You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

392 lines
12KB

  1. /*
  2. * RTMP Diffie-Hellmann utilities
  3. * Copyright (c) 2009 Andrej Stepanchuk
  4. * Copyright (c) 2009-2010 Howard Chu
  5. * Copyright (c) 2012 Samuel Pitoiset
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * RTMP Diffie-Hellmann utilities
  26. */
  27. #include <stdint.h>
  28. #include <string.h>
  29. #include "config.h"
  30. #include "libavutil/attributes.h"
  31. #include "libavutil/error.h"
  32. #include "libavutil/mem.h"
  33. #include "libavutil/random_seed.h"
  34. #include "rtmpdh.h"
  35. #define P1024 \
  36. "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" \
  37. "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" \
  38. "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" \
  39. "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" \
  40. "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381" \
  41. "FFFFFFFFFFFFFFFF"
  42. #define Q1024 \
  43. "7FFFFFFFFFFFFFFFE487ED5110B4611A62633145C06E0E68" \
  44. "948127044533E63A0105DF531D89CD9128A5043CC71A026E" \
  45. "F7CA8CD9E69D218D98158536F92F8A1BA7F09AB6B6A8E122" \
  46. "F242DABB312F3F637A262174D31BF6B585FFAE5B7A035BF6" \
  47. "F71C35FDAD44CFD2D74F9208BE258FF324943328F67329C0" \
  48. "FFFFFFFFFFFFFFFF"
  49. #if CONFIG_GMP
  50. #define bn_new(bn) \
  51. do { \
  52. bn = av_malloc(sizeof(*bn)); \
  53. if (bn) \
  54. mpz_init2(bn, 1); \
  55. } while (0)
  56. #define bn_free(bn) \
  57. do { \
  58. mpz_clear(bn); \
  59. av_free(bn); \
  60. } while (0)
  61. #define bn_set_word(bn, w) mpz_set_ui(bn, w)
  62. #define bn_cmp(a, b) mpz_cmp(a, b)
  63. #define bn_copy(to, from) mpz_set(to, from)
  64. #define bn_sub_word(bn, w) mpz_sub_ui(bn, bn, w)
  65. #define bn_cmp_1(bn) mpz_cmp_ui(bn, 1)
  66. #define bn_num_bytes(bn) (mpz_sizeinbase(bn, 2) + 7) / 8
  67. #define bn_bn2bin(bn, buf, len) \
  68. do { \
  69. memset(buf, 0, len); \
  70. if (bn_num_bytes(bn) <= len) \
  71. mpz_export(buf, NULL, 1, 1, 0, 0, bn); \
  72. } while (0)
  73. #define bn_bin2bn(bn, buf, len) \
  74. do { \
  75. bn_new(bn); \
  76. if (bn) \
  77. mpz_import(bn, len, 1, 1, 0, 0, buf); \
  78. } while (0)
  79. #define bn_hex2bn(bn, buf, ret) \
  80. do { \
  81. bn_new(bn); \
  82. if (bn) \
  83. ret = (mpz_set_str(bn, buf, 16) == 0); \
  84. else \
  85. ret = 1; \
  86. } while (0)
  87. #define bn_random(bn, num_bits) \
  88. do { \
  89. int bits = num_bits; \
  90. mpz_set_ui(bn, 0); \
  91. for (bits = num_bits; bits > 0; bits -= 32) { \
  92. mpz_mul_2exp(bn, bn, 32); \
  93. mpz_add_ui(bn, bn, av_get_random_seed()); \
  94. } \
  95. mpz_fdiv_r_2exp(bn, bn, num_bits); \
  96. } while (0)
  97. static int bn_modexp(FFBigNum bn, FFBigNum y, FFBigNum q, FFBigNum p)
  98. {
  99. mpz_powm(bn, y, q, p);
  100. return 0;
  101. }
  102. #elif CONFIG_OPENSSL
  103. #define bn_new(bn) bn = BN_new()
  104. #define bn_free(bn) BN_free(bn)
  105. #define bn_set_word(bn, w) BN_set_word(bn, w)
  106. #define bn_cmp(a, b) BN_cmp(a, b)
  107. #define bn_copy(to, from) BN_copy(to, from)
  108. #define bn_sub_word(bn, w) BN_sub_word(bn, w)
  109. #define bn_cmp_1(bn) BN_cmp(bn, BN_value_one())
  110. #define bn_num_bytes(bn) BN_num_bytes(bn)
  111. #define bn_bn2bin(bn, buf, len) BN_bn2bin(bn, buf)
  112. #define bn_bin2bn(bn, buf, len) bn = BN_bin2bn(buf, len, 0)
  113. #define bn_hex2bn(bn, buf, ret) ret = BN_hex2bn(&bn, buf)
  114. #define bn_random(bn, num_bits) BN_rand(bn, num_bits, 0, 0)
  115. static int bn_modexp(FFBigNum bn, FFBigNum y, FFBigNum q, FFBigNum p)
  116. {
  117. BN_CTX *ctx = BN_CTX_new();
  118. if (!ctx)
  119. return AVERROR(ENOMEM);
  120. if (!BN_mod_exp(bn, y, q, p, ctx)) {
  121. BN_CTX_free(ctx);
  122. return AVERROR(EINVAL);
  123. }
  124. BN_CTX_free(ctx);
