You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1063 lines
39KB

  1. /*
  2. * AMR narrowband decoder
  3. * Copyright (c) 2006-2007 Robert Swain
  4. * Copyright (c) 2009 Colin McQuillan
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AMR narrowband decoder
  25. *
  26. * This decoder uses floats for simplicity and so is not bit-exact. One
  27. * difference is that differences in phase can accumulate. The test sequences
  28. * in 3GPP TS 26.074 can still be useful.
  29. *
  30. * - Comparing this file's output to the output of the ref decoder gives a
  31. * PSNR of 30 to 80. Plotting the output samples shows a difference in
  32. * phase in some areas.
  33. *
  34. * - Comparing both decoders against their input, this decoder gives a similar
  35. * PSNR. If the test sequence homing frames are removed (this decoder does
  36. * not detect them), the PSNR is at least as good as the reference on 140
  37. * out of 169 tests.
  38. */
  39. #include <string.h>
  40. #include <math.h>
  41. #include "avcodec.h"
  42. #include "get_bits.h"
  43. #include "libavutil/common.h"
  44. #include "celp_math.h"
  45. #include "celp_filters.h"
  46. #include "acelp_filters.h"
  47. #include "acelp_vectors.h"
  48. #include "acelp_pitch_delay.h"
  49. #include "lsp.h"
  50. #include "amrnbdata.h"
  51. #define AMR_BLOCK_SIZE 160 ///< samples per frame
  52. #define AMR_SAMPLE_BOUND 32768.0 ///< threshold for synthesis overflow
  53. /**
  54. * Scale from constructed speech to [-1,1]
  55. *
  56. * AMR is designed to produce 16-bit PCM samples (3GPP TS 26.090 4.2) but
  57. * upscales by two (section 6.2.2).
  58. *
  59. * Fundamentally, this scale is determined by energy_mean through
  60. * the fixed vector contribution to the excitation vector.
  61. */
  62. #define AMR_SAMPLE_SCALE (2.0 / 32768.0)
  63. /** Prediction factor for 12.2kbit/s mode */
  64. #define PRED_FAC_MODE_12k2 0.65
  65. #define LSF_R_FAC (8000.0 / 32768.0) ///< LSF residual tables to Hertz
  66. #define MIN_LSF_SPACING (50.0488 / 8000.0) ///< Ensures stability of LPC filter
  67. #define PITCH_LAG_MIN_MODE_12k2 18 ///< Lower bound on decoded lag search in 12.2kbit/s mode
  68. /** Initial energy in dB. Also used for bad frames (unimplemented). */
  69. #define MIN_ENERGY -14.0
  70. /** Maximum sharpening factor
  71. *
  72. * The specification says 0.8, which should be 13107, but the reference C code
  73. * uses 13017 instead. (Amusingly the same applies to SHARP_MAX in g729dec.c.)
  74. */
  75. #define SHARP_MAX 0.79449462890625
  76. /** Number of impulse response coefficients used for tilt factor */
  77. #define AMR_TILT_RESPONSE 22
  78. /** Tilt factor = 1st reflection coefficient * gamma_t */
  79. #define AMR_TILT_GAMMA_T 0.8
  80. /** Adaptive gain control factor used in post-filter */
  81. #define AMR_AGC_ALPHA 0.9
  82. typedef struct AMRContext {
  83. AMRNBFrame frame; ///< decoded AMR parameters (lsf coefficients, codebook indexes, etc)
  84. uint8_t bad_frame_indicator; ///< bad frame ? 1 : 0
  85. enum Mode cur_frame_mode;
  86. int16_t prev_lsf_r[LP_FILTER_ORDER]; ///< residual LSF vector from previous subframe
  87. double lsp[4][LP_FILTER_ORDER]; ///< lsp vectors from current frame
  88. double prev_lsp_sub4[LP_FILTER_ORDER]; ///< lsp vector for the 4th subframe of the previous frame
  89. float lsf_q[4][LP_FILTER_ORDER]; ///< Interpolated LSF vector for fixed gain smoothing
  90. float lsf_avg[LP_FILTER_ORDER]; ///< vector of averaged lsf vector
  91. float lpc[4][LP_FILTER_ORDER]; ///< lpc coefficient vectors for 4 subframes
  92. uint8_t pitch_lag_int; ///< integer part of pitch lag from current subframe
  93. float excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1 + AMR_SUBFRAME_SIZE]; ///< current excitation and all necessary excitation history
  94. float *excitation; ///< pointer to the current excitation vector in excitation_buf
  95. float pitch_vector[AMR_SUBFRAME_SIZE]; ///< adaptive code book (pitch) vector
  96. float fixed_vector[AMR_SUBFRAME_SIZE]; ///< algebraic codebook (fixed) vector (must be kept zero between frames)
  97. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  98. float pitch_gain[5]; ///< quantified pitch gains for the current and previous four subframes
  99. float fixed_gain[5]; ///< quantified fixed gains for the current and previous four subframes
  100. float beta; ///< previous pitch_gain, bounded by [0.0,SHARP_MAX]
  101. uint8_t diff_count; ///< the number of subframes for which diff has been above 0.65
  102. uint8_t hang_count; ///< the number of subframes since a hangover period started
  103. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness processing to determine "onset"
  104. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  105. uint8_t ir_filter_onset; ///< flag for impulse response filter strength
  106. float postfilter_mem[10]; ///< previous intermediate values in the formant filter
  107. float tilt_mem; ///< previous input to tilt compensation filter
  108. float postfilter_agc; ///< previous factor used for adaptive gain control
  109. float high_pass_mem[2]; ///< previous intermediate values in the high-pass filter
  110. float samples_in[LP_FILTER_ORDER + AMR_SUBFRAME_SIZE]; ///< floating point samples
  111. } AMRContext;
  112. /** Double version of ff_weighted_vector_sumf() */
  113. static void weighted_vector_sumd(double *out, const double *in_a,
  114. const double *in_b, double weight_coeff_a,
  115. double weight_coeff_b, int length)
  116. {
  117. int i;
  118. for (i = 0; i < length; i++)
  119. out[i] = weight_coeff_a * in_a[i]
  120. + weight_coeff_b * in_b[i];
  121. }
  122. static av_cold int amrnb_decode_init(AVCodecContext *avctx)
  123. {
  124. AMRContext *p = avctx->priv_data;
  125. int i;
  126. avctx->sample_fmt = SAMPLE_FMT_FLT;
  127. // p->excitation always points to the same position in p->excitation_buf
  128. p->excitation = &p->excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1];
  129. for (i = 0; i < LP_FILTER_ORDER; i++) {
  130. p->prev_lsp_sub4[i] = lsp_sub4_init[i] * 1000 / (float)(1 << 15);
  131. p->lsf_avg[i] = p->lsf_q[3][i] = lsp_avg_init[i] / (float)(1 << 15);
  132. }
  133. for (i = 0; i < 4; i++)
  134. p->prediction_error[i] = MIN_ENERGY;
  135. return 0;
  136. }
  137. /**
  138. * Unpack an RFC4867 speech frame into the AMR frame mode and parameters.
