You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1032 lines
39KB

  1. /*
  2. * AAC encoder
  3. * Copyright (C) 2008 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AAC encoder
  24. */
  25. /***********************************
  26. * TODOs:
  27. * add sane pulse detection
  28. ***********************************/
  29. #include "libavutil/float_dsp.h"
  30. #include "libavutil/opt.h"
  31. #include "avcodec.h"
  32. #include "put_bits.h"
  33. #include "internal.h"
  34. #include "mpeg4audio.h"
  35. #include "kbdwin.h"
  36. #include "sinewin.h"
  37. #include "aac.h"
  38. #include "aactab.h"
  39. #include "aacenc.h"
  40. #include "aacenctab.h"
  41. #include "aacenc_utils.h"
  42. #include "psymodel.h"
  43. /**
  44. * Make AAC audio config object.
  45. * @see 1.6.2.1 "Syntax - AudioSpecificConfig"
  46. */
  47. static void put_audio_specific_config(AVCodecContext *avctx)
  48. {
  49. PutBitContext pb;
  50. AACEncContext *s = avctx->priv_data;
  51. int channels = s->channels - (s->channels == 8 ? 1 : 0);
  52. init_put_bits(&pb, avctx->extradata, avctx->extradata_size);
  53. put_bits(&pb, 5, s->profile+1); //profile
  54. put_bits(&pb, 4, s->samplerate_index); //sample rate index
  55. put_bits(&pb, 4, channels);
  56. //GASpecificConfig
  57. put_bits(&pb, 1, 0); //frame length - 1024 samples
  58. put_bits(&pb, 1, 0); //does not depend on core coder
  59. put_bits(&pb, 1, 0); //is not extension
  60. //Explicitly Mark SBR absent
  61. put_bits(&pb, 11, 0x2b7); //sync extension
  62. put_bits(&pb, 5, AOT_SBR);
  63. put_bits(&pb, 1, 0);
  64. flush_put_bits(&pb);
  65. }
  66. void ff_quantize_band_cost_cache_init(struct AACEncContext *s)
  67. {
  68. int sf, g;
  69. for (sf = 0; sf < 256; sf++) {
  70. for (g = 0; g < 128; g++) {
  71. s->quantize_band_cost_cache[sf][g].bits = -1;
  72. }
  73. }
  74. }
  75. #define WINDOW_FUNC(type) \
  76. static void apply_ ##type ##_window(AVFloatDSPContext *fdsp, \
  77. SingleChannelElement *sce, \
  78. const float *audio)
  79. WINDOW_FUNC(only_long)
  80. {
  81. const float *lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  82. const float *pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  83. float *out = sce->ret_buf;
  84. fdsp->vector_fmul (out, audio, lwindow, 1024);
  85. fdsp->vector_fmul_reverse(out + 1024, audio + 1024, pwindow, 1024);
  86. }
  87. WINDOW_FUNC(long_start)
  88. {
  89. const float *lwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  90. const float *swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  91. float *out = sce->ret_buf;
  92. fdsp->vector_fmul(out, audio, lwindow, 1024);
  93. memcpy(out + 1024, audio + 1024, sizeof(out[0]) * 448);
  94. fdsp->vector_fmul_reverse(out + 1024 + 448, audio + 1024 + 448, swindow, 128);
  95. memset(out + 1024 + 576, 0, sizeof(out[0]) * 448);
  96. }
  97. WINDOW_FUNC(long_stop)
  98. {
  99. const float *lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  100. const float *swindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
  101. float *out = sce->ret_buf;
  102. memset(out, 0, sizeof(out[0]) * 448);
  103. fdsp->vector_fmul(out + 448, audio + 448, swindow, 128);
  104. memcpy(out + 576, audio + 576, sizeof(out[0]) * 448);
  105. fdsp->vector_fmul_reverse(out + 1024, audio + 1024, lwindow, 1024);
  106. }
  107. WINDOW_FUNC(eight_short)
  108. {
  109. const float *swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  110. const float *pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
  111. const float *in = audio + 448;
  112. float *out = sce->ret_buf;
  113. int w;
  114. for (w = 0; w < 8; w++) {
  115. fdsp->vector_fmul (out, in, w ? pwindow : swindow, 128);
  116. out += 128;
  117. in += 128;
  118. fdsp->vector_fmul_reverse(out, in, swindow, 128);
  119. out += 128;
  120. }
  121. }
  122. static void (*const apply_window[4])(AVFloatDSPContext *fdsp,
  123. SingleChannelElement *sce,
  124. const float *audio) = {
  125. [ONLY_LONG_SEQUENCE] = apply_only_long_window,
  126. [LONG_START_SEQUENCE] = apply_long_start_window,
  127. [EIGHT_SHORT_SEQUENCE] = apply_eight_short_window,
  128. [LONG_STOP_SEQUENCE] = apply_long_stop_window
  129. };
  130. static void apply_window_and_mdct(AACEncContext *s, SingleChannelElement *sce,
  131. float *audio)
  132. {
  133. int i;
  134. float *output = sce->ret_buf;
  135. apply_window[sce->ics.window_sequence[0]](s->fdsp, sce, audio);
  136. if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE)
  137. s->mdct1024.mdct_calc(&s->mdct1024, sce->coeffs, output);
  138. else
  139. for (i = 0; i < 1024; i += 128)
  140. s->mdct128.mdct_calc(&s->mdct128, &sce->coeffs[i], output + i*2);
  141. memcpy(audio, audio + 1024, sizeof(audio[0]) * 1024);
  142. memcpy(sce->pcoeffs, sce->coeffs, sizeof(sce->pcoeffs));
  143. }
  144. /**
  145. * Encode ics_info element.
