av_cold int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
  569. int16_t *filter, int32_t *filterPos,
  570. int numSplits)
  571. {
  572. uint8_t *fragmentA;
  573. x86_reg imm8OfPShufW1A;
  574. x86_reg imm8OfPShufW2A;
  575. x86_reg fragmentLengthA;
  576. uint8_t *fragmentB;
  577. x86_reg imm8OfPShufW1B;
  578. x86_reg imm8OfPShufW2B;
  579. x86_reg fragmentLengthB;
  580. int fragmentPos;
  581. int xpos, i;
  582. // create an optimized horizontal scaling routine
  583. /* This scaler is made of runtime-generated MMXEXT code using specially tuned
  584. * pshufw instructions. For every four output pixels, if four input pixels
  585. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  586. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  587. */
  588. // code fragment
  589. __asm__ volatile (
  590. "jmp 9f \n\t"
  591. // Begin
  592. "0: \n\t"
  593. "movq (%%"FF_REG_d", %%"FF_REG_a"), %%mm3 \n\t"
  594. "movd (%%"FF_REG_c", %%"FF_REG_S"), %%mm0 \n\t"
  595. "movd 1(%%"FF_REG_c", %%"FF_REG_S"), %%mm1 \n\t"
  596. "punpcklbw %%mm7, %%mm1 \n\t"
  597. "punpcklbw %%mm7, %%mm0 \n\t"
  598. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  599. "1: \n\t"
  600. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  601. "2: \n\t"
  602. "psubw %%mm1, %%mm0 \n\t"
  603. "movl 8(%%"FF_REG_b", %%"FF_REG_a"), %%esi \n\t"
  604. "pmullw %%mm3, %%mm0 \n\t"
  605. "psllw $7, %%mm1 \n\t"
  606. "paddw %%mm1, %%mm0 \n\t"
  607. "movq %%mm0, (%%"FF_REG_D", %%"FF_REG_a") \n\t"
  608. "add $8, %%"FF_REG_a" \n\t"
  609. // End
  610. "9: \n\t"
  611. // "int $3 \n\t"
  612. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  613. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  614. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  615. "dec %1 \n\t"
  616. "dec %2 \n\t"
  617. "sub %0, %1 \n\t"
  618. "sub %0, %2 \n\t"
  619. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  620. "sub %0, %3 \n\t"
  621. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  622. "=r" (fragmentLengthA)
  623. );
  624. __asm__ volatile (
  625. "jmp 9f \n\t"
  626. // Begin
  627. "0: \n\t"
  628. "movq (%%"FF_REG_d", %%"FF_REG_a"), %%mm3 \n\t"
  629. "movd (%%"FF_REG_c", %%"FF_REG_S"), %%mm0 \n\t"
  630. "punpcklbw %%mm7, %%mm0 \n\t"
  631. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  632. "1: \n\t"
  633. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  634. "2: \n\t"
  635. "psubw %%mm1, %%mm0 \n\t"
  636. "movl 8(%%"FF_REG_b", %%"FF_REG_a"), %%esi \n\t"
  637. "pmullw %%mm3, %%mm0 \n\t"
  638. "psllw $7, %%mm1 \n\t"
  639. "paddw %%mm1, %%mm0 \n\t"
  640. "movq %%mm0, (%%"FF_REG_D", %%"FF_REG_a") \n\t"
  641. "add $8, %%"FF_REG_a" \n\t"
  642. // End
  643. "9: \n\t"
  644. // "int $3 \n\t"
  645. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  646. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  647. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  648. "dec %1 \n\t"
  649. "dec %2 \n\t"
  650. "sub %0, %1 \n\t"
  651. "sub %0, %2 \n\t"
  652. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  653. "sub %0, %3 \n\t"
  654. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  655. "=r" (fragmentLengthB)
  656. );
  657. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  658. fragmentPos = 0;
  659. for (i = 0; i < dstW / numSplits; i++) {
  660. int xx = xpos >> 16;
  661. if ((i & 3) == 0) {
  662. int a = 0;
  663. int b = ((xpos + xInc) >> 16) - xx;
  664. int c = ((xpos + xInc * 2) >> 16) - xx;
  665. int d = ((xpos + xInc * 3) >> 16) - xx;
  666. int inc = (d + 1 < 4);
  667. uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
  668. x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  669. x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  670. x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
  671. int maxShift = 3 - (d + inc);
  672. int shift = 0;
  673. if (filterCode) {
  674. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  675. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  676. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  677. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  678. filterPos[i / 2] = xx;
  679. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  680. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  681. ((b + inc) << 2) |
  682. ((c + inc) << 4) |
  683. ((d + inc) << 6);
  684. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  685. (c << 4) |
  686. (d << 6);
  687. if (i + 4 - inc >= dstW)
  688. shift = maxShift; // avoid overread
  689. else if ((filterPos[i / 2] & 3) <= maxShift)
  690. shift = filterPos[i / 2] & 3; // align
  691. if (shift && i >= shift) {
  692. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  693. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  694. filterPos[i / 2] -= shift;
  695. }
  696. }
  697. fragmentPos += fragmentLength;
  698. if (filterCode)
  699. filterCode[fragmentPos] = RET;
