You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1783 lines
63KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #include <assert.h>
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avutil.h"
  39. #include "libavutil/bswap.h"
  40. #include "libavutil/cpu.h"
  41. #include "libavutil/intreadwrite.h"
  42. #include "libavutil/mathematics.h"
  43. #include "libavutil/opt.h"
  44. #include "libavutil/pixdesc.h"
  45. #include "libavutil/ppc/cpu.h"
  46. #include "libavutil/x86/asm.h"
  47. #include "libavutil/x86/cpu.h"
  48. #include "rgb2rgb.h"
  49. #include "swscale.h"
  50. #include "swscale_internal.h"
  51. unsigned swscale_version(void)
  52. {
  53. return LIBSWSCALE_VERSION_INT;
  54. }
  55. const char *swscale_configuration(void)
  56. {
  57. return LIBAV_CONFIGURATION;
  58. }
  59. const char *swscale_license(void)
  60. {
  61. #define LICENSE_PREFIX "libswscale license: "
  62. return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  63. }
  64. #define RET 0xC3 // near return opcode for x86
  65. typedef struct FormatEntry {
  66. uint8_t is_supported_in :1;
  67. uint8_t is_supported_out :1;
  68. uint8_t is_supported_endianness :1;
  69. } FormatEntry;
  70. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  71. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  72. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  73. [AV_PIX_FMT_RGB24] = { 1, 1 },
  74. [AV_PIX_FMT_BGR24] = { 1, 1 },
  75. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  76. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  77. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  78. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  79. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  80. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  81. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  82. [AV_PIX_FMT_PAL8] = { 1, 0 },
  83. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  84. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  85. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  86. [AV_PIX_FMT_YVYU422] = { 1, 1 },
  87. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  88. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  89. [AV_PIX_FMT_BGR8] = { 1, 1 },
  90. [AV_PIX_FMT_BGR4] = { 0, 1 },
  91. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  92. [AV_PIX_FMT_RGB8] = { 1, 1 },
  93. [AV_PIX_FMT_RGB4] = { 0, 1 },
  94. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  95. [AV_PIX_FMT_NV12] = { 1, 1 },
  96. [AV_PIX_FMT_NV21] = { 1, 1 },
  97. [AV_PIX_FMT_ARGB] = { 1, 1 },
  98. [AV_PIX_FMT_RGBA] = { 1, 1 },
  99. [AV_PIX_FMT_ABGR] = { 1, 1 },
  100. [AV_PIX_FMT_BGRA] = { 1, 1 },
  101. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  102. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  103. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  104. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  105. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  106. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  107. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  108. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  109. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  110. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  111. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  112. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  113. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  114. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  115. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  116. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  117. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  118. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  119. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  120. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  121. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  122. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  123. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  124. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  125. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  126. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  127. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  128. [AV_PIX_FMT_RGBA64BE] = { 0, 0, 1 },
  129. [AV_PIX_FMT_RGBA64LE] = { 0, 0, 1 },
  130. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  131. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  132. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  133. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  134. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  135. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  136. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  137. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  138. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  139. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  140. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  141. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  142. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  143. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  144. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  145. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  146. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  147. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  148. [AV_PIX_FMT_YA8] = { 1, 0 },
  149. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  150. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  151. [AV_PIX_FMT_BGRA64BE] = { 0, 0, 1 },
  152. [AV_PIX_FMT_BGRA64LE] = { 0, 0, 1 },
  153. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  154. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  155. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  156. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  157. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  158. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  159. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  160. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  161. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  162. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  163. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  164. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  165. [AV_PIX_FMT_GBRP] = { 1, 1 },
  166. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  167. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  168. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  169. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  170. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  171. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  172. [AV_PIX_FMT_XYZ12BE] = { 0, 0, 1 },
  173. [AV_PIX_FMT_XYZ12LE] = { 0, 0, 1 },
  174. };
  175. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  176. {
  177. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  178. format_entries[pix_fmt].is_supported_in : 0;
  179. }
  180. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  181. {
  182. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  183. format_entries[pix_fmt].is_supported_out : 0;
  184. }
  185. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  186. {
  187. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  188. format_entries[pix_fmt].is_supported_endianness : 0;
  189. }
  190. const char *sws_format_name(enum AVPixelFormat format)
  191. {
  192. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  193. if (desc)
  194. return desc->name;
  195. else
  196. return "Unknown format";
  197. }
  198. static double getSplineCoeff(double a, double b, double c, double d,
  199. double dist)
  200. {
  201. if (dist <= 1.0)
  202. return ((d * dist + c) * dist + b) * dist + a;
  203. else
  204. return getSplineCoeff(0.0,
  205. b + 2.0 * c + 3.0 * d,
  206. c + 3.0 * d,
  207. -b - 3.0 * c - 6.0 * d,
  208. dist - 1.0);
  209. }
  210. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  211. int *outFilterSize, int xInc, int srcW,
  212. int dstW, int filterAlign, int one,
  213. int flags, int cpu_flags,
  214. SwsVector *srcFilter, SwsVector *dstFilter,
  215. double param[2], int is_horizontal)
  216. {
  217. int i;