  146. * @see Table 4.6 (syntax of ics_info)
  147. */
  148. static void put_ics_info(AACEncContext *s, IndividualChannelStream *info)
  149. {
  150. int w;
  151. put_bits(&s->pb, 1, 0); // ics_reserved bit
  152. put_bits(&s->pb, 2, info->window_sequence[0]);
  153. put_bits(&s->pb, 1, info->use_kb_window[0]);
  154. if (info->window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
  155. put_bits(&s->pb, 6, info->max_sfb);
  156. put_bits(&s->pb, 1, !!info->predictor_present);
  157. } else {
  158. put_bits(&s->pb, 4, info->max_sfb);
  159. for (w = 1; w < 8; w++)
  160. put_bits(&s->pb, 1, !info->group_len[w]);
  161. }
  162. }
  163. /**
  164. * Encode MS data.
  165. * @see 4.6.8.1 "Joint Coding - M/S Stereo"
  166. */
  167. static void encode_ms_info(PutBitContext *pb, ChannelElement *cpe)
  168. {
  169. int i, w;
  170. put_bits(pb, 2, cpe->ms_mode);
  171. if (cpe->ms_mode == 1)
  172. for (w = 0; w < cpe->ch[0].ics.num_windows; w += cpe->ch[0].ics.group_len[w])
  173. for (i = 0; i < cpe->ch[0].ics.max_sfb; i++)
  174. put_bits(pb, 1, cpe->ms_mask[w*16 + i]);
  175. }
  176. /**
  177. * Produce integer coefficients from scalefactors provided by the model.
  178. */
  179. static void adjust_frame_information(ChannelElement *cpe, int chans)
  180. {
  181. int i, w, w2, g, ch;
  182. int maxsfb, cmaxsfb;
  183. for (ch = 0; ch < chans; ch++) {
  184. IndividualChannelStream *ics = &cpe->ch[ch].ics;
  185. maxsfb = 0;
  186. cpe->ch[ch].pulse.num_pulse = 0;
  187. for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
  188. for (w2 = 0; w2 < ics->group_len[w]; w2++) {
  189. for (cmaxsfb = ics->num_swb; cmaxsfb > 0 && cpe->ch[ch].zeroes[w*16+cmaxsfb-1]; cmaxsfb--)
  190. ;
  191. maxsfb = FFMAX(maxsfb, cmaxsfb);
  192. }
  193. }
  194. ics->max_sfb = maxsfb;
  195. //adjust zero bands for window groups
  196. for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
  197. for (g = 0; g < ics->max_sfb; g++) {
  198. i = 1;
  199. for (w2 = w; w2 < w + ics->group_len[w]; w2++) {
  200. if (!cpe->ch[ch].zeroes[w2*16 + g]) {
  201. i = 0;
  202. break;
  203. }
  204. }
  205. cpe->ch[ch].zeroes[w*16 + g] = i;
  206. }
  207. }
  208. }
  209. if (chans > 1 && cpe->common_window) {
  210. IndividualChannelStream *ics0 = &cpe->ch[0].ics;
  211. IndividualChannelStream *ics1 = &cpe->ch[1].ics;
  212. int msc = 0;
  213. ics0->max_sfb = FFMAX(ics0->max_sfb, ics1->max_sfb);
  214. ics1->max_sfb = ics0->max_sfb;
  215. for (w = 0; w < ics0->num_windows*16; w += 16)
  216. for (i = 0; i < ics0->max_sfb; i++)
  217. if (cpe->ms_mask[w+i])
  218. msc++;
  219. if (msc == 0 || ics0->max_sfb == 0)
  220. cpe->ms_mode = 0;
  221. else
  222. cpe->ms_mode = msc < ics0->max_sfb * ics0->num_windows ? 1 : 2;
  223. }
  224. }
  225. static void apply_intensity_stereo(ChannelElement *cpe)
  226. {
  227. int w, w2, g, i;
  228. IndividualChannelStream *ics = &cpe->ch[0].ics;
  229. if (!cpe->common_window)
  230. return;
  231. for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
  232. for (w2 = 0; w2 < ics->group_len[w]; w2++) {
  233. int start = (w+w2) * 128;
  234. for (g = 0; g < ics->num_swb; g++) {
  235. int p = -1 + 2 * (cpe->ch[1].band_type[w*16+g] - 14);
  236. float scale = cpe->ch[0].is_ener[w*16+g];
  237. if (!cpe->is_mask[w*16 + g]) {
  238. start += ics->swb_sizes[g];
  239. continue;
  240. }
  241. if (cpe->ms_mask[w*16 + g])
  242. p *= -1;
  243. for (i = 0; i < ics->swb_sizes[g]; i++) {
  244. float sum = (cpe->ch[0].coeffs[start+i] + p*cpe->ch[1].coeffs[start+i])*scale;
  245. cpe->ch[0].coeffs[start+i] = sum;
  246. cpe->ch[1].coeffs[start+i] = 0.0f;
  247. }
  248. start += ics->swb_sizes[g];
  249. }
  250. }
  251. }
  252. }
  253. static void apply_mid_side_stereo(ChannelElement *cpe)
  254. {
  255. int w, w2, g, i;
  256. IndividualChannelStream *ics = &cpe->ch[0].ics;
  257. if (!cpe->common_window)
  258. return;
  259. for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
  260. for (w2 = 0; w2 < ics->group_len[w]; w2++) {
  261. int start = (w+w2) * 128;
  262. for (g = 0; g < ics->num_swb; g++) {
  263. if (!cpe->ms_mask[w*16 + g] && !cpe->is_mask[w*16 + g]) {
  264. start += ics->swb_sizes[g];
  265. continue;
  266. }
  267. for (i = 0; i < ics->swb_sizes[g]; i++) {
  268. float L = (cpe->ch[0].coeffs[start+i] + cpe->ch[1].coeffs[start+i]) * 0.5f;
  269. float R = L - cpe->ch[1].coeffs[start+i];
  270. cpe->ch[0].coeffs[start+i] = L;
  271. cpe->ch[1].coeffs[start+i] = R;
  272. }
  273. start += ics->swb_sizes[g];
  274. }
  275. }
  276. }
  277. }
  278. /**
  279. * Encode scalefactor band coding type.