  700. }
  701. xpos += xInc;
  702. }
  703. if (filterCode)
  704. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  705. return fragmentPos + 1;
  706. }
  707. #endif /* HAVE_MMXEXT_INLINE */
  708. static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
  709. {
  710. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  711. *h = desc->log2_chroma_w;
  712. *v = desc->log2_chroma_h;
  713. }
  714. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  715. int srcRange, const int table[4], int dstRange,
  716. int brightness, int contrast, int saturation)
  717. {
  718. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  719. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
  720. memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  721. memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
  722. c->brightness = brightness;
  723. c->contrast = contrast;
  724. c->saturation = saturation;
  725. c->srcRange = srcRange;
  726. c->dstRange = dstRange;
  727. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  728. return -1;
  729. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  730. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  731. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  732. contrast, saturation);
  733. // FIXME factorize
  734. if (ARCH_PPC)
  735. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  736. contrast, saturation);
  737. return 0;
  738. }
  739. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  740. int *srcRange, int **table, int *dstRange,
  741. int *brightness, int *contrast, int *saturation)
  742. {
  743. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  744. return -1;
  745. *inv_table = c->srcColorspaceTable;
  746. *table = c->dstColorspaceTable;
  747. *srcRange = c->srcRange;
  748. *dstRange = c->dstRange;
  749. *brightness = c->brightness;
  750. *contrast = c->contrast;
  751. *saturation = c->saturation;
  752. return 0;
  753. }
  754. static int handle_jpeg(enum AVPixelFormat *format)
  755. {
  756. switch (*format) {
  757. case AV_PIX_FMT_YUVJ420P:
  758. *format = AV_PIX_FMT_YUV420P;
  759. return 1;
  760. case AV_PIX_FMT_YUVJ422P:
  761. *format = AV_PIX_FMT_YUV422P;
  762. return 1;
  763. case AV_PIX_FMT_YUVJ444P:
  764. *format = AV_PIX_FMT_YUV444P;
  765. return 1;
  766. case AV_PIX_FMT_YUVJ440P:
  767. *format = AV_PIX_FMT_YUV440P;
  768. return 1;
  769. default:
  770. return 0;
  771. }
  772. }
  773. SwsContext *sws_alloc_context(void)
  774. {
  775. SwsContext *c = av_mallocz(sizeof(SwsContext));
  776. if (c) {
  777. c->av_class = &ff_sws_context_class;
  778. av_opt_set_defaults(c);
  779. }
  780. return c;
  781. }
  782. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  783. SwsFilter *dstFilter)
  784. {
  785. int i;
  786. int usesVFilter, usesHFilter;
  787. int unscaled;
  788. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  789. int srcW = c->srcW;
  790. int srcH = c->srcH;
  791. int dstW = c->dstW;
  792. int dstH = c->dstH;
  793. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16);
  794. int dst_stride_px = dst_stride >> 1;
  795. int flags, cpu_flags;
  796. enum AVPixelFormat srcFormat = c->srcFormat;
  797. enum AVPixelFormat dstFormat = c->dstFormat;
  798. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
  799. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
  800. cpu_flags = av_get_cpu_flags();
  801. flags = c->flags;
  802. emms_c();
  803. if (!rgb15to16)
  804. ff_rgb2rgb_init();
  805. unscaled = (srcW == dstW && srcH == dstH);
  806. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  807. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  808. if (!sws_isSupportedInput(srcFormat)) {
  809. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  810. sws_format_name(srcFormat));
  811. return AVERROR(EINVAL);
  812. }
  813. if (!sws_isSupportedOutput(dstFormat)) {
  814. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  815. sws_format_name(dstFormat));
  816. return AVERROR(EINVAL);
  817. }
  818. }
  819. i = flags & (SWS_POINT |
  820. SWS_AREA |
  821. SWS_BILINEAR |
  822. SWS_FAST_BILINEAR |
  823. SWS_BICUBIC |
  824. SWS_X |
  825. SWS_GAUSS |
  826. SWS_LANCZOS |
  827. SWS_SINC |
  828. SWS_SPLINE |
  829. SWS_BICUBLIN);
  830. /* provide a default scaler if not set by caller */
  831. if (!i) {
  832. if (dstW < srcW && dstH < srcH)
  833. flags |= SWS_GAUSS;
  834. else if (dstW > srcW && dstH > srcH)
  835. flags |= SWS_SINC;
  836. else
  837. flags |= SWS_LANCZOS;
  838. c->flags = flags;
  839. } else if (i & (i - 1)) {
  840. av_log(c, AV_LOG_ERROR,
  841. "Exactly one scaler algorithm must be chosen\n");
  842. return AVERROR(EINVAL);
  843. }
  844. /* sanity check */
  845. if (srcW < 4 || srcH < 1 || dstW < 8 || dstH < 1) {
  846. /* FIXME check if these are enough and try to lower them after
  847. * fixing the relevant parts of the code */
