|
- /**
- * FLAC audio encoder
- * Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com>
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- #include "libavutil/crc.h"
- #include "libavutil/md5.h"
- #include "avcodec.h"
- #include "get_bits.h"
- #include "golomb.h"
- #include "lpc.h"
- #include "flac.h"
- #include "flacdata.h"
-
- #define FLAC_SUBFRAME_CONSTANT 0
- #define FLAC_SUBFRAME_VERBATIM 1
- #define FLAC_SUBFRAME_FIXED 8
- #define FLAC_SUBFRAME_LPC 32
-
- #define MAX_FIXED_ORDER 4
- #define MAX_PARTITION_ORDER 8
- #define MAX_PARTITIONS (1 << MAX_PARTITION_ORDER)
- #define MAX_LPC_PRECISION 15
- #define MAX_LPC_SHIFT 15
- #define MAX_RICE_PARAM 14
-
- typedef struct CompressionOptions {
- int compression_level;
- int block_time_ms;
- enum AVLPCType lpc_type;
- int lpc_passes;
- int lpc_coeff_precision;
- int min_prediction_order;
- int max_prediction_order;
- int prediction_order_method;
- int min_partition_order;
- int max_partition_order;
- } CompressionOptions;
-
- typedef struct RiceContext {
- int porder;
- int params[MAX_PARTITIONS];
- } RiceContext;
-
- typedef struct FlacSubframe {
- int type;
- int type_code;
- int obits;
- int order;
- int32_t coefs[MAX_LPC_ORDER];
- int shift;
- RiceContext rc;
- int32_t samples[FLAC_MAX_BLOCKSIZE];
- int32_t residual[FLAC_MAX_BLOCKSIZE+1];
- } FlacSubframe;
-
- typedef struct FlacFrame {
- FlacSubframe subframes[FLAC_MAX_CHANNELS];
- int blocksize;
- int bs_code[2];
- uint8_t crc8;
- int ch_mode;
- int verbatim_only;
- } FlacFrame;
-
- typedef struct FlacEncodeContext {
- PutBitContext pb;
- int channels;
- int samplerate;
- int sr_code[2];
- int max_blocksize;
- int min_framesize;
- int max_framesize;
- int max_encoded_framesize;
- uint32_t frame_count;
- uint64_t sample_count;
- uint8_t md5sum[16];
- FlacFrame frame;
- CompressionOptions options;
- AVCodecContext *avctx;
- LPCContext lpc_ctx;
- struct AVMD5 *md5ctx;
- } FlacEncodeContext;
-
-
- /**
- * Write streaminfo metadata block to byte array.
- */
- static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
- {
- PutBitContext pb;
-
- memset(header, 0, FLAC_STREAMINFO_SIZE);
- init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);
-
- /* streaminfo metadata block */
- put_bits(&pb, 16, s->max_blocksize);
- put_bits(&pb, 16, s->max_blocksize);
- put_bits(&pb, 24, s->min_framesize);
- put_bits(&pb, 24, s->max_framesize);
- put_bits(&pb, 20, s->samplerate);
- put_bits(&pb, 3, s->channels-1);
- put_bits(&pb, 5, 15); /* bits per sample - 1 */
- /* write 36-bit sample count in 2 put_bits() calls */
- put_bits(&pb, 24, (s->sample_count & 0xFFFFFF000LL) >> 12);
- put_bits(&pb, 12, s->sample_count & 0x000000FFFLL);
- flush_put_bits(&pb);
- memcpy(&header[18], s->md5sum, 16);
- }
-
-
- /**
- * Set blocksize based on samplerate.
- * Choose the closest predefined blocksize >= BLOCK_TIME_MS milliseconds.