  218. int filterSize;
  219. int filter2Size;
  220. int minFilterSize;
  221. int64_t *filter = NULL;
  222. int64_t *filter2 = NULL;
  223. const int64_t fone = 1LL << 54;
  224. int ret = -1;
  225. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  226. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  227. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  228. if (FFABS(xInc - 0x10000) < 10) { // unscaled
  229. int i;
  230. filterSize = 1;
  231. FF_ALLOCZ_OR_GOTO(NULL, filter,
  232. dstW * sizeof(*filter) * filterSize, fail);
  233. for (i = 0; i < dstW; i++) {
  234. filter[i * filterSize] = fone;
  235. (*filterPos)[i] = i;
  236. }
  237. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  238. int i;
  239. int xDstInSrc;
  240. filterSize = 1;
  241. FF_ALLOC_OR_GOTO(NULL, filter,
  242. dstW * sizeof(*filter) * filterSize, fail);
  243. xDstInSrc = xInc / 2 - 0x8000;
  244. for (i = 0; i < dstW; i++) {
  245. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  246. (*filterPos)[i] = xx;
  247. filter[i] = fone;
  248. xDstInSrc += xInc;
  249. }
  250. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  251. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  252. int i;
  253. int xDstInSrc;
  254. filterSize = 2;
  255. FF_ALLOC_OR_GOTO(NULL, filter,
  256. dstW * sizeof(*filter) * filterSize, fail);
  257. xDstInSrc = xInc / 2 - 0x8000;
  258. for (i = 0; i < dstW; i++) {
  259. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  260. int j;
  261. (*filterPos)[i] = xx;
  262. // bilinear upscale / linear interpolate / area averaging
  263. for (j = 0; j < filterSize; j++) {
  264. int64_t coeff = fone - FFABS((xx << 16) - xDstInSrc) *
  265. (fone >> 16);
  266. if (coeff < 0)
  267. coeff = 0;
  268. filter[i * filterSize + j] = coeff;
  269. xx++;
  270. }
  271. xDstInSrc += xInc;
  272. }
  273. } else {
  274. int64_t xDstInSrc;
  275. int sizeFactor;
  276. if (flags & SWS_BICUBIC)
  277. sizeFactor = 4;
  278. else if (flags & SWS_X)
  279. sizeFactor = 8;
  280. else if (flags & SWS_AREA)
  281. sizeFactor = 1; // downscale only, for upscale it is bilinear
  282. else if (flags & SWS_GAUSS)
  283. sizeFactor = 8; // infinite ;)
  284. else if (flags & SWS_LANCZOS)
  285. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  286. else if (flags & SWS_SINC)
  287. sizeFactor = 20; // infinite ;)
  288. else if (flags & SWS_SPLINE)
  289. sizeFactor = 20; // infinite ;)
  290. else if (flags & SWS_BILINEAR)
  291. sizeFactor = 2;
  292. else {
  293. sizeFactor = 0; // GCC warning killer
  294. assert(0);
  295. }
  296. if (xInc <= 1 << 16)
  297. filterSize = 1 + sizeFactor; // upscale
  298. else
  299. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  300. filterSize = FFMIN(filterSize, srcW - 2);
  301. filterSize = FFMAX(filterSize, 1);
  302. FF_ALLOC_OR_GOTO(NULL, filter,
  303. dstW * sizeof(*filter) * filterSize, fail);
  304. xDstInSrc = xInc - 0x10000;
  305. for (i = 0; i < dstW; i++) {
  306. int xx = (xDstInSrc - ((int64_t)(filterSize - 2) << 16)) / (1 << 17);
  307. int j;
  308. (*filterPos)[i] = xx;
  309. for (j = 0; j < filterSize; j++) {
  310. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  311. double floatd;
  312. int64_t coeff;
  313. if (xInc > 1 << 16)
  314. d = d * dstW / srcW;
  315. floatd = d * (1.0 / (1 << 30));
  316. if (flags & SWS_BICUBIC) {
  317. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  318. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  319. if (d >= 1LL << 31) {
  320. coeff = 0.0;
  321. } else {
  322. int64_t dd = (d * d) >> 30;
  323. int64_t ddd = (dd * d) >> 30;
  324. if (d < 1LL << 30)
  325. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  326. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  327. (6 * (1 << 24) - 2 * B) * (1 << 30);
  328. else
  329. coeff = (-B - 6 * C) * ddd +
  330. (6 * B + 30 * C) * dd +
  331. (-12 * B - 48 * C) * d +
  332. (8 * B + 24 * C) * (1 << 30);
  333. }
  334. coeff *= fone >> (30 + 24);
  335. }
  336. #if 0
  337. else if (flags & SWS_X) {
  338. double p = param ? param * 0.01 : 0.3;
  339. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  340. coeff *= pow(2.0, -p * d * d);
  341. }
  342. #endif
  343. else if (flags & SWS_X) {
  344. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  345. double c;
  346. if (floatd < 1.0)
  347. c = cos(floatd * M_PI);
  348. else
  349. c = -1.0;
  350. if (c < 0.0)
  351. c = -pow(-c, A);
  352. else
  353. c = pow(c, A);
  354. coeff = (c * 0.5 + 0.5) * fone;
  355. } else if (flags & SWS_AREA) {
  356. int64_t d2 = d - (1 << 29);
  357. if (d2 * xInc < -(1LL << (29 + 16)))
  358. coeff = 1.0 * (1LL << (30 + 16));
  359. else if (d2 * xInc < (1LL << (29 + 16)))
  360. coeff = -d2 * xInc + (1LL << (29 + 16));
  361. else
  362. coeff = 0.0;
  363. coeff *= fone >> (30 + 16);
  364. } else if (flags & SWS_GAUSS) {
  365. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  366. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  367. } else if (flags & SWS_SINC) {
  368. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  369. } else if (flags & SWS_LANCZOS) {
  370. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  371. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  372. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  373. if (floatd > p)
  374. coeff = 0;
  375. } else if (flags & SWS_BILINEAR) {
  376. coeff = (1 << 30) - d;
  377. if (coeff < 0)
  378. coeff = 0;
  379. coeff *= fone >> 30;
  380. } else if (flags & SWS_SPLINE) {
  381. double p = -2.196152422706632;
  382. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  383. } else {
  384. coeff = 0.0; // GCC warning killer
  385. assert(0);
  386. }
  387. filter[i * filterSize + j] = coeff;
  388. xx++;
  389. }
  390. xDstInSrc += 2 * xInc;
  391. }
  392. }
  393. /* apply src & dst Filter to filter -> filter2
  394. * av_free(filter);
  395. */
  396. assert(filterSize > 0);
  397. filter2Size = filterSize;
  398. if (srcFilter)
  399. filter2Size += srcFilter->length - 1;
  400. if (dstFilter)
  401. filter2Size += dstFilter->length - 1;
  402. assert(filter2Size > 0);
  403. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  404. for (i = 0; i < dstW; i++) {
  405. int j, k;
  406. if (srcFilter) {
  407. for (k = 0; k < srcFilter->length; k++) {
  408. for (j = 0; j < filterSize; j++)
  409. filter2[i * filter2Size + k + j] +=
  410. srcFilter->coeff[k] * filter[i * filterSize + j];
  411. }
  412. } else {
  413. for (j = 0; j < filterSize; j++)
  414. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  415. }
  416. // FIXME dstFilter
  417. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  418. }
  419. av_freep(&filter);
  420. /* try to reduce the filter-size (step1 find size and shift left) */
  421. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  422. minFilterSize = 0;
  423. for (i = dstW - 1; i >= 0; i--) {
  424. int min = filter2Size;
  425. int j;
  426. int64_t cutOff = 0.0;
  427. /* get rid of near zero elements on the left by shifting left */
  428. for (j = 0; j < filter2Size; j++) {
  429. int k;
  430. cutOff += FFABS(filter2[i * filter2Size]);
  431. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  432. break;
  433. /* preserve monotonicity because the core can't handle the
  434. * filter otherwise */
  435. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  436. break;
  437. // move filter coefficients left
  438. for (k = 1; k < filter2Size; k++)
  439. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  440. filter2[i * filter2Size + k - 1] = 0;
  441. (*filterPos)[i]++;
  442. }
  443. cutOff = 0;
  444. /* count near zeros on the right */
  445. for (j = filter2Size - 1; j > 0; j--) {
  446. cutOff += FFABS(filter2[i * filter2Size + j]);
  447. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  448. break;
  449. min--;
  450. }
  451. if (min > minFilterSize)
  452. minFilterSize = min;
  453. }
  454. if (PPC_ALTIVEC(cpu_flags)) {
  455. // we can handle the special case 4, so we don't want to go the full 8
  456. if (minFilterSize < 5)
  457. filterAlign = 4;
  458. /* We really don't want to waste our time doing useless computation, so
  459. * fall back on the scalar C code for very small filters.