  848. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  849. srcW, srcH, dstW, dstH);
  850. return AVERROR(EINVAL);
  851. }
  852. if (!dstFilter)
  853. dstFilter = &dummyFilter;
  854. if (!srcFilter)
  855. srcFilter = &dummyFilter;
  856. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  857. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  858. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  859. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  860. c->vRounder = 4 * 0x0001000100010001ULL;
  861. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  862. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  863. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  864. (dstFilter->chrV && dstFilter->chrV->length > 1);
  865. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  866. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  867. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  868. (dstFilter->chrH && dstFilter->chrH->length > 1);
  869. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  870. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  871. if (isPlanarRGB(dstFormat)) {
  872. if (!(flags & SWS_FULL_CHR_H_INT)) {
  873. av_log(c, AV_LOG_DEBUG,
  874. "%s output is not supported with half chroma resolution, switching to full\n",
  875. av_get_pix_fmt_name(dstFormat));
  876. flags |= SWS_FULL_CHR_H_INT;
  877. c->flags = flags;
  878. }
  879. }
  880. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  881. * chroma interpolation */
  882. if (flags & SWS_FULL_CHR_H_INT &&
  883. isAnyRGB(dstFormat) &&
  884. !isPlanarRGB(dstFormat) &&
  885. dstFormat != AV_PIX_FMT_RGBA &&
  886. dstFormat != AV_PIX_FMT_ARGB &&
  887. dstFormat != AV_PIX_FMT_BGRA &&
  888. dstFormat != AV_PIX_FMT_ABGR &&
  889. dstFormat != AV_PIX_FMT_RGB24 &&
  890. dstFormat != AV_PIX_FMT_BGR24) {
  891. av_log(c, AV_LOG_ERROR,
  892. "full chroma interpolation for destination format '%s' not yet implemented\n",
  893. sws_format_name(dstFormat));
  894. flags &= ~SWS_FULL_CHR_H_INT;
  895. c->flags = flags;
  896. }
  897. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  898. c->chrDstHSubSample = 1;
  899. // drop some chroma lines if the user wants it
  900. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  901. SWS_SRC_V_CHR_DROP_SHIFT;
  902. c->chrSrcVSubSample += c->vChrDrop;
  903. /* drop every other pixel for chroma calculation unless user
  904. * wants full chroma */
  905. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  906. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  907. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  908. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  909. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  910. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  911. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  912. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  913. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  914. (flags & SWS_FAST_BILINEAR)))
  915. c->chrSrcHSubSample = 1;
  916. // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
  917. c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  918. c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  919. c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  920. c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  921. /* unscaled special cases */
  922. if (unscaled && !usesHFilter && !usesVFilter &&
  923. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  924. ff_get_unscaled_swscale(c);
  925. if (c->swscale) {
  926. if (flags & SWS_PRINT_INFO)
  927. av_log(c, AV_LOG_INFO,
  928. "using unscaled %s -> %s special converter\n",
  929. sws_format_name(srcFormat), sws_format_name(dstFormat));
  930. return 0;
  931. }
  932. }
  933. c->srcBpc = desc_src->comp[0].depth;
  934. if (c->srcBpc < 8)
  935. c->srcBpc = 8;
  936. c->dstBpc = desc_dst->comp[0].depth;
  937. if (c->dstBpc < 8)
  938. c->dstBpc = 8;
  939. if (c->dstBpc == 16)
  940. dst_stride <<= 1;
  941. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer,
  942. (FFALIGN(srcW, 16) * 2 * FFALIGN(c->srcBpc, 8) >> 3) + 16,
  943. fail);
  944. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 12) {
  945. c->canMMXEXTBeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
  946. (srcW & 15) == 0) ? 1 : 0;
  947. if (!c->canMMXEXTBeUsed && dstW >= srcW && (srcW & 15) == 0
  948. && (flags & SWS_FAST_BILINEAR)) {
  949. if (flags & SWS_PRINT_INFO)
  950. av_log(c, AV_LOG_INFO,
  951. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  952. }
  953. if (usesHFilter)
  954. c->canMMXEXTBeUsed = 0;
  955. } else
  956. c->canMMXEXTBeUsed = 0;
  957. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  958. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  959. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  960. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  961. * correct scaling.