  139. *
  140. * The order of speech bits is specified by 3GPP TS 26.101.
  141. *
  142. * @param p the context
  143. * @param buf pointer to the input buffer
  144. * @param buf_size size of the input buffer
  145. *
  146. * @return the frame mode
  147. */
  148. static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf,
  149. int buf_size)
  150. {
  151. GetBitContext gb;
  152. enum Mode mode;
  153. init_get_bits(&gb, buf, buf_size * 8);
  154. // Decode the first octet.
  155. skip_bits(&gb, 1); // padding bit
  156. mode = get_bits(&gb, 4); // frame type
  157. p->bad_frame_indicator = !get_bits1(&gb); // quality bit
  158. skip_bits(&gb, 2); // two padding bits
  159. if (mode < MODE_DTX) {
  160. uint16_t *data = (uint16_t *)&p->frame;
  161. const uint8_t *order = amr_unpacking_bitmaps_per_mode[mode];
  162. int field_size;
  163. memset(&p->frame, 0, sizeof(AMRNBFrame));
  164. buf++;
  165. while ((field_size = *order++)) {
  166. int field = 0;
  167. int field_offset = *order++;
  168. while (field_size--) {
  169. int bit = *order++;
  170. field <<= 1;
  171. field |= buf[bit >> 3] >> (bit & 7) & 1;
  172. }
  173. data[field_offset] = field;
  174. }
  175. }
  176. return mode;
  177. }
  178. /// @defgroup amr_lpc_decoding AMR pitch LPC coefficient decoding functions
  179. /// @{
  180. /**
  181. * Interpolate the LSF vector (used for fixed gain smoothing).
  182. * The interpolation is done over all four subframes even in MODE_12k2.
  183. *
  184. * @param[in,out] lsf_q LSFs in [0,1] for each subframe
  185. * @param[in] lsf_new New LSFs in [0,1] for subframe 4
  186. */
  187. static void interpolate_lsf(float lsf_q[4][LP_FILTER_ORDER], float *lsf_new)
  188. {
  189. int i;
  190. for (i = 0; i < 4; i++)
  191. ff_weighted_vector_sumf(lsf_q[i], lsf_q[3], lsf_new,
  192. 0.25 * (3 - i), 0.25 * (i + 1),
  193. LP_FILTER_ORDER);
  194. }
  195. /**
  196. * Decode a set of 5 split-matrix quantized lsf indexes into an lsp vector.
  197. *
  198. * @param p the context
  199. * @param lsp output LSP vector
  200. * @param lsf_no_r LSF vector without the residual vector added
  201. * @param lsf_quantizer pointers to LSF dictionary tables
  202. * @param quantizer_offset offset in tables
  203. * @param sign for the 3 dictionary table
  204. * @param update store data for computing the next frame's LSFs
  205. */
  206. static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER],
  207. const float lsf_no_r[LP_FILTER_ORDER],
  208. const int16_t *lsf_quantizer[5],
  209. const int quantizer_offset,
  210. const int sign, const int update)
  211. {
  212. int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
  213. float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
  214. int i;
  215. for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
  216. memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
  217. 2 * sizeof(*lsf_r));
  218. if (sign) {
  219. lsf_r[4] *= -1;
  220. lsf_r[5] *= -1;
  221. }
  222. if (update)
  223. memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(float));
  224. for (i = 0; i < LP_FILTER_ORDER; i++)
  225. lsf_q[i] = lsf_r[i] * (LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);
  226. ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
  227. if (update)
  228. interpolate_lsf(p->lsf_q, lsf_q);
  229. ff_acelp_lsf2lspd(lsp, lsf_q, LP_FILTER_ORDER);
  230. }
  231. /**
  232. * Decode a set of 5 split-matrix quantized lsf indexes into 2 lsp vectors.