  460. * Vectorizing is worth it only if you have a decent-sized vector. */
  461. if (minFilterSize < 3)
  462. filterAlign = 1;
  463. }
  464. if (INLINE_MMX(cpu_flags)) {
  465. // special case for unscaled vertical filtering
  466. if (minFilterSize == 1 && filterAlign == 2)
  467. filterAlign = 1;
  468. }
  469. assert(minFilterSize > 0);
  470. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  471. assert(filterSize > 0);
  472. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  473. if (filterSize >= MAX_FILTER_SIZE * 16 /
  474. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  475. goto fail;
  476. *outFilterSize = filterSize;
  477. if (flags & SWS_PRINT_INFO)
  478. av_log(NULL, AV_LOG_VERBOSE,
  479. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  480. filter2Size, filterSize);
  481. /* try to reduce the filter-size (step2 reduce it) */
  482. for (i = 0; i < dstW; i++) {
  483. int j;
  484. for (j = 0; j < filterSize; j++) {
  485. if (j >= filter2Size)
  486. filter[i * filterSize + j] = 0;
  487. else
  488. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  489. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  490. filter[i * filterSize + j] = 0;
  491. }
  492. }
  493. // FIXME try to align filterPos if possible
  494. // fix borders
  495. if (is_horizontal) {
  496. for (i = 0; i < dstW; i++) {
  497. int j;
  498. if ((*filterPos)[i] < 0) {
  499. // move filter coefficients left to compensate for filterPos
  500. for (j = 1; j < filterSize; j++) {
  501. int left = FFMAX(j + (*filterPos)[i], 0);
  502. filter[i * filterSize + left] += filter[i * filterSize + j];
  503. filter[i * filterSize + j] = 0;
  504. }
  505. (*filterPos)[i] = 0;
  506. }
  507. if ((*filterPos)[i] + filterSize > srcW) {
  508. int shift = (*filterPos)[i] + filterSize - srcW;
  509. // move filter coefficients right to compensate for filterPos
  510. for (j = filterSize - 2; j >= 0; j--) {
  511. int right = FFMIN(j + shift, filterSize - 1);
  512. filter[i * filterSize + right] += filter[i * filterSize + j];
  513. filter[i * filterSize + j] = 0;
  514. }
  515. (*filterPos)[i] = srcW - filterSize;
  516. }
  517. }
  518. }
  519. // Note the +1 is for the MMX scaler which reads over the end
  520. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  521. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  522. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  523. /* normalize & store in outFilter */
  524. for (i = 0; i < dstW; i++) {
  525. int j;
  526. int64_t error = 0;
  527. int64_t sum = 0;
  528. for (j = 0; j < filterSize; j++) {
  529. sum += filter[i * filterSize + j];
  530. }
  531. sum = (sum + one / 2) / one;
  532. for (j = 0; j < *outFilterSize; j++) {
  533. int64_t v = filter[i * filterSize + j] + error;
  534. int intV = ROUNDED_DIV(v, sum);
  535. (*outFilter)[i * (*outFilterSize) + j] = intV;
  536. error = v - intV * sum;
  537. }
  538. }
  539. (*filterPos)[dstW + 0] =
  540. (*filterPos)[dstW + 1] =
  541. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  542. * read over the end */
  543. for (i = 0; i < *outFilterSize; i++) {
  544. int k = (dstW - 1) * (*outFilterSize) + i;
  545. (*outFilter)[k + 1 * (*outFilterSize)] =
  546. (*outFilter)[k + 2 * (*outFilterSize)] =
  547. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  548. }
  549. ret = 0;
  550. fail:
  551. av_free(filter);
  552. av_free(filter2);
  553. return ret;
  554. }
  555. #if HAVE_MMXEXT_INLINE
  556. static av_cold int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
  557. int16_t *filter, int32_t *filterPos,
  558. int numSplits)
  559. {
  560. uint8_t *fragmentA;
  561. x86_reg imm8OfPShufW1A;
  562. x86_reg imm8OfPShufW2A;
  563. x86_reg fragmentLengthA;
  564. uint8_t *fragmentB;
  565. x86_reg imm8OfPShufW1B;
  566. x86_reg imm8OfPShufW2B;
  567. x86_reg fragmentLengthB;
  568. int fragmentPos;
  569. int xpos, i;
  570. // create an optimized horizontal scaling routine
  571. /* This scaler is made of runtime-generated MMXEXT code using specially tuned
  572. * pshufw instructions. For every four output pixels, if four input pixels
  573. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  574. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  575. */
  576. // code fragment
  577. __asm__ volatile (
  578. "jmp 9f \n\t"
  579. // Begin
  580. "0: \n\t"
  581. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  582. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  583. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  584. "punpcklbw %%mm7, %%mm1 \n\t"
  585. "punpcklbw %%mm7, %%mm0 \n\t"
  586. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  587. "1: \n\t"
  588. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  589. "2: \n\t"
  590. "psubw %%mm1, %%mm0 \n\t"
  591. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  592. "pmullw %%mm3, %%mm0 \n\t"
  593. "psllw $7, %%mm1 \n\t"
  594. "paddw %%mm1, %%mm0 \n\t"
  595. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  596. "add $8, %%"REG_a" \n\t"
  597. // End
  598. "9: \n\t"
  599. // "int $3 \n\t"
  600. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  601. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  602. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  603. "dec %1 \n\t"
  604. "dec %2 \n\t"
  605. "sub %0, %1 \n\t"
  606. "sub %0, %2 \n\t"
  607. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  608. "sub %0, %3 \n\t"
  609. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  610. "=r" (fragmentLengthA)
  611. );
  612. __asm__ volatile (
  613. "jmp 9f \n\t"
  614. // Begin
  615. "0: \n\t"
  616. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  617. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  618. "punpcklbw %%mm7, %%mm0 \n\t"
  619. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  620. "1: \n\t"
  621. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  622. "2: \n\t"
  623. "psubw %%mm1, %%mm0 \n\t"
  624. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  625. "pmullw %%mm3, %%mm0 \n\t"
  626. "psllw $7, %%mm1 \n\t"
  627. "paddw %%mm1, %%mm0 \n\t"
  628. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  629. "add $8, %%"REG_a" \n\t"
  630. // End
  631. "9: \n\t"
  632. // "int $3 \n\t"