  280. */
  281. static void encode_band_info(AACEncContext *s, SingleChannelElement *sce)
  282. {
  283. int w;
  284. if (s->coder->set_special_band_scalefactors)
  285. s->coder->set_special_band_scalefactors(s, sce);
  286. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
  287. s->coder->encode_window_bands_info(s, sce, w, sce->ics.group_len[w], s->lambda);
  288. }
  289. /**
  290. * Encode scalefactors.
  291. */
  292. static void encode_scale_factors(AVCodecContext *avctx, AACEncContext *s,
  293. SingleChannelElement *sce)
  294. {
  295. int diff, off_sf = sce->sf_idx[0], off_pns = sce->sf_idx[0] - NOISE_OFFSET;
  296. int off_is = 0, noise_flag = 1;
  297. int i, w;
  298. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  299. for (i = 0; i < sce->ics.max_sfb; i++) {
  300. if (!sce->zeroes[w*16 + i]) {
  301. if (sce->band_type[w*16 + i] == NOISE_BT) {
  302. diff = sce->sf_idx[w*16 + i] - off_pns;
  303. off_pns = sce->sf_idx[w*16 + i];
  304. if (noise_flag-- > 0) {
  305. put_bits(&s->pb, NOISE_PRE_BITS, diff + NOISE_PRE);
  306. continue;
  307. }
  308. } else if (sce->band_type[w*16 + i] == INTENSITY_BT ||
  309. sce->band_type[w*16 + i] == INTENSITY_BT2) {
  310. diff = sce->sf_idx[w*16 + i] - off_is;
  311. off_is = sce->sf_idx[w*16 + i];
  312. } else {
  313. diff = sce->sf_idx[w*16 + i] - off_sf;
  314. off_sf = sce->sf_idx[w*16 + i];
  315. }
  316. diff += SCALE_DIFF_ZERO;
  317. av_assert0(diff >= 0 && diff <= 120);
  318. put_bits(&s->pb, ff_aac_scalefactor_bits[diff], ff_aac_scalefactor_code[diff]);
  319. }
  320. }
  321. }
  322. }
  323. /**
  324. * Encode pulse data.
  325. */
  326. static void encode_pulses(AACEncContext *s, Pulse *pulse)
  327. {
  328. int i;
  329. put_bits(&s->pb, 1, !!pulse->num_pulse);
  330. if (!pulse->num_pulse)
  331. return;
  332. put_bits(&s->pb, 2, pulse->num_pulse - 1);
  333. put_bits(&s->pb, 6, pulse->start);
  334. for (i = 0; i < pulse->num_pulse; i++) {
  335. put_bits(&s->pb, 5, pulse->pos[i]);
  336. put_bits(&s->pb, 4, pulse->amp[i]);
  337. }
  338. }
  339. /**
  340. * Encode spectral coefficients processed by psychoacoustic model.
  341. */
  342. static void encode_spectral_coeffs(AACEncContext *s, SingleChannelElement *sce)
  343. {
  344. int start, i, w, w2;
  345. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  346. start = 0;
  347. for (i = 0; i < sce->ics.max_sfb; i++) {
  348. if (sce->zeroes[w*16 + i]) {
  349. start += sce->ics.swb_sizes[i];
  350. continue;
  351. }
  352. for (w2 = w; w2 < w + sce->ics.group_len[w]; w2++) {
  353. s->coder->quantize_and_encode_band(s, &s->pb,
  354. &sce->coeffs[start + w2*128],
  355. NULL, sce->ics.swb_sizes[i],
  356. sce->sf_idx[w*16 + i],
  357. sce->band_type[w*16 + i],
  358. s->lambda,
  359. sce->ics.window_clipping[w]);
  360. }
  361. start += sce->ics.swb_sizes[i];
  362. }
  363. }
  364. }
  365. /**
  366. * Downscale spectral coefficients for near-clipping windows to avoid artifacts
  367. */
  368. static void avoid_clipping(AACEncContext *s, SingleChannelElement *sce)
  369. {
  370. int start, i, j, w;
  371. if (sce->ics.clip_avoidance_factor < 1.0f) {
  372. for (w = 0; w < sce->ics.num_windows; w++) {
  373. start = 0;
  374. for (i = 0; i < sce->ics.max_sfb; i++) {
  375. float *swb_coeffs = &sce->coeffs[start + w*128];
  376. for (j = 0; j < sce->ics.swb_sizes[i]; j++)
  377. swb_coeffs[j] *= sce->ics.clip_avoidance_factor;
  378. start += sce->ics.swb_sizes[i];
  379. }
  380. }
  381. }
  382. }
  383. /**
  384. * Encode one channel of audio data.
  385. */
  386. static int encode_individual_channel(AVCodecContext *avctx, AACEncContext *s,
  387. SingleChannelElement *sce,
  388. int common_window)
  389. {
  390. put_bits(&s->pb, 8, sce->sf_idx[0]);
  391. if (!common_window) {
  392. put_ics_info(s, &sce->ics);
  393. if (s->coder->encode_main_pred)
  394. s->coder->encode_main_pred(s, sce);
  395. if (s->coder->encode_ltp_info)
  396. s->coder->encode_ltp_info(s, sce, 0);
  397. }
  398. encode_band_info(s, sce);
  399. encode_scale_factors(avctx, s, sce);
  400. encode_pulses(s, &sce->pulse);
  401. put_bits(&s->pb, 1, !!sce->tns.present);
  402. if (s->coder->encode_tns_info)
  403. s->coder->encode_tns_info(s, sce);
  404. put_bits(&s->pb, 1, 0); //ssr
  405. encode_spectral_coeffs(s, sce);
  406. return 0;
  407. }
  408. /**
  409. * Write some auxiliary information about the created AAC file.
