You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1152 lines
38KB

  1. /*
  2. * MLP decoder
  3. * Copyright (c) 2007-2008 Ian Caulfield
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/mlpdec.c
  23. * MLP decoder
  24. */
  25. #include <stdint.h>
  26. #include "avcodec.h"
  27. #include "dsputil.h"
  28. #include "libavutil/intreadwrite.h"
  29. #include "get_bits.h"
  30. #include "libavutil/crc.h"
  31. #include "parser.h"
  32. #include "mlp_parser.h"
  33. #include "mlp.h"
  34. /** number of bits used for VLC lookup - longest Huffman code is 9 */
  35. #define VLC_BITS 9
  36. static const char* sample_message =
  37. "Please file a bug report following the instructions at "
  38. "http://ffmpeg.org/bugreports.html and include "
  39. "a sample of this file.";
  40. typedef struct SubStream {
  41. //! Set if a valid restart header has been read. Otherwise the substream cannot be decoded.
  42. uint8_t restart_seen;
  43. //@{
  44. /** restart header data */
  45. //! The type of noise to be used in the rematrix stage.
  46. uint16_t noise_type;
  47. //! The index of the first channel coded in this substream.
  48. uint8_t min_channel;
  49. //! The index of the last channel coded in this substream.
  50. uint8_t max_channel;
  51. //! The number of channels input into the rematrix stage.
  52. uint8_t max_matrix_channel;
  53. //! For each channel output by the matrix, the output channel to map it to
  54. uint8_t ch_assign[MAX_CHANNELS];
  55. //! The left shift applied to random noise in 0x31ea substreams.
  56. uint8_t noise_shift;
  57. //! The current seed value for the pseudorandom noise generator(s).
  58. uint32_t noisegen_seed;
  59. //! Set if the substream contains extra info to check the size of VLC blocks.
  60. uint8_t data_check_present;
  61. //! Bitmask of which parameter sets are conveyed in a decoding parameter block.
  62. uint8_t param_presence_flags;
  63. #define PARAM_BLOCKSIZE (1 << 7)
  64. #define PARAM_MATRIX (1 << 6)
  65. #define PARAM_OUTSHIFT (1 << 5)
  66. #define PARAM_QUANTSTEP (1 << 4)
  67. #define PARAM_FIR (1 << 3)
  68. #define PARAM_IIR (1 << 2)
  69. #define PARAM_HUFFOFFSET (1 << 1)
  70. #define PARAM_PRESENCE (1 << 0)
  71. //@}
  72. //@{
  73. /** matrix data */
  74. //! Number of matrices to be applied.
  75. uint8_t num_primitive_matrices;
  76. //! matrix output channel
  77. uint8_t matrix_out_ch[MAX_MATRICES];
  78. //! Whether the LSBs of the matrix output are encoded in the bitstream.
  79. uint8_t lsb_bypass[MAX_MATRICES];
  80. //! Matrix coefficients, stored as 2.14 fixed point.
  81. int32_t matrix_coeff[MAX_MATRICES][MAX_CHANNELS];
  82. //! Left shift to apply to noise values in 0x31eb substreams.
  83. uint8_t matrix_noise_shift[MAX_MATRICES];
  84. //@}
  85. //! Left shift to apply to Huffman-decoded residuals.
  86. uint8_t quant_step_size[MAX_CHANNELS];
  87. //! number of PCM samples in current audio block
  88. uint16_t blocksize;
  89. //! Number of PCM samples decoded so far in this frame.
  90. uint16_t blockpos;
  91. //! Left shift to apply to decoded PCM values to get final 24-bit output.
  92. int8_t output_shift[MAX_CHANNELS];
  93. //! Running XOR of all output samples.
  94. int32_t lossless_check_data;
  95. } SubStream;
  96. typedef struct MLPDecodeContext {
  97. AVCodecContext *avctx;
  98. //! Current access unit being read has a major sync.
  99. int is_major_sync_unit;
  100. //! Set if a valid major sync block has been read. Otherwise no decoding is possible.
  101. uint8_t params_valid;
  102. //! Number of substreams contained within this stream.
  103. uint8_t num_substreams;
  104. //! Index of the last substream to decode - further substreams are skipped.