  633. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  634. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  635. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  636. "dec %1 \n\t"
  637. "dec %2 \n\t"
  638. "sub %0, %1 \n\t"
  639. "sub %0, %2 \n\t"
  640. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  641. "sub %0, %3 \n\t"
  642. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  643. "=r" (fragmentLengthB)
  644. );
  645. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  646. fragmentPos = 0;
  647. for (i = 0; i < dstW / numSplits; i++) {
  648. int xx = xpos >> 16;
  649. if ((i & 3) == 0) {
  650. int a = 0;
  651. int b = ((xpos + xInc) >> 16) - xx;
  652. int c = ((xpos + xInc * 2) >> 16) - xx;
  653. int d = ((xpos + xInc * 3) >> 16) - xx;
  654. int inc = (d + 1 < 4);
  655. uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
  656. x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  657. x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  658. x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
  659. int maxShift = 3 - (d + inc);
  660. int shift = 0;
  661. if (filterCode) {
  662. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  663. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  664. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  665. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  666. filterPos[i / 2] = xx;
  667. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  668. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  669. ((b + inc) << 2) |
  670. ((c + inc) << 4) |
  671. ((d + inc) << 6);
  672. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  673. (c << 4) |
  674. (d << 6);
  675. if (i + 4 - inc >= dstW)
  676. shift = maxShift; // avoid overread
  677. else if ((filterPos[i / 2] & 3) <= maxShift)
  678. shift = filterPos[i / 2] & 3; // align
  679. if (shift && i >= shift) {
  680. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  681. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  682. filterPos[i / 2] -= shift;
  683. }
  684. }
  685. fragmentPos += fragmentLength;
  686. if (filterCode)
  687. filterCode[fragmentPos] = RET;
  688. }
  689. xpos += xInc;
  690. }
  691. if (filterCode)
  692. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  693. return fragmentPos + 1;
  694. }
  695. #endif /* HAVE_MMXEXT_INLINE */
  696. static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
  697. {
  698. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  699. *h = desc->log2_chroma_w;
  700. *v = desc->log2_chroma_h;
  701. }
  702. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  703. int srcRange, const int table[4], int dstRange,
  704. int brightness, int contrast, int saturation)
  705. {
  706. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  707. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
  708. memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  709. memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
  710. c->brightness = brightness;
  711. c->contrast = contrast;
  712. c->saturation = saturation;
  713. c->srcRange = srcRange;
  714. c->dstRange = dstRange;
  715. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  716. return -1;
  717. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  718. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  719. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  720. contrast, saturation);
  721. // FIXME factorize
  722. if (ARCH_PPC)
  723. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  724. contrast, saturation);
  725. return 0;
  726. }
  727. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  728. int *srcRange, int **table, int *dstRange,
  729. int *brightness, int *contrast, int *saturation)
  730. {
  731. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  732. return -1;
  733. *inv_table = c->srcColorspaceTable;
  734. *table = c->dstColorspaceTable;
  735. *srcRange = c->srcRange;
  736. *dstRange = c->dstRange;
  737. *brightness = c->brightness;
  738. *contrast = c->contrast;
  739. *saturation = c->saturation;
  740. return 0;
  741. }
  742. static int handle_jpeg(enum AVPixelFormat *format)
  743. {
  744. switch (*format) {
  745. case AV_PIX_FMT_YUVJ420P:
  746. *format = AV_PIX_FMT_YUV420P;
  747. return 1;
  748. case AV_PIX_FMT_YUVJ422P:
  749. *format = AV_PIX_FMT_YUV422P;
  750. return 1;
  751. case AV_PIX_FMT_YUVJ444P:
  752. *format = AV_PIX_FMT_YUV444P;
  753. return 1;
  754. case AV_PIX_FMT_YUVJ440P:
  755. *format = AV_PIX_FMT_YUV440P;
  756. return 1;
  757. default:
  758. return 0;
  759. }
  760. }
  761. SwsContext *sws_alloc_context(void)
  762. {
  763. SwsContext *c = av_mallocz(sizeof(SwsContext));
  764. if (c) {
  765. c->av_class = &sws_context_class;
  766. av_opt_set_defaults(c);
  767. }
  768. return c;
  769. }
  770. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  771. SwsFilter *dstFilter)
  772. {
  773. int i;
  774. int usesVFilter, usesHFilter;
  775. int unscaled;
  776. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  777. int srcW = c->srcW;
  778. int srcH = c->srcH;
  779. int dstW = c->dstW;
  780. int dstH = c->dstH;
  781. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16);
  782. int dst_stride_px = dst_stride >> 1;
  783. int flags, cpu_flags;
  784. enum AVPixelFormat srcFormat = c->srcFormat;
  785. enum AVPixelFormat dstFormat = c->dstFormat;
  786. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
  787. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
  788. cpu_flags = av_get_cpu_flags();
  789. flags = c->flags;
  790. emms_c();
  791. if (!rgb15to16)
  792. sws_rgb2rgb_init();
  793. unscaled = (srcW == dstW && srcH == dstH);
  794. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  795. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  796. if (!sws_isSupportedInput(srcFormat)) {
  797. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  798. sws_format_name(srcFormat));
  799. return AVERROR(EINVAL);
  800. }
  801. if (!sws_isSupportedOutput(dstFormat)) {
  802. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  803. sws_format_name(dstFormat));
  804. return AVERROR(EINVAL);
  805. }
  806. }
  807. i = flags & (SWS_POINT |
  808. SWS_AREA |
  809. SWS_BILINEAR |
  810. SWS_FAST_BILINEAR |
  811. SWS_BICUBIC |
  812. SWS_X |
  813. SWS_GAUSS |
  814. SWS_LANCZOS |
  815. SWS_SINC |
  816. SWS_SPLINE |
  817. SWS_BICUBLIN);