  410. */
  411. static void put_bitstream_info(AACEncContext *s, const char *name)
  412. {
  413. int i, namelen, padbits;
  414. namelen = strlen(name) + 2;
  415. put_bits(&s->pb, 3, TYPE_FIL);
  416. put_bits(&s->pb, 4, FFMIN(namelen, 15));
  417. if (namelen >= 15)
  418. put_bits(&s->pb, 8, namelen - 14);
  419. put_bits(&s->pb, 4, 0); //extension type - filler
  420. padbits = -put_bits_count(&s->pb) & 7;
  421. avpriv_align_put_bits(&s->pb);
  422. for (i = 0; i < namelen - 2; i++)
  423. put_bits(&s->pb, 8, name[i]);
  424. put_bits(&s->pb, 12 - padbits, 0);
  425. }
  426. /*
  427. * Copy input samples.
  428. * Channels are reordered from libavcodec's default order to AAC order.
  429. */
  430. static void copy_input_samples(AACEncContext *s, const AVFrame *frame)
  431. {
  432. int ch;
  433. int end = 2048 + (frame ? frame->nb_samples : 0);
  434. const uint8_t *channel_map = aac_chan_maps[s->channels - 1];
  435. /* copy and remap input samples */
  436. for (ch = 0; ch < s->channels; ch++) {
  437. /* copy last 1024 samples of previous frame to the start of the current frame */
  438. memcpy(&s->planar_samples[ch][1024], &s->planar_samples[ch][2048], 1024 * sizeof(s->planar_samples[0][0]));
  439. /* copy new samples and zero any remaining samples */
  440. if (frame) {
  441. memcpy(&s->planar_samples[ch][2048],
  442. frame->extended_data[channel_map[ch]],
  443. frame->nb_samples * sizeof(s->planar_samples[0][0]));
  444. }
  445. memset(&s->planar_samples[ch][end], 0,
  446. (3072 - end) * sizeof(s->planar_samples[0][0]));
  447. }
  448. }
  449. static int aac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
  450. const AVFrame *frame, int *got_packet_ptr)
  451. {
  452. AACEncContext *s = avctx->priv_data;
  453. float **samples = s->planar_samples, *samples2, *la, *overlap;
  454. ChannelElement *cpe;
  455. SingleChannelElement *sce;
  456. IndividualChannelStream *ics;
  457. int i, its, ch, w, chans, tag, start_ch, ret, frame_bits;
  458. int target_bits, rate_bits, too_many_bits, too_few_bits;
  459. int ms_mode = 0, is_mode = 0, tns_mode = 0, pred_mode = 0;
  460. int chan_el_counter[4];
  461. FFPsyWindowInfo windows[AAC_MAX_CHANNELS];
  462. if (s->last_frame == 2)
  463. return 0;
  464. /* add current frame to queue */
  465. if (frame) {
  466. if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
  467. return ret;
  468. }
  469. copy_input_samples(s, frame);
  470. if (s->psypp)
  471. ff_psy_preprocess(s->psypp, s->planar_samples, s->channels);
  472. if (!avctx->frame_number)
  473. return 0;
  474. start_ch = 0;
  475. for (i = 0; i < s->chan_map[0]; i++) {
  476. FFPsyWindowInfo* wi = windows + start_ch;
  477. tag = s->chan_map[i+1];
  478. chans = tag == TYPE_CPE ? 2 : 1;
  479. cpe = &s->cpe[i];
  480. for (ch = 0; ch < chans; ch++) {
  481. sce = &cpe->ch[ch];
  482. ics = &sce->ics;
  483. s->cur_channel = start_ch + ch;
  484. float clip_avoidance_factor;
  485. overlap = &samples[s->cur_channel][0];
  486. samples2 = overlap + 1024;
  487. la = samples2 + (448+64);
  488. if (!frame)
  489. la = NULL;
  490. if (tag == TYPE_LFE) {
  491. wi[ch].window_type[0] = ONLY_LONG_SEQUENCE;
  492. wi[ch].window_shape = 0;
  493. wi[ch].num_windows = 1;
  494. wi[ch].grouping[0] = 1;
  495. /* Only the lowest 12 coefficients are used in a LFE channel.
  496. * The expression below results in only the bottom 8 coefficients
  497. * being used for 11.025kHz to 16kHz sample rates.
  498. */
  499. ics->num_swb = s->samplerate_index >= 8 ? 1 : 3;
  500. } else {
  501. wi[ch] = s->psy.model->window(&s->psy, samples2, la, s->cur_channel,
  502. ics->window_sequence[0]);
  503. }
  504. ics->window_sequence[1] = ics->window_sequence[0];
  505. ics->window_sequence[0] = wi[ch].window_type[0];
  506. ics->use_kb_window[1] = ics->use_kb_window[0];
  507. ics->use_kb_window[0] = wi[ch].window_shape;
  508. ics->num_windows = wi[ch].num_windows;
  509. ics->swb_sizes = s->psy.bands [ics->num_windows == 8];
  510. ics->num_swb = tag == TYPE_LFE ? ics->num_swb : s->psy.num_bands[ics->num_windows == 8];
  511. ics->swb_offset = wi[ch].window_type[0] == EIGHT_SHORT_SEQUENCE ?
  512. ff_swb_offset_128 [s->samplerate_index]:
  513. ff_swb_offset_1024[s->samplerate_index];
  514. ics->tns_max_bands = wi[ch].window_type[0] == EIGHT_SHORT_SEQUENCE ?