  105. uint8_t max_decoded_substream;
  106. //! number of PCM samples contained in each frame
  107. int access_unit_size;
  108. //! next power of two above the number of samples in each frame
  109. int access_unit_size_pow2;
  110. SubStream substream[MAX_SUBSTREAMS];
  111. ChannelParams channel_params[MAX_CHANNELS];
  112. int matrix_changed;
  113. int filter_changed[MAX_CHANNELS][NUM_FILTERS];
  114. int8_t noise_buffer[MAX_BLOCKSIZE_POW2];
  115. int8_t bypassed_lsbs[MAX_BLOCKSIZE][MAX_CHANNELS];
  116. int32_t sample_buffer[MAX_BLOCKSIZE][MAX_CHANNELS];
  117. DSPContext dsp;
  118. } MLPDecodeContext;
  119. static VLC huff_vlc[3];
  120. /** Initialize static data, constant between all invocations of the codec. */
  121. static av_cold void init_static(void)
  122. {
  123. INIT_VLC_STATIC(&huff_vlc[0], VLC_BITS, 18,
  124. &ff_mlp_huffman_tables[0][0][1], 2, 1,
  125. &ff_mlp_huffman_tables[0][0][0], 2, 1, 512);
  126. INIT_VLC_STATIC(&huff_vlc[1], VLC_BITS, 16,
  127. &ff_mlp_huffman_tables[1][0][1], 2, 1,
  128. &ff_mlp_huffman_tables[1][0][0], 2, 1, 512);
  129. INIT_VLC_STATIC(&huff_vlc[2], VLC_BITS, 15,
  130. &ff_mlp_huffman_tables[2][0][1], 2, 1,
  131. &ff_mlp_huffman_tables[2][0][0], 2, 1, 512);
  132. ff_mlp_init_crc();
  133. }
  134. static inline int32_t calculate_sign_huff(MLPDecodeContext *m,
  135. unsigned int substr, unsigned int ch)
  136. {
  137. ChannelParams *cp = &m->channel_params[ch];
  138. SubStream *s = &m->substream[substr];
  139. int lsb_bits = cp->huff_lsbs - s->quant_step_size[ch];
  140. int sign_shift = lsb_bits + (cp->codebook ? 2 - cp->codebook : -1);
  141. int32_t sign_huff_offset = cp->huff_offset;
  142. if (cp->codebook > 0)
  143. sign_huff_offset -= 7 << lsb_bits;
  144. if (sign_shift >= 0)
  145. sign_huff_offset -= 1 << sign_shift;
  146. return sign_huff_offset;
  147. }
  148. /** Read a sample, consisting of either, both or neither of entropy-coded MSBs
  149. * and plain LSBs. */
  150. static inline int read_huff_channels(MLPDecodeContext *m, GetBitContext *gbp,
  151. unsigned int substr, unsigned int pos)
  152. {
  153. SubStream *s = &m->substream[substr];
  154. unsigned int mat, channel;
  155. for (mat = 0; mat < s->num_primitive_matrices; mat++)
  156. if (s->lsb_bypass[mat])
  157. m->bypassed_lsbs[pos + s->blockpos][mat] = get_bits1(gbp);
  158. for (channel = s->min_channel; channel <= s->max_channel; channel++) {
  159. ChannelParams *cp = &m->channel_params[channel];
  160. int codebook = cp->codebook;
  161. int quant_step_size = s->quant_step_size[channel];
  162. int lsb_bits = cp->huff_lsbs - quant_step_size;
  163. int result = 0;
  164. if (codebook > 0)
  165. result = get_vlc2(gbp, huff_vlc[codebook-1].table,
  166. VLC_BITS, (9 + VLC_BITS - 1) / VLC_BITS);
  167. if (result < 0)
  168. return -1;
  169. if (lsb_bits > 0)
  170. result = (result << lsb_bits) + get_bits(gbp, lsb_bits);
  171. result += cp->sign_huff_offset;
  172. result <<= quant_step_size;
  173. m->sample_buffer[pos + s->blockpos][channel] = result;
  174. }
  175. return 0;
  176. }
  177. static av_cold int mlp_decode_init(AVCodecContext *avctx)
  178. {
  179. MLPDecodeContext *m = avctx->priv_data;
  180. int substr;
  181. init_static();
  182. m->avctx = avctx;
  183. for (substr = 0; substr < MAX_SUBSTREAMS; substr++)
  184. m->substream[substr].lossless_check_data = 0xffffffff;
  185. dsputil_init(&m->dsp, avctx);
  186. return 0;
  187. }
  188. /** Read a major sync info header - contains high level information about
  189. * the stream - sample rate, channel arrangement etc. Most of this
  190. * information is not actually necessary for decoding, only for playback.
  191. */
  192. static int read_major_sync(MLPDecodeContext *m, GetBitContext *gb)
  193. {
  194. MLPHeaderInfo mh;
  195. int substr;
  196. if (ff_mlp_read_major_sync(m->avctx, &mh, gb) != 0)
  197. return -1;
  198. if (mh.group1_bits == 0) {
  199. av_log(m->avctx, AV_LOG_ERROR, "invalid/unknown bits per sample\n");
  200. return -1;
  201. }
  202. if (mh.group2_bits > mh.group1_bits) {
  203. av_log(m->avctx, AV_LOG_ERROR,
  204. "Channel group 2 cannot have more bits per sample than group 1.\n");
  205. return -1;
  206. }
  207. if (mh.group2_samplerate && mh.group2_samplerate != mh.group1_samplerate) {
  208. av_log(m->avctx, AV_LOG_ERROR,
  209. "Channel groups with differing sample rates are not currently supported.\n");
  210. return -1;
  211. }
  212. if (mh.group1_samplerate == 0) {
  213. av_log(m->avctx, AV_LOG_ERROR, "invalid/unknown sampling rate\n");
  214. return -1;
  215. }
  216. if (mh.group1_samplerate > MAX_SAMPLERATE) {
  217. av_log(m->avctx, AV_LOG_ERROR,
  218. "Sampling rate %d is greater than the supported maximum (%d).\n",
  219. mh.group1_samplerate, MAX_SAMPLERATE);
  220. return -1;
  221. }
  222. if (mh.access_unit_size > MAX_BLOCKSIZE) {
  223. av_log(m->avctx, AV_LOG_ERROR,
  224. "Block size %d is greater than the supported maximum (%d).\n",
  225. mh.access_unit_size, MAX_BLOCKSIZE);
  226. return -1;
  227. }
  228. if (mh.access_unit_size_pow2 > MAX_BLOCKSIZE_POW2) {
  229. av_log(m->avctx, AV_LOG_ERROR,
  230. "Block size pow2 %d is greater than the supported maximum (%d).\n",
  231. mh.access_unit_size_pow2, MAX_BLOCKSIZE_POW2);
  232. return -1;
  233. }
  234. if (mh.num_substreams == 0)
  235. return -1;
  236. if (m->avctx->codec_id == CODEC_ID_MLP && mh.num_substreams > 2) {
  237. av_log(m->avctx, AV_LOG_ERROR, "MLP only supports up to 2 substreams.\n");
  238. return -1;
  239. }
  240. if (mh.num_substreams > MAX_SUBSTREAMS) {
  241. av_log(m->avctx, AV_LOG_ERROR,