- */
- static int select_blocksize(int samplerate, int block_time_ms)
- {
- int i;
- int target;
- int blocksize;
-
- assert(samplerate > 0);
- blocksize = ff_flac_blocksize_table[1];
- target = (samplerate * block_time_ms) / 1000;
- for (i = 0; i < 16; i++) {
- if (target >= ff_flac_blocksize_table[i] &&
- ff_flac_blocksize_table[i] > blocksize) {
- blocksize = ff_flac_blocksize_table[i];
- }
- }
- return blocksize;
- }
-
-
- static av_cold void dprint_compression_options(FlacEncodeContext *s)
- {
- AVCodecContext *avctx = s->avctx;
- CompressionOptions *opt = &s->options;
-
- av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", opt->compression_level);
-
- switch (opt->lpc_type) {
- case AV_LPC_TYPE_NONE:
- av_log(avctx, AV_LOG_DEBUG, " lpc type: None\n");
- break;
- case AV_LPC_TYPE_FIXED:
- av_log(avctx, AV_LOG_DEBUG, " lpc type: Fixed pre-defined coefficients\n");
- break;
- case AV_LPC_TYPE_LEVINSON:
- av_log(avctx, AV_LOG_DEBUG, " lpc type: Levinson-Durbin recursion with Welch window\n");
- break;
- case AV_LPC_TYPE_CHOLESKY:
- av_log(avctx, AV_LOG_DEBUG, " lpc type: Cholesky factorization, %d pass%s\n",
- opt->lpc_passes, opt->lpc_passes == 1 ? "" : "es");
- break;
- }
-
- av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
- opt->min_prediction_order, opt->max_prediction_order);
-
- switch (opt->prediction_order_method) {
- case ORDER_METHOD_EST:
- av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "estimate");
- break;
- case ORDER_METHOD_2LEVEL:
- av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "2-level");
- break;
- case ORDER_METHOD_4LEVEL:
- av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "4-level");
- break;
- case ORDER_METHOD_8LEVEL:
- av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "8-level");
- break;
- case ORDER_METHOD_SEARCH:
- av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "full search");
- break;
- case ORDER_METHOD_LOG:
- av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "log search");
- break;
- }
-
-
- av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
- opt->min_partition_order, opt->max_partition_order);
-
- av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", avctx->frame_size);
-
- av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
- opt->lpc_coeff_precision);
- }
-
-
- static av_cold int flac_encode_init(AVCodecContext *avctx)
- {
- int freq = avctx->sample_rate;
- int channels = avctx->channels;
- FlacEncodeContext *s = avctx->priv_data;
- int i, level, ret;
- uint8_t *streaminfo;
-
- s->avctx = avctx;
-
- if (avctx->sample_fmt != AV_SAMPLE_FMT_S16)
- return -1;
-
- if (channels < 1 || channels > FLAC_MAX_CHANNELS)
- return -1;
- s->channels = channels;
-
- /* find samplerate in table */
- if (freq < 1)
- return -1;
- for (i = 4; i < 12; i++) {
- if (freq == ff_flac_sample_rate_table[i]) {
- s->samplerate = ff_flac_sample_rate_table[i];
- s->sr_code[0] = i;
- s->sr_code[1] = 0;
- break;
- }
- }
- /* if not in table, samplerate is non-standard */
- if (i == 12) {
- if (freq % 1000 == 0 && freq < 255000) {
- s->sr_code[0] = 12;
- s->sr_code[1] = freq / 1000;
- } else if (freq % 10 == 0 && freq < 655350) {
- s->sr_code[0] = 14;
- s->sr_code[1] = freq / 10;
- } else if (freq < 65535) {
- s->sr_code[0] = 13;
- s->sr_code[1] = freq;
- } else {
- return -1;
- }
- s->samplerate = freq;
- }
-
- /* set compression option defaults based on avctx->compression_level */
- if (avctx->compression_level < 0)
- s->options.compression_level = 5;
- else
- s->options.compression_level = avctx->compression_level;
-
- level = s->options.compression_level;
- if (level > 12) {
- av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
- s->options.compression_level);
- return -1;
- }
-
- s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level];
-
- s->options.lpc_type = ((int[]){ AV_LPC_TYPE_FIXED, AV_LPC_TYPE_FIXED, AV_LPC_TYPE_FIXED,
- AV_LPC_TYPE_LEVINSON, AV_LPC_TYPE_LEVINSON, AV_LPC_TYPE_LEVINSON,
- AV_LPC_TYPE_LEVINSON, AV_LPC_TYPE_LEVINSON, AV_LPC_TYPE_LEVINSON,
- AV_LPC_TYPE_LEVINSON, AV_LPC_TYPE_LEVINSON, AV_LPC_TYPE_LEVINSON,
- AV_LPC_TYPE_LEVINSON})[level];
-
