You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

291 lines
11KB

  1. /*
  2. * jfdctint.c
  3. *
  4. * Copyright (C) 1991-1996, Thomas G. Lane.
  5. * This file is part of the Independent JPEG Group's software.
  6. * For conditions of distribution and use, see the accompanying README file.
  7. *
  8. * This file contains a slow-but-accurate integer implementation of the
  9. * forward DCT (Discrete Cosine Transform).
  10. *
  11. * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
  12. * on each column. Direct algorithms are also available, but they are
  13. * much more complex and seem not to be any faster when reduced to code.
  14. *
  15. * This implementation is based on an algorithm described in
  16. * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
  17. * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
  18. * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
  19. * The primary algorithm described there uses 11 multiplies and 29 adds.
  20. * We use their alternate method with 12 multiplies and 32 adds.
  21. * The advantage of this method is that no data path contains more than one
  22. * multiplication; this allows a very simple and accurate implementation in
  23. * scaled fixed-point arithmetic, with a minimal number of shifts.
  24. */
  25. #include <stdlib.h>
  26. #include <stdio.h>
  27. #include "common.h"
  28. #include "dsputil.h"
  29. #define SHIFT_TEMPS
  30. #define DCTSIZE 8
  31. #define GLOBAL(x) x
  32. #define RIGHT_SHIFT(x, n) ((x) >> (n))
  33. #if 1 //def USE_ACCURATE_ROUNDING
  34. #define DESCALE(x,n) RIGHT_SHIFT((x) + (1 << ((n) - 1)), n)
  35. #else
  36. #define DESCALE(x,n) RIGHT_SHIFT(x, n)
  37. #endif
  38. /*
  39. * This module is specialized to the case DCTSIZE = 8.
  40. */
  41. #if DCTSIZE != 8
  42. Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
  43. #endif
  44. /*
  45. * The poop on this scaling stuff is as follows:
  46. *
  47. * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
  48. * larger than the true DCT outputs. The final outputs are therefore
  49. * a factor of N larger than desired; since N=8 this can be cured by
  50. * a simple right shift at the end of the algorithm. The advantage of
  51. * this arrangement is that we save two multiplications per 1-D DCT,
  52. * because the y0 and y4 outputs need not be divided by sqrt(N).
  53. * In the IJG code, this factor of 8 is removed by the quantization step
  54. * (in jcdctmgr.c), NOT in this module.
  55. *
  56. * We have to do addition and subtraction of the integer inputs, which
  57. * is no problem, and multiplication by fractional constants, which is
  58. * a problem to do in integer arithmetic. We multiply all the constants
  59. * by CONST_SCALE and convert them to integer constants (thus retaining
  60. * CONST_BITS bits of precision in the constants). After doing a
  61. * multiplication we have to divide the product by CONST_SCALE, with proper
  62. * rounding, to produce the correct output. This division can be done
  63. * cheaply as a right shift of CONST_BITS bits. We postpone shifting
  64. * as long as possible so that partial sums can be added together with
  65. * full fractional precision.
  66. *
  67. * The outputs of the first pass are scaled up by PASS1_BITS bits so that
  68. * they are represented to better-than-integral precision. These outputs
  69. * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
  70. * with the recommended scaling. (For 12-bit sample data, the intermediate
  71. * array is INT32 anyway.)
  72. *
  73. * To avoid overflow of the 32-bit intermediate results in pass 2, we must
  74. * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
  75. * shows that the values given below are the most effective.
  76. */
  77. #if BITS_IN_JSAMPLE == 8
  78. #define CONST_BITS 13
  79. #define PASS1_BITS 2
  80. #else
  81. #define CONST_BITS 13
  82. #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
  83. #endif
  84. /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
  85. * causing a lot of useless floating-point operations at run time.
  86. * To get around this we use the following pre-calculated constants.
  87. * If you change CONST_BITS you may want to add appropriate values.
  88. * (With a reasonable C compiler, you can just rely on the FIX() macro...)
  89. */
  90. #if CONST_BITS == 13
  91. #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
  92. #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
  93. #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
  94. #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
  95. #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
  96. #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
  97. #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
  98. #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
  99. #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
  100. #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
  101. #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
  102. #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
  103. #else
  104. #define FIX_0_298631336 FIX(0.298631336)
  105. #define FIX_0_390180644 FIX(0.390180644)
  106. #define FIX_0_541196100 FIX(0.541196100)
  107. #define FIX_0_765366865 FIX(0.765366865)
  108. #define FIX_0_899976223 FIX(0.899976223)
  109. #define FIX_1_175875602 FIX(1.175875602)
  110. #define FIX_1_501321110 FIX(1.501321110)
  111. #define FIX_1_847759065 FIX(1.847759065)
  112. #define FIX_1_961570560 FIX(1.961570560)
  113. #define FIX_2_053119869 FIX(2.053119869)
  114. #define FIX_2_562915447 FIX(2.562915447)
  115. #define FIX_3_072711026 FIX(3.072711026)
  116. #endif
  117. /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
  118. * For 8-bit samples with the recommended scaling, all the variable
  119. * and constant values involved are no more than 16 bits wide, so a
  120. * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
  121. * For 12-bit samples, a full 32-bit multiplication will be needed.