  242. "Number of substreams %d is larger than the maximum supported "
  243. "by the decoder. %s\n", mh.num_substreams, sample_message);
  244. return -1;
  245. }
  246. m->access_unit_size = mh.access_unit_size;
  247. m->access_unit_size_pow2 = mh.access_unit_size_pow2;
  248. m->num_substreams = mh.num_substreams;
  249. m->max_decoded_substream = m->num_substreams - 1;
  250. m->avctx->sample_rate = mh.group1_samplerate;
  251. m->avctx->frame_size = mh.access_unit_size;
  252. m->avctx->bits_per_raw_sample = mh.group1_bits;
  253. if (mh.group1_bits > 16)
  254. m->avctx->sample_fmt = SAMPLE_FMT_S32;
  255. else
  256. m->avctx->sample_fmt = SAMPLE_FMT_S16;
  257. m->params_valid = 1;
  258. for (substr = 0; substr < MAX_SUBSTREAMS; substr++)
  259. m->substream[substr].restart_seen = 0;
  260. return 0;
  261. }
  262. /** Read a restart header from a block in a substream. This contains parameters
  263. * required to decode the audio that do not change very often. Generally
  264. * (always) present only in blocks following a major sync. */
  265. static int read_restart_header(MLPDecodeContext *m, GetBitContext *gbp,
  266. const uint8_t *buf, unsigned int substr)
  267. {
  268. SubStream *s = &m->substream[substr];
  269. unsigned int ch;
  270. int sync_word, tmp;
  271. uint8_t checksum;
  272. uint8_t lossless_check;
  273. int start_count = get_bits_count(gbp);
  274. const int max_matrix_channel = m->avctx->codec_id == CODEC_ID_MLP
  275. ? MAX_MATRIX_CHANNEL_MLP
  276. : MAX_MATRIX_CHANNEL_TRUEHD;
  277. sync_word = get_bits(gbp, 13);
  278. if (sync_word != 0x31ea >> 1) {
  279. av_log(m->avctx, AV_LOG_ERROR,
  280. "restart header sync incorrect (got 0x%04x)\n", sync_word);
  281. return -1;
  282. }
  283. s->noise_type = get_bits1(gbp);
  284. if (m->avctx->codec_id == CODEC_ID_MLP && s->noise_type) {
  285. av_log(m->avctx, AV_LOG_ERROR, "MLP must have 0x31ea sync word.\n");
  286. return -1;
  287. }
  288. skip_bits(gbp, 16); /* Output timestamp */
  289. s->min_channel = get_bits(gbp, 4);
  290. s->max_channel = get_bits(gbp, 4);
  291. s->max_matrix_channel = get_bits(gbp, 4);
  292. if (s->max_matrix_channel > max_matrix_channel) {
  293. av_log(m->avctx, AV_LOG_ERROR,
  294. "Max matrix channel cannot be greater than %d.\n",
  295. max_matrix_channel);
  296. return -1;
  297. }
  298. if (s->max_channel != s->max_matrix_channel) {
  299. av_log(m->avctx, AV_LOG_ERROR,
  300. "Max channel must be equal max matrix channel.\n");
  301. return -1;
  302. }
  303. if (s->min_channel > s->max_channel) {
  304. av_log(m->avctx, AV_LOG_ERROR,
  305. "Substream min channel cannot be greater than max channel.\n");
  306. return -1;
  307. }
  308. if (m->avctx->request_channels > 0
  309. && s->max_channel + 1 >= m->avctx->request_channels
  310. && substr < m->max_decoded_substream) {
  311. av_log(m->avctx, AV_LOG_INFO,
  312. "Extracting %d channel downmix from substream %d. "
  313. "Further substreams will be skipped.\n",
  314. s->max_channel + 1, substr);
  315. m->max_decoded_substream = substr;
  316. }
  317. s->noise_shift = get_bits(gbp, 4);
  318. s->noisegen_seed = get_bits(gbp, 23);
  319. skip_bits(gbp, 19);
  320. s->data_check_present = get_bits1(gbp);
  321. lossless_check = get_bits(gbp, 8);
  322. if (substr == m->max_decoded_substream
  323. && s->lossless_check_data != 0xffffffff) {
  324. tmp = xor_32_to_8(s->lossless_check_data);
  325. if (tmp != lossless_check)
  326. av_log(m->avctx, AV_LOG_WARNING,
  327. "Lossless check failed - expected %02x, calculated %02x.\n",
  328. lossless_check, tmp);
  329. }
  330. skip_bits(gbp, 16);
  331. memset(s->ch_assign, 0, sizeof(s->ch_assign));
  332. for (ch = 0; ch <= s->max_matrix_channel; ch++) {
  333. int ch_assign = get_bits(gbp, 6);
  334. if (ch_assign > s->max_matrix_channel) {
  335. av_log(m->avctx, AV_LOG_ERROR,
  336. "Assignment of matrix channel %d to invalid output channel %d. %s\n",
  337. ch, ch_assign, sample_message);
  338. return -1;
  339. }
  340. s->ch_assign[ch_assign] = ch;
  341. }
  342. checksum = ff_mlp_restart_checksum(buf, get_bits_count(gbp) - start_count);
  343. if (checksum != get_bits(gbp, 8))
  344. av_log(m->avctx, AV_LOG_ERROR, "restart header checksum error\n");
  345. /* Set default decoding parameters. */
  346. s->param_presence_flags = 0xff;
  347. s->num_primitive_matrices = 0;
  348. s->blocksize = 8;
  349. s->lossless_check_data = 0;
  350. memset(s->output_shift , 0, sizeof(s->output_shift ));
  351. memset(s->quant_step_size, 0, sizeof(s->quant_step_size));
  352. for (ch = s->min_channel; ch <= s->max_channel; ch++) {
  353. ChannelParams *cp = &m->channel_params[ch];
  354. cp->filter_params[FIR].order = 0;
  355. cp->filter_params[IIR].order = 0;
  356. cp->filter_params[FIR].shift = 0;
  357. cp->filter_params[IIR].shift = 0;
  358. /* Default audio coding is 24-bit raw PCM. */
  359. cp->huff_offset = 0;
  360. cp->sign_huff_offset = (-1) << 23;
  361. cp->codebook = 0;
  362. cp->huff_lsbs = 24;
  363. }
  364. if (substr == m->max_decoded_substream)
  365. m->avctx->channels = s->max_matrix_channel + 1;
  366. return 0;
  367. }
  368. /** Read parameters for one of the prediction filters. */
  369. static int read_filter_params(MLPDecodeContext *m, GetBitContext *gbp,
  370. unsigned int channel, unsigned int filter)
  371. {
  372. FilterParams *fp = &m->channel_params[channel].filter_params[filter];
  373. const int max_order = filter ? MAX_IIR_ORDER : MAX_FIR_ORDER;
  374. const char fchar = filter ? 'I' : 'F';
  375. int i, order;
  376. // Filter is 0 for FIR, 1 for IIR.