- s->options.min_prediction_order = ((int[]){ 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level];
- s->options.max_prediction_order = ((int[]){ 3, 4, 4, 6, 8, 8, 8, 8, 12, 12, 12, 32, 32})[level];
-
- s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST,
- ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST,
- ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG, ORDER_METHOD_4LEVEL,
- ORDER_METHOD_LOG, ORDER_METHOD_SEARCH, ORDER_METHOD_LOG,
- ORDER_METHOD_SEARCH})[level];
-
- s->options.min_partition_order = ((int[]){ 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})[level];
- s->options.max_partition_order = ((int[]){ 2, 2, 3, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8})[level];
-
- /* set compression option overrides from AVCodecContext */
- #if FF_API_USE_LPC
- /* for compatibility with deprecated AVCodecContext.use_lpc */
- if (avctx->use_lpc == 0) {
- s->options.lpc_type = AV_LPC_TYPE_FIXED;
- } else if (avctx->use_lpc == 1) {
- s->options.lpc_type = AV_LPC_TYPE_LEVINSON;
- } else if (avctx->use_lpc > 1) {
- s->options.lpc_type = AV_LPC_TYPE_CHOLESKY;
- s->options.lpc_passes = avctx->use_lpc - 1;
- }
- #endif
- if (avctx->lpc_type > AV_LPC_TYPE_DEFAULT) {
- if (avctx->lpc_type > AV_LPC_TYPE_CHOLESKY) {
- av_log(avctx, AV_LOG_ERROR, "unknown lpc type: %d\n", avctx->lpc_type);
- return -1;
- }
- s->options.lpc_type = avctx->lpc_type;
- if (s->options.lpc_type == AV_LPC_TYPE_CHOLESKY) {
- if (avctx->lpc_passes < 0) {
- // default number of passes for Cholesky
- s->options.lpc_passes = 2;
- } else if (avctx->lpc_passes == 0) {
- av_log(avctx, AV_LOG_ERROR, "invalid number of lpc passes: %d\n",
- avctx->lpc_passes);
- return -1;
- } else {
- s->options.lpc_passes = avctx->lpc_passes;
- }
- }
- }
-
- if (s->options.lpc_type == AV_LPC_TYPE_NONE) {
- s->options.min_prediction_order = 0;
- } else if (avctx->min_prediction_order >= 0) {
- if (s->options.lpc_type == AV_LPC_TYPE_FIXED) {
- if (avctx->min_prediction_order > MAX_FIXED_ORDER) {
- av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
- avctx->min_prediction_order);
- return -1;
- }
- } else if (avctx->min_prediction_order < MIN_LPC_ORDER ||
- avctx->min_prediction_order > MAX_LPC_ORDER) {
- av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
- avctx->min_prediction_order);
- return -1;
- }
- s->options.min_prediction_order = avctx->min_prediction_order;
- }
- if (s->options.lpc_type == AV_LPC_TYPE_NONE) {
- s->options.max_prediction_order = 0;
- } else if (avctx->max_prediction_order >= 0) {
- if (s->options.lpc_type == AV_LPC_TYPE_FIXED) {
- if (avctx->max_prediction_order > MAX_FIXED_ORDER) {
- av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
- avctx->max_prediction_order);
- return -1;
- }
- } else if (avctx->max_prediction_order < MIN_LPC_ORDER ||
- avctx->max_prediction_order > MAX_LPC_ORDER) {
- av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
- avctx->max_prediction_order);
- return -1;
- }
- s->options.max_prediction_order = avctx->max_prediction_order;
- }
- if (s->options.max_prediction_order < s->options.min_prediction_order) {
- av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
- s->options.min_prediction_order, s->options.max_prediction_order);
- return -1;
- }
-
- if (avctx->prediction_order_method >= 0) {
- if (avctx->prediction_order_method > ORDER_METHOD_LOG) {
- av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n",
- avctx->prediction_order_method);
- return -1;
- }
- s->options.prediction_order_method = avctx->prediction_order_method;
- }
-
- if (avctx->min_partition_order >= 0) {
- if (avctx->min_partition_order > MAX_PARTITION_ORDER) {
- av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n",
- avctx->min_partition_order);
- return -1;
- }
- s->options.min_partition_order = avctx->min_partition_order;
- }
- if (avctx->max_partition_order >= 0) {
- if (avctx->max_partition_order > MAX_PARTITION_ORDER) {
- av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n",
- avctx->max_partition_order);
- return -1;
- }
- s->options.max_partition_order = avctx->max_partition_order;
- }
- if (s->options.max_partition_order < s->options.min_partition_order) {
- av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