  515. ff_tns_max_bands_128 [s->samplerate_index]:
  516. ff_tns_max_bands_1024[s->samplerate_index];
  517. clip_avoidance_factor = 0.0f;
  518. for (w = 0; w < ics->num_windows; w++)
  519. ics->group_len[w] = wi[ch].grouping[w];
  520. for (w = 0; w < ics->num_windows; w++) {
  521. if (wi[ch].clipping[w] > CLIP_AVOIDANCE_FACTOR) {
  522. ics->window_clipping[w] = 1;
  523. clip_avoidance_factor = FFMAX(clip_avoidance_factor, wi[ch].clipping[w]);
  524. } else {
  525. ics->window_clipping[w] = 0;
  526. }
  527. }
  528. if (clip_avoidance_factor > CLIP_AVOIDANCE_FACTOR) {
  529. ics->clip_avoidance_factor = CLIP_AVOIDANCE_FACTOR / clip_avoidance_factor;
  530. } else {
  531. ics->clip_avoidance_factor = 1.0f;
  532. }
  533. apply_window_and_mdct(s, sce, overlap);
  534. if (s->options.ltp && s->coder->update_ltp) {
  535. s->coder->update_ltp(s, sce);
  536. apply_window[sce->ics.window_sequence[0]](s->fdsp, sce, &sce->ltp_state[0]);
  537. s->mdct1024.mdct_calc(&s->mdct1024, sce->lcoeffs, sce->ret_buf);
  538. }
  539. if (isnan(cpe->ch->coeffs[0])) {
  540. av_log(avctx, AV_LOG_ERROR, "Input contains NaN\n");
  541. return AVERROR(EINVAL);
  542. }
  543. avoid_clipping(s, sce);
  544. }
  545. start_ch += chans;
  546. }
  547. if ((ret = ff_alloc_packet2(avctx, avpkt, 8192 * s->channels, 0)) < 0)
  548. return ret;
  549. frame_bits = its = 0;
  550. do {
  551. init_put_bits(&s->pb, avpkt->data, avpkt->size);
  552. if ((avctx->frame_number & 0xFF)==1 && !(avctx->flags & AV_CODEC_FLAG_BITEXACT))
  553. put_bitstream_info(s, LIBAVCODEC_IDENT);
  554. start_ch = 0;
  555. target_bits = 0;
  556. memset(chan_el_counter, 0, sizeof(chan_el_counter));
  557. for (i = 0; i < s->chan_map[0]; i++) {
  558. FFPsyWindowInfo* wi = windows + start_ch;
  559. const float *coeffs[2];
  560. tag = s->chan_map[i+1];
  561. chans = tag == TYPE_CPE ? 2 : 1;
  562. cpe = &s->cpe[i];
  563. cpe->common_window = 0;
  564. memset(cpe->is_mask, 0, sizeof(cpe->is_mask));
  565. memset(cpe->ms_mask, 0, sizeof(cpe->ms_mask));
  566. put_bits(&s->pb, 3, tag);
  567. put_bits(&s->pb, 4, chan_el_counter[tag]++);
  568. for (ch = 0; ch < chans; ch++) {
  569. sce = &cpe->ch[ch];
  570. coeffs[ch] = sce->coeffs;
  571. sce->ics.predictor_present = 0;
  572. sce->ics.ltp.present = 0;
  573. memset(sce->ics.ltp.used, 0, sizeof(sce->ics.ltp.used));
  574. memset(sce->ics.prediction_used, 0, sizeof(sce->ics.prediction_used));
  575. memset(&sce->tns, 0, sizeof(TemporalNoiseShaping));
  576. for (w = 0; w < 128; w++)
  577. if (sce->band_type[w] > RESERVED_BT)
  578. sce->band_type[w] = 0;
  579. }
  580. s->psy.bitres.alloc = -1;
  581. s->psy.bitres.bits = avctx->frame_bits / s->channels;
  582. s->psy.model->analyze(&s->psy, start_ch, coeffs, wi);
  583. if (s->psy.bitres.alloc > 0) {
  584. /* Lambda unused here on purpose, we need to take psy's unscaled allocation */
  585. target_bits += s->psy.bitres.alloc
  586. * (s->lambda / (avctx->global_quality ? avctx->global_quality : 120));
  587. s->psy.bitres.alloc /= chans;
  588. }
  589. s->cur_type = tag;
  590. for (ch = 0; ch < chans; ch++) {
  591. s->cur_channel = start_ch + ch;
  592. if (s->options.pns && s->coder->mark_pns)
  593. s->coder->mark_pns(s, avctx, &cpe->ch[ch]);
  594. s->coder->search_for_quantizers(avctx, s, &cpe->ch[ch], s->lambda);
  595. }
  596. if (chans > 1
  597. && wi[0].window_type[0] == wi[1].window_type[0]
  598. && wi[0].window_shape == wi[1].window_shape) {
  599. cpe->common_window = 1;
  600. for (w = 0; w < wi[0].num_windows; w++) {
  601. if (wi[0].grouping[w] != wi[1].grouping[w]) {
  602. cpe->common_window = 0;
  603. break;
  604. }
  605. }
  606. }
  607. for (ch = 0; ch < chans; ch++) { /* TNS and PNS */
  608. sce = &cpe->ch[ch];
  609. s->cur_channel = start_ch + ch;
  610. if (s->options.pns && s->coder->search_for_pns)
  611. s->coder->search_for_pns(s, avctx, sce);
  612. if (s->options.tns && s->coder->search_for_tns)
  613. s->coder->search_for_tns(s, sce);
  614. if (s->options.tns && s->coder->apply_tns_filt)
  615. s->coder->apply_tns_filt(s, sce);
  616. if (sce->tns.present)
  617. tns_mode = 1;
  618. }
  619. s->cur_channel = start_ch;
  620. if (s->options.intensity_stereo) { /* Intensity Stereo */
  621. if (s->coder->search_for_is)
  622. s->coder->search_for_is(s, avctx, cpe);
  623. if (cpe->is_mode) is_mode = 1;
  624. apply_intensity_stereo(cpe);
  625. }