  377. assert(filter < 2);
  378. if (m->filter_changed[channel][filter]++ > 1) {
  379. av_log(m->avctx, AV_LOG_ERROR, "Filters may change only once per access unit.\n");
  380. return -1;
  381. }
  382. order = get_bits(gbp, 4);
  383. if (order > max_order) {
  384. av_log(m->avctx, AV_LOG_ERROR,
  385. "%cIR filter order %d is greater than maximum %d.\n",
  386. fchar, order, max_order);
  387. return -1;
  388. }
  389. fp->order = order;
  390. if (order > 0) {
  391. int coeff_bits, coeff_shift;
  392. fp->shift = get_bits(gbp, 4);
  393. coeff_bits = get_bits(gbp, 5);
  394. coeff_shift = get_bits(gbp, 3);
  395. if (coeff_bits < 1 || coeff_bits > 16) {
  396. av_log(m->avctx, AV_LOG_ERROR,
  397. "%cIR filter coeff_bits must be between 1 and 16.\n",
  398. fchar);
  399. return -1;
  400. }
  401. if (coeff_bits + coeff_shift > 16) {
  402. av_log(m->avctx, AV_LOG_ERROR,
  403. "Sum of coeff_bits and coeff_shift for %cIR filter must be 16 or less.\n",
  404. fchar);
  405. return -1;
  406. }
  407. for (i = 0; i < order; i++)
  408. fp->coeff[i] = get_sbits(gbp, coeff_bits) << coeff_shift;
  409. if (get_bits1(gbp)) {
  410. int state_bits, state_shift;
  411. if (filter == FIR) {
  412. av_log(m->avctx, AV_LOG_ERROR,
  413. "FIR filter has state data specified.\n");
  414. return -1;
  415. }
  416. state_bits = get_bits(gbp, 4);
  417. state_shift = get_bits(gbp, 4);
  418. /* TODO: Check validity of state data. */
  419. for (i = 0; i < order; i++)
  420. fp->state[i] = get_sbits(gbp, state_bits) << state_shift;
  421. }
  422. }
  423. return 0;
  424. }
  425. /** Read parameters for primitive matrices. */
  426. static int read_matrix_params(MLPDecodeContext *m, unsigned int substr, GetBitContext *gbp)
  427. {
  428. SubStream *s = &m->substream[substr];
  429. unsigned int mat, ch;
  430. const int max_primitive_matrices = m->avctx->codec_id == CODEC_ID_MLP
  431. ? MAX_MATRICES_MLP
  432. : MAX_MATRICES_TRUEHD;
  433. if (m->matrix_changed++ > 1) {
  434. av_log(m->avctx, AV_LOG_ERROR, "Matrices may change only once per access unit.\n");
  435. return -1;
  436. }
  437. s->num_primitive_matrices = get_bits(gbp, 4);
  438. if (s->num_primitive_matrices > max_primitive_matrices) {
  439. av_log(m->avctx, AV_LOG_ERROR,
  440. "Number of primitive matrices cannot be greater than %d.\n",
  441. max_primitive_matrices);
  442. return -1;
  443. }
  444. for (mat = 0; mat < s->num_primitive_matrices; mat++) {
  445. int frac_bits, max_chan;
  446. s->matrix_out_ch[mat] = get_bits(gbp, 4);
  447. frac_bits = get_bits(gbp, 4);
  448. s->lsb_bypass [mat] = get_bits1(gbp);
  449. if (s->matrix_out_ch[mat] > s->max_matrix_channel) {
  450. av_log(m->avctx, AV_LOG_ERROR,
  451. "Invalid channel %d specified as output from matrix.\n",
  452. s->matrix_out_ch[mat]);
  453. return -1;
  454. }
  455. if (frac_bits > 14) {
  456. av_log(m->avctx, AV_LOG_ERROR,
  457. "Too many fractional bits specified.\n");
  458. return -1;
  459. }
  460. max_chan = s->max_matrix_channel;
  461. if (!s->noise_type)
  462. max_chan+=2;
  463. for (ch = 0; ch <= max_chan; ch++) {
  464. int coeff_val = 0;
  465. if (get_bits1(gbp))
  466. coeff_val = get_sbits(gbp, frac_bits + 2);
  467. s->matrix_coeff[mat][ch] = coeff_val << (14 - frac_bits);
  468. }
  469. if (s->noise_type)
  470. s->matrix_noise_shift[mat] = get_bits(gbp, 4);
  471. else
  472. s->matrix_noise_shift[mat] = 0;
  473. }
  474. return 0;
  475. }
  476. /** Read channel parameters. */
  477. static int read_channel_params(MLPDecodeContext *m, unsigned int substr,
  478. GetBitContext *gbp, unsigned int ch)
  479. {
  480. ChannelParams *cp = &m->channel_params[ch];
  481. FilterParams *fir = &cp->filter_params[FIR];
  482. FilterParams *iir = &cp->filter_params[IIR];
  483. SubStream *s = &m->substream[substr];
  484. if (s->param_presence_flags & PARAM_FIR)
  485. if (get_bits1(gbp))
  486. if (read_filter_params(m, gbp, ch, FIR) < 0)
  487. return -1;
  488. if (s->param_presence_flags & PARAM_IIR)
  489. if (get_bits1(gbp))
  490. if (read_filter_params(m, gbp, ch, IIR) < 0)
  491. return -1;
  492. if (fir->order + iir->order > 8) {
  493. av_log(m->avctx, AV_LOG_ERROR, "Total filter orders too high.\n");
  494. return -1;
  495. }
  496. if (fir->order && iir->order &&
  497. fir->shift != iir->shift) {
  498. av_log(m->avctx, AV_LOG_ERROR,
  499. "FIR and IIR filters must use the same precision.\n");
  500. return -1;
  501. }
  502. /* The FIR and IIR filters must have the same precision.