- s->options.min_partition_order, s->options.max_partition_order);
- return -1;
- }
-
- if (avctx->frame_size > 0) {
- if (avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
- avctx->frame_size > FLAC_MAX_BLOCKSIZE) {
- av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
- avctx->frame_size);
- return -1;
- }
- } else {
- s->avctx->frame_size = select_blocksize(s->samplerate, s->options.block_time_ms);
- }
- s->max_blocksize = s->avctx->frame_size;
-
- /* set LPC precision */
- if (avctx->lpc_coeff_precision > 0) {
- if (avctx->lpc_coeff_precision > MAX_LPC_PRECISION) {
- av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n",
- avctx->lpc_coeff_precision);
- return -1;
- }
- s->options.lpc_coeff_precision = avctx->lpc_coeff_precision;
- } else {
- /* default LPC precision */
- s->options.lpc_coeff_precision = 15;
- }
-
- /* set maximum encoded frame size in verbatim mode */
- s->max_framesize = ff_flac_get_max_frame_size(s->avctx->frame_size,
- s->channels, 16);
-
- /* initialize MD5 context */
- s->md5ctx = av_malloc(av_md5_size);
- if (!s->md5ctx)
- return AVERROR(ENOMEM);
- av_md5_init(s->md5ctx);
-
- streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
- if (!streaminfo)
- return AVERROR(ENOMEM);
- write_streaminfo(s, streaminfo);
- avctx->extradata = streaminfo;
- avctx->extradata_size = FLAC_STREAMINFO_SIZE;
-
- s->frame_count = 0;
- s->min_framesize = s->max_framesize;
-
- avctx->coded_frame = avcodec_alloc_frame();
- if (!avctx->coded_frame)
- return AVERROR(ENOMEM);
-
- ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size,
- s->options.max_prediction_order, AV_LPC_TYPE_LEVINSON);
-
- dprint_compression_options(s);
-
- return ret;
- }
-
-
- static void init_frame(FlacEncodeContext *s)
- {
- int i, ch;
- FlacFrame *frame;
-
- frame = &s->frame;
-
- for (i = 0; i < 16; i++) {
- if (s->avctx->frame_size == ff_flac_blocksize_table[i]) {
- frame->blocksize = ff_flac_blocksize_table[i];
- frame->bs_code[0] = i;
- frame->bs_code[1] = 0;
- break;
- }
- }
- if (i == 16) {
- frame->blocksize = s->avctx->frame_size;
- if (frame->blocksize <= 256) {
- frame->bs_code[0] = 6;
- frame->bs_code[1] = frame->blocksize-1;
- } else {
- frame->bs_code[0] = 7;
- frame->bs_code[1] = frame->blocksize-1;
- }
- }
-
- for (ch = 0; ch < s->channels; ch++)
- frame->subframes[ch].obits = 16;
-
- frame->verbatim_only = 0;
- }
-
-
- /**
- * Copy channel-interleaved input samples into separate subframes.
- */
- static void copy_samples(FlacEncodeContext *s, const int16_t *samples)
- {
- int i, j, ch;
- FlacFrame *frame;
-
- frame = &s->frame;
- for (i = 0, j = 0; i < frame->blocksize; i++)
- for (ch = 0; ch < s->channels; ch++, j++)
- frame->subframes[ch].samples[i] = samples[j];
- }
-
-
- static int rice_count_exact(int32_t *res, int n, int k)
- {
- int i;
- int count = 0;
-
- for (i = 0; i < n; i++) {
- int32_t v = -2 * res[i] - 1;
- v ^= v >> 31;
- count += (v >> k) + 1 + k;
- }
- return count;
- }
-
-
- static int subframe_count_exact(FlacEncodeContext *s, FlacSubframe *sub,
- int pred_order)
- {
- int p, porder, psize;
- int i, part_end;
- int count = 0;
-
- /* subframe header */
- count += 8;
-
- /* subframe */
- if (sub->type == FLAC_SUBFRAME_CONSTANT) {
- count += sub->obits;
- } else if (sub->type == FLAC_SUBFRAME_VERBATIM) {
- count += s->frame.blocksize * sub->obits;
- } else {
- /* warm-up samples */
- count += pred_order * sub->obits;
-
- /* LPC coefficients */
- if (sub->type == FLAC_SUBFRAME_LPC)
- count += 4 + 5 + pred_order * s->options.lpc_coeff_precision;
-
- /* rice-encoded block */
- count += 2;
-
- /* partition order */
- porder = sub->rc.porder;
- psize = s->frame.blocksize >> porder;
- count += 4;
-
- /* residual */
- i = pred_order;
- part_end = psize;
- for (p = 0; p < 1 << porder; p++) {
- int k = sub->rc.params[p];
- count += 4;
- count += rice_count_exact(&sub->residual[i], part_end - i, k);
- i = part_end;
- part_end = FFMIN(s->frame.blocksize, part_end + psize);
- }
- }
-
- return count;
- }
-
-
- #define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k)))
-
- /**
- * Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0.