  122. */
  123. #if BITS_IN_JSAMPLE == 8
  124. #define MULTIPLY(var,const) MULTIPLY16C16(var,const)
  125. #else
  126. #define MULTIPLY(var,const) ((var) * (const))
  127. #endif
  128. /*
  129. * Perform the forward DCT on one block of samples.
  130. */
  131. GLOBAL(void)
  132. ff_jpeg_fdct_islow (DCTELEM * data)
  133. {
  134. INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  135. INT32 tmp10, tmp11, tmp12, tmp13;
  136. INT32 z1, z2, z3, z4, z5;
  137. DCTELEM *dataptr;
  138. int ctr;
  139. SHIFT_TEMPS
  140. /* Pass 1: process rows. */
  141. /* Note results are scaled up by sqrt(8) compared to a true DCT; */
  142. /* furthermore, we scale the results by 2**PASS1_BITS. */
  143. dataptr = data;
  144. for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  145. tmp0 = dataptr[0] + dataptr[7];
  146. tmp7 = dataptr[0] - dataptr[7];
  147. tmp1 = dataptr[1] + dataptr[6];
  148. tmp6 = dataptr[1] - dataptr[6];
  149. tmp2 = dataptr[2] + dataptr[5];
  150. tmp5 = dataptr[2] - dataptr[5];
  151. tmp3 = dataptr[3] + dataptr[4];
  152. tmp4 = dataptr[3] - dataptr[4];
  153. /* Even part per LL&M figure 1 --- note that published figure is faulty;
  154. * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
  155. */
  156. tmp10 = tmp0 + tmp3;
  157. tmp13 = tmp0 - tmp3;
  158. tmp11 = tmp1 + tmp2;
  159. tmp12 = tmp1 - tmp2;
  160. dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
  161. dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
  162. z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
  163. dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
  164. CONST_BITS-PASS1_BITS);
  165. dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
  166. CONST_BITS-PASS1_BITS);
  167. /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
  168. * cK represents cos(K*pi/16).
  169. * i0..i3 in the paper are tmp4..tmp7 here.
  170. */
  171. z1 = tmp4 + tmp7;
  172. z2 = tmp5 + tmp6;
  173. z3 = tmp4 + tmp6;
  174. z4 = tmp5 + tmp7;
  175. z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  176. tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  177. tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  178. tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  179. tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  180. z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  181. z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  182. z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  183. z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  184. z3 += z5;
  185. z4 += z5;
  186. dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
  187. dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
  188. dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
  189. dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
  190. dataptr += DCTSIZE; /* advance pointer to next row */
  191. }
  192. /* Pass 2: process columns.
  193. * We remove the PASS1_BITS scaling, but leave the results scaled up
  194. * by an overall factor of 8.
  195. */
  196. dataptr = data;
  197. for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  198. tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
  199. tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
  200. tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
  201. tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
  202. tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
  203. tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
  204. tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
  205. tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
  206. /* Even part per LL&M figure 1 --- note that published figure is faulty;
  207. * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
  208. */
  209. tmp10 = tmp0 + tmp3;
  210. tmp13 = tmp0 - tmp3;
  211. tmp11 = tmp1 + tmp2;
  212. tmp12 = tmp1 - tmp2;
  213. dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
  214. dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
  215. z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
  216. dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
  217. CONST_BITS+PASS1_BITS);
  218. dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
  219. CONST_BITS+PASS1_BITS);
  220. /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
  221. * cK represents cos(K*pi/16).
  222. * i0..i3 in the paper are tmp4..tmp7 here.
  223. */
  224. z1 = tmp4 + tmp7;
  225. z2 = tmp5 + tmp6;
  226. z3 = tmp4 + tmp6;
  227. z4 = tmp5 + tmp7;
  228. z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  229. tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  230. tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  231. tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  232. tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  233. z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  234. z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  235. z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  236. z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  237. z3 += z5;
  238. z4 += z5;
  239. dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
  240. CONST_BITS+PASS1_BITS);
  241. dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
  242. CONST_BITS+PASS1_BITS);
  243. dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
  244. CONST_BITS+PASS1_BITS);
  245. dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
  246. CONST_BITS+PASS1_BITS);
  247. dataptr++; /* advance pointer to next column */
  248. }
  249. }