  503. * To simplify the filtering code, only the precision of the
  504. * FIR filter is considered. If only the IIR filter is employed,
  505. * the FIR filter precision is set to that of the IIR filter, so
  506. * that the filtering code can use it. */
  507. if (!fir->order && iir->order)
  508. fir->shift = iir->shift;
  509. if (s->param_presence_flags & PARAM_HUFFOFFSET)
  510. if (get_bits1(gbp))
  511. cp->huff_offset = get_sbits(gbp, 15);
  512. cp->codebook = get_bits(gbp, 2);
  513. cp->huff_lsbs = get_bits(gbp, 5);
  514. if (cp->huff_lsbs > 24) {
  515. av_log(m->avctx, AV_LOG_ERROR, "Invalid huff_lsbs.\n");
  516. return -1;
  517. }
  518. cp->sign_huff_offset = calculate_sign_huff(m, substr, ch);
  519. return 0;
  520. }
  521. /** Read decoding parameters that change more often than those in the restart
  522. * header. */
  523. static int read_decoding_params(MLPDecodeContext *m, GetBitContext *gbp,
  524. unsigned int substr)
  525. {
  526. SubStream *s = &m->substream[substr];
  527. unsigned int ch;
  528. if (s->param_presence_flags & PARAM_PRESENCE)
  529. if (get_bits1(gbp))
  530. s->param_presence_flags = get_bits(gbp, 8);
  531. if (s->param_presence_flags & PARAM_BLOCKSIZE)
  532. if (get_bits1(gbp)) {
  533. s->blocksize = get_bits(gbp, 9);
  534. if (s->blocksize < 8 || s->blocksize > m->access_unit_size) {
  535. av_log(m->avctx, AV_LOG_ERROR, "Invalid blocksize.");
  536. s->blocksize = 0;
  537. return -1;
  538. }
  539. }
  540. if (s->param_presence_flags & PARAM_MATRIX)
  541. if (get_bits1(gbp))
  542. if (read_matrix_params(m, substr, gbp) < 0)
  543. return -1;
  544. if (s->param_presence_flags & PARAM_OUTSHIFT)
  545. if (get_bits1(gbp))
  546. for (ch = 0; ch <= s->max_matrix_channel; ch++)
  547. s->output_shift[ch] = get_sbits(gbp, 4);
  548. if (s->param_presence_flags & PARAM_QUANTSTEP)
  549. if (get_bits1(gbp))
  550. for (ch = 0; ch <= s->max_channel; ch++) {
  551. ChannelParams *cp = &m->channel_params[ch];
  552. s->quant_step_size[ch] = get_bits(gbp, 4);
  553. cp->sign_huff_offset = calculate_sign_huff(m, substr, ch);
  554. }
  555. for (ch = s->min_channel; ch <= s->max_channel; ch++)
  556. if (get_bits1(gbp))
  557. if (read_channel_params(m, substr, gbp, ch) < 0)
  558. return -1;
  559. return 0;
  560. }
  561. #define MSB_MASK(bits) (-1u << bits)
  562. /** Generate PCM samples using the prediction filters and residual values
  563. * read from the data stream, and update the filter state. */
  564. static void filter_channel(MLPDecodeContext *m, unsigned int substr,
  565. unsigned int channel)
  566. {
  567. SubStream *s = &m->substream[substr];
  568. int32_t fir_state_buffer[MAX_BLOCKSIZE + MAX_FIR_ORDER];
  569. int32_t iir_state_buffer[MAX_BLOCKSIZE + MAX_IIR_ORDER];
  570. int32_t *firbuf = fir_state_buffer + MAX_BLOCKSIZE;
  571. int32_t *iirbuf = iir_state_buffer + MAX_BLOCKSIZE;
  572. FilterParams *fir = &m->channel_params[channel].filter_params[FIR];
  573. FilterParams *iir = &m->channel_params[channel].filter_params[IIR];
  574. unsigned int filter_shift = fir->shift;
  575. int32_t mask = MSB_MASK(s->quant_step_size[channel]);
  576. memcpy(firbuf, fir->state, MAX_FIR_ORDER * sizeof(int32_t));
  577. memcpy(iirbuf, iir->state, MAX_IIR_ORDER * sizeof(int32_t));
  578. m->dsp.mlp_filter_channel(firbuf, fir->coeff, fir->order,
  579. iirbuf, iir->coeff, iir->order,
  580. filter_shift, mask, s->blocksize,
  581. &m->sample_buffer[s->blockpos][channel]);
  582. memcpy(fir->state, firbuf - s->blocksize, MAX_FIR_ORDER * sizeof(int32_t));
  583. memcpy(iir->state, iirbuf - s->blocksize, MAX_IIR_ORDER * sizeof(int32_t));
  584. }
  585. /** Read a block of PCM residual data (or actual if no filtering active). */
  586. static int read_block_data(MLPDecodeContext *m, GetBitContext *gbp,
  587. unsigned int substr)
  588. {
  589. SubStream *s = &m->substream[substr];
  590. unsigned int i, ch, expected_stream_pos = 0;
  591. if (s->data_check_present) {
  592. expected_stream_pos = get_bits_count(gbp);
  593. expected_stream_pos += get_bits(gbp, 16);
  594. av_log(m->avctx, AV_LOG_WARNING, "This file contains some features "
  595. "we have not tested yet. %s\n", sample_message);
  596. }
  597. if (s->blockpos + s->blocksize > m->access_unit_size) {