  626. if (s->options.pred) { /* Prediction */
  627. for (ch = 0; ch < chans; ch++) {
  628. sce = &cpe->ch[ch];
  629. s->cur_channel = start_ch + ch;
  630. if (s->options.pred && s->coder->search_for_pred)
  631. s->coder->search_for_pred(s, sce);
  632. if (cpe->ch[ch].ics.predictor_present) pred_mode = 1;
  633. }
  634. if (s->coder->adjust_common_pred)
  635. s->coder->adjust_common_pred(s, cpe);
  636. for (ch = 0; ch < chans; ch++) {
  637. sce = &cpe->ch[ch];
  638. s->cur_channel = start_ch + ch;
  639. if (s->options.pred && s->coder->apply_main_pred)
  640. s->coder->apply_main_pred(s, sce);
  641. }
  642. s->cur_channel = start_ch;
  643. }
  644. if (s->options.mid_side) { /* Mid/Side stereo */
  645. if (s->options.mid_side == -1 && s->coder->search_for_ms)
  646. s->coder->search_for_ms(s, cpe);
  647. else if (cpe->common_window)
  648. memset(cpe->ms_mask, 1, sizeof(cpe->ms_mask));
  649. apply_mid_side_stereo(cpe);
  650. }
  651. adjust_frame_information(cpe, chans);
  652. if (s->options.ltp) { /* LTP */
  653. for (ch = 0; ch < chans; ch++) {
  654. sce = &cpe->ch[ch];
  655. s->cur_channel = start_ch + ch;
  656. if (s->coder->search_for_ltp)
  657. s->coder->search_for_ltp(s, sce, cpe->common_window);
  658. if (sce->ics.ltp.present) pred_mode = 1;
  659. }
  660. s->cur_channel = start_ch;
  661. if (s->coder->adjust_common_ltp)
  662. s->coder->adjust_common_ltp(s, cpe);
  663. }
  664. if (chans == 2) {
  665. put_bits(&s->pb, 1, cpe->common_window);
  666. if (cpe->common_window) {
  667. put_ics_info(s, &cpe->ch[0].ics);
  668. if (s->coder->encode_main_pred)
  669. s->coder->encode_main_pred(s, &cpe->ch[0]);
  670. if (s->coder->encode_ltp_info)
  671. s->coder->encode_ltp_info(s, &cpe->ch[0], 1);
  672. encode_ms_info(&s->pb, cpe);
  673. if (cpe->ms_mode) ms_mode = 1;
  674. }
  675. }
  676. for (ch = 0; ch < chans; ch++) {
  677. s->cur_channel = start_ch + ch;
  678. encode_individual_channel(avctx, s, &cpe->ch[ch], cpe->common_window);
  679. }
  680. start_ch += chans;
  681. }
  682. if (avctx->flags & CODEC_FLAG_QSCALE) {
  683. /* When using a constant Q-scale, don't mess with lambda */
  684. break;
  685. }
  686. /* rate control stuff
  687. * allow between the nominal bitrate, and what psy's bit reservoir says to target
  688. * but drift towards the nominal bitrate always
  689. */
  690. frame_bits = put_bits_count(&s->pb);
  691. rate_bits = avctx->bit_rate * 1024 / avctx->sample_rate;
  692. rate_bits = FFMIN(rate_bits, 6144 * s->channels - 3);
  693. too_many_bits = FFMAX(target_bits, rate_bits);
  694. too_many_bits = FFMIN(too_many_bits, 6144 * s->channels - 3);
  695. too_few_bits = FFMIN(FFMAX(rate_bits - rate_bits/4, target_bits), too_many_bits);
  696. /* When using ABR, be strict (but only for increasing) */
  697. too_few_bits = too_few_bits - too_few_bits/8;
  698. too_many_bits = too_many_bits + too_many_bits/2;
  699. if ( its == 0 /* for steady-state Q-scale tracking */
  700. || (its < 5 && (frame_bits < too_few_bits || frame_bits > too_many_bits))
  701. || frame_bits >= 6144 * s->channels - 3 )
  702. {
  703. float ratio = ((float)rate_bits) / frame_bits;
  704. if (frame_bits >= too_few_bits && frame_bits <= too_many_bits) {
  705. /*
  706. * This path is for steady-state Q-scale tracking
  707. * When frame bits fall within the stable range, we still need to adjust
  708. * lambda to maintain it like so in a stable fashion (large jumps in lambda
  709. * create artifacts and should be avoided), but slowly
  710. */
  711. ratio = sqrtf(sqrtf(ratio));
  712. ratio = av_clipf(ratio, 0.9f, 1.1f);
  713. } else {
  714. /* Not so fast though */
  715. ratio = sqrtf(ratio);
  716. }
  717. s->lambda = FFMIN(s->lambda * ratio, 65536.f);
  718. /* Keep iterating if we must reduce and lambda is in the sky */
  719. if ((s->lambda < 300.f || ratio > 0.9f) && (s->lambda > 10.f || ratio < 1.1f)) {
  720. break;
  721. } else {
  722. if (is_mode || ms_mode || tns_mode || pred_mode) {
  723. for (i = 0; i < s->chan_map[0]; i++) {
  724. // Must restore coeffs
  725. chans = tag == TYPE_CPE ? 2 : 1;
  726. cpe = &s->cpe[i];
  727. for (ch = 0; ch < chans; ch++)
  728. memcpy(cpe->ch[ch].coeffs, cpe->ch[ch].pcoeffs, sizeof(cpe->ch[ch].coeffs));
  729. }
  730. }
  731. its++;
  732. }
  733. } else {
  734. break;
  735. }
  736. } while (1);
  737. if (s->options.ltp && s->coder->ltp_insert_new_frame)
  738. s->coder->ltp_insert_new_frame(s);