- */
- static int find_optimal_param(uint32_t sum, int n)
- {
- int k;
- uint32_t sum2;
-
- if (sum <= n >> 1)
- return 0;
- sum2 = sum - (n >> 1);
- k = av_log2(n < 256 ? FASTDIV(sum2, n) : sum2 / n);
- return FFMIN(k, MAX_RICE_PARAM);
- }
-
-
- static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder,
- uint32_t *sums, int n, int pred_order)
- {
- int i;
- int k, cnt, part;
- uint32_t all_bits;
-
- part = (1 << porder);
- all_bits = 4 * part;
-
- cnt = (n >> porder) - pred_order;
- for (i = 0; i < part; i++) {
- k = find_optimal_param(sums[i], cnt);
- rc->params[i] = k;
- all_bits += rice_encode_count(sums[i], cnt, k);
- cnt = n >> porder;
- }
-
- rc->porder = porder;
-
- return all_bits;
- }
-
-
- static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order,
- uint32_t sums[][MAX_PARTITIONS])
- {
- int i, j;
- int parts;
- uint32_t *res, *res_end;
-
- /* sums for highest level */
- parts = (1 << pmax);
- res = &data[pred_order];
- res_end = &data[n >> pmax];
- for (i = 0; i < parts; i++) {
- uint32_t sum = 0;
- while (res < res_end)
- sum += *(res++);
- sums[pmax][i] = sum;
- res_end += n >> pmax;
- }
- /* sums for lower levels */
- for (i = pmax - 1; i >= pmin; i--) {
- parts = (1 << i);
- for (j = 0; j < parts; j++)
- sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1];
- }
- }
-
-
- static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax,
- int32_t *data, int n, int pred_order)
- {
- int i;
- uint32_t bits[MAX_PARTITION_ORDER+1];
- int opt_porder;
- RiceContext tmp_rc;
- uint32_t *udata;
- uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS];
-
- assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
- assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
- assert(pmin <= pmax);
-
- udata = av_malloc(n * sizeof(uint32_t));
- for (i = 0; i < n; i++)
- udata[i] = (2*data[i]) ^ (data[i]>>31);
-
- calc_sums(pmin, pmax, udata, n, pred_order, sums);
-
- opt_porder = pmin;
- bits[pmin] = UINT32_MAX;
- for (i = pmin; i <= pmax; i++) {
- bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order);
- if (bits[i] <= bits[opt_porder]) {
- opt_porder = i;
- *rc = tmp_rc;
- }
- }
-
- av_freep(&udata);
- return bits[opt_porder];
- }
-
-
- static int get_max_p_order(int max_porder, int n, int order)
- {
- int porder = FFMIN(max_porder, av_log2(n^(n-1)));
- if (order > 0)
- porder = FFMIN(porder, av_log2(n/order));
- return porder;
- }
-
-
- static uint32_t find_subframe_rice_params(FlacEncodeContext *s,
- FlacSubframe *sub, int pred_order)
- {
- int pmin = get_max_p_order(s->options.min_partition_order,
- s->frame.blocksize, pred_order);
- int pmax = get_max_p_order(s->options.max_partition_order,
- s->frame.blocksize, pred_order);
-
- uint32_t bits = 8 + pred_order * sub->obits + 2 + 4;
- if (sub->type == FLAC_SUBFRAME_LPC)
- bits += 4 + 5 + pred_order * s->options.lpc_coeff_precision;
- bits += calc_rice_params(&sub->rc, pmin, pmax, sub->residual,
- s->frame.blocksize, pred_order);
- return bits;
- }
-
-
- static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
- int order)
- {
- int i;
-
- for (i = 0; i < order; i++)
- res[i] = smp[i];
-
- if (order == 0) {
- for (i = order; i < n; i++)
- res[i] = smp[i];
- } else if (order == 1) {
- for (i = order; i < n; i++)
- res[i] = smp[i] - smp[i-1];
- } else if (order == 2) {
- int a = smp[order-1] - smp[order-2];
- for (i = order; i < n; i += 2) {
- int b = smp[i ] - smp[i-1];
- res[i] = b - a;
- a = smp[i+1] - smp[i ];
- res[i+1] = a - b;
- }
- } else if (order == 3) {
- int a = smp[order-1] - smp[order-2];
- int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
- for (i = order; i < n; i += 2) {
- int b = smp[i ] - smp[i-1];
- int d = b - a;
- res[i] = d - c;
- a = smp[i+1] - smp[i ];
- c = a - b;
- res[i+1] = c - d;
- }
- } else {
- int a = smp[order-1] - smp[order-2];