  818. /* provide a default scaler if not set by caller */
  819. if (!i) {
  820. if (dstW < srcW && dstH < srcH)
  821. flags |= SWS_GAUSS;
  822. else if (dstW > srcW && dstH > srcH)
  823. flags |= SWS_SINC;
  824. else
  825. flags |= SWS_LANCZOS;
  826. c->flags = flags;
  827. } else if (i & (i - 1)) {
  828. av_log(c, AV_LOG_ERROR,
  829. "Exactly one scaler algorithm must be chosen\n");
  830. return AVERROR(EINVAL);
  831. }
  832. /* sanity check */
  833. if (srcW < 4 || srcH < 1 || dstW < 8 || dstH < 1) {
  834. /* FIXME check if these are enough and try to lower them after
  835. * fixing the relevant parts of the code */
  836. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  837. srcW, srcH, dstW, dstH);
  838. return AVERROR(EINVAL);
  839. }
  840. if (!dstFilter)
  841. dstFilter = &dummyFilter;
  842. if (!srcFilter)
  843. srcFilter = &dummyFilter;
  844. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  845. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  846. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  847. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  848. c->vRounder = 4 * 0x0001000100010001ULL;
  849. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  850. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  851. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  852. (dstFilter->chrV && dstFilter->chrV->length > 1);
  853. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  854. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  855. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  856. (dstFilter->chrH && dstFilter->chrH->length > 1);
  857. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  858. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  859. if (isPlanarRGB(dstFormat)) {
  860. if (!(flags & SWS_FULL_CHR_H_INT)) {
  861. av_log(c, AV_LOG_DEBUG,
  862. "%s output is not supported with half chroma resolution, switching to full\n",
  863. av_get_pix_fmt_name(dstFormat));
  864. flags |= SWS_FULL_CHR_H_INT;
  865. c->flags = flags;
  866. }
  867. }
  868. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  869. * chroma interpolation */
  870. if (flags & SWS_FULL_CHR_H_INT &&
  871. isAnyRGB(dstFormat) &&
  872. !isPlanarRGB(dstFormat) &&
  873. dstFormat != AV_PIX_FMT_RGBA &&
  874. dstFormat != AV_PIX_FMT_ARGB &&
  875. dstFormat != AV_PIX_FMT_BGRA &&
  876. dstFormat != AV_PIX_FMT_ABGR &&
  877. dstFormat != AV_PIX_FMT_RGB24 &&
  878. dstFormat != AV_PIX_FMT_BGR24) {
  879. av_log(c, AV_LOG_ERROR,
  880. "full chroma interpolation for destination format '%s' not yet implemented\n",
  881. sws_format_name(dstFormat));
  882. flags &= ~SWS_FULL_CHR_H_INT;
  883. c->flags = flags;
  884. }
  885. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  886. c->chrDstHSubSample = 1;
  887. // drop some chroma lines if the user wants it
  888. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  889. SWS_SRC_V_CHR_DROP_SHIFT;
  890. c->chrSrcVSubSample += c->vChrDrop;
  891. /* drop every other pixel for chroma calculation unless user
  892. * wants full chroma */
  893. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  894. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  895. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  896. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  897. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  898. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  899. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  900. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  901. (flags & SWS_FAST_BILINEAR)))
  902. c->chrSrcHSubSample = 1;
  903. // Note the -((-x)>>y) is so that we always round toward +inf.
  904. c->chrSrcW = -((-srcW) >> c->chrSrcHSubSample);
  905. c->chrSrcH = -((-srcH) >> c->chrSrcVSubSample);
  906. c->chrDstW = -((-dstW) >> c->chrDstHSubSample);
  907. c->chrDstH = -((-dstH) >> c->chrDstVSubSample);
  908. /* unscaled special cases */
  909. if (unscaled && !usesHFilter && !usesVFilter &&
  910. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  911. ff_get_unscaled_swscale(c);
  912. if (c->swscale) {
  913. if (flags & SWS_PRINT_INFO)
  914. av_log(c, AV_LOG_INFO,
  915. "using unscaled %s -> %s special converter\n",
  916. sws_format_name(srcFormat), sws_format_name(dstFormat));
  917. return 0;
  918. }
  919. }
  920. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  921. if (c->srcBpc < 8)
  922. c->srcBpc = 8;
  923. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  924. if (c->dstBpc < 8)
  925. c->dstBpc = 8;
  926. if (c->dstBpc == 16)
  927. dst_stride <<= 1;
  928. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer,
  929. (FFALIGN(srcW, 16) * 2 * FFALIGN(c->srcBpc, 8) >> 3) + 16,
  930. fail);
  931. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 10) {
  932. c->canMMXEXTBeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
  933. (srcW & 15) == 0) ? 1 : 0;
  934. if (!c->canMMXEXTBeUsed && dstW >= srcW && (srcW & 15) == 0
  935. && (flags & SWS_FAST_BILINEAR)) {
  936. if (flags & SWS_PRINT_INFO)
  937. av_log(c, AV_LOG_INFO,
  938. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  939. }
  940. if (usesHFilter)
  941. c->canMMXEXTBeUsed = 0;
  942. } else
  943. c->canMMXEXTBeUsed = 0;
  944. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  945. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  946. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  947. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  948. * correct scaling.
  949. * n-2 is the last chrominance sample available.
  950. * This is not perfect, but no one should notice the difference, the more
  951. * correct variant would be like the vertical one, but that would require
  952. * some special code for the first and last pixel */
  953. if (flags & SWS_FAST_BILINEAR) {
  954. if (c->canMMXEXTBeUsed) {
  955. c->lumXInc += 20;
  956. c->chrXInc += 20;
  957. }
  958. // we don't use the x86 asm scaler if MMX is available
  959. else if (INLINE_MMX(cpu_flags)) {
  960. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  961. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  962. }
  963. }
  964. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  965. /* precalculate horizontal scaler filter coefficients */
  966. {
  967. #if HAVE_MMXEXT_INLINE
  968. // can't downscale !!!