  739. put_bits(&s->pb, 3, TYPE_END);
  740. flush_put_bits(&s->pb);
  741. avctx->frame_bits = put_bits_count(&s->pb);
  742. s->lambda_sum += s->lambda;
  743. s->lambda_count++;
  744. if (!frame)
  745. s->last_frame++;
  746. ff_af_queue_remove(&s->afq, avctx->frame_size, &avpkt->pts,
  747. &avpkt->duration);
  748. avpkt->size = put_bits_count(&s->pb) >> 3;
  749. *got_packet_ptr = 1;
  750. return 0;
  751. }
  752. static av_cold int aac_encode_end(AVCodecContext *avctx)
  753. {
  754. AACEncContext *s = avctx->priv_data;
  755. av_log(avctx, AV_LOG_INFO, "Qavg: %.3f\n", s->lambda_sum / s->lambda_count);
  756. ff_mdct_end(&s->mdct1024);
  757. ff_mdct_end(&s->mdct128);
  758. ff_psy_end(&s->psy);
  759. ff_lpc_end(&s->lpc);
  760. if (s->psypp)
  761. ff_psy_preprocess_end(s->psypp);
  762. av_freep(&s->buffer.samples);
  763. av_freep(&s->cpe);
  764. av_freep(&s->fdsp);
  765. ff_af_queue_close(&s->afq);
  766. return 0;
  767. }
  768. static av_cold int dsp_init(AVCodecContext *avctx, AACEncContext *s)
  769. {
  770. int ret = 0;
  771. s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
  772. if (!s->fdsp)
  773. return AVERROR(ENOMEM);
  774. // window init
  775. ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
  776. ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
  777. ff_init_ff_sine_windows(10);
  778. ff_init_ff_sine_windows(7);
  779. if ((ret = ff_mdct_init(&s->mdct1024, 11, 0, 32768.0)) < 0)
  780. return ret;
  781. if ((ret = ff_mdct_init(&s->mdct128, 8, 0, 32768.0)) < 0)
  782. return ret;
  783. return 0;
  784. }
  785. static av_cold int alloc_buffers(AVCodecContext *avctx, AACEncContext *s)
  786. {
  787. int ch;
  788. FF_ALLOCZ_ARRAY_OR_GOTO(avctx, s->buffer.samples, s->channels, 3 * 1024 * sizeof(s->buffer.samples[0]), alloc_fail);
  789. FF_ALLOCZ_ARRAY_OR_GOTO(avctx, s->cpe, s->chan_map[0], sizeof(ChannelElement), alloc_fail);
  790. FF_ALLOCZ_OR_GOTO(avctx, avctx->extradata, 5 + AV_INPUT_BUFFER_PADDING_SIZE, alloc_fail);
  791. for(ch = 0; ch < s->channels; ch++)
  792. s->planar_samples[ch] = s->buffer.samples + 3 * 1024 * ch;
  793. return 0;
  794. alloc_fail:
  795. return AVERROR(ENOMEM);
  796. }
  797. static av_cold int aac_encode_init(AVCodecContext *avctx)
  798. {
  799. AACEncContext *s = avctx->priv_data;
  800. int i, ret = 0;
  801. const uint8_t *sizes[2];
  802. uint8_t grouping[AAC_MAX_CHANNELS];
  803. int lengths[2];
  804. s->channels = avctx->channels;
  805. s->chan_map = aac_chan_configs[s->channels-1];
  806. s->random_state = 0x1f2e3d4c;
  807. s->lambda = avctx->global_quality > 0 ? avctx->global_quality : 120;
  808. avctx->extradata_size = 5;
  809. avctx->frame_size = 1024;
  810. avctx->initial_padding = 1024;
  811. avctx->bit_rate = (int)FFMIN(
  812. 6144 * s->channels / 1024.0 * avctx->sample_rate,
  813. avctx->bit_rate);
  814. avctx->profile = avctx->profile == FF_PROFILE_UNKNOWN ? FF_PROFILE_AAC_LOW :
  815. avctx->profile;
  816. for (i = 0; i < 16; i++)
  817. if (avctx->sample_rate == avpriv_mpeg4audio_sample_rates[i])
  818. break;
  819. s->samplerate_index = i;
  820. ERROR_IF(s->samplerate_index == 16 ||
  821. s->samplerate_index >= ff_aac_swb_size_1024_len ||
  822. s->samplerate_index >= ff_aac_swb_size_128_len,
  823. "Unsupported sample rate %d\n", avctx->sample_rate);
  824. ERROR_IF(s->channels > AAC_MAX_CHANNELS || s->channels == 7,
  825. "Unsupported number of channels: %d\n", s->channels);
  826. WARN_IF(1024.0 * avctx->bit_rate / avctx->sample_rate > 6144 * s->channels,
  827. "Too many bits per frame requested, clamping to max\n");
  828. for (i = 0; i < FF_ARRAY_ELEMS(aacenc_profiles); i++)
  829. if (avctx->profile == aacenc_profiles[i])
  830. break;
  831. ERROR_IF(i == FF_ARRAY_ELEMS(aacenc_profiles),
  832. "Unsupported encoding profile: %d\n", avctx->profile);
  833. if (avctx->profile == FF_PROFILE_MPEG2_AAC_LOW) {
  834. avctx->profile = FF_PROFILE_AAC_LOW;
  835. ERROR_IF(s->options.pred,
  836. "Main prediction unavailable in the \"mpeg2_aac_low\" profile\n");
  837. ERROR_IF(s->options.ltp,
  838. "LTP prediction unavailable in the \"mpeg2_aac_low\" profile\n");
  839. WARN_IF(s->options.pns,
  840. "PNS unavailable in the \"mpeg2_aac_low\" profile, turning off\n");
  841. s->options.pns = 0;
  842. } else if (avctx->profile == FF_PROFILE_AAC_LTP) {
  843. s->options.ltp = 1;
  844. ERROR_IF(s->options.pred,