  962. * n-2 is the last chrominance sample available.
  963. * This is not perfect, but no one should notice the difference, the more
  964. * correct variant would be like the vertical one, but that would require
  965. * some special code for the first and last pixel */
  966. if (flags & SWS_FAST_BILINEAR) {
  967. if (c->canMMXEXTBeUsed) {
  968. c->lumXInc += 20;
  969. c->chrXInc += 20;
  970. }
  971. // we don't use the x86 asm scaler if MMX is available
  972. else if (INLINE_MMX(cpu_flags)) {
  973. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  974. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  975. }
  976. }
  977. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  978. /* precalculate horizontal scaler filter coefficients */
  979. {
  980. #if HAVE_MMXEXT_INLINE
  981. // can't downscale !!!
  982. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  983. c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  984. NULL, NULL, 8);
  985. c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  986. NULL, NULL, NULL, 4);
  987. #if USE_MMAP
  988. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  989. PROT_READ | PROT_WRITE,
  990. MAP_PRIVATE | MAP_ANONYMOUS,
  991. -1, 0);
  992. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  993. PROT_READ | PROT_WRITE,
  994. MAP_PRIVATE | MAP_ANONYMOUS,
  995. -1, 0);
  996. #elif HAVE_VIRTUALALLOC
  997. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  998. c->lumMmxextFilterCodeSize,
  999. MEM_COMMIT,
  1000. PAGE_EXECUTE_READWRITE);
  1001. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1002. c->chrMmxextFilterCodeSize,
  1003. MEM_COMMIT,
  1004. PAGE_EXECUTE_READWRITE);
  1005. #else
  1006. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1007. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1008. #endif
  1009. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1010. return AVERROR(ENOMEM);
  1011. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1012. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1013. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1014. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1015. init_hscaler_mmxext(dstW, c->lumXInc, c->lumMmxextFilterCode,
  1016. c->hLumFilter, c->hLumFilterPos, 8);
  1017. init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1018. c->hChrFilter, c->hChrFilterPos, 4);
  1019. #if USE_MMAP
  1020. mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1021. mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1022. #endif
  1023. } else
  1024. #endif /* HAVE_MMXEXT_INLINE */
  1025. {
  1026. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1027. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1028. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1029. &c->hLumFilterSize, c->lumXInc,
  1030. srcW, dstW, filterAlign, 1 << 14,
  1031. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1032. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1033. c->param, 1) < 0)
  1034. goto fail;
  1035. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1036. &c->hChrFilterSize, c->chrXInc,
  1037. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1038. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1039. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1040. c->param, 1) < 0)
  1041. goto fail;
  1042. }
  1043. } // initialize horizontal stuff
  1044. /* precalculate vertical scaler filter coefficients */
  1045. {
  1046. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1047. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1048. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1049. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1050. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1051. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1052. c->param, 0) < 0)
  1053. goto fail;
  1054. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1055. c->chrYInc, c->chrSrcH, c->chrDstH,
  1056. filterAlign, (1 << 12),
  1057. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1058. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1059. c->param, 0) < 0)
  1060. goto fail;
  1061. #if HAVE_ALTIVEC
  1062. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1063. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1064. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1065. int j;
  1066. short *p = (short *)&c->vYCoeffsBank[i];
  1067. for (j = 0; j < 8; j++)
  1068. p[j] = c->vLumFilter[i];
  1069. }
  1070. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1071. int j;