  598. av_log(m->avctx, AV_LOG_ERROR, "too many audio samples in frame\n");
  599. return -1;
  600. }
  601. memset(&m->bypassed_lsbs[s->blockpos][0], 0,
  602. s->blocksize * sizeof(m->bypassed_lsbs[0]));
  603. for (i = 0; i < s->blocksize; i++)
  604. if (read_huff_channels(m, gbp, substr, i) < 0)
  605. return -1;
  606. for (ch = s->min_channel; ch <= s->max_channel; ch++)
  607. filter_channel(m, substr, ch);
  608. s->blockpos += s->blocksize;
  609. if (s->data_check_present) {
  610. if (get_bits_count(gbp) != expected_stream_pos)
  611. av_log(m->avctx, AV_LOG_ERROR, "block data length mismatch\n");
  612. skip_bits(gbp, 8);
  613. }
  614. return 0;
  615. }
  616. /** Data table used for TrueHD noise generation function. */
  617. static const int8_t noise_table[256] = {
  618. 30, 51, 22, 54, 3, 7, -4, 38, 14, 55, 46, 81, 22, 58, -3, 2,
  619. 52, 31, -7, 51, 15, 44, 74, 30, 85, -17, 10, 33, 18, 80, 28, 62,
  620. 10, 32, 23, 69, 72, 26, 35, 17, 73, 60, 8, 56, 2, 6, -2, -5,
  621. 51, 4, 11, 50, 66, 76, 21, 44, 33, 47, 1, 26, 64, 48, 57, 40,
  622. 38, 16, -10, -28, 92, 22, -18, 29, -10, 5, -13, 49, 19, 24, 70, 34,
  623. 61, 48, 30, 14, -6, 25, 58, 33, 42, 60, 67, 17, 54, 17, 22, 30,
  624. 67, 44, -9, 50, -11, 43, 40, 32, 59, 82, 13, 49, -14, 55, 60, 36,
  625. 48, 49, 31, 47, 15, 12, 4, 65, 1, 23, 29, 39, 45, -2, 84, 69,
  626. 0, 72, 37, 57, 27, 41, -15, -16, 35, 31, 14, 61, 24, 0, 27, 24,
  627. 16, 41, 55, 34, 53, 9, 56, 12, 25, 29, 53, 5, 20, -20, -8, 20,
  628. 13, 28, -3, 78, 38, 16, 11, 62, 46, 29, 21, 24, 46, 65, 43, -23,
  629. 89, 18, 74, 21, 38, -12, 19, 12, -19, 8, 15, 33, 4, 57, 9, -8,
  630. 36, 35, 26, 28, 7, 83, 63, 79, 75, 11, 3, 87, 37, 47, 34, 40,
  631. 39, 19, 20, 42, 27, 34, 39, 77, 13, 42, 59, 64, 45, -1, 32, 37,
  632. 45, -5, 53, -6, 7, 36, 50, 23, 6, 32, 9, -21, 18, 71, 27, 52,
  633. -25, 31, 35, 42, -1, 68, 63, 52, 26, 43, 66, 37, 41, 25, 40, 70,
  634. };
  635. /** Noise generation functions.
  636. * I'm not sure what these are for - they seem to be some kind of pseudorandom
  637. * sequence generators, used to generate noise data which is used when the
  638. * channels are rematrixed. I'm not sure if they provide a practical benefit
  639. * to compression, or just obfuscate the decoder. Are they for some kind of
  640. * dithering? */
  641. /** Generate two channels of noise, used in the matrix when
  642. * restart sync word == 0x31ea. */
  643. static void generate_2_noise_channels(MLPDecodeContext *m, unsigned int substr)
  644. {
  645. SubStream *s = &m->substream[substr];
  646. unsigned int i;
  647. uint32_t seed = s->noisegen_seed;
  648. unsigned int maxchan = s->max_matrix_channel;
  649. for (i = 0; i < s->blockpos; i++) {
  650. uint16_t seed_shr7 = seed >> 7;
  651. m->sample_buffer[i][maxchan+1] = ((int8_t)(seed >> 15)) << s->noise_shift;
  652. m->sample_buffer[i][maxchan+2] = ((int8_t) seed_shr7) << s->noise_shift;
  653. seed = (seed << 16) ^ seed_shr7 ^ (seed_shr7 << 5);
  654. }
  655. s->noisegen_seed = seed;
  656. }
  657. /** Generate a block of noise, used when restart sync word == 0x31eb. */
  658. static void fill_noise_buffer(MLPDecodeContext *m, unsigned int substr)
  659. {
  660. SubStream *s = &m->substream[substr];
  661. unsigned int i;
  662. uint32_t seed = s->noisegen_seed;
  663. for (i = 0; i < m->access_unit_size_pow2; i++) {
  664. uint8_t seed_shr15 = seed >> 15;
  665. m->noise_buffer[i] = noise_table[seed_shr15];
  666. seed = (seed << 8) ^ seed_shr15 ^ (seed_shr15 << 5);
  667. }
  668. s->noisegen_seed = seed;
  669. }
  670. /** Apply the channel matrices in turn to reconstruct the original audio
  671. * samples. */
  672. static void rematrix_channels(MLPDecodeContext *m, unsigned int substr)
  673. {
  674. SubStream *s = &m->substream[substr];
  675. unsigned int mat, src_ch, i;
  676. unsigned int maxchan;
  677. maxchan = s->max_matrix_channel;
  678. if (!s->noise_type) {
  679. generate_2_noise_channels(m, substr);
  680. maxchan += 2;
  681. } else {
  682. fill_noise_buffer(m, substr);
  683. }
  684. for (mat = 0; mat < s->num_primitive_matrices; mat++) {
  685. int matrix_noise_shift = s->matrix_noise_shift[mat];
  686. unsigned int dest_ch = s->matrix_out_ch[mat];
  687. int32_t mask = MSB_MASK(s->quant_step_size[dest_ch]);
  688. int32_t *coeffs = s->matrix_coeff[mat];