  845. "Main prediction unavailable in the \"aac_ltp\" profile\n");
  846. } else if (avctx->profile == FF_PROFILE_AAC_MAIN) {
  847. s->options.pred = 1;
  848. ERROR_IF(s->options.ltp,
  849. "LTP prediction unavailable in the \"aac_main\" profile\n");
  850. } else if (s->options.ltp) {
  851. avctx->profile = FF_PROFILE_AAC_LTP;
  852. WARN_IF(1,
  853. "Chainging profile to \"aac_ltp\"\n");
  854. ERROR_IF(s->options.pred,
  855. "Main prediction unavailable in the \"aac_ltp\" profile\n");
  856. } else if (s->options.pred) {
  857. avctx->profile = FF_PROFILE_AAC_MAIN;
  858. WARN_IF(1,
  859. "Chainging profile to \"aac_main\"\n");
  860. ERROR_IF(s->options.pred,
  861. "LTP prediction unavailable in the \"aac_main\" profile\n");
  862. }
  863. s->profile = avctx->profile;
  864. s->coder = &ff_aac_coders[s->options.coder];
  865. if (s->options.coder != AAC_CODER_TWOLOOP) {
  866. s->options.intensity_stereo = 0;
  867. s->options.pns = 0;
  868. }
  869. if ((ret = dsp_init(avctx, s)) < 0)
  870. goto fail;
  871. if ((ret = alloc_buffers(avctx, s)) < 0)
  872. goto fail;
  873. put_audio_specific_config(avctx);
  874. sizes[0] = ff_aac_swb_size_1024[s->samplerate_index];
  875. sizes[1] = ff_aac_swb_size_128[s->samplerate_index];
  876. lengths[0] = ff_aac_num_swb_1024[s->samplerate_index];
  877. lengths[1] = ff_aac_num_swb_128[s->samplerate_index];
  878. for (i = 0; i < s->chan_map[0]; i++)
  879. grouping[i] = s->chan_map[i + 1] == TYPE_CPE;
  880. if ((ret = ff_psy_init(&s->psy, avctx, 2, sizes, lengths,
  881. s->chan_map[0], grouping)) < 0)
  882. goto fail;
  883. s->psypp = ff_psy_preprocess_init(avctx);
  884. ff_lpc_init(&s->lpc, 2*avctx->frame_size, TNS_MAX_ORDER, FF_LPC_TYPE_LEVINSON);
  885. if (HAVE_MIPSDSPR1)
  886. ff_aac_coder_init_mips(s);
  887. ff_aac_tableinit();
  888. ff_af_queue_init(avctx, &s->afq);
  889. return 0;
  890. fail:
  891. aac_encode_end(avctx);
  892. return ret;
  893. }
  894. #define AACENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
  895. static const AVOption aacenc_options[] = {
  896. {"aac_coder", "Coding algorithm", offsetof(AACEncContext, options.coder), AV_OPT_TYPE_INT, {.i64 = AAC_CODER_TWOLOOP}, -1, AAC_CODER_NB-1, AACENC_FLAGS, "coder"},
  897. {"faac", "FAAC-inspired method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_FAAC}, INT_MIN, INT_MAX, AACENC_FLAGS, "coder"},
  898. {"anmr", "ANMR method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_ANMR}, INT_MIN, INT_MAX, AACENC_FLAGS, "coder"},
  899. {"twoloop", "Two loop searching method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_TWOLOOP}, INT_MIN, INT_MAX, AACENC_FLAGS, "coder"},
  900. {"fast", "Constant quantizer", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_FAST}, INT_MIN, INT_MAX, AACENC_FLAGS, "coder"},
  901. {"aac_ms", "Force M/S stereo coding", offsetof(AACEncContext, options.mid_side), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, AACENC_FLAGS},
  902. {"aac_is", "Intensity stereo coding", offsetof(AACEncContext, options.intensity_stereo), AV_OPT_TYPE_BOOL, {.i64 = 1}, -1, 1, AACENC_FLAGS},
  903. {"aac_pns", "Perceptual noise substitution", offsetof(AACEncContext, options.pns), AV_OPT_TYPE_BOOL, {.i64 = 1}, -1, 1, AACENC_FLAGS},
  904. {"aac_tns", "Temporal noise shaping", offsetof(AACEncContext, options.tns), AV_OPT_TYPE_BOOL, {.i64 = 0}, -1, 1, AACENC_FLAGS},
  905. {"aac_ltp", "Long term prediction", offsetof(AACEncContext, options.ltp), AV_OPT_TYPE_BOOL, {.i64 = 0}, -1, 1, AACENC_FLAGS},
  906. {"aac_pred", "AAC-Main prediction", offsetof(AACEncContext, options.pred), AV_OPT_TYPE_BOOL, {.i64 = 0}, -1, 1, AACENC_FLAGS},
  907. {NULL}
  908. };
  909. static const AVClass aacenc_class = {
  910. "AAC encoder",
  911. av_default_item_name,
  912. aacenc_options,
  913. LIBAVUTIL_VERSION_INT,
  914. };
  915. AVCodec ff_aac_encoder = {
  916. .name = "aac",
  917. .long_name = NULL_IF_CONFIG_SMALL("AAC (Advanced Audio Coding)"),
  918. .type = AVMEDIA_TYPE_AUDIO,
  919. .id = AV_CODEC_ID_AAC,
  920. .priv_data_size = sizeof(AACEncContext),
  921. .init = aac_encode_init,
  922. .encode2 = aac_encode_frame,
  923. .close = aac_encode_end,
  924. .supported_samplerates = mpeg4audio_sample_rates,
  925. .capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_DELAY |
  926. AV_CODEC_CAP_EXPERIMENTAL,
  927. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP,
  928. AV_SAMPLE_FMT_NONE },
  929. .priv_class = &aacenc_class,
  930. };