  1072. short *p = (short *)&c->vCCoeffsBank[i];
  1073. for (j = 0; j < 8; j++)
  1074. p[j] = c->vChrFilter[i];
  1075. }
  1076. #endif
  1077. }
  1078. // calculate buffer sizes so that they won't run out while handling these damn slices
  1079. c->vLumBufSize = c->vLumFilterSize;
  1080. c->vChrBufSize = c->vChrFilterSize;
  1081. for (i = 0; i < dstH; i++) {
  1082. int chrI = (int64_t)i * c->chrDstH / dstH;
  1083. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1084. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1085. << c->chrSrcVSubSample));
  1086. nextSlice >>= c->chrSrcVSubSample;
  1087. nextSlice <<= c->chrSrcVSubSample;
  1088. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1089. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1090. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1091. (nextSlice >> c->chrSrcVSubSample))
  1092. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1093. c->vChrFilterPos[chrI];
  1094. }
  1095. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1096. * need to allocate several megabytes to handle all possible cases) */
  1097. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1098. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1099. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1100. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1101. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1102. /* Note we need at least one pixel more at the end because of the MMX code
  1103. * (just in case someone wants to replace the 4000/8000). */
  1104. /* align at 16 bytes for AltiVec */
  1105. for (i = 0; i < c->vLumBufSize; i++) {
  1106. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1107. dst_stride + 16, fail);
  1108. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1109. }
  1110. // 64 / (c->dstBpc & ~7) is the same as 16 / sizeof(scaling_intermediate)
  1111. c->uv_off_px = dst_stride_px + 64 / (c->dstBpc & ~7);
  1112. c->uv_off_byte = dst_stride + 16;
  1113. for (i = 0; i < c->vChrBufSize; i++) {
  1114. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1115. dst_stride * 2 + 32, fail);
  1116. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1117. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1118. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1119. }
  1120. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1121. for (i = 0; i < c->vLumBufSize; i++) {
  1122. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1123. dst_stride + 16, fail);
  1124. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1125. }
  1126. // try to avoid drawing green stuff between the right end and the stride end
  1127. for (i = 0; i < c->vChrBufSize; i++)
  1128. memset(c->chrUPixBuf[i], 64, dst_stride * 2 + 1);
  1129. assert(c->chrDstH <= dstH);
  1130. if (flags & SWS_PRINT_INFO) {
  1131. if (flags & SWS_FAST_BILINEAR)
  1132. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  1133. else if (flags & SWS_BILINEAR)
  1134. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  1135. else if (flags & SWS_BICUBIC)
  1136. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  1137. else if (flags & SWS_X)
  1138. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  1139. else if (flags & SWS_POINT)
  1140. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  1141. else if (flags & SWS_AREA)
  1142. av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  1143. else if (flags & SWS_BICUBLIN)
  1144. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  1145. else if (flags & SWS_GAUSS)
  1146. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  1147. else if (flags & SWS_SINC)
  1148. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  1149. else if (flags & SWS_LANCZOS)
  1150. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  1151. else if (flags & SWS_SPLINE)
  1152. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  1153. else
  1154. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  1155. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  1156. sws_format_name(srcFormat),
  1157. #ifdef DITHER1XBPP
  1158. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1159. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1160. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1161. "dithered " : "",
  1162. #else
  1163. "",
  1164. #endif
  1165. sws_format_name(dstFormat));
  1166. if (INLINE_MMXEXT(cpu_flags))
  1167. av_log(c, AV_LOG_INFO, "using MMXEXT\n");
  1168. else if (INLINE_AMD3DNOW(cpu_flags))