  125. return 0;
  126. }
  127. #elif CONFIG_MBEDTLS
  128. #define bn_new(bn) \
  129. do { \
  130. bn = av_malloc(sizeof(*bn)); \
  131. if (bn) \
  132. mbedtls_mpi_init(bn); \
  133. } while (0)
  134. #define bn_free(bn) \
  135. do { \
  136. mbedtls_mpi_free(bn); \
  137. av_free(bn); \
  138. } while (0)
  139. #define bn_set_word(bn, w) mbedtls_mpi_lset(bn, w)
  140. #define bn_cmp(a, b) mbedtls_mpi_cmp_mpi(a, b)
  141. #define bn_copy(to, from) mbedtls_mpi_copy(to, from)
  142. #define bn_sub_word(bn, w) mbedtls_mpi_sub_int(bn, bn, w)
  143. #define bn_cmp_1(bn) mbedtls_mpi_cmp_int(bn, 1)
  144. #define bn_num_bytes(bn) (mbedtls_mpi_bitlen(bn) + 7) / 8
  145. #define bn_bn2bin(bn, buf, len) mbedtls_mpi_write_binary(bn, buf, len)
  146. #define bn_bin2bn(bn, buf, len) \
  147. do { \
  148. bn_new(bn); \
  149. if (bn) \
  150. mbedtls_mpi_read_binary(bn, buf, len); \
  151. } while (0)
  152. #define bn_hex2bn(bn, buf, ret) \
  153. do { \
  154. bn_new(bn); \
  155. if (bn) \
  156. ret = (mbedtls_mpi_read_string(bn, 16, buf) == 0); \
  157. else \
  158. ret = 1; \
  159. } while (0)
  160. #define bn_random(bn, num_bits) \
  161. do { \
  162. mbedtls_entropy_context entropy_ctx; \
  163. mbedtls_ctr_drbg_context ctr_drbg_ctx; \
  164. \
  165. mbedtls_entropy_init(&entropy_ctx); \
  166. mbedtls_ctr_drbg_init(&ctr_drbg_ctx); \
  167. mbedtls_ctr_drbg_seed(&ctr_drbg_ctx, \
  168. mbedtls_entropy_func, \
  169. &entropy_ctx, \
  170. NULL, 0); \
  171. mbedtls_mpi_fill_random(bn, (num_bits + 7) / 8, mbedtls_ctr_drbg_random, &ctr_drbg_ctx); \
  172. mbedtls_ctr_drbg_free(&ctr_drbg_ctx); \
  173. mbedtls_entropy_free(&entropy_ctx); \
  174. } while (0)
  175. #define bn_modexp(bn, y, q, p) mbedtls_mpi_exp_mod(bn, y, q, p, 0)
  176. #endif
  177. #define MAX_BYTES 18000
  178. #define dh_new() av_mallocz(sizeof(FF_DH))
  179. static FFBigNum dh_generate_key(FF_DH *dh)
  180. {
  181. int num_bytes;
  182. num_bytes = bn_num_bytes(dh->p) - 1;
  183. if (num_bytes <= 0 || num_bytes > MAX_BYTES)
  184. return NULL;
  185. bn_new(dh->priv_key);
  186. if (!dh->priv_key)
  187. return NULL;
  188. bn_random(dh->priv_key, 8 * num_bytes);
  189. bn_new(dh->pub_key);
  190. if (!dh->pub_key) {
  191. bn_free(dh->priv_key);
  192. return NULL;
  193. }
  194. if (bn_modexp(dh->pub_key, dh->g, dh->priv_key, dh->p) < 0)
  195. return NULL;
  196. return dh->pub_key;
  197. }
  198. static int dh_compute_key(FF_DH *dh, FFBigNum pub_key_bn,
  199. uint32_t secret_key_len, uint8_t *secret_key)
  200. {
  201. FFBigNum k;
  202. int ret;
  203. bn_new(k);
  204. if (!k)
  205. return -1;
  206. if ((ret = bn_modexp(k, pub_key_bn, dh->priv_key, dh->p)) < 0) {
  207. bn_free(k);
  208. return ret;
  209. }
  210. bn_bn2bin(k, secret_key, secret_key_len);
  211. bn_free(k);
  212. /* return the length of the shared secret key like DH_compute_key */
  213. return secret_key_len;
  214. }
  215. void ff_dh_free(FF_DH *dh)
  216. {
  217. if (!dh)
  218. return;
  219. bn_free(dh->p);
  220. bn_free(dh->g);
  221. bn_free(dh->pub_key);
  222. bn_free(dh->priv_key);
  223. av_free(dh);
  224. }
  225. static int dh_is_valid_public_key(FFBigNum y, FFBigNum p, FFBigNum q)
  226. {
  227. FFBigNum bn = NULL;
  228. int ret = AVERROR(EINVAL);
  229. bn_new(bn);
  230. if (!bn)
  231. return AVERROR(ENOMEM);
  232. /* y must lie in [2, p - 1] */
  233. bn_set_word(bn, 1);
  234. if (!bn_cmp(y, bn))
  235. goto fail;
  236. /* bn = p - 2 */
  237. bn_copy(bn, p);
  238. bn_sub_word(bn, 1);
  239. if (!bn_cmp(y, bn))
  240. goto fail;
  241. /* Verify with Sophie-Germain prime
  242. *
  243. * This is a nice test to make sure the public key position is calculated
  244. * correctly. This test will fail in about 50% of the cases if applied to
  245. * random data.