- int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
- int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4];
- for (i = order; i < n; i += 2) {
- int b = smp[i ] - smp[i-1];
- int d = b - a;
- int f = d - c;
- res[i ] = f - e;
- a = smp[i+1] - smp[i ];
- c = a - b;
- e = c - d;
- res[i+1] = e - f;
- }
- }
- }
-
-
- #define LPC1(x) {\
- int c = coefs[(x)-1];\
- p0 += c * s;\
- s = smp[i-(x)+1];\
- p1 += c * s;\
- }
-
- static av_always_inline void encode_residual_lpc_unrolled(int32_t *res,
- const int32_t *smp, int n, int order,
- const int32_t *coefs, int shift, int big)
- {
- int i;
- for (i = order; i < n; i += 2) {
- int s = smp[i-order];
- int p0 = 0, p1 = 0;
- if (big) {
- switch (order) {
- case 32: LPC1(32)
- case 31: LPC1(31)
- case 30: LPC1(30)
- case 29: LPC1(29)
- case 28: LPC1(28)
- case 27: LPC1(27)
- case 26: LPC1(26)
- case 25: LPC1(25)
- case 24: LPC1(24)
- case 23: LPC1(23)
- case 22: LPC1(22)
- case 21: LPC1(21)
- case 20: LPC1(20)
- case 19: LPC1(19)
- case 18: LPC1(18)
- case 17: LPC1(17)
- case 16: LPC1(16)
- case 15: LPC1(15)
- case 14: LPC1(14)
- case 13: LPC1(13)
- case 12: LPC1(12)
- case 11: LPC1(11)
- case 10: LPC1(10)
- case 9: LPC1( 9)
- LPC1( 8)
- LPC1( 7)
- LPC1( 6)
- LPC1( 5)
- LPC1( 4)
- LPC1( 3)
- LPC1( 2)
- LPC1( 1)
- }
- } else {
- switch (order) {
- case 8: LPC1( 8)
- case 7: LPC1( 7)
- case 6: LPC1( 6)
- case 5: LPC1( 5)
- case 4: LPC1( 4)
- case 3: LPC1( 3)
- case 2: LPC1( 2)
- case 1: LPC1( 1)
- }
- }
- res[i ] = smp[i ] - (p0 >> shift);
- res[i+1] = smp[i+1] - (p1 >> shift);
- }
- }
-
-
- static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n,
- int order, const int32_t *coefs, int shift)
- {
- int i;
- for (i = 0; i < order; i++)
- res[i] = smp[i];
- #if CONFIG_SMALL
- for (i = order; i < n; i += 2) {
- int j;
- int s = smp[i];
- int p0 = 0, p1 = 0;
- for (j = 0; j < order; j++) {
- int c = coefs[j];
- p1 += c * s;
- s = smp[i-j-1];
- p0 += c * s;
- }
- res[i ] = smp[i ] - (p0 >> shift);
- res[i+1] = smp[i+1] - (p1 >> shift);
- }
- #else
- switch (order) {
- case 1: encode_residual_lpc_unrolled(res, smp, n, 1, coefs, shift, 0); break;
- case 2: encode_residual_lpc_unrolled(res, smp, n, 2, coefs, shift, 0); break;
- case 3: encode_residual_lpc_unrolled(res, smp, n, 3, coefs, shift, 0); break;
- case 4: encode_residual_lpc_unrolled(res, smp, n, 4, coefs, shift, 0); break;
- case 5: encode_residual_lpc_unrolled(res, smp, n, 5, coefs, shift, 0); break;
- case 6: encode_residual_lpc_unrolled(res, smp, n, 6, coefs, shift, 0); break;
- case 7: encode_residual_lpc_unrolled(res, smp, n, 7, coefs, shift, 0); break;
- case 8: encode_residual_lpc_unrolled(res, smp, n, 8, coefs, shift, 0); break;
- default: encode_residual_lpc_unrolled(res, smp, n, order, coefs, shift, 1); break;
- }
- #endif
- }
-
-
- static int encode_residual_ch(FlacEncodeContext *s, int ch)
- {
- int i, n;
- int min_order, max_order, opt_order, omethod;
- FlacFrame *frame;
- FlacSubframe *sub;
- int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
- int shift[MAX_LPC_ORDER];
- int32_t *res, *smp;
-
- frame = &s->frame;
- sub = &frame->subframes[ch];
- res = sub->residual;
- smp = sub->samples;
- n = frame->blocksize;
-
- /* CONSTANT */
- for (i = 1; i < n; i++)
- if(smp[i] != smp[0])
- break;
- if (i == n) {
- sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
- res[0] = smp[0];
- return subframe_count_exact(s, sub, 0);
- }
-
- /* VERBATIM */
- if (frame->verbatim_only || n < 5) {
- sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
- memcpy(res, smp, n * sizeof(int32_t));
- return subframe_count_exact(s, sub, 0);
- }
-
- min_order = s->options.min_prediction_order;
- max_order = s->options.max_prediction_order;
- omethod = s->options.prediction_order_method;
-
- /* FIXED */
- sub->type = FLAC_SUBFRAME_FIXED;