  1169. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  1170. else if (INLINE_MMX(cpu_flags))
  1171. av_log(c, AV_LOG_INFO, "using MMX\n");
  1172. else if (PPC_ALTIVEC(cpu_flags))
  1173. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  1174. else
  1175. av_log(c, AV_LOG_INFO, "using C\n");
  1176. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1177. av_log(c, AV_LOG_DEBUG,
  1178. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1179. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1180. av_log(c, AV_LOG_DEBUG,
  1181. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1182. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1183. c->chrXInc, c->chrYInc);
  1184. }
  1185. c->swscale = ff_getSwsFunc(c);
  1186. return 0;
  1187. fail: // FIXME replace things by appropriate error codes
  1188. return -1;
  1189. }
  1190. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1191. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1192. int flags, SwsFilter *srcFilter,
  1193. SwsFilter *dstFilter, const double *param)
  1194. {
  1195. SwsContext *c;
  1196. if (!(c = sws_alloc_context()))
  1197. return NULL;
  1198. c->flags = flags;
  1199. c->srcW = srcW;
  1200. c->srcH = srcH;
  1201. c->dstW = dstW;
  1202. c->dstH = dstH;
  1203. c->srcRange = handle_jpeg(&srcFormat);
  1204. c->dstRange = handle_jpeg(&dstFormat);
  1205. c->srcFormat = srcFormat;
  1206. c->dstFormat = dstFormat;
  1207. if (param) {
  1208. c->param[0] = param[0];
  1209. c->param[1] = param[1];
  1210. }
  1211. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1212. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1213. c->dstRange, 0, 1 << 16, 1 << 16);
  1214. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1215. sws_freeContext(c);
  1216. return NULL;
  1217. }
  1218. return c;
  1219. }
  1220. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1221. float lumaSharpen, float chromaSharpen,
  1222. float chromaHShift, float chromaVShift,
  1223. int verbose)
  1224. {
  1225. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1226. if (!filter)
  1227. return NULL;
  1228. if (lumaGBlur != 0.0) {
  1229. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1230. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1231. } else {
  1232. filter->lumH = sws_getIdentityVec();
  1233. filter->lumV = sws_getIdentityVec();
  1234. }
  1235. if (chromaGBlur != 0.0) {
  1236. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1237. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1238. } else {
  1239. filter->chrH = sws_getIdentityVec();
  1240. filter->chrV = sws_getIdentityVec();
  1241. }
  1242. if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
  1243. goto fail;
  1244. if (chromaSharpen != 0.0) {
  1245. SwsVector *id = sws_getIdentityVec();
  1246. if (!id)
  1247. goto fail;
  1248. sws_scaleVec(filter->chrH, -chromaSharpen);
  1249. sws_scaleVec(filter->chrV, -chromaSharpen);
  1250. sws_addVec(filter->chrH, id);
  1251. sws_addVec(filter->chrV, id);
  1252. sws_freeVec(id);
  1253. }
  1254. if (lumaSharpen != 0.0) {
  1255. SwsVector *id = sws_getIdentityVec();
  1256. if (!id)
  1257. goto fail;
  1258. sws_scaleVec(filter->lumH, -lumaSharpen);
  1259. sws_scaleVec(filter->lumV, -lumaSharpen);
  1260. sws_addVec(filter->lumH, id);
  1261. sws_addVec(filter->lumV, id);
  1262. sws_freeVec(id);
  1263. }
  1264. if (chromaHShift != 0.0)
  1265. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1266. if (chromaVShift != 0.0)
  1267. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1268. sws_normalizeVec(filter->chrH, 1.0);
  1269. sws_normalizeVec(filter->chrV, 1.0);
  1270. sws_normalizeVec(filter->lumH, 1.0);
  1271. sws_normalizeVec(filter->lumV, 1.0);
  1272. if (verbose)
  1273. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1274. if (verbose)
  1275. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1276. return filter;
  1277. fail:
  1278. sws_freeVec(filter->lumH);
  1279. sws_freeVec(filter->lumV);
  1280. sws_freeVec(filter->chrH);
  1281. sws_freeVec(filter->chrV);
  1282. av_freep(&filter);
  1283. return NULL;
  1284. }
  1285. SwsVector *sws_allocVec(int length)
  1286. {
  1287. SwsVector *vec = av_malloc(sizeof(SwsVector));
  1288. if (!vec)
  1289. return NULL;
  1290. vec->length = length;
  1291. vec->coeff = av_malloc(sizeof(double) * length);
  1292. if (!vec->coeff)
  1293. av_freep(&vec);
  1294. return vec;
  1295. }
  1296. SwsVector *sws_getGaussianVec(double variance, double quality)