  246. */
  247. /* y must fulfill y^q mod p = 1 */
  248. if ((ret = bn_modexp(bn, y, q, p)) < 0)
  249. goto fail;
  250. ret = AVERROR(EINVAL);
  251. if (bn_cmp_1(bn))
  252. goto fail;
  253. ret = 0;
  254. fail:
  255. bn_free(bn);
  256. return ret;
  257. }
  258. av_cold FF_DH *ff_dh_init(int key_len)
  259. {
  260. FF_DH *dh;
  261. int ret;
  262. if (!(dh = dh_new()))
  263. return NULL;
  264. bn_new(dh->g);
  265. if (!dh->g)
  266. goto fail;
  267. bn_hex2bn(dh->p, P1024, ret);
  268. if (!ret)
  269. goto fail;
  270. bn_set_word(dh->g, 2);
  271. dh->length = key_len;
  272. return dh;
  273. fail:
  274. ff_dh_free(dh);
  275. return NULL;
  276. }
  277. int ff_dh_generate_public_key(FF_DH *dh)
  278. {
  279. int ret = 0;
  280. while (!ret) {
  281. FFBigNum q1 = NULL;
  282. if (!dh_generate_key(dh))
  283. return AVERROR(EINVAL);
  284. bn_hex2bn(q1, Q1024, ret);
  285. if (!ret)
  286. return AVERROR(ENOMEM);
  287. ret = dh_is_valid_public_key(dh->pub_key, dh->p, q1);
  288. bn_free(q1);
  289. if (!ret) {
  290. /* the public key is valid */
  291. break;
  292. }
  293. }
  294. return ret;
  295. }
  296. int ff_dh_write_public_key(FF_DH *dh, uint8_t *pub_key, int pub_key_len)
  297. {
  298. int len;
  299. /* compute the length of the public key */
  300. len = bn_num_bytes(dh->pub_key);
  301. if (len <= 0 || len > pub_key_len)
  302. return AVERROR(EINVAL);
  303. /* convert the public key value into big-endian form */
  304. memset(pub_key, 0, pub_key_len);
  305. bn_bn2bin(dh->pub_key, pub_key + pub_key_len - len, len);
  306. return 0;
  307. }
  308. int ff_dh_compute_shared_secret_key(FF_DH *dh, const uint8_t *pub_key,
  309. int pub_key_len, uint8_t *secret_key,
  310. int secret_key_len)
  311. {
  312. FFBigNum q1 = NULL, pub_key_bn = NULL;
  313. int ret;
  314. /* convert the big-endian form of the public key into a bignum */
  315. bn_bin2bn(pub_key_bn, pub_key, pub_key_len);
  316. if (!pub_key_bn)
  317. return AVERROR(ENOMEM);
  318. /* convert the string containing a hexadecimal number into a bignum */
  319. bn_hex2bn(q1, Q1024, ret);
  320. if (!ret) {
  321. ret = AVERROR(ENOMEM);
  322. goto fail;
  323. }
  324. /* when the public key is valid we have to compute the shared secret key */
  325. if ((ret = dh_is_valid_public_key(pub_key_bn, dh->p, q1)) < 0) {
  326. goto fail;
  327. } else if ((ret = dh_compute_key(dh, pub_key_bn, secret_key_len,
  328. secret_key)) < 0) {
  329. ret = AVERROR(EINVAL);
  330. goto fail;
  331. }
  332. fail:
  333. bn_free(pub_key_bn);
  334. bn_free(q1);
  335. return ret;
  336. }