- if (s->options.lpc_type == AV_LPC_TYPE_NONE ||
- s->options.lpc_type == AV_LPC_TYPE_FIXED || n <= max_order) {
- uint32_t bits[MAX_FIXED_ORDER+1];
- if (max_order > MAX_FIXED_ORDER)
- max_order = MAX_FIXED_ORDER;
- opt_order = 0;
- bits[0] = UINT32_MAX;
- for (i = min_order; i <= max_order; i++) {
- encode_residual_fixed(res, smp, n, i);
- bits[i] = find_subframe_rice_params(s, sub, i);
- if (bits[i] < bits[opt_order])
- opt_order = i;
- }
- sub->order = opt_order;
- sub->type_code = sub->type | sub->order;
- if (sub->order != max_order) {
- encode_residual_fixed(res, smp, n, sub->order);
- find_subframe_rice_params(s, sub, sub->order);
- }
- return subframe_count_exact(s, sub, sub->order);
- }
-
- /* LPC */
- sub->type = FLAC_SUBFRAME_LPC;
- opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, smp, n, min_order, max_order,
- s->options.lpc_coeff_precision, coefs, shift, s->options.lpc_type,
- s->options.lpc_passes, omethod,
- MAX_LPC_SHIFT, 0);
-
- if (omethod == ORDER_METHOD_2LEVEL ||
- omethod == ORDER_METHOD_4LEVEL ||
- omethod == ORDER_METHOD_8LEVEL) {
- int levels = 1 << omethod;
- uint32_t bits[1 << ORDER_METHOD_8LEVEL];
- int order;
- int opt_index = levels-1;
- opt_order = max_order-1;
- bits[opt_index] = UINT32_MAX;
- for (i = levels-1; i >= 0; i--) {
- order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1;
- if (order < 0)
- order = 0;
- encode_residual_lpc(res, smp, n, order+1, coefs[order], shift[order]);
- bits[i] = find_subframe_rice_params(s, sub, order+1);
- if (bits[i] < bits[opt_index]) {
- opt_index = i;
- opt_order = order;
- }
- }
- opt_order++;
- } else if (omethod == ORDER_METHOD_SEARCH) {
- // brute-force optimal order search
- uint32_t bits[MAX_LPC_ORDER];
- opt_order = 0;
- bits[0] = UINT32_MAX;
- for (i = min_order-1; i < max_order; i++) {
- encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
- bits[i] = find_subframe_rice_params(s, sub, i+1);
- if (bits[i] < bits[opt_order])
- opt_order = i;
- }
- opt_order++;
- } else if (omethod == ORDER_METHOD_LOG) {
- uint32_t bits[MAX_LPC_ORDER];
- int step;
-
- opt_order = min_order - 1 + (max_order-min_order)/3;
- memset(bits, -1, sizeof(bits));
-
- for (step = 16; step; step >>= 1) {
- int last = opt_order;
- for (i = last-step; i <= last+step; i += step) {
- if (i < min_order-1 || i >= max_order || bits[i] < UINT32_MAX)
- continue;
- encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
- bits[i] = find_subframe_rice_params(s, sub, i+1);
- if (bits[i] < bits[opt_order])
- opt_order = i;
- }
- }
- opt_order++;
- }
-
- sub->order = opt_order;
- sub->type_code = sub->type | (sub->order-1);
- sub->shift = shift[sub->order-1];
- for (i = 0; i < sub->order; i++)
- sub->coefs[i] = coefs[sub->order-1][i];
-
- encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift);
-
- find_subframe_rice_params(s, sub, sub->order);
-
- return subframe_count_exact(s, sub, sub->order);
- }
-
-
- static int count_frame_header(FlacEncodeContext *s)
- {
- uint8_t tmp;
- int count;
-
- /*
- <14> Sync code
- <1> Reserved
- <1> Blocking strategy
- <4> Block size in inter-channel samples
- <4> Sample rate
- <4> Channel assignment
- <3> Sample size in bits
- <1> Reserved
- */
- count = 32;
-
- /* coded frame number */
- PUT_UTF8(s->frame_count, tmp, count += 8;)
-
- /* explicit block size */
- if (s->frame.bs_code[0] == 6)
- count += 8;
- else if (s->frame.bs_code[0] == 7)
- count += 16;
-
- /* explicit sample rate */
- count += ((s->sr_code[0] == 12) + (s->sr_code[0] > 12)) * 8;
-
- /* frame header CRC-8 */
- count += 8;
-
- return count;
- }
-
-
- static int encode_frame(FlacEncodeContext *s)
- {
- int ch, count;
-
- count = count_frame_header(s);
-
- for (ch = 0; ch < s->channels; ch++)
- count += encode_residual_ch(s, ch);
-
- count += (8 - (count & 7)) & 7; // byte alignment