  969. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  970. c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  971. NULL, NULL, 8);
  972. c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  973. NULL, NULL, NULL, 4);
  974. #if USE_MMAP
  975. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  976. PROT_READ | PROT_WRITE,
  977. MAP_PRIVATE | MAP_ANONYMOUS,
  978. -1, 0);
  979. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  980. PROT_READ | PROT_WRITE,
  981. MAP_PRIVATE | MAP_ANONYMOUS,
  982. -1, 0);
  983. #elif HAVE_VIRTUALALLOC
  984. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  985. c->lumMmxextFilterCodeSize,
  986. MEM_COMMIT,
  987. PAGE_EXECUTE_READWRITE);
  988. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  989. c->chrMmxextFilterCodeSize,
  990. MEM_COMMIT,
  991. PAGE_EXECUTE_READWRITE);
  992. #else
  993. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  994. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  995. #endif
  996. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  997. return AVERROR(ENOMEM);
  998. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  999. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1000. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1001. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1002. init_hscaler_mmxext(dstW, c->lumXInc, c->lumMmxextFilterCode,
  1003. c->hLumFilter, c->hLumFilterPos, 8);
  1004. init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1005. c->hChrFilter, c->hChrFilterPos, 4);
  1006. #if USE_MMAP
  1007. mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1008. mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1009. #endif
  1010. } else
  1011. #endif /* HAVE_MMXEXT_INLINE */
  1012. {
  1013. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1014. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1015. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1016. &c->hLumFilterSize, c->lumXInc,
  1017. srcW, dstW, filterAlign, 1 << 14,
  1018. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1019. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1020. c->param, 1) < 0)
  1021. goto fail;
  1022. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1023. &c->hChrFilterSize, c->chrXInc,
  1024. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1025. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1026. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1027. c->param, 1) < 0)
  1028. goto fail;
  1029. }
  1030. } // initialize horizontal stuff
  1031. /* precalculate vertical scaler filter coefficients */
  1032. {
  1033. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1034. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1035. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1036. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1037. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1038. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1039. c->param, 0) < 0)
  1040. goto fail;
  1041. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1042. c->chrYInc, c->chrSrcH, c->chrDstH,
  1043. filterAlign, (1 << 12),
  1044. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1045. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1046. c->param, 0) < 0)
  1047. goto fail;
  1048. #if HAVE_ALTIVEC
  1049. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1050. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1051. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1052. int j;
  1053. short *p = (short *)&c->vYCoeffsBank[i];
  1054. for (j = 0; j < 8; j++)
  1055. p[j] = c->vLumFilter[i];
  1056. }
  1057. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1058. int j;
  1059. short *p = (short *)&c->vCCoeffsBank[i];
  1060. for (j = 0; j < 8; j++)
  1061. p[j] = c->vChrFilter[i];
  1062. }
  1063. #endif
  1064. }
  1065. // calculate buffer sizes so that they won't run out while handling these damn slices
  1066. c->vLumBufSize = c->vLumFilterSize;
  1067. c->vChrBufSize = c->vChrFilterSize;
  1068. for (i = 0; i < dstH; i++) {
  1069. int chrI = (int64_t)i * c->chrDstH / dstH;
  1070. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1071. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1072. << c->chrSrcVSubSample));
  1073. nextSlice >>= c->chrSrcVSubSample;
  1074. nextSlice <<= c->chrSrcVSubSample;
  1075. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1076. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1077. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1078. (nextSlice >> c->chrSrcVSubSample))
  1079. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1080. c->vChrFilterPos[chrI];
  1081. }
  1082. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1083. * need to allocate several megabytes to handle all possible cases) */
  1084. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1085. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1086. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1087. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1088. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1089. /* Note we need at least one pixel more at the end because of the MMX code
  1090. * (just in case someone wants to replace the 4000/8000). */
  1091. /* align at 16 bytes for AltiVec */
  1092. for (i = 0; i < c->vLumBufSize; i++) {
  1093. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1094. dst_stride + 16, fail);
  1095. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1096. }
  1097. // 64 / (c->dstBpc & ~7) is the same as 16 / sizeof(scaling_intermediate)
  1098. c->uv_off_px = dst_stride_px + 64 / (c->dstBpc & ~7);
  1099. c->uv_off_byte = dst_stride + 16;
  1100. for (i = 0; i < c->vChrBufSize; i++) {
  1101. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1102. dst_stride * 2 + 32, fail);
  1103. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1104. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1105. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1106. }
  1107. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1108. for (i = 0; i < c->vLumBufSize; i++) {
  1109. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1110. dst_stride + 16, fail);
  1111. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1112. }
  1113. // try to avoid drawing green stuff between the right end and the stride end
  1114. for (i = 0; i < c->vChrBufSize; i++)
  1115. memset(c->chrUPixBuf[i], 64, dst_stride * 2 + 1);
  1116. assert(c->chrDstH <= dstH);
  1117. if (flags & SWS_PRINT_INFO) {
  1118. if (flags & SWS_FAST_BILINEAR)
  1119. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  1120. else if (flags & SWS_BILINEAR)
  1121. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  1122. else if (flags & SWS_BICUBIC)
  1123. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  1124. else if (flags & SWS_X)
  1125. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  1126. else if (flags & SWS_POINT)
  1127. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  1128. else if (flags & SWS_AREA)
  1129. av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  1130. else if (flags & SWS_BICUBLIN)