  689. int index = s->num_primitive_matrices - mat;
  690. int index2 = 2 * index + 1;
  691. /* TODO: DSPContext? */
  692. for (i = 0; i < s->blockpos; i++) {
  693. int32_t bypassed_lsb = m->bypassed_lsbs[i][mat];
  694. int32_t *samples = m->sample_buffer[i];
  695. int64_t accum = 0;
  696. for (src_ch = 0; src_ch <= maxchan; src_ch++)
  697. accum += (int64_t) samples[src_ch] * coeffs[src_ch];
  698. if (matrix_noise_shift) {
  699. index &= m->access_unit_size_pow2 - 1;
  700. accum += m->noise_buffer[index] << (matrix_noise_shift + 7);
  701. index += index2;
  702. }
  703. samples[dest_ch] = ((accum >> 14) & mask) + bypassed_lsb;
  704. }
  705. }
  706. }
  707. /** Write the audio data into the output buffer. */
  708. static int output_data_internal(MLPDecodeContext *m, unsigned int substr,
  709. uint8_t *data, unsigned int *data_size, int is32)
  710. {
  711. SubStream *s = &m->substream[substr];
  712. unsigned int i, out_ch = 0;
  713. int32_t *data_32 = (int32_t*) data;
  714. int16_t *data_16 = (int16_t*) data;
  715. if (*data_size < (s->max_channel + 1) * s->blockpos * (is32 ? 4 : 2))
  716. return -1;
  717. for (i = 0; i < s->blockpos; i++) {
  718. for (out_ch = 0; out_ch <= s->max_matrix_channel; out_ch++) {
  719. int mat_ch = s->ch_assign[out_ch];
  720. int32_t sample = m->sample_buffer[i][mat_ch]
  721. << s->output_shift[mat_ch];
  722. s->lossless_check_data ^= (sample & 0xffffff) << mat_ch;
  723. if (is32) *data_32++ = sample << 8;
  724. else *data_16++ = sample >> 8;
  725. }
  726. }
  727. *data_size = i * out_ch * (is32 ? 4 : 2);
  728. return 0;
  729. }
  730. static int output_data(MLPDecodeContext *m, unsigned int substr,
  731. uint8_t *data, unsigned int *data_size)
  732. {
  733. if (m->avctx->sample_fmt == SAMPLE_FMT_S32)
  734. return output_data_internal(m, substr, data, data_size, 1);
  735. else
  736. return output_data_internal(m, substr, data, data_size, 0);
  737. }
  738. /** Read an access unit from the stream.
  739. * Returns < 0 on error, 0 if not enough data is present in the input stream
  740. * otherwise returns the number of bytes consumed. */
  741. static int read_access_unit(AVCodecContext *avctx, void* data, int *data_size,
  742. AVPacket *avpkt)
  743. {
  744. const uint8_t *buf = avpkt->data;
  745. int buf_size = avpkt->size;
  746. MLPDecodeContext *m = avctx->priv_data;
  747. GetBitContext gb;
  748. unsigned int length, substr;
  749. unsigned int substream_start;
  750. unsigned int header_size = 4;
  751. unsigned int substr_header_size = 0;
  752. uint8_t substream_parity_present[MAX_SUBSTREAMS];
  753. uint16_t substream_data_len[MAX_SUBSTREAMS];
  754. uint8_t parity_bits;
  755. if (buf_size < 4)
  756. return 0;
  757. length = (AV_RB16(buf) & 0xfff) * 2;
  758. if (length > buf_size)
  759. return -1;
  760. init_get_bits(&gb, (buf + 4), (length - 4) * 8);
  761. m->is_major_sync_unit = 0;
  762. if (show_bits_long(&gb, 31) == (0xf8726fba >> 1)) {
  763. if (read_major_sync(m, &gb) < 0)
  764. goto error;
  765. m->is_major_sync_unit = 1;
  766. header_size += 28;
  767. }
  768. if (!m->params_valid) {
  769. av_log(m->avctx, AV_LOG_WARNING,
  770. "Stream parameters not seen; skipping frame.\n");
  771. *data_size = 0;
  772. return length;
  773. }
  774. substream_start = 0;
  775. for (substr = 0; substr < m->num_substreams; substr++) {
  776. int extraword_present, checkdata_present, end, nonrestart_substr;
  777. extraword_present = get_bits1(&gb);
  778. nonrestart_substr = get_bits1(&gb);
  779. checkdata_present = get_bits1(&gb);
  780. skip_bits1(&gb);
  781. end = get_bits(&gb, 12) * 2;
  782. substr_header_size += 2;
  783. if (extraword_present) {
  784. if (m->avctx->codec_id == CODEC_ID_MLP) {
  785. av_log(m->avctx, AV_LOG_ERROR, "There must be no extraword for MLP.\n");
  786. goto error;
  787. }
  788. skip_bits(&gb, 16);
  789. substr_header_size += 2;
  790. }
  791. if (!(nonrestart_substr ^ m->is_major_sync_unit)) {
  792. av_log(m->avctx, AV_LOG_ERROR, "Invalid nonrestart_substr.\n");
  793. goto error;
  794. }
  795. if (end + header_size + substr_header_size > length) {
  796. av_log(m->avctx, AV_LOG_ERROR,
  797. "Indicated length of substream %d data goes off end of "
  798. "packet.\n", substr);
  799. end = length - header_size - substr_header_size;