  233. *
  234. * @param p pointer to the AMRContext
  235. */
  236. static void lsf2lsp_5(AMRContext *p)
  237. {
  238. const uint16_t *lsf_param = p->frame.lsf;
  239. float lsf_no_r[LP_FILTER_ORDER]; // LSFs without the residual vector
  240. const int16_t *lsf_quantizer[5];
  241. int i;
  242. lsf_quantizer[0] = lsf_5_1[lsf_param[0]];
  243. lsf_quantizer[1] = lsf_5_2[lsf_param[1]];
  244. lsf_quantizer[2] = lsf_5_3[lsf_param[2] >> 1];
  245. lsf_quantizer[3] = lsf_5_4[lsf_param[3]];
  246. lsf_quantizer[4] = lsf_5_5[lsf_param[4]];
  247. for (i = 0; i < LP_FILTER_ORDER; i++)
  248. lsf_no_r[i] = p->prev_lsf_r[i] * LSF_R_FAC * PRED_FAC_MODE_12k2 + lsf_5_mean[i];
  249. lsf2lsp_for_mode12k2(p, p->lsp[1], lsf_no_r, lsf_quantizer, 0, lsf_param[2] & 1, 0);
  250. lsf2lsp_for_mode12k2(p, p->lsp[3], lsf_no_r, lsf_quantizer, 2, lsf_param[2] & 1, 1);
  251. // interpolate LSP vectors at subframes 1 and 3
  252. weighted_vector_sumd(p->lsp[0], p->prev_lsp_sub4, p->lsp[1], 0.5, 0.5, LP_FILTER_ORDER);
  253. weighted_vector_sumd(p->lsp[2], p->lsp[1] , p->lsp[3], 0.5, 0.5, LP_FILTER_ORDER);
  254. }
  255. /**
  256. * Decode a set of 3 split-matrix quantized lsf indexes into an lsp vector.
  257. *
  258. * @param p pointer to the AMRContext
  259. */
  260. static void lsf2lsp_3(AMRContext *p)
  261. {
  262. const uint16_t *lsf_param = p->frame.lsf;
  263. int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
  264. float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
  265. const int16_t *lsf_quantizer;
  266. int i, j;
  267. lsf_quantizer = (p->cur_frame_mode == MODE_7k95 ? lsf_3_1_MODE_7k95 : lsf_3_1)[lsf_param[0]];
  268. memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r));
  269. lsf_quantizer = lsf_3_2[lsf_param[1] << (p->cur_frame_mode <= MODE_5k15)];
  270. memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r));
  271. lsf_quantizer = (p->cur_frame_mode <= MODE_5k15 ? lsf_3_3_MODE_5k15 : lsf_3_3)[lsf_param[2]];
  272. memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r));
  273. // calculate mean-removed LSF vector and add mean
  274. for (i = 0; i < LP_FILTER_ORDER; i++)
  275. lsf_q[i] = (lsf_r[i] + p->prev_lsf_r[i] * pred_fac[i]) * (LSF_R_FAC / 8000.0) + lsf_3_mean[i] * (1.0 / 8000.0);
  276. ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
  277. // store data for computing the next frame's LSFs
  278. interpolate_lsf(p->lsf_q, lsf_q);
  279. memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
  280. ff_acelp_lsf2lspd(p->lsp[3], lsf_q, LP_FILTER_ORDER);
  281. // interpolate LSP vectors at subframes 1, 2 and 3
  282. for (i = 1; i <= 3; i++)
  283. for(j = 0; j < LP_FILTER_ORDER; j++)
  284. p->lsp[i-1][j] = p->prev_lsp_sub4[j] +
  285. (p->lsp[3][j] - p->prev_lsp_sub4[j]) * 0.25 * i;
  286. }
  287. /// @}
  288. /// @defgroup amr_pitch_vector_decoding AMR pitch vector decoding functions
  289. /// @{
  290. /**
  291. * Like ff_decode_pitch_lag(), but with 1/6 resolution
  292. */
  293. static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index,
  294. const int prev_lag_int, const int subframe)
  295. {
  296. if (subframe == 0 || subframe == 2) {
  297. if (pitch_index < 463) {
  298. *lag_int = (pitch_index + 107) * 10923 >> 16;
  299. *lag_frac = pitch_index - *lag_int * 6 + 105;
  300. } else {
  301. *lag_int = pitch_index - 368;
  302. *lag_frac = 0;
  303. }
  304. } else {
  305. *lag_int = ((pitch_index + 5) * 10923 >> 16) - 1;
  306. *lag_frac = pitch_index - *lag_int * 6 - 3;
  307. *lag_int += av_clip(prev_lag_int - 5, PITCH_LAG_MIN_MODE_12k2,
  308. PITCH_DELAY_MAX - 9);
  309. }
  310. }
  311. static void decode_pitch_vector(AMRContext *p,
  312. const AMRNBSubframe *amr_subframe,
  313. const int subframe)
  314. {
  315. int pitch_lag_int, pitch_lag_frac;
  316. enum Mode mode = p->cur_frame_mode;
  317. if (p->cur_frame_mode == MODE_12k2) {
  318. decode_pitch_lag_1_6(&pitch_lag_int, &pitch_lag_frac,
  319. amr_subframe->p_lag, p->pitch_lag_int,
  320. subframe);
  321. } else
  322. ff_decode_pitch_lag(&pitch_lag_int, &pitch_lag_frac,
  323. amr_subframe->p_lag,
  324. p->pitch_lag_int, subframe,
  325. mode != MODE_4k75 && mode != MODE_5k15,
  326. mode <= MODE_6k7 ? 4 : (mode == MODE_7k95 ? 5 : 6));
  327. p->pitch_lag_int = pitch_lag_int; // store previous lag in a uint8_t
  328. pitch_lag_frac <<= (p->cur_frame_mode != MODE_12k2);
  329. pitch_lag_int += pitch_lag_frac > 0;
  330. /* Calculate the pitch vector by interpolating the past excitation at the
  331. pitch lag using a b60 hamming windowed sinc function. */
  332. ff_acelp_interpolatef(p->excitation, p->excitation + 1 - pitch_lag_int,
  333. ff_b60_sinc, 6,
  334. pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
  335. 10, AMR_SUBFRAME_SIZE);
  336. memcpy(p->pitch_vector, p->excitation, AMR_SUBFRAME_SIZE * sizeof(float));
  337. }
  338. /// @}
  339. /// @defgroup amr_algebraic_code_book AMR algebraic code book (fixed) vector decoding functions
  340. /// @{
  341. /**
  342. * Decode a 10-bit algebraic codebook index from a 10.2 kbit/s frame.
  343. */
  344. static void decode_10bit_pulse(int code, int pulse_position[8],
  345. int i1, int i2, int i3)
  346. {
  347. // coded using 7+3 bits with the 3 LSBs being, individually, the LSB of 1 of
  348. // the 3 pulses and the upper 7 bits being coded in base 5
  349. const uint8_t *positions = base_five_table[code >> 3];
  350. pulse_position[i1] = (positions[2] << 1) + ( code & 1);
  351. pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
  352. pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
  353. }
  354. /**
  355. * Decode the algebraic codebook index to pulse positions and signs and
  356. * construct the algebraic codebook vector for MODE_10k2.
  357. *
  358. * @param fixed_index positions of the eight pulses
  359. * @param fixed_sparse pointer to the algebraic codebook vector
  360. */
  361. static void decode_8_pulses_31bits(const int16_t *fixed_index,
  362. AMRFixed *fixed_sparse)
  363. {
  364. int pulse_position[8];
  365. int i, temp;
  366. decode_10bit_pulse(fixed_index[4], pulse_position, 0, 4, 1);
  367. decode_10bit_pulse(fixed_index[5], pulse_position, 2, 6, 5);
  368. // coded using 5+2 bits with the 2 LSBs being, individually, the LSB of 1 of
  369. // the 2 pulses and the upper 5 bits being coded in base 5
  370. temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
  371. pulse_position[3] = temp % 5;
  372. pulse_position[7] = temp / 5;
  373. if (pulse_position[7] & 1)
  374. pulse_position[3] = 4 - pulse_position[3];
  375. pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6] & 1);
  376. pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);
  377. fixed_sparse->n = 8;
  378. for (i = 0; i < 4; i++) {
  379. const int pos1 = (pulse_position[i] << 2) + i;
  380. const int pos2 = (pulse_position[i + 4] << 2) + i;
  381. const float sign = fixed_index[i] ? -1.0 : 1.0;
  382. fixed_sparse->x[i ] = pos1;
  383. fixed_sparse->x[i + 4] = pos2;
  384. fixed_sparse->y[i ] = sign;
  385. fixed_sparse->y[i + 4] = pos2 < pos1 ? -sign : sign;
  386. }
  387. }
  388. /**
  389. * Decode the algebraic codebook index to pulse positions and signs,
  390. * then construct the algebraic codebook vector.
  391. *
  392. * nb of pulses | bits encoding pulses
  393. * For MODE_4k75 or MODE_5k15, 2 | 1-3, 4-6, 7
  394. * MODE_5k9, 2 | 1, 2-4, 5-6, 7-9
  395. * MODE_6k7, 3 | 1-3, 4, 5-7, 8, 9-11
  396. * MODE_7k4 or MODE_7k95, 4 | 1-3, 4-6, 7-9, 10, 11-13
  397. *
  398. * @param fixed_sparse pointer to the algebraic codebook vector
  399. * @param pulses algebraic codebook indexes
  400. * @param mode mode of the current frame
  401. * @param subframe current subframe number
  402. */
  403. static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses,
  404. const enum Mode mode, const int subframe)
  405. {
  406. assert(MODE_4k75 <= mode && mode <= MODE_12k2);
  407. if (mode == MODE_12k2) {
  408. ff_decode_10_pulses_35bits(pulses, fixed_sparse, gray_decode, 5, 3);
  409. } else if (mode == MODE_10k2) {
  410. decode_8_pulses_31bits(pulses, fixed_sparse);
  411. } else {
  412. int *pulse_position = fixed_sparse->x;
  413. int i, pulse_subset;
  414. const int fixed_index = pulses[0];
  415. if (mode <= MODE_5k15) {
  416. pulse_subset = ((fixed_index >> 3) & 8) + (subframe << 1);
  417. pulse_position[0] = ( fixed_index & 7) * 5 + track_position[pulse_subset];
  418. pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + track_position[pulse_subset + 1];
  419. fixed_sparse->n = 2;
  420. } else if (mode == MODE_5k9) {
  421. pulse_subset = ((fixed_index & 1) << 1) + 1;
  422. pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
  423. pulse_subset = (fixed_index >> 4) & 3;
  424. pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
  425. fixed_sparse->n = pulse_position[0] == pulse_position[1] ? 1 : 2;
  426. } else if (mode == MODE_6k7) {
  427. pulse_position[0] = (fixed_index & 7) * 5;
  428. pulse_subset = (fixed_index >> 2) & 2;
  429. pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
  430. pulse_subset = (fixed_index >> 6) & 2;
  431. pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
  432. fixed_sparse->n = 3;
  433. } else { // mode <= MODE_7k95
  434. pulse_position[0] = gray_decode[ fixed_index & 7];
  435. pulse_position[1] = gray_decode[(fixed_index >> 3) & 7] + 1;
  436. pulse_position[2] = gray_decode[(fixed_index >> 6) & 7] + 2;
  437. pulse_subset = (fixed_index >> 9) & 1;
  438. pulse_position[3] = gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
  439. fixed_sparse->n = 4;
  440. }
  441. for (i = 0; i < fixed_sparse->n; i++)
  442. fixed_sparse->y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
  443. }
  444. }
  445. /**
  446. * Apply pitch lag to obtain the sharpened fixed vector (section 6.1.2)
  447. *
  448. * @param p the context
  449. * @param subframe unpacked amr subframe
  450. * @param mode mode of the current frame
  451. * @param fixed_sparse sparse respresentation of the fixed vector
  452. */
  453. static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode,
  454. AMRFixed *fixed_sparse)
  455. {
  456. // The spec suggests the current pitch gain is always used, but in other
  457. // modes the pitch and codebook gains are joinly quantized (sec 5.8.2)
  458. // so the codebook gain cannot depend on the quantized pitch gain.
  459. if (mode == MODE_12k2)
  460. p->beta = FFMIN(p->pitch_gain[4], 1.0);
  461. fixed_sparse->pitch_lag = p->pitch_lag_int;
  462. fixed_sparse->pitch_fac = p->beta;
  463. // Save pitch sharpening factor for the next subframe
  464. // MODE_4k75 only updates on the 2nd and 4th subframes - this follows from
  465. // the fact that the gains for two subframes are jointly quantized.
  466. if (mode != MODE_4k75 || subframe & 1)
  467. p->beta = av_clipf(p->pitch_gain[4], 0.0, SHARP_MAX);
  468. }
  469. /// @}
  470. /// @defgroup amr_gain_decoding AMR gain decoding functions
  471. /// @{
  472. /**
  473. * fixed gain smoothing
  474. * Note that where the spec specifies the "spectrum in the q domain"
  475. * in section 6.1.4, in fact frequencies should be used.
  476. *
  477. * @param p the context
  478. * @param lsf LSFs for the current subframe, in the range [0,1]
  479. * @param lsf_avg averaged LSFs
  480. * @param mode mode of the current frame
  481. *
  482. * @return fixed gain smoothed
  483. */
  484. static float fixed_gain_smooth(AMRContext *p , const float *lsf,
  485. const float *lsf_avg, const enum Mode mode)
  486. {
  487. float diff = 0.0;
  488. int i;
  489. for (i = 0; i < LP_FILTER_ORDER; i++)
  490. diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];
  491. // If diff is large for ten subframes, disable smoothing for a 40-subframe
  492. // hangover period.
  493. p->diff_count++;
  494. if (diff <= 0.65)
  495. p->diff_count = 0;
  496. if (p->diff_count > 10) {
  497. p->hang_count = 0;
  498. p->diff_count--; // don't let diff_count overflow
  499. }
  500. if (p->hang_count < 40) {
  501. p->hang_count++;
  502. } else if (mode < MODE_7k4 || mode == MODE_10k2) {
  503. const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
  504. const float fixed_gain_mean = (p->fixed_gain[0] + p->fixed_gain[1] +
  505. p->fixed_gain[2] + p->fixed_gain[3] +
  506. p->fixed_gain[4]) * 0.2;
  507. return smoothing_factor * p->fixed_gain[4] +
  508. (1.0 - smoothing_factor) * fixed_gain_mean;
  509. }
  510. return p->fixed_gain[4];
  511. }
  512. /**
  513. * Decode pitch gain and fixed gain factor (part of section 6.1.3).
  514. *
  515. * @param p the context
  516. * @param amr_subframe unpacked amr subframe
  517. * @param mode mode of the current frame
  518. * @param subframe current subframe number
  519. * @param fixed_gain_factor decoded gain correction factor
  520. */
  521. static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe,
  522. const enum Mode mode, const int subframe,
  523. float *fixed_gain_factor)
  524. {
  525. if (mode == MODE_12k2 || mode == MODE_7k95) {
  526. p->pitch_gain[4] = qua_gain_pit [amr_subframe->p_gain ]
  527. * (1.0 / 16384.0);
  528. *fixed_gain_factor = qua_gain_code[amr_subframe->fixed_gain]
  529. * (1.0 / 2048.0);
  530. } else {
  531. const uint16_t *gains;
  532. if (mode >= MODE_6k7) {
  533. gains = gains_high[amr_subframe->p_gain];
  534. } else if (mode >= MODE_5k15) {
  535. gains = gains_low [amr_subframe->p_gain];
  536. } else {
  537. // gain index is only coded in subframes 0,2 for MODE_4k75
  538. gains = gains_MODE_4k75[(p->frame.subframe[subframe & 2].p_gain << 1) + (subframe & 1)];
  539. }
  540. p->pitch_gain[4] = gains[0] * (1.0 / 16384.0);
  541. *fixed_gain_factor = gains[1] * (1.0 / 4096.0);
  542. }
  543. }
  544. /// @}
  545. /// @defgroup amr_pre_processing AMR pre-processing functions
  546. /// @{
  547. /**
  548. * Circularly convolve a sparse fixed vector with a phase dispersion impulse
  549. * response filter (D.6.2 of G.729 and 6.1.5 of AMR).
  550. *
  551. * @param out vector with filter applied
  552. * @param in source vector
  553. * @param filter phase filter coefficients
  554. *
  555. * out[n] = sum(i,0,len-1){ in[i] * filter[(len + n - i)%len] }
  556. */
  557. static void apply_ir_filter(float *out, const AMRFixed *in,
  558. const float *filter)
  559. {
  560. float filter1[AMR_SUBFRAME_SIZE], //!< filters at pitch lag*1 and *2
  561. filter2[AMR_SUBFRAME_SIZE];
  562. int lag = in->pitch_lag;
  563. float fac = in->pitch_fac;
  564. int i;
  565. if (lag < AMR_SUBFRAME_SIZE) {
  566. ff_celp_circ_addf(filter1, filter, filter, lag, fac,
  567. AMR_SUBFRAME_SIZE);
  568. if (lag < AMR_SUBFRAME_SIZE >> 1)
  569. ff_celp_circ_addf(filter2, filter, filter1, lag, fac,
  570. AMR_SUBFRAME_SIZE);
  571. }
  572. memset(out, 0, sizeof(float) * AMR_SUBFRAME_SIZE);
  573. for (i = 0; i < in->n; i++) {
  574. int x = in->x[i];
  575. float y = in->y[i];
  576. const float *filterp;
  577. if (x >= AMR_SUBFRAME_SIZE - lag) {
  578. filterp = filter;
  579. } else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
  580. filterp = filter1;
  581. } else
  582. filterp = filter2;
  583. ff_celp_circ_addf(out, out, filterp, x, y, AMR_SUBFRAME_SIZE);
  584. }
  585. }
  586. /**
  587. * Reduce fixed vector sparseness by smoothing with one of three IR filters.
  588. * Also know as "adaptive phase dispersion".
  589. *
  590. * This implements 3GPP TS 26.090 section 6.1(5).
  591. *
  592. * @param p the context
  593. * @param fixed_sparse algebraic codebook vector
  594. * @param fixed_vector unfiltered fixed vector
  595. * @param fixed_gain smoothed gain
  596. * @param out space for modified vector if necessary
  597. */
  598. static const float *anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse,
  599. const float *fixed_vector,
  600. float fixed_gain, float *out)
  601. {
  602. int ir_filter_nr;
  603. if (p->pitch_gain[4] < 0.6) {
  604. ir_filter_nr = 0; // strong filtering
  605. } else if (p->pitch_gain[4] < 0.9) {
  606. ir_filter_nr = 1; // medium filtering
  607. } else
  608. ir_filter_nr = 2; // no filtering
  609. // detect 'onset'
  610. if (fixed_gain > 2.0 * p->prev_sparse_fixed_gain) {
  611. p->ir_filter_onset = 2;
  612. } else if (p->ir_filter_onset)
  613. p->ir_filter_onset--;
  614. if (!p->ir_filter_onset) {
  615. int i, count = 0;
  616. for (i = 0; i < 5; i++)
  617. if (p->pitch_gain[i] < 0.6)
  618. count++;
  619. if (count > 2)
  620. ir_filter_nr = 0;
  621. if (ir_filter_nr > p->prev_ir_filter_nr + 1)
  622. ir_filter_nr--;
  623. } else if (ir_filter_nr < 2)
  624. ir_filter_nr++;
  625. // Disable filtering for very low level of fixed_gain.
  626. // Note this step is not specified in the technical description but is in
  627. // the reference source in the function Ph_disp.
  628. if (fixed_gain < 5.0)
  629. ir_filter_nr = 2;
  630. if (p->cur_frame_mode != MODE_7k4 && p->cur_frame_mode < MODE_10k2
  631. && ir_filter_nr < 2) {
  632. apply_ir_filter(out, fixed_sparse,
  633. (p->cur_frame_mode == MODE_7k95 ?
  634. ir_filters_lookup_MODE_7k95 :
  635. ir_filters_lookup)[ir_filter_nr]);
  636. fixed_vector = out;
  637. }
  638. // update ir filter strength history
  639. p->prev_ir_filter_nr = ir_filter_nr;
  640. p->prev_sparse_fixed_gain = fixed_gain;
  641. return fixed_vector;
  642. }
  643. /// @}
  644. /// @defgroup amr_synthesis AMR synthesis functions
  645. /// @{
  646. /**
  647. * Conduct 10th order linear predictive coding synthesis.
  648. *
  649. * @param p pointer to the AMRContext
  650. * @param lpc pointer to the LPC coefficients
  651. * @param fixed_gain fixed codebook gain for synthesis
  652. * @param fixed_vector algebraic codebook vector
  653. * @param samples pointer to the output speech samples
  654. * @param overflow 16-bit overflow flag
  655. */
  656. static int synthesis(AMRContext *p, float *lpc,
  657. float fixed_gain, const float *fixed_vector,
  658. float *samples, uint8_t overflow)
  659. {
  660. int i;
  661. float excitation[AMR_SUBFRAME_SIZE];
  662. // if an overflow has been detected, the pitch vector is scaled down by a
  663. // factor of 4
  664. if (overflow)
  665. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  666. p->pitch_vector[i] *= 0.25;
  667. ff_weighted_vector_sumf(excitation, p->pitch_vector, fixed_vector,
  668. p->pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);
  669. // emphasize pitch vector contribution
  670. if (p->pitch_gain[4] > 0.5 && !overflow) {
  671. float energy = ff_dot_productf(excitation, excitation,
  672. AMR_SUBFRAME_SIZE);
  673. float pitch_factor =
  674. p->pitch_gain[4] *
  675. (p->cur_frame_mode == MODE_12k2 ?
  676. 0.25 * FFMIN(p->pitch_gain[4], 1.0) :
  677. 0.5 * FFMIN(p->pitch_gain[4], SHARP_MAX));
  678. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  679. excitation[i] += pitch_factor * p->pitch_vector[i];
  680. ff_scale_vector_to_given_sum_of_squares(excitation, excitation, energy,
  681. AMR_SUBFRAME_SIZE);
  682. }
  683. ff_celp_lp_synthesis_filterf(samples, lpc, excitation, AMR_SUBFRAME_SIZE,
  684. LP_FILTER_ORDER);
  685. // detect overflow
  686. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  687. if (fabsf(samples[i]) > AMR_SAMPLE_BOUND) {
  688. return 1;
  689. }
  690. return 0;
  691. }
  692. /// @}
  693. /// @defgroup amr_update AMR update functions
  694. /// @{
  695. /**
  696. * Update buffers and history at the end of decoding a subframe.
  697. *
  698. * @param p pointer to the AMRContext
  699. */
  700. static void update_state(AMRContext *p)
  701. {
  702. memcpy(p->prev_lsp_sub4, p->lsp[3], LP_FILTER_ORDER * sizeof(p->lsp[3][0]));
  703. memmove(&p->excitation_buf[0], &p->excitation_buf[AMR_SUBFRAME_SIZE],
  704. (PITCH_DELAY_MAX + LP_FILTER_ORDER + 1) * sizeof(float));
  705. memmove(&p->pitch_gain[0], &p->pitch_gain[1], 4 * sizeof(float));
  706. memmove(&p->fixed_gain[0], &p->fixed_gain[1], 4 * sizeof(float));
  707. memmove(&p->samples_in[0], &p->samples_in[AMR_SUBFRAME_SIZE],
  708. LP_FILTER_ORDER * sizeof(float));
  709. }
  710. /// @}
  711. /// @defgroup amr_postproc AMR Post processing functions
  712. /// @{
  713. /**
  714. * Get the tilt factor of a formant filter from its transfer function
  715. *
  716. * @param lpc_n LP_FILTER_ORDER coefficients of the numerator
  717. * @param lpc_d LP_FILTER_ORDER coefficients of the denominator
  718. */
  719. static float tilt_factor(float *lpc_n, float *lpc_d)
  720. {
  721. float rh0, rh1; // autocorrelation at lag 0 and 1
  722. // LP_FILTER_ORDER prior zeros are needed for ff_celp_lp_synthesis_filterf
  723. float impulse_buffer[LP_FILTER_ORDER + AMR_TILT_RESPONSE] = { 0 };
  724. float *hf = impulse_buffer + LP_FILTER_ORDER; // start of impulse response
  725. hf[0] = 1.0;
  726. memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER);
  727. ff_celp_lp_synthesis_filterf(hf, lpc_d, hf, AMR_TILT_RESPONSE,
  728. LP_FILTER_ORDER);
  729. rh0 = ff_dot_productf(hf, hf, AMR_TILT_RESPONSE);
  730. rh1 = ff_dot_productf(hf, hf + 1, AMR_TILT_RESPONSE - 1);
  731. // The spec only specifies this check for 12.2 and 10.2 kbit/s
  732. // modes. But in the ref source the tilt is always non-negative.
  733. return rh1 >= 0.0 ? rh1 / rh0 * AMR_TILT_GAMMA_T : 0.0;
  734. }
  735. /**
  736. * Perform adaptive post-filtering to enhance the quality of the speech.
  737. * See section 6.2.1.
  738. *
  739. * @param p pointer to the AMRContext
  740. * @param lpc interpolated LP coefficients for this subframe
  741. * @param buf_out output of the filter
  742. */
  743. static void postfilter(AMRContext *p, float *lpc, float *buf_out)
  744. {
  745. int i;
  746. float *samples = p->samples_in + LP_FILTER_ORDER; // Start of input
  747. float speech_gain = ff_dot_productf(samples, samples,
  748. AMR_SUBFRAME_SIZE);
  749. float pole_out[AMR_SUBFRAME_SIZE + LP_FILTER_ORDER]; // Output of pole filter
  750. const float *gamma_n, *gamma_d; // Formant filter factor table
  751. float lpc_n[LP_FILTER_ORDER], lpc_d[LP_FILTER_ORDER]; // Transfer function coefficients
  752. if (p->cur_frame_mode == MODE_12k2 || p->cur_frame_mode == MODE_10k2) {
  753. gamma_n = ff_pow_0_7;
  754. gamma_d = ff_pow_0_75;
  755. } else {
  756. gamma_n = ff_pow_0_55;
  757. gamma_d = ff_pow_0_7;
  758. }
  759. for (i = 0; i < LP_FILTER_ORDER; i++) {
  760. lpc_n[i] = lpc[i] * gamma_n[i];
  761. lpc_d[i] = lpc[i] * gamma_d[i];
  762. }
  763. memcpy(pole_out, p->postfilter_mem, sizeof(float) * LP_FILTER_ORDER);
  764. ff_celp_lp_synthesis_filterf(pole_out + LP_FILTER_ORDER, lpc_d, samples,
  765. AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
  766. memcpy(p->postfilter_mem, pole_out + AMR_SUBFRAME_SIZE,
  767. sizeof(float) * LP_FILTER_ORDER);
  768. ff_celp_lp_zero_synthesis_filterf(buf_out, lpc_n,
  769. pole_out + LP_FILTER_ORDER,
  770. AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
  771. ff_tilt_compensation(&p->tilt_mem, tilt_factor(lpc_n, lpc_d), buf_out,
  772. AMR_SUBFRAME_SIZE);
  773. ff_adaptive_gain_control(buf_out, buf_out, speech_gain, AMR_SUBFRAME_SIZE,
  774. AMR_AGC_ALPHA, &p->postfilter_agc);
  775. }
  776. /// @}
  777. static int amrnb_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
  778. AVPacket *avpkt)
  779. {
  780. AMRContext *p = avctx->priv_data; // pointer to private data
  781. const uint8_t *buf = avpkt->data;
  782. int buf_size = avpkt->size;
  783. float *buf_out = data; // pointer to the output data buffer
  784. int i, subframe;
  785. float fixed_gain_factor;
  786. AMRFixed fixed_sparse = {0}; // fixed vector up to anti-sparseness processing
  787. float spare_vector[AMR_SUBFRAME_SIZE]; // extra stack space to hold result from anti-sparseness processing
  788. float synth_fixed_gain; // the fixed gain that synthesis should use
  789. const float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  790. p->cur_frame_mode = unpack_bitstream(p, buf, buf_size);
  791. if (p->cur_frame_mode == MODE_DTX) {
  792. av_log_missing_feature(avctx, "dtx mode", 1);
  793. return -1;
  794. }
  795. if (p->cur_frame_mode == MODE_12k2) {
  796. lsf2lsp_5(p);
  797. } else
  798. lsf2lsp_3(p);
  799. for (i = 0; i < 4; i++)
  800. ff_acelp_lspd2lpc(p->lsp[i], p->lpc[i], 5);
  801. for (subframe = 0; subframe < 4; subframe++) {
  802. const AMRNBSubframe *amr_subframe = &p->frame.subframe[subframe];
  803. decode_pitch_vector(p, amr_subframe, subframe);
  804. decode_fixed_sparse(&fixed_sparse, amr_subframe->pulses,
  805. p->cur_frame_mode, subframe);
  806. // The fixed gain (section 6.1.3) depends on the fixed vector
  807. // (section 6.1.2), but the fixed vector calculation uses
  808. // pitch sharpening based on the on the pitch gain (section 6.1.3).
  809. // So the correct order is: pitch gain, pitch sharpening, fixed gain.
  810. decode_gains(p, amr_subframe, p->cur_frame_mode, subframe,
  811. &fixed_gain_factor);
  812. pitch_sharpening(p, subframe, p->cur_frame_mode, &fixed_sparse);
  813. ff_set_fixed_vector(p->fixed_vector, &fixed_sparse, 1.0,
  814. AMR_SUBFRAME_SIZE);
  815. p->fixed_gain[4] =
  816. ff_amr_set_fixed_gain(fixed_gain_factor,
  817. ff_dot_productf(p->fixed_vector, p->fixed_vector,
  818. AMR_SUBFRAME_SIZE)/AMR_SUBFRAME_SIZE,
  819. p->prediction_error,
  820. energy_mean[p->cur_frame_mode], energy_pred_fac);
  821. // The excitation feedback is calculated without any processing such
  822. // as fixed gain smoothing. This isn't mentioned in the specification.
  823. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  824. p->excitation[i] *= p->pitch_gain[4];
  825. ff_set_fixed_vector(p->excitation, &fixed_sparse, p->fixed_gain[4],
  826. AMR_SUBFRAME_SIZE);
  827. // In the ref decoder, excitation is stored with no fractional bits.
  828. // This step prevents buzz in silent periods. The ref encoder can
  829. // emit long sequences with pitch factor greater than one. This
  830. // creates unwanted feedback if the excitation vector is nonzero.
  831. // (e.g. test sequence T19_795.COD in 3GPP TS 26.074)
  832. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  833. p->excitation[i] = truncf(p->excitation[i]);
  834. // Smooth fixed gain.
  835. // The specification is ambiguous, but in the reference source, the
  836. // smoothed value is NOT fed back into later fixed gain smoothing.
  837. synth_fixed_gain = fixed_gain_smooth(p, p->lsf_q[subframe],
  838. p->lsf_avg, p->cur_frame_mode);
  839. synth_fixed_vector = anti_sparseness(p, &fixed_sparse, p->fixed_vector,
  840. synth_fixed_gain, spare_vector);
  841. if (synthesis(p, p->lpc[subframe], synth_fixed_gain,
  842. synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 0))
  843. // overflow detected -> rerun synthesis scaling pitch vector down
  844. // by a factor of 4, skipping pitch vector contribution emphasis
  845. // and adaptive gain control
  846. synthesis(p, p->lpc[subframe], synth_fixed_gain,
  847. synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 1);
  848. postfilter(p, p->lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);
  849. // update buffers and history
  850. ff_clear_fixed_vector(p->fixed_vector, &fixed_sparse, AMR_SUBFRAME_SIZE);
  851. update_state(p);
  852. }
  853. ff_acelp_apply_order_2_transfer_function(buf_out, buf_out, highpass_zeros,
  854. highpass_poles,
  855. highpass_gain * AMR_SAMPLE_SCALE,
  856. p->high_pass_mem, AMR_BLOCK_SIZE);
  857. /* Update averaged lsf vector (used for fixed gain smoothing).
  858. *
  859. * Note that lsf_avg should not incorporate the current frame's LSFs
  860. * for fixed_gain_smooth.
  861. * The specification has an incorrect formula: the reference decoder uses
  862. * qbar(n-1) rather than qbar(n) in section 6.1(4) equation 71. */
  863. ff_weighted_vector_sumf(p->lsf_avg, p->lsf_avg, p->lsf_q[3],
  864. 0.84, 0.16, LP_FILTER_ORDER);
  865. /* report how many samples we got */
  866. *data_size = AMR_BLOCK_SIZE * sizeof(float);
  867. /* return the amount of bytes consumed if everything was OK */
  868. return frame_sizes_nb[p->cur_frame_mode] + 1; // +7 for rounding and +8 for TOC
  869. }
  870. AVCodec amrnb_decoder = {
  871. .name = "amrnb",
  872. .type = AVMEDIA_TYPE_AUDIO,
  873. .id = CODEC_ID_AMR_NB,
  874. .priv_data_size = sizeof(AMRContext),
  875. .init = amrnb_decode_init,
  876. .decode = amrnb_decode_frame,
  877. .long_name = NULL_IF_CONFIG_SMALL("Adaptive Multi-Rate NarrowBand"),
  878. .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_FLT,SAMPLE_FMT_NONE},
  879. };