  1131. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  1132. else if (flags & SWS_GAUSS)
  1133. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  1134. else if (flags & SWS_SINC)
  1135. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  1136. else if (flags & SWS_LANCZOS)
  1137. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  1138. else if (flags & SWS_SPLINE)
  1139. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  1140. else
  1141. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  1142. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  1143. sws_format_name(srcFormat),
  1144. #ifdef DITHER1XBPP
  1145. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1146. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1147. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1148. "dithered " : "",
  1149. #else
  1150. "",
  1151. #endif
  1152. sws_format_name(dstFormat));
  1153. if (INLINE_MMXEXT(cpu_flags))
  1154. av_log(c, AV_LOG_INFO, "using MMXEXT\n");
  1155. else if (INLINE_AMD3DNOW(cpu_flags))
  1156. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  1157. else if (INLINE_MMX(cpu_flags))
  1158. av_log(c, AV_LOG_INFO, "using MMX\n");
  1159. else if (PPC_ALTIVEC(cpu_flags))
  1160. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  1161. else
  1162. av_log(c, AV_LOG_INFO, "using C\n");
  1163. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1164. av_log(c, AV_LOG_DEBUG,
  1165. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1166. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1167. av_log(c, AV_LOG_DEBUG,
  1168. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1169. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1170. c->chrXInc, c->chrYInc);
  1171. }
  1172. c->swscale = ff_getSwsFunc(c);
  1173. return 0;
  1174. fail: // FIXME replace things by appropriate error codes
  1175. return -1;
  1176. }
  1177. #if FF_API_SWS_GETCONTEXT
  1178. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1179. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1180. int flags, SwsFilter *srcFilter,
  1181. SwsFilter *dstFilter, const double *param)
  1182. {
  1183. SwsContext *c;
  1184. if (!(c = sws_alloc_context()))
  1185. return NULL;
  1186. c->flags = flags;
  1187. c->srcW = srcW;
  1188. c->srcH = srcH;
  1189. c->dstW = dstW;
  1190. c->dstH = dstH;
  1191. c->srcRange = handle_jpeg(&srcFormat);
  1192. c->dstRange = handle_jpeg(&dstFormat);
  1193. c->srcFormat = srcFormat;
  1194. c->dstFormat = dstFormat;
  1195. if (param) {
  1196. c->param[0] = param[0];
  1197. c->param[1] = param[1];
  1198. }
  1199. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1200. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1201. c->dstRange, 0, 1 << 16, 1 << 16);
  1202. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1203. sws_freeContext(c);
  1204. return NULL;
  1205. }
  1206. return c;
  1207. }
  1208. #endif
  1209. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1210. float lumaSharpen, float chromaSharpen,
  1211. float chromaHShift, float chromaVShift,
  1212. int verbose)
  1213. {
  1214. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1215. if (!filter)
  1216. return NULL;
  1217. if (lumaGBlur != 0.0) {
  1218. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1219. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1220. } else {
  1221. filter->lumH = sws_getIdentityVec();
  1222. filter->lumV = sws_getIdentityVec();
  1223. }
  1224. if (chromaGBlur != 0.0) {
  1225. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1226. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1227. } else {
  1228. filter->chrH = sws_getIdentityVec();
  1229. filter->chrV = sws_getIdentityVec();
  1230. }
  1231. if (chromaSharpen != 0.0) {
  1232. SwsVector *id = sws_getIdentityVec();
  1233. sws_scaleVec(filter->chrH, -chromaSharpen);
  1234. sws_scaleVec(filter->chrV, -chromaSharpen);
  1235. sws_addVec(filter->chrH, id);
  1236. sws_addVec(filter->chrV, id);
  1237. sws_freeVec(id);
  1238. }
  1239. if (lumaSharpen != 0.0) {
  1240. SwsVector *id = sws_getIdentityVec();
  1241. sws_scaleVec(filter->lumH, -lumaSharpen);
  1242. sws_scaleVec(filter->lumV, -lumaSharpen);
  1243. sws_addVec(filter->lumH, id);
  1244. sws_addVec(filter->lumV, id);
  1245. sws_freeVec(id);
  1246. }
  1247. if (chromaHShift != 0.0)
  1248. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1249. if (chromaVShift != 0.0)
  1250. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1251. sws_normalizeVec(filter->chrH, 1.0);
  1252. sws_normalizeVec(filter->chrV, 1.0);
  1253. sws_normalizeVec(filter->lumH, 1.0);
  1254. sws_normalizeVec(filter->lumV, 1.0);
  1255. if (verbose)
  1256. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1257. if (verbose)
  1258. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1259. return filter;
  1260. }
  1261. SwsVector *sws_allocVec(int length)
  1262. {
  1263. SwsVector *vec = av_malloc(sizeof(SwsVector));
  1264. if (!vec)
  1265. return NULL;
  1266. vec->length = length;
  1267. vec->coeff = av_malloc(sizeof(double) * length);
  1268. if (!vec->coeff)
  1269. av_freep(&vec);
  1270. return vec;
  1271. }
  1272. SwsVector *sws_getGaussianVec(double variance, double quality)
  1273. {
  1274. const int length = (int)(variance * quality + 0.5) | 1;
  1275. int i;
  1276. double middle = (length - 1) * 0.5;
  1277. SwsVector *vec = sws_allocVec(length);
  1278. if (!vec)
  1279. return NULL;
  1280. for (i = 0; i < length; i++) {
  1281. double dist = i - middle;
  1282. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1283. sqrt(2 * variance * M_PI);
  1284. }
  1285. sws_normalizeVec(vec, 1.0);
  1286. return vec;
  1287. }
  1288. SwsVector *sws_getConstVec(double c, int length)
  1289. {
  1290. int i;
  1291. SwsVector *vec = sws_allocVec(length);
  1292. if (!vec)
  1293. return NULL;
  1294. for (i = 0; i < length; i++)
  1295. vec->coeff[i] = c;
  1296. return vec;
  1297. }
  1298. SwsVector *sws_getIdentityVec(void)
  1299. {
  1300. return sws_getConstVec(1.0, 1);
  1301. }
  1302. static double sws_dcVec(SwsVector *a)
  1303. {
  1304. int i;
  1305. double sum = 0;
  1306. for (i = 0; i < a->length; i++)
  1307. sum += a->coeff[i];
  1308. return sum;
  1309. }
  1310. void sws_scaleVec(SwsVector *a, double scalar)
  1311. {
  1312. int i;
  1313. for (i = 0; i < a->length; i++)
  1314. a->coeff[i] *= scalar;
  1315. }
  1316. void sws_normalizeVec(SwsVector *a, double height)
  1317. {
  1318. sws_scaleVec(a, height / sws_dcVec(a));
  1319. }
  1320. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1321. {
  1322. int length = a->length + b->length - 1;
  1323. int i, j;
  1324. SwsVector *vec = sws_getConstVec(0.0, length);
  1325. if (!vec)
  1326. return NULL;
  1327. for (i = 0; i < a->length; i++) {
  1328. for (j = 0; j < b->length; j++) {
  1329. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1330. }
  1331. }
  1332. return vec;
  1333. }
  1334. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1335. {
  1336. int length = FFMAX(a->length, b->length);
  1337. int i;