  800. }
  801. if (end < substream_start) {
  802. av_log(avctx, AV_LOG_ERROR,
  803. "Indicated end offset of substream %d data "
  804. "is smaller than calculated start offset.\n",
  805. substr);
  806. goto error;
  807. }
  808. if (substr > m->max_decoded_substream)
  809. continue;
  810. substream_parity_present[substr] = checkdata_present;
  811. substream_data_len[substr] = end - substream_start;
  812. substream_start = end;
  813. }
  814. parity_bits = ff_mlp_calculate_parity(buf, 4);
  815. parity_bits ^= ff_mlp_calculate_parity(buf + header_size, substr_header_size);
  816. if ((((parity_bits >> 4) ^ parity_bits) & 0xF) != 0xF) {
  817. av_log(avctx, AV_LOG_ERROR, "Parity check failed.\n");
  818. goto error;
  819. }
  820. buf += header_size + substr_header_size;
  821. for (substr = 0; substr <= m->max_decoded_substream; substr++) {
  822. SubStream *s = &m->substream[substr];
  823. init_get_bits(&gb, buf, substream_data_len[substr] * 8);
  824. m->matrix_changed = 0;
  825. memset(m->filter_changed, 0, sizeof(m->filter_changed));
  826. s->blockpos = 0;
  827. do {
  828. if (get_bits1(&gb)) {
  829. if (get_bits1(&gb)) {
  830. /* A restart header should be present. */
  831. if (read_restart_header(m, &gb, buf, substr) < 0)
  832. goto next_substr;
  833. s->restart_seen = 1;
  834. }
  835. if (!s->restart_seen)
  836. goto next_substr;
  837. if (read_decoding_params(m, &gb, substr) < 0)
  838. goto next_substr;
  839. }
  840. if (!s->restart_seen)
  841. goto next_substr;
  842. if (read_block_data(m, &gb, substr) < 0)
  843. return -1;
  844. if (get_bits_count(&gb) >= substream_data_len[substr] * 8)
  845. goto substream_length_mismatch;
  846. } while (!get_bits1(&gb));
  847. skip_bits(&gb, (-get_bits_count(&gb)) & 15);
  848. if (substream_data_len[substr] * 8 - get_bits_count(&gb) >= 32) {
  849. int shorten_by;
  850. if (get_bits(&gb, 16) != 0xD234)
  851. return -1;
  852. shorten_by = get_bits(&gb, 16);
  853. if (m->avctx->codec_id == CODEC_ID_TRUEHD && shorten_by & 0x2000)
  854. s->blockpos -= FFMIN(shorten_by & 0x1FFF, s->blockpos);
  855. else if (m->avctx->codec_id == CODEC_ID_MLP && shorten_by != 0xD234)
  856. return -1;
  857. if (substr == m->max_decoded_substream)
  858. av_log(m->avctx, AV_LOG_INFO, "End of stream indicated.\n");
  859. }
  860. if (substream_parity_present[substr]) {
  861. uint8_t parity, checksum;
  862. if (substream_data_len[substr] * 8 - get_bits_count(&gb) != 16)
  863. goto substream_length_mismatch;
  864. parity = ff_mlp_calculate_parity(buf, substream_data_len[substr] - 2);
  865. checksum = ff_mlp_checksum8 (buf, substream_data_len[substr] - 2);
  866. if ((get_bits(&gb, 8) ^ parity) != 0xa9 )
  867. av_log(m->avctx, AV_LOG_ERROR, "Substream %d parity check failed.\n", substr);
  868. if ( get_bits(&gb, 8) != checksum)
  869. av_log(m->avctx, AV_LOG_ERROR, "Substream %d checksum failed.\n" , substr);
  870. }
  871. if (substream_data_len[substr] * 8 != get_bits_count(&gb))
  872. goto substream_length_mismatch;
  873. next_substr:
  874. if (!s->restart_seen)
  875. av_log(m->avctx, AV_LOG_ERROR,
  876. "No restart header present in substream %d.\n", substr);
  877. buf += substream_data_len[substr];
  878. }
  879. rematrix_channels(m, m->max_decoded_substream);
  880. if (output_data(m, m->max_decoded_substream, data, data_size) < 0)
  881. return -1;
  882. return length;
  883. substream_length_mismatch:
  884. av_log(m->avctx, AV_LOG_ERROR, "substream %d length mismatch\n", substr);
  885. return -1;
  886. error:
  887. m->params_valid = 0;
  888. return -1;
  889. }
  890. #if CONFIG_MLP_DECODER
  891. AVCodec mlp_decoder = {
  892. "mlp",
  893. CODEC_TYPE_AUDIO,
  894. CODEC_ID_MLP,
  895. sizeof(MLPDecodeContext),
  896. mlp_decode_init,
  897. NULL,
  898. NULL,
  899. read_access_unit,
  900. .long_name = NULL_IF_CONFIG_SMALL("MLP (Meridian Lossless Packing)"),
  901. };
  902. #endif /* CONFIG_MLP_DECODER */
  903. #if CONFIG_TRUEHD_DECODER
  904. AVCodec truehd_decoder = {
  905. "truehd",
  906. CODEC_TYPE_AUDIO,
  907. CODEC_ID_TRUEHD,
  908. sizeof(MLPDecodeContext),
  909. mlp_decode_init,
  910. NULL,
  911. NULL,
  912. read_access_unit,
  913. .long_name = NULL_IF_CONFIG_SMALL("TrueHD"),
  914. };
  915. #endif /* CONFIG_TRUEHD_DECODER */