  1297. {
  1298. const int length = (int)(variance * quality + 0.5) | 1;
  1299. int i;
  1300. double middle = (length - 1) * 0.5;
  1301. SwsVector *vec = sws_allocVec(length);
  1302. if (!vec)
  1303. return NULL;
  1304. for (i = 0; i < length; i++) {
  1305. double dist = i - middle;
  1306. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1307. sqrt(2 * variance * M_PI);
  1308. }
  1309. sws_normalizeVec(vec, 1.0);
  1310. return vec;
  1311. }
  1312. SwsVector *sws_getConstVec(double c, int length)
  1313. {
  1314. int i;
  1315. SwsVector *vec = sws_allocVec(length);
  1316. if (!vec)
  1317. return NULL;
  1318. for (i = 0; i < length; i++)
  1319. vec->coeff[i] = c;
  1320. return vec;
  1321. }
  1322. SwsVector *sws_getIdentityVec(void)
  1323. {
  1324. return sws_getConstVec(1.0, 1);
  1325. }
  1326. static double sws_dcVec(SwsVector *a)
  1327. {
  1328. int i;
  1329. double sum = 0;
  1330. for (i = 0; i < a->length; i++)
  1331. sum += a->coeff[i];
  1332. return sum;
  1333. }
  1334. void sws_scaleVec(SwsVector *a, double scalar)
  1335. {
  1336. int i;
  1337. for (i = 0; i < a->length; i++)
  1338. a->coeff[i] *= scalar;
  1339. }
  1340. void sws_normalizeVec(SwsVector *a, double height)
  1341. {
  1342. sws_scaleVec(a, height / sws_dcVec(a));
  1343. }
  1344. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1345. {
  1346. int length = a->length + b->length - 1;
  1347. int i, j;
  1348. SwsVector *vec = sws_getConstVec(0.0, length);
  1349. if (!vec)
  1350. return NULL;
  1351. for (i = 0; i < a->length; i++) {
  1352. for (j = 0; j < b->length; j++) {
  1353. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1354. }
  1355. }
  1356. return vec;
  1357. }
  1358. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1359. {
  1360. int length = FFMAX(a->length, b->length);
  1361. int i;
  1362. SwsVector *vec = sws_getConstVec(0.0, length);
  1363. if (!vec)
  1364. return NULL;
  1365. for (i = 0; i < a->length; i++)
  1366. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1367. for (i = 0; i < b->length; i++)
  1368. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1369. return vec;
  1370. }
  1371. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1372. {
  1373. int length = FFMAX(a->length, b->length);
  1374. int i;
  1375. SwsVector *vec = sws_getConstVec(0.0, length);
  1376. if (!vec)
  1377. return NULL;
  1378. for (i = 0; i < a->length; i++)
  1379. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1380. for (i = 0; i < b->length; i++)
  1381. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1382. return vec;
  1383. }
  1384. /* shift left / or right if "shift" is negative */
  1385. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1386. {
  1387. int length = a->length + FFABS(shift) * 2;
  1388. int i;
  1389. SwsVector *vec = sws_getConstVec(0.0, length);
  1390. if (!vec)
  1391. return NULL;
  1392. for (i = 0; i < a->length; i++) {
  1393. vec->coeff[i + (length - 1) / 2 -
  1394. (a->length - 1) / 2 - shift] = a->coeff[i];
  1395. }
  1396. return vec;
  1397. }
  1398. void sws_shiftVec(SwsVector *a, int shift)
  1399. {
  1400. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1401. av_free(a->coeff);
  1402. a->coeff = shifted->coeff;
  1403. a->length = shifted->length;
  1404. av_free(shifted);
  1405. }
  1406. void sws_addVec(SwsVector *a, SwsVector *b)
  1407. {
  1408. SwsVector *sum = sws_sumVec(a, b);
  1409. av_free(a->coeff);
  1410. a->coeff = sum->coeff;
  1411. a->length = sum->length;
  1412. av_free(sum);
  1413. }
  1414. void sws_subVec(SwsVector *a, SwsVector *b)
  1415. {
  1416. SwsVector *diff = sws_diffVec(a, b);
  1417. av_free(a->coeff);
  1418. a->coeff = diff->coeff;
  1419. a->length = diff->length;
  1420. av_free(diff);
  1421. }
  1422. void sws_convVec(SwsVector *a, SwsVector *b)
  1423. {
  1424. SwsVector *conv = sws_getConvVec(a, b);
  1425. av_free(a->coeff);
  1426. a->coeff = conv->coeff;
  1427. a->length = conv->length;
  1428. av_free(conv);
  1429. }
  1430. SwsVector *sws_cloneVec(SwsVector *a)
  1431. {
  1432. int i;
  1433. SwsVector *vec = sws_allocVec(a->length);
  1434. if (!vec)
  1435. return NULL;
  1436. for (i = 0; i < a->length; i++)
  1437. vec->coeff[i] = a->coeff[i];
  1438. return vec;
  1439. }
  1440. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1441. {
  1442. int i;
  1443. double max = 0;
  1444. double min = 0;
  1445. double range;
  1446. for (i = 0; i < a->length; i++)