  1338. SwsVector *vec = sws_getConstVec(0.0, length);
  1339. if (!vec)
  1340. return NULL;
  1341. for (i = 0; i < a->length; i++)
  1342. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1343. for (i = 0; i < b->length; i++)
  1344. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1345. return vec;
  1346. }
  1347. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1348. {
  1349. int length = FFMAX(a->length, b->length);
  1350. int i;
  1351. SwsVector *vec = sws_getConstVec(0.0, length);
  1352. if (!vec)
  1353. return NULL;
  1354. for (i = 0; i < a->length; i++)
  1355. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1356. for (i = 0; i < b->length; i++)
  1357. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1358. return vec;
  1359. }
  1360. /* shift left / or right if "shift" is negative */
  1361. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1362. {
  1363. int length = a->length + FFABS(shift) * 2;
  1364. int i;
  1365. SwsVector *vec = sws_getConstVec(0.0, length);
  1366. if (!vec)
  1367. return NULL;
  1368. for (i = 0; i < a->length; i++) {
  1369. vec->coeff[i + (length - 1) / 2 -
  1370. (a->length - 1) / 2 - shift] = a->coeff[i];
  1371. }
  1372. return vec;
  1373. }
  1374. void sws_shiftVec(SwsVector *a, int shift)
  1375. {
  1376. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1377. av_free(a->coeff);
  1378. a->coeff = shifted->coeff;
  1379. a->length = shifted->length;
  1380. av_free(shifted);
  1381. }
  1382. void sws_addVec(SwsVector *a, SwsVector *b)
  1383. {
  1384. SwsVector *sum = sws_sumVec(a, b);
  1385. av_free(a->coeff);
  1386. a->coeff = sum->coeff;
  1387. a->length = sum->length;
  1388. av_free(sum);
  1389. }
  1390. void sws_subVec(SwsVector *a, SwsVector *b)
  1391. {
  1392. SwsVector *diff = sws_diffVec(a, b);
  1393. av_free(a->coeff);
  1394. a->coeff = diff->coeff;
  1395. a->length = diff->length;
  1396. av_free(diff);
  1397. }
  1398. void sws_convVec(SwsVector *a, SwsVector *b)
  1399. {
  1400. SwsVector *conv = sws_getConvVec(a, b);
  1401. av_free(a->coeff);
  1402. a->coeff = conv->coeff;
  1403. a->length = conv->length;
  1404. av_free(conv);
  1405. }
  1406. SwsVector *sws_cloneVec(SwsVector *a)
  1407. {
  1408. int i;
  1409. SwsVector *vec = sws_allocVec(a->length);
  1410. if (!vec)
  1411. return NULL;
  1412. for (i = 0; i < a->length; i++)
  1413. vec->coeff[i] = a->coeff[i];
  1414. return vec;
  1415. }
  1416. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1417. {
  1418. int i;
  1419. double max = 0;
  1420. double min = 0;
  1421. double range;
  1422. for (i = 0; i < a->length; i++)
  1423. if (a->coeff[i] > max)
  1424. max = a->coeff[i];
  1425. for (i = 0; i < a->length; i++)
  1426. if (a->coeff[i] < min)
  1427. min = a->coeff[i];
  1428. range = max - min;
  1429. for (i = 0; i < a->length; i++) {
  1430. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1431. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1432. for (; x > 0; x--)
  1433. av_log(log_ctx, log_level, " ");
  1434. av_log(log_ctx, log_level, "|\n");
  1435. }
  1436. }
  1437. void sws_freeVec(SwsVector *a)
  1438. {
  1439. if (!a)
  1440. return;
  1441. av_freep(&a->coeff);
  1442. a->length = 0;
  1443. av_free(a);
  1444. }
  1445. void sws_freeFilter(SwsFilter *filter)
  1446. {
  1447. if (!filter)
  1448. return;
  1449. if (filter->lumH)
  1450. sws_freeVec(filter->lumH);
  1451. if (filter->lumV)
  1452. sws_freeVec(filter->lumV);
  1453. if (filter->chrH)
  1454. sws_freeVec(filter->chrH);
  1455. if (filter->chrV)
  1456. sws_freeVec(filter->chrV);
  1457. av_free(filter);
  1458. }
  1459. void sws_freeContext(SwsContext *c)
  1460. {
  1461. int i;
  1462. if (!c)
  1463. return;
  1464. if (c->lumPixBuf) {
  1465. for (i = 0; i < c->vLumBufSize; i++)
  1466. av_freep(&c->lumPixBuf[i]);
  1467. av_freep(&c->lumPixBuf);
  1468. }
  1469. if (c->chrUPixBuf) {
  1470. for (i = 0; i < c->vChrBufSize; i++)
  1471. av_freep(&c->chrUPixBuf[i]);
  1472. av_freep(&c->chrUPixBuf);
  1473. av_freep(&c->chrVPixBuf);
  1474. }
  1475. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1476. for (i = 0; i < c->vLumBufSize; i++)
  1477. av_freep(&c->alpPixBuf[i]);
  1478. av_freep(&c->alpPixBuf);
  1479. }
  1480. av_freep(&c->vLumFilter);
  1481. av_freep(&c->vChrFilter);
  1482. av_freep(&c->hLumFilter);
  1483. av_freep(&c->hChrFilter);
  1484. #if HAVE_ALTIVEC
  1485. av_freep(&c->vYCoeffsBank);
  1486. av_freep(&c->vCCoeffsBank);
  1487. #endif
  1488. av_freep(&c->vLumFilterPos);
  1489. av_freep(&c->vChrFilterPos);
  1490. av_freep(&c->hLumFilterPos);
  1491. av_freep(&c->hChrFilterPos);
  1492. #if HAVE_MMX_INLINE
  1493. #if USE_MMAP
  1494. if (c->lumMmxextFilterCode)
  1495. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1496. if (c->chrMmxextFilterCode)
  1497. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1498. #elif HAVE_VIRTUALALLOC
  1499. if (c->lumMmxextFilterCode)
  1500. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1501. if (c->chrMmxextFilterCode)
  1502. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1503. #else
  1504. av_free(c->lumMmxextFilterCode);
  1505. av_free(c->chrMmxextFilterCode);
  1506. #endif
  1507. c->lumMmxextFilterCode = NULL;
  1508. c->chrMmxextFilterCode = NULL;
  1509. #endif /* HAVE_MMX_INLINE */
  1510. av_freep(&c->yuvTable);
  1511. av_free(c->formatConvBuffer);
  1512. av_free(c);
  1513. }
  1514. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1515. int srcH, enum AVPixelFormat srcFormat,
  1516. int dstW, int dstH,
  1517. enum AVPixelFormat dstFormat, int flags,
  1518. SwsFilter *srcFilter,
  1519. SwsFilter *dstFilter,
  1520. const double *param)
  1521. {
  1522. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1523. SWS_PARAM_DEFAULT };
  1524. if (!param)
  1525. param = default_param;
  1526. if (context &&
  1527. (context->srcW != srcW ||
  1528. context->srcH != srcH ||
  1529. context->srcFormat != srcFormat ||
  1530. context->dstW != dstW ||
  1531. context->dstH != dstH ||
  1532. context->dstFormat != dstFormat ||
  1533. context->flags != flags ||
  1534. context->param[0] != param[0] ||
  1535. context->param[1] != param[1])) {
  1536. sws_freeContext(context);
  1537. context = NULL;
  1538. }
  1539. if (!context) {
  1540. if (!(context = sws_alloc_context()))
  1541. return NULL;
  1542. context->srcW = srcW;
  1543. context->srcH = srcH;
  1544. context->srcRange = handle_jpeg(&srcFormat);
  1545. context->srcFormat = srcFormat;
  1546. context->dstW = dstW;
  1547. context->dstH = dstH;
  1548. context->dstRange = handle_jpeg(&dstFormat);
  1549. context->dstFormat = dstFormat;
  1550. context->flags = flags;
  1551. context->param[0] = param[0];
  1552. context->param[1] = param[1];
  1553. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1554. context->srcRange,
  1555. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1556. context->dstRange, 0, 1 << 16, 1 << 16);
  1557. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1558. sws_freeContext(context);
  1559. return NULL;
  1560. }
  1561. }
  1562. return context;
  1563. }