- count += 16; // CRC-16
-
- return count >> 3;
- }
-
-
- static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
- {
- int i, best;
- int32_t lt, rt;
- uint64_t sum[4];
- uint64_t score[4];
- int k;
-
- /* calculate sum of 2nd order residual for each channel */
- sum[0] = sum[1] = sum[2] = sum[3] = 0;
- for (i = 2; i < n; i++) {
- lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
- rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
- sum[2] += FFABS((lt + rt) >> 1);
- sum[3] += FFABS(lt - rt);
- sum[0] += FFABS(lt);
- sum[1] += FFABS(rt);
- }
- /* estimate bit counts */
- for (i = 0; i < 4; i++) {
- k = find_optimal_param(2 * sum[i], n);
- sum[i] = rice_encode_count( 2 * sum[i], n, k);
- }
-
- /* calculate score for each mode */
- score[0] = sum[0] + sum[1];
- score[1] = sum[0] + sum[3];
- score[2] = sum[1] + sum[3];
- score[3] = sum[2] + sum[3];
-
- /* return mode with lowest score */
- best = 0;
- for (i = 1; i < 4; i++)
- if (score[i] < score[best])
- best = i;
- if (best == 0) {
- return FLAC_CHMODE_INDEPENDENT;
- } else if (best == 1) {
- return FLAC_CHMODE_LEFT_SIDE;
- } else if (best == 2) {
- return FLAC_CHMODE_RIGHT_SIDE;
- } else {
- return FLAC_CHMODE_MID_SIDE;
- }
- }
-
-
- /**
- * Perform stereo channel decorrelation.
- */
- static void channel_decorrelation(FlacEncodeContext *s)
- {
- FlacFrame *frame;
- int32_t *left, *right;
- int i, n;
-
- frame = &s->frame;
- n = frame->blocksize;
- left = frame->subframes[0].samples;
- right = frame->subframes[1].samples;
-
- if (s->channels != 2) {
- frame->ch_mode = FLAC_CHMODE_INDEPENDENT;
- return;
- }
-
- frame->ch_mode = estimate_stereo_mode(left, right, n);
-
- /* perform decorrelation and adjust bits-per-sample */
- if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT)
- return;
- if (frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
- int32_t tmp;
- for (i = 0; i < n; i++) {
- tmp = left[i];
- left[i] = (tmp + right[i]) >> 1;
- right[i] = tmp - right[i];
- }
- frame->subframes[1].obits++;
- } else if (frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
- for (i = 0; i < n; i++)
- right[i] = left[i] - right[i];
- frame->subframes[1].obits++;
- } else {
- for (i = 0; i < n; i++)
- left[i] -= right[i];
- frame->subframes[0].obits++;
- }
- }
-
-
- static void write_utf8(PutBitContext *pb, uint32_t val)
- {
- uint8_t tmp;
- PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);)
- }
-
-
- static void write_frame_header(FlacEncodeContext *s)
- {
- FlacFrame *frame;
- int crc;
-
- frame = &s->frame;
-
- put_bits(&s->pb, 16, 0xFFF8);
- put_bits(&s->pb, 4, frame->bs_code[0]);
- put_bits(&s->pb, 4, s->sr_code[0]);
-
- if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT)
- put_bits(&s->pb, 4, s->channels-1);
- else
- put_bits(&s->pb, 4, frame->ch_mode);
-
- put_bits(&s->pb, 3, 4); /* bits-per-sample code */
- put_bits(&s->pb, 1, 0);
- write_utf8(&s->pb, s->frame_count);
-
- if (frame->bs_code[0] == 6)
- put_bits(&s->pb, 8, frame->bs_code[1]);
- else if (frame->bs_code[0] == 7)
- put_bits(&s->pb, 16, frame->bs_code[1]);
-
- if (s->sr_code[0] == 12)
- put_bits(&s->pb, 8, s->sr_code[1]);
- else if (s->sr_code[0] > 12)
- put_bits(&s->pb, 16, s->sr_code[1]);
-
- flush_put_bits(&s->pb);
- crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0, s->pb.buf,
- put_bits_count(&s->pb) >> 3);
- put_bits(&s->pb, 8, crc);
- }
-
-
- static void write_subframes(FlacEncodeContext *s)
- {
- int ch;
-
- for (ch = 0; ch < s->channels; ch++) {
- FlacSubframe *sub = &s->frame.subframes[ch];
- int i, p, porder, psize;
- int32_t *part_end;
- int32_t *res = sub->residual;
- int32_t *frame_end = &sub->residual[s->frame.blocksize];
-
- /* subframe header */
- put_bits(&s->pb, 1, 0);
- put_bits(&s->pb, 6, sub->type_code);
- put_bits(&s->pb, 1, 0); /* no wasