You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1477 lines
48KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "get_bits.h"
  31. #include "put_bits.h"
  32. #include "dsputil.h"
  33. #define VLC_BITS 11
  34. #if HAVE_BIGENDIAN
  35. #define B 3
  36. #define G 2
  37. #define R 1
  38. #define A 0
  39. #else
  40. #define B 0
  41. #define G 1
  42. #define R 2
  43. #define A 3
  44. #endif
  45. typedef enum Predictor{
  46. LEFT= 0,
  47. PLANE,
  48. MEDIAN,
  49. } Predictor;
  50. typedef struct HYuvContext{
  51. AVCodecContext *avctx;
  52. Predictor predictor;
  53. GetBitContext gb;
  54. PutBitContext pb;
  55. int interlaced;
  56. int decorrelate;
  57. int bitstream_bpp;
  58. int version;
  59. int yuy2; //use yuy2 instead of 422P
  60. int bgr32; //use bgr32 instead of bgr24
  61. int width, height;
  62. int flags;
  63. int context;
  64. int picture_number;
  65. int last_slice_end;
  66. uint8_t *temp[3];
  67. uint64_t stats[3][256];
  68. uint8_t len[3][256];
  69. uint32_t bits[3][256];
  70. uint32_t pix_bgr_map[1<<VLC_BITS];
  71. VLC vlc[6]; //Y,U,V,YY,YU,YV
  72. AVFrame picture;
  73. uint8_t *bitstream_buffer;
  74. unsigned int bitstream_buffer_size;
  75. DSPContext dsp;
  76. }HYuvContext;
  77. static const unsigned char classic_shift_luma[] = {
  78. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  79. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  80. 69,68, 0
  81. };
  82. static const unsigned char classic_shift_chroma[] = {
  83. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  84. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  85. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  86. };
  87. static const unsigned char classic_add_luma[256] = {
  88. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  89. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  90. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  91. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  92. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  93. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  94. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  95. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  96. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  97. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  98. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  99. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  100. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  101. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  102. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  103. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  104. };
  105. static const unsigned char classic_add_chroma[256] = {
  106. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  107. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  108. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  109. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  110. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  111. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  112. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  113. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  114. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  115. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  116. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  117. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  118. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  119. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  120. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  121. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  122. };
  123. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  124. int i;
  125. if(w<32){
  126. for(i=0; i<w; i++){
  127. const int temp= src[i];
  128. dst[i]= temp - left;
  129. left= temp;
  130. }
  131. return left;
  132. }else{
  133. for(i=0; i<16; i++){
  134. const int temp= src[i];
  135. dst[i]= temp - left;
  136. left= temp;
  137. }
  138. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  139. return src[w-1];
  140. }
  141. }
  142. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  143. int i;
  144. int r,g,b;
  145. r= *red;
  146. g= *green;
  147. b= *blue;
  148. for(i=0; i<FFMIN(w,4); i++){
  149. const int rt= src[i*4+R];
  150. const int gt= src[i*4+G];
  151. const int bt= src[i*4+B];
  152. dst[i*4+R]= rt - r;
  153. dst[i*4+G]= gt - g;
  154. dst[i*4+B]= bt - b;
  155. r = rt;
  156. g = gt;
  157. b = bt;
  158. }
  159. s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
  160. *red= src[(w-1)*4+R];
  161. *green= src[(w-1)*4+G];
  162. *blue= src[(w-1)*4+B];
  163. }
  164. static int read_len_table(uint8_t *dst, GetBitContext *gb){
  165. int i, val, repeat;
  166. for(i=0; i<256;){
  167. repeat= get_bits(gb, 3);
  168. val = get_bits(gb, 5);
  169. if(repeat==0)
  170. repeat= get_bits(gb, 8);
  171. //printf("%d %d\n", val, repeat);
  172. if(i+repeat > 256) {
  173. av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n");
  174. return -1;
  175. }
  176. while (repeat--)
  177. dst[i++] = val;
  178. }
  179. return 0;
  180. }
  181. static int generate_bits_table(uint32_t *dst, const uint8_t *len_table){
  182. int len, index;
  183. uint32_t bits=0;
  184. for(len=32; len>0; len--){
  185. for(index=0; index<256; index++){
  186. if(len_table[index]==len)
  187. dst[index]= bits++;
  188. }
  189. if(bits & 1){
  190. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  191. return -1;
  192. }
  193. bits >>= 1;
  194. }
  195. return 0;
  196. }
  197. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  198. typedef struct {
  199. uint64_t val;
  200. int name;
  201. } HeapElem;
  202. static void heap_sift(HeapElem *h, int root, int size)
  203. {
  204. while(root*2+1 < size) {
  205. int child = root*2+1;
  206. if(child < size-1 && h[child].val > h[child+1].val)
  207. child++;
  208. if(h[root].val > h[child].val) {
  209. FFSWAP(HeapElem, h[root], h[child]);
  210. root = child;
  211. } else
  212. break;
  213. }
  214. }
  215. static void generate_len_table(uint8_t *dst, const uint64_t *stats){
  216. HeapElem h[256];
  217. int up[2*256];
  218. int len[2*256];
  219. int offset, i, next;
  220. int size = 256;
  221. for(offset=1; ; offset<<=1){
  222. for(i=0; i<size; i++){
  223. h[i].name = i;
  224. h[i].val = (stats[i] << 8) + offset;
  225. }
  226. for(i=size/2-1; i>=0; i--)
  227. heap_sift(h, i, size);
  228. for(next=size; next<size*2-1; next++){
  229. // merge the two smallest entries, and put it back in the heap
  230. uint64_t min1v = h[0].val;
  231. up[h[0].name] = next;
  232. h[0].val = INT64_MAX;
  233. heap_sift(h, 0, size);
  234. up[h[0].name] = next;
  235. h[0].name = next;
  236. h[0].val += min1v;
  237. heap_sift(h, 0, size);
  238. }
  239. len[2*size-2] = 0;
  240. for(i=2*size-3; i>=size; i--)
  241. len[i] = len[up[i]] + 1;
  242. for(i=0; i<size; i++) {
  243. dst[i] = len[up[i]] + 1;
  244. if(dst[i] >= 32) break;
  245. }
  246. if(i==size) break;
  247. }
  248. }
  249. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  250. static void generate_joint_tables(HYuvContext *s){
  251. uint16_t symbols[1<<VLC_BITS];
  252. uint16_t bits[1<<VLC_BITS];
  253. uint8_t len[1<<VLC_BITS];
  254. if(s->bitstream_bpp < 24){
  255. int p, i, y, u;
  256. for(p=0; p<3; p++){
  257. for(i=y=0; y<256; y++){
  258. int len0 = s->len[0][y];
  259. int limit = VLC_BITS - len0;
  260. if(limit <= 0)
  261. continue;
  262. for(u=0; u<256; u++){
  263. int len1 = s->len[p][u];
  264. if(len1 > limit)
  265. continue;
  266. len[i] = len0 + len1;
  267. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  268. symbols[i] = (y<<8) + u;
  269. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  270. i++;
  271. }
  272. }
  273. free_vlc(&s->vlc[3+p]);
  274. init_vlc_sparse(&s->vlc[3+p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0);
  275. }
  276. }else{
  277. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  278. int i, b, g, r, code;
  279. int p0 = s->decorrelate;
  280. int p1 = !s->decorrelate;
  281. // restrict the range to +/-16 becaues that's pretty much guaranteed to
  282. // cover all the combinations that fit in 11 bits total, and it doesn't
  283. // matter if we miss a few rare codes.
  284. for(i=0, g=-16; g<16; g++){
  285. int len0 = s->len[p0][g&255];
  286. int limit0 = VLC_BITS - len0;
  287. if(limit0 < 2)
  288. continue;
  289. for(b=-16; b<16; b++){
  290. int len1 = s->len[p1][b&255];
  291. int limit1 = limit0 - len1;
  292. if(limit1 < 1)
  293. continue;
  294. code = (s->bits[p0][g&255] << len1) + s->bits[p1][b&255];
  295. for(r=-16; r<16; r++){
  296. int len2 = s->len[2][r&255];
  297. if(len2 > limit1)
  298. continue;
  299. len[i] = len0 + len1 + len2;
  300. bits[i] = (code << len2) + s->bits[2][r&255];
  301. if(s->decorrelate){
  302. map[i][G] = g;
  303. map[i][B] = g+b;
  304. map[i][R] = g+r;
  305. }else{
  306. map[i][B] = g;
  307. map[i][G] = b;
  308. map[i][R] = r;
  309. }
  310. i++;
  311. }
  312. }
  313. }
  314. free_vlc(&s->vlc[3]);
  315. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  316. }
  317. }
  318. static int read_huffman_tables(HYuvContext *s, const uint8_t *src, int length){
  319. GetBitContext gb;
  320. int i;
  321. init_get_bits(&gb, src, length*8);
  322. for(i=0; i<3; i++){
  323. if(read_len_table(s->len[i], &gb)<0)
  324. return -1;
  325. if(generate_bits_table(s->bits[i], s->len[i])<0){
  326. return -1;
  327. }
  328. #if 0
  329. for(j=0; j<256; j++){
  330. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  331. }
  332. #endif
  333. free_vlc(&s->vlc[i]);
  334. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  335. }
  336. generate_joint_tables(s);
  337. return (get_bits_count(&gb)+7)/8;
  338. }
  339. static int read_old_huffman_tables(HYuvContext *s){
  340. #if 1
  341. GetBitContext gb;
  342. int i;
  343. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  344. if(read_len_table(s->len[0], &gb)<0)
  345. return -1;
  346. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  347. if(read_len_table(s->len[1], &gb)<0)
  348. return -1;
  349. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  350. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  351. if(s->bitstream_bpp >= 24){
  352. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  353. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  354. }
  355. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  356. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  357. for(i=0; i<3; i++){
  358. free_vlc(&s->vlc[i]);
  359. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  360. }
  361. generate_joint_tables(s);
  362. return 0;
  363. #else
  364. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  365. return -1;
  366. #endif
  367. }
  368. static av_cold void alloc_temp(HYuvContext *s){
  369. int i;
  370. if(s->bitstream_bpp<24){
  371. for(i=0; i<3; i++){
  372. s->temp[i]= av_malloc(s->width + 16);
  373. }
  374. }else{
  375. s->temp[0]= av_mallocz(4*s->width + 16);
  376. }
  377. }
  378. static av_cold int common_init(AVCodecContext *avctx){
  379. HYuvContext *s = avctx->priv_data;
  380. s->avctx= avctx;
  381. s->flags= avctx->flags;
  382. dsputil_init(&s->dsp, avctx);
  383. s->width= avctx->width;
  384. s->height= avctx->height;
  385. assert(s->width>0 && s->height>0);
  386. return 0;
  387. }
  388. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  389. static av_cold int decode_init(AVCodecContext *avctx)
  390. {
  391. HYuvContext *s = avctx->priv_data;
  392. common_init(avctx);
  393. memset(s->vlc, 0, 3*sizeof(VLC));
  394. avctx->coded_frame= &s->picture;
  395. s->interlaced= s->height > 288;
  396. s->bgr32=1;
  397. //if(avctx->extradata)
  398. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  399. if(avctx->extradata_size){
  400. if((avctx->bits_per_coded_sample&7) && avctx->bits_per_coded_sample != 12)
  401. s->version=1; // do such files exist at all?
  402. else
  403. s->version=2;
  404. }else
  405. s->version=0;
  406. if(s->version==2){
  407. int method, interlace;
  408. if (avctx->extradata_size < 4)
  409. return -1;
  410. method= ((uint8_t*)avctx->extradata)[0];
  411. s->decorrelate= method&64 ? 1 : 0;
  412. s->predictor= method&63;
  413. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  414. if(s->bitstream_bpp==0)
  415. s->bitstream_bpp= avctx->bits_per_coded_sample&~7;
  416. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  417. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  418. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  419. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size-4) < 0)
  420. return -1;
  421. }else{
  422. switch(avctx->bits_per_coded_sample&7){
  423. case 1:
  424. s->predictor= LEFT;
  425. s->decorrelate= 0;
  426. break;
  427. case 2:
  428. s->predictor= LEFT;
  429. s->decorrelate= 1;
  430. break;
  431. case 3:
  432. s->predictor= PLANE;
  433. s->decorrelate= avctx->bits_per_coded_sample >= 24;
  434. break;
  435. case 4:
  436. s->predictor= MEDIAN;
  437. s->decorrelate= 0;
  438. break;
  439. default:
  440. s->predictor= LEFT; //OLD
  441. s->decorrelate= 0;
  442. break;
  443. }
  444. s->bitstream_bpp= avctx->bits_per_coded_sample & ~7;
  445. s->context= 0;
  446. if(read_old_huffman_tables(s) < 0)
  447. return -1;
  448. }
  449. switch(s->bitstream_bpp){
  450. case 12:
  451. avctx->pix_fmt = PIX_FMT_YUV420P;
  452. break;
  453. case 16:
  454. if(s->yuy2){
  455. avctx->pix_fmt = PIX_FMT_YUYV422;
  456. }else{
  457. avctx->pix_fmt = PIX_FMT_YUV422P;
  458. }
  459. break;
  460. case 24:
  461. case 32:
  462. if(s->bgr32){
  463. avctx->pix_fmt = PIX_FMT_RGB32;
  464. }else{
  465. avctx->pix_fmt = PIX_FMT_BGR24;
  466. }
  467. break;
  468. default:
  469. assert(0);
  470. }
  471. alloc_temp(s);
  472. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  473. return 0;
  474. }
  475. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  476. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  477. static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf){
  478. int i;
  479. int index= 0;
  480. for(i=0; i<256;){
  481. int val= len[i];
  482. int repeat=0;
  483. for(; i<256 && len[i]==val && repeat<255; i++)
  484. repeat++;
  485. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  486. if(repeat>7){
  487. buf[index++]= val;
  488. buf[index++]= repeat;
  489. }else{
  490. buf[index++]= val | (repeat<<5);
  491. }
  492. }
  493. return index;
  494. }
  495. static av_cold int encode_init(AVCodecContext *avctx)
  496. {
  497. HYuvContext *s = avctx->priv_data;
  498. int i, j;
  499. common_init(avctx);
  500. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  501. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  502. s->version=2;
  503. avctx->coded_frame= &s->picture;
  504. switch(avctx->pix_fmt){
  505. case PIX_FMT_YUV420P:
  506. s->bitstream_bpp= 12;
  507. break;
  508. case PIX_FMT_YUV422P:
  509. s->bitstream_bpp= 16;
  510. break;
  511. case PIX_FMT_RGB32:
  512. s->bitstream_bpp= 24;
  513. break;
  514. default:
  515. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  516. return -1;
  517. }
  518. avctx->bits_per_coded_sample= s->bitstream_bpp;
  519. s->decorrelate= s->bitstream_bpp >= 24;
  520. s->predictor= avctx->prediction_method;
  521. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  522. if(avctx->context_model==1){
  523. s->context= avctx->context_model;
  524. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  525. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  526. return -1;
  527. }
  528. }else s->context= 0;
  529. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  530. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  531. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  532. return -1;
  533. }
  534. if(avctx->context_model){
  535. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  536. return -1;
  537. }
  538. if(s->interlaced != ( s->height > 288 ))
  539. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  540. }
  541. if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
  542. av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
  543. return -1;
  544. }
  545. ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
  546. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  547. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  548. if(s->context)
  549. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  550. ((uint8_t*)avctx->extradata)[3]= 0;
  551. s->avctx->extradata_size= 4;
  552. if(avctx->stats_in){
  553. char *p= avctx->stats_in;
  554. for(i=0; i<3; i++)
  555. for(j=0; j<256; j++)
  556. s->stats[i][j]= 1;
  557. for(;;){
  558. for(i=0; i<3; i++){
  559. char *next;
  560. for(j=0; j<256; j++){
  561. s->stats[i][j]+= strtol(p, &next, 0);
  562. if(next==p) return -1;
  563. p=next;
  564. }
  565. }
  566. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  567. }
  568. }else{
  569. for(i=0; i<3; i++)
  570. for(j=0; j<256; j++){
  571. int d= FFMIN(j, 256-j);
  572. s->stats[i][j]= 100000000/(d+1);
  573. }
  574. }
  575. for(i=0; i<3; i++){
  576. generate_len_table(s->len[i], s->stats[i]);
  577. if(generate_bits_table(s->bits[i], s->len[i])<0){
  578. return -1;
  579. }
  580. s->avctx->extradata_size+=
  581. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  582. }
  583. if(s->context){
  584. for(i=0; i<3; i++){
  585. int pels = s->width*s->height / (i?40:10);
  586. for(j=0; j<256; j++){
  587. int d= FFMIN(j, 256-j);
  588. s->stats[i][j]= pels/(d+1);
  589. }
  590. }
  591. }else{
  592. for(i=0; i<3; i++)
  593. for(j=0; j<256; j++)
  594. s->stats[i][j]= 0;
  595. }
  596. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  597. alloc_temp(s);
  598. s->picture_number=0;
  599. return 0;
  600. }
  601. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  602. /* TODO instead of restarting the read when the code isn't in the first level
  603. * of the joint table, jump into the 2nd level of the individual table. */
  604. #define READ_2PIX(dst0, dst1, plane1){\
  605. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  606. if(code != 0xffff){\
  607. dst0 = code>>8;\
  608. dst1 = code;\
  609. }else{\
  610. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  611. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  612. }\
  613. }
  614. static void decode_422_bitstream(HYuvContext *s, int count){
  615. int i;
  616. count/=2;
  617. if(count >= (get_bits_left(&s->gb))/(31*4)){
  618. for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
  619. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  620. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  621. }
  622. }else{
  623. for(i=0; i<count; i++){
  624. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  625. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  626. }
  627. }
  628. }
  629. static void decode_gray_bitstream(HYuvContext *s, int count){
  630. int i;
  631. count/=2;
  632. if(count >= (get_bits_left(&s->gb))/(31*2)){
  633. for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
  634. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  635. }
  636. }else{
  637. for(i=0; i<count; i++){
  638. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  639. }
  640. }
  641. }
  642. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  643. static int encode_422_bitstream(HYuvContext *s, int offset, int count){
  644. int i;
  645. const uint8_t *y = s->temp[0] + offset;
  646. const uint8_t *u = s->temp[1] + offset/2;
  647. const uint8_t *v = s->temp[2] + offset/2;
  648. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  649. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  650. return -1;
  651. }
  652. #define LOAD4\
  653. int y0 = y[2*i];\
  654. int y1 = y[2*i+1];\
  655. int u0 = u[i];\
  656. int v0 = v[i];
  657. count/=2;
  658. if(s->flags&CODEC_FLAG_PASS1){
  659. for(i=0; i<count; i++){
  660. LOAD4;
  661. s->stats[0][y0]++;
  662. s->stats[1][u0]++;
  663. s->stats[0][y1]++;
  664. s->stats[2][v0]++;
  665. }
  666. }
  667. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  668. return 0;
  669. if(s->context){
  670. for(i=0; i<count; i++){
  671. LOAD4;
  672. s->stats[0][y0]++;
  673. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  674. s->stats[1][u0]++;
  675. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  676. s->stats[0][y1]++;
  677. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  678. s->stats[2][v0]++;
  679. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  680. }
  681. }else{
  682. for(i=0; i<count; i++){
  683. LOAD4;
  684. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  685. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  686. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  687. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  688. }
  689. }
  690. return 0;
  691. }
  692. static int encode_gray_bitstream(HYuvContext *s, int count){
  693. int i;
  694. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  695. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  696. return -1;
  697. }
  698. #define LOAD2\
  699. int y0 = s->temp[0][2*i];\
  700. int y1 = s->temp[0][2*i+1];
  701. #define STAT2\
  702. s->stats[0][y0]++;\
  703. s->stats[0][y1]++;
  704. #define WRITE2\
  705. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  706. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  707. count/=2;
  708. if(s->flags&CODEC_FLAG_PASS1){
  709. for(i=0; i<count; i++){
  710. LOAD2;
  711. STAT2;
  712. }
  713. }
  714. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  715. return 0;
  716. if(s->context){
  717. for(i=0; i<count; i++){
  718. LOAD2;
  719. STAT2;
  720. WRITE2;
  721. }
  722. }else{
  723. for(i=0; i<count; i++){
  724. LOAD2;
  725. WRITE2;
  726. }
  727. }
  728. return 0;
  729. }
  730. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  731. static av_always_inline void decode_bgr_1(HYuvContext *s, int count, int decorrelate, int alpha){
  732. int i;
  733. for(i=0; i<count; i++){
  734. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  735. if(code != -1){
  736. *(uint32_t*)&s->temp[0][4*i] = s->pix_bgr_map[code];
  737. }else if(decorrelate){
  738. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  739. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  740. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  741. }else{
  742. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  743. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  744. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  745. }
  746. if(alpha)
  747. s->temp[0][4*i+A] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  748. }
  749. }
  750. static void decode_bgr_bitstream(HYuvContext *s, int count){
  751. if(s->decorrelate){
  752. if(s->bitstream_bpp==24)
  753. decode_bgr_1(s, count, 1, 0);
  754. else
  755. decode_bgr_1(s, count, 1, 1);
  756. }else{
  757. if(s->bitstream_bpp==24)
  758. decode_bgr_1(s, count, 0, 0);
  759. else
  760. decode_bgr_1(s, count, 0, 1);
  761. }
  762. }
  763. static int encode_bgr_bitstream(HYuvContext *s, int count){
  764. int i;
  765. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3*4*count){
  766. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  767. return -1;
  768. }
  769. #define LOAD3\
  770. int g= s->temp[0][4*i+G];\
  771. int b= (s->temp[0][4*i+B] - g) & 0xff;\
  772. int r= (s->temp[0][4*i+R] - g) & 0xff;
  773. #define STAT3\
  774. s->stats[0][b]++;\
  775. s->stats[1][g]++;\
  776. s->stats[2][r]++;
  777. #define WRITE3\
  778. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  779. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  780. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);
  781. if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
  782. for(i=0; i<count; i++){
  783. LOAD3;
  784. STAT3;
  785. }
  786. }else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
  787. for(i=0; i<count; i++){
  788. LOAD3;
  789. STAT3;
  790. WRITE3;
  791. }
  792. }else{
  793. for(i=0; i<count; i++){
  794. LOAD3;
  795. WRITE3;
  796. }
  797. }
  798. return 0;
  799. }
  800. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  801. static void draw_slice(HYuvContext *s, int y){
  802. int h, cy;
  803. int offset[4];
  804. if(s->avctx->draw_horiz_band==NULL)
  805. return;
  806. h= y - s->last_slice_end;
  807. y -= h;
  808. if(s->bitstream_bpp==12){
  809. cy= y>>1;
  810. }else{
  811. cy= y;
  812. }
  813. offset[0] = s->picture.linesize[0]*y;
  814. offset[1] = s->picture.linesize[1]*cy;
  815. offset[2] = s->picture.linesize[2]*cy;
  816. offset[3] = 0;
  817. emms_c();
  818. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  819. s->last_slice_end= y + h;
  820. }
  821. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  822. const uint8_t *buf = avpkt->data;
  823. int buf_size = avpkt->size;
  824. HYuvContext *s = avctx->priv_data;
  825. const int width= s->width;
  826. const int width2= s->width>>1;
  827. const int height= s->height;
  828. int fake_ystride, fake_ustride, fake_vstride;
  829. AVFrame * const p= &s->picture;
  830. int table_size= 0;
  831. AVFrame *picture = data;
  832. av_fast_malloc(&s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  833. if (!s->bitstream_buffer)
  834. return AVERROR(ENOMEM);
  835. memset(s->bitstream_buffer + buf_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  836. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (const uint32_t*)buf, buf_size/4);
  837. if(p->data[0])
  838. avctx->release_buffer(avctx, p);
  839. p->reference= 0;
  840. if(avctx->get_buffer(avctx, p) < 0){
  841. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  842. return -1;
  843. }
  844. if(s->context){
  845. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  846. if(table_size < 0)
  847. return -1;
  848. }
  849. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  850. return -1;
  851. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  852. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  853. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  854. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  855. s->last_slice_end= 0;
  856. if(s->bitstream_bpp<24){
  857. int y, cy;
  858. int lefty, leftu, leftv;
  859. int lefttopy, lefttopu, lefttopv;
  860. if(s->yuy2){
  861. p->data[0][3]= get_bits(&s->gb, 8);
  862. p->data[0][2]= get_bits(&s->gb, 8);
  863. p->data[0][1]= get_bits(&s->gb, 8);
  864. p->data[0][0]= get_bits(&s->gb, 8);
  865. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  866. return -1;
  867. }else{
  868. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  869. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  870. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  871. p->data[0][0]= get_bits(&s->gb, 8);
  872. switch(s->predictor){
  873. case LEFT:
  874. case PLANE:
  875. decode_422_bitstream(s, width-2);
  876. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  877. if(!(s->flags&CODEC_FLAG_GRAY)){
  878. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  879. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  880. }
  881. for(cy=y=1; y<s->height; y++,cy++){
  882. uint8_t *ydst, *udst, *vdst;
  883. if(s->bitstream_bpp==12){
  884. decode_gray_bitstream(s, width);
  885. ydst= p->data[0] + p->linesize[0]*y;
  886. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  887. if(s->predictor == PLANE){
  888. if(y>s->interlaced)
  889. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  890. }
  891. y++;
  892. if(y>=s->height) break;
  893. }
  894. draw_slice(s, y);
  895. ydst= p->data[0] + p->linesize[0]*y;
  896. udst= p->data[1] + p->linesize[1]*cy;
  897. vdst= p->data[2] + p->linesize[2]*cy;
  898. decode_422_bitstream(s, width);
  899. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  900. if(!(s->flags&CODEC_FLAG_GRAY)){
  901. leftu= s->dsp.add_hfyu_left_prediction(udst, s->temp[1], width2, leftu);
  902. leftv= s->dsp.add_hfyu_left_prediction(vdst, s->temp[2], width2, leftv);
  903. }
  904. if(s->predictor == PLANE){
  905. if(cy>s->interlaced){
  906. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  907. if(!(s->flags&CODEC_FLAG_GRAY)){
  908. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  909. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  910. }
  911. }
  912. }
  913. }
  914. draw_slice(s, height);
  915. break;
  916. case MEDIAN:
  917. /* first line except first 2 pixels is left predicted */
  918. decode_422_bitstream(s, width-2);
  919. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  920. if(!(s->flags&CODEC_FLAG_GRAY)){
  921. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  922. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  923. }
  924. cy=y=1;
  925. /* second line is left predicted for interlaced case */
  926. if(s->interlaced){
  927. decode_422_bitstream(s, width);
  928. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  929. if(!(s->flags&CODEC_FLAG_GRAY)){
  930. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  931. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  932. }
  933. y++; cy++;
  934. }
  935. /* next 4 pixels are left predicted too */
  936. decode_422_bitstream(s, 4);
  937. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  938. if(!(s->flags&CODEC_FLAG_GRAY)){
  939. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  940. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  941. }
  942. /* next line except the first 4 pixels is median predicted */
  943. lefttopy= p->data[0][3];
  944. decode_422_bitstream(s, width-4);
  945. s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  946. if(!(s->flags&CODEC_FLAG_GRAY)){
  947. lefttopu= p->data[1][1];
  948. lefttopv= p->data[2][1];
  949. s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  950. s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  951. }
  952. y++; cy++;
  953. for(; y<height; y++,cy++){
  954. uint8_t *ydst, *udst, *vdst;
  955. if(s->bitstream_bpp==12){
  956. while(2*cy > y){
  957. decode_gray_bitstream(s, width);
  958. ydst= p->data[0] + p->linesize[0]*y;
  959. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  960. y++;
  961. }
  962. if(y>=height) break;
  963. }
  964. draw_slice(s, y);
  965. decode_422_bitstream(s, width);
  966. ydst= p->data[0] + p->linesize[0]*y;
  967. udst= p->data[1] + p->linesize[1]*cy;
  968. vdst= p->data[2] + p->linesize[2]*cy;
  969. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  970. if(!(s->flags&CODEC_FLAG_GRAY)){
  971. s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  972. s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  973. }
  974. }
  975. draw_slice(s, height);
  976. break;
  977. }
  978. }
  979. }else{
  980. int y;
  981. int leftr, leftg, leftb, lefta;
  982. const int last_line= (height-1)*p->linesize[0];
  983. if(s->bitstream_bpp==32){
  984. lefta= p->data[0][last_line+A]= get_bits(&s->gb, 8);
  985. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  986. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  987. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  988. }else{
  989. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  990. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  991. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  992. lefta= p->data[0][last_line+A]= 255;
  993. skip_bits(&s->gb, 8);
  994. }
  995. if(s->bgr32){
  996. switch(s->predictor){
  997. case LEFT:
  998. case PLANE:
  999. decode_bgr_bitstream(s, width-1);
  1000. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb, &lefta);
  1001. for(y=s->height-2; y>=0; y--){ //Yes it is stored upside down.
  1002. decode_bgr_bitstream(s, width);
  1003. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb, &lefta);
  1004. if(s->predictor == PLANE){
  1005. if(s->bitstream_bpp!=32) lefta=0;
  1006. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  1007. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  1008. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  1009. }
  1010. }
  1011. }
  1012. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  1013. break;
  1014. default:
  1015. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  1016. }
  1017. }else{
  1018. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  1019. return -1;
  1020. }
  1021. }
  1022. emms_c();
  1023. *picture= *p;
  1024. *data_size = sizeof(AVFrame);
  1025. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  1026. }
  1027. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1028. static int common_end(HYuvContext *s){
  1029. int i;
  1030. for(i=0; i<3; i++){
  1031. av_freep(&s->temp[i]);
  1032. }
  1033. return 0;
  1034. }
  1035. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  1036. static av_cold int decode_end(AVCodecContext *avctx)
  1037. {
  1038. HYuvContext *s = avctx->priv_data;
  1039. int i;
  1040. if (s->picture.data[0])
  1041. avctx->release_buffer(avctx, &s->picture);
  1042. common_end(s);
  1043. av_freep(&s->bitstream_buffer);
  1044. for(i=0; i<6; i++){
  1045. free_vlc(&s->vlc[i]);
  1046. }
  1047. return 0;
  1048. }
  1049. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1050. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  1051. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  1052. HYuvContext *s = avctx->priv_data;
  1053. AVFrame *pict = data;
  1054. const int width= s->width;
  1055. const int width2= s->width>>1;
  1056. const int height= s->height;
  1057. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1058. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1059. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1060. AVFrame * const p= &s->picture;
  1061. int i, j, size=0;
  1062. *p = *pict;
  1063. p->pict_type= FF_I_TYPE;
  1064. p->key_frame= 1;
  1065. if(s->context){
  1066. for(i=0; i<3; i++){
  1067. generate_len_table(s->len[i], s->stats[i]);
  1068. if(generate_bits_table(s->bits[i], s->len[i])<0)
  1069. return -1;
  1070. size+= store_table(s, s->len[i], &buf[size]);
  1071. }
  1072. for(i=0; i<3; i++)
  1073. for(j=0; j<256; j++)
  1074. s->stats[i][j] >>= 1;
  1075. }
  1076. init_put_bits(&s->pb, buf+size, buf_size-size);
  1077. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  1078. int lefty, leftu, leftv, y, cy;
  1079. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  1080. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  1081. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  1082. put_bits(&s->pb, 8, p->data[0][0]);
  1083. lefty= sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  1084. leftu= sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  1085. leftv= sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  1086. encode_422_bitstream(s, 2, width-2);
  1087. if(s->predictor==MEDIAN){
  1088. int lefttopy, lefttopu, lefttopv;
  1089. cy=y=1;
  1090. if(s->interlaced){
  1091. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  1092. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  1093. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  1094. encode_422_bitstream(s, 0, width);
  1095. y++; cy++;
  1096. }
  1097. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  1098. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  1099. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  1100. encode_422_bitstream(s, 0, 4);
  1101. lefttopy= p->data[0][3];
  1102. lefttopu= p->data[1][1];
  1103. lefttopv= p->data[2][1];
  1104. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  1105. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  1106. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  1107. encode_422_bitstream(s, 0, width-4);
  1108. y++; cy++;
  1109. for(; y<height; y++,cy++){
  1110. uint8_t *ydst, *udst, *vdst;
  1111. if(s->bitstream_bpp==12){
  1112. while(2*cy > y){
  1113. ydst= p->data[0] + p->linesize[0]*y;
  1114. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1115. encode_gray_bitstream(s, width);
  1116. y++;
  1117. }
  1118. if(y>=height) break;
  1119. }
  1120. ydst= p->data[0] + p->linesize[0]*y;
  1121. udst= p->data[1] + p->linesize[1]*cy;
  1122. vdst= p->data[2] + p->linesize[2]*cy;
  1123. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1124. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1125. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1126. encode_422_bitstream(s, 0, width);
  1127. }
  1128. }else{
  1129. for(cy=y=1; y<height; y++,cy++){
  1130. uint8_t *ydst, *udst, *vdst;
  1131. /* encode a luma only line & y++ */
  1132. if(s->bitstream_bpp==12){
  1133. ydst= p->data[0] + p->linesize[0]*y;
  1134. if(s->predictor == PLANE && s->interlaced < y){
  1135. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1136. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1137. }else{
  1138. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1139. }
  1140. encode_gray_bitstream(s, width);
  1141. y++;
  1142. if(y>=height) break;
  1143. }
  1144. ydst= p->data[0] + p->linesize[0]*y;
  1145. udst= p->data[1] + p->linesize[1]*cy;
  1146. vdst= p->data[2] + p->linesize[2]*cy;
  1147. if(s->predictor == PLANE && s->interlaced < cy){
  1148. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1149. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1150. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1151. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1152. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1153. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1154. }else{
  1155. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1156. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1157. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1158. }
  1159. encode_422_bitstream(s, 0, width);
  1160. }
  1161. }
  1162. }else if(avctx->pix_fmt == PIX_FMT_RGB32){
  1163. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1164. const int stride = -p->linesize[0];
  1165. const int fake_stride = -fake_ystride;
  1166. int y;
  1167. int leftr, leftg, leftb;
  1168. put_bits(&s->pb, 8, leftr= data[R]);
  1169. put_bits(&s->pb, 8, leftg= data[G]);
  1170. put_bits(&s->pb, 8, leftb= data[B]);
  1171. put_bits(&s->pb, 8, 0);
  1172. sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb);
  1173. encode_bgr_bitstream(s, width-1);
  1174. for(y=1; y<s->height; y++){
  1175. uint8_t *dst = data + y*stride;
  1176. if(s->predictor == PLANE && s->interlaced < y){
  1177. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
  1178. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1179. }else{
  1180. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1181. }
  1182. encode_bgr_bitstream(s, width);
  1183. }
  1184. }else{
  1185. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1186. }
  1187. emms_c();
  1188. size+= (put_bits_count(&s->pb)+31)/8;
  1189. put_bits(&s->pb, 16, 0);
  1190. put_bits(&s->pb, 15, 0);
  1191. size/= 4;
  1192. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1193. int j;
  1194. char *p= avctx->stats_out;
  1195. char *end= p + 1024*30;
  1196. for(i=0; i<3; i++){
  1197. for(j=0; j<256; j++){
  1198. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1199. p+= strlen(p);
  1200. s->stats[i][j]= 0;
  1201. }
  1202. snprintf(p, end-p, "\n");
  1203. p++;
  1204. }
  1205. } else
  1206. avctx->stats_out[0] = '\0';
  1207. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1208. flush_put_bits(&s->pb);
  1209. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  1210. }
  1211. s->picture_number++;
  1212. return size*4;
  1213. }
  1214. static av_cold int encode_end(AVCodecContext *avctx)
  1215. {
  1216. HYuvContext *s = avctx->priv_data;
  1217. common_end(s);
  1218. av_freep(&avctx->extradata);
  1219. av_freep(&avctx->stats_out);
  1220. return 0;
  1221. }
  1222. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  1223. #if CONFIG_HUFFYUV_DECODER
  1224. AVCodec ff_huffyuv_decoder = {
  1225. "huffyuv",
  1226. AVMEDIA_TYPE_VIDEO,
  1227. CODEC_ID_HUFFYUV,
  1228. sizeof(HYuvContext),
  1229. decode_init,
  1230. NULL,
  1231. decode_end,
  1232. decode_frame,
  1233. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1234. NULL,
  1235. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1236. };
  1237. #endif
  1238. #if CONFIG_FFVHUFF_DECODER
  1239. AVCodec ff_ffvhuff_decoder = {
  1240. "ffvhuff",
  1241. AVMEDIA_TYPE_VIDEO,
  1242. CODEC_ID_FFVHUFF,
  1243. sizeof(HYuvContext),
  1244. decode_init,
  1245. NULL,
  1246. decode_end,
  1247. decode_frame,
  1248. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1249. NULL,
  1250. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1251. };
  1252. #endif
  1253. #if CONFIG_HUFFYUV_ENCODER
  1254. AVCodec ff_huffyuv_encoder = {
  1255. "huffyuv",
  1256. AVMEDIA_TYPE_VIDEO,
  1257. CODEC_ID_HUFFYUV,
  1258. sizeof(HYuvContext),
  1259. encode_init,
  1260. encode_frame,
  1261. encode_end,
  1262. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
  1263. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1264. };
  1265. #endif
  1266. #if CONFIG_FFVHUFF_ENCODER
  1267. AVCodec ff_ffvhuff_encoder = {
  1268. "ffvhuff",
  1269. AVMEDIA_TYPE_VIDEO,
  1270. CODEC_ID_FFVHUFF,
  1271. sizeof(HYuvContext),
  1272. encode_init,
  1273. encode_frame,
  1274. encode_end,
  1275. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
  1276. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1277. };
  1278. #endif