  1447. if (a->coeff[i] > max)
  1448. max = a->coeff[i];
  1449. for (i = 0; i < a->length; i++)
  1450. if (a->coeff[i] < min)
  1451. min = a->coeff[i];
  1452. range = max - min;
  1453. for (i = 0; i < a->length; i++) {
  1454. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1455. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1456. for (; x > 0; x--)
  1457. av_log(log_ctx, log_level, " ");
  1458. av_log(log_ctx, log_level, "|\n");
  1459. }
  1460. }
  1461. void sws_freeVec(SwsVector *a)
  1462. {
  1463. if (!a)
  1464. return;
  1465. av_freep(&a->coeff);
  1466. a->length = 0;
  1467. av_free(a);
  1468. }
  1469. void sws_freeFilter(SwsFilter *filter)
  1470. {
  1471. if (!filter)
  1472. return;
  1473. if (filter->lumH)
  1474. sws_freeVec(filter->lumH);
  1475. if (filter->lumV)
  1476. sws_freeVec(filter->lumV);
  1477. if (filter->chrH)
  1478. sws_freeVec(filter->chrH);
  1479. if (filter->chrV)
  1480. sws_freeVec(filter->chrV);
  1481. av_free(filter);
  1482. }
  1483. void sws_freeContext(SwsContext *c)
  1484. {
  1485. int i;
  1486. if (!c)
  1487. return;
  1488. if (c->lumPixBuf) {
  1489. for (i = 0; i < c->vLumBufSize; i++)
  1490. av_freep(&c->lumPixBuf[i]);
  1491. av_freep(&c->lumPixBuf);
  1492. }
  1493. if (c->chrUPixBuf) {
  1494. for (i = 0; i < c->vChrBufSize; i++)
  1495. av_freep(&c->chrUPixBuf[i]);
  1496. av_freep(&c->chrUPixBuf);
  1497. av_freep(&c->chrVPixBuf);
  1498. }
  1499. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1500. for (i = 0; i < c->vLumBufSize; i++)
  1501. av_freep(&c->alpPixBuf[i]);
  1502. av_freep(&c->alpPixBuf);
  1503. }
  1504. av_freep(&c->vLumFilter);
  1505. av_freep(&c->vChrFilter);
  1506. av_freep(&c->hLumFilter);
  1507. av_freep(&c->hChrFilter);
  1508. #if HAVE_ALTIVEC
  1509. av_freep(&c->vYCoeffsBank);
  1510. av_freep(&c->vCCoeffsBank);
  1511. #endif
  1512. av_freep(&c->vLumFilterPos);
  1513. av_freep(&c->vChrFilterPos);
  1514. av_freep(&c->hLumFilterPos);
  1515. av_freep(&c->hChrFilterPos);
  1516. #if HAVE_MMX_INLINE
  1517. #if USE_MMAP
  1518. if (c->lumMmxextFilterCode)
  1519. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1520. if (c->chrMmxextFilterCode)
  1521. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1522. #elif HAVE_VIRTUALALLOC
  1523. if (c->lumMmxextFilterCode)
  1524. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1525. if (c->chrMmxextFilterCode)
  1526. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1527. #else
  1528. av_free(c->lumMmxextFilterCode);
  1529. av_free(c->chrMmxextFilterCode);
  1530. #endif
  1531. c->lumMmxextFilterCode = NULL;
  1532. c->chrMmxextFilterCode = NULL;
  1533. #endif /* HAVE_MMX_INLINE */
  1534. av_freep(&c->yuvTable);
  1535. av_free(c->formatConvBuffer);
  1536. av_free(c);
  1537. }
  1538. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1539. int srcH, enum AVPixelFormat srcFormat,
  1540. int dstW, int dstH,
  1541. enum AVPixelFormat dstFormat, int flags,
  1542. SwsFilter *srcFilter,
  1543. SwsFilter *dstFilter,
  1544. const double *param)
  1545. {
  1546. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1547. SWS_PARAM_DEFAULT };
  1548. if (!param)
  1549. param = default_param;
  1550. if (context &&
  1551. (context->srcW != srcW ||
  1552. context->srcH != srcH ||
  1553. context->srcFormat != srcFormat ||
  1554. context->dstW != dstW ||
  1555. context->dstH != dstH ||
  1556. context->dstFormat != dstFormat ||
  1557. context->flags != flags ||
  1558. context->param[0] != param[0] ||
  1559. context->param[1] != param[1])) {
  1560. sws_freeContext(context);
  1561. context = NULL;
  1562. }
  1563. if (!context) {
  1564. if (!(context = sws_alloc_context()))
  1565. return NULL;
  1566. context->srcW = srcW;
  1567. context->srcH = srcH;
  1568. context->srcRange = handle_jpeg(&srcFormat);
  1569. context->srcFormat = srcFormat;
  1570. context->dstW = dstW;
  1571. context->dstH = dstH;
  1572. context->dstRange = handle_jpeg(&dstFormat);
  1573. context->dstFormat = dstFormat;
  1574. context->flags = flags;
  1575. context->param[0] = param[0];
  1576. context->param[1] = param[1];
  1577. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1578. context->srcRange,
  1579. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1580. context->dstRange, 0, 1 << 16, 1 << 16);
  1581. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1582. sws_freeContext(context);
  1583. return NULL;
  1584. }
  1585. }
  1586. return context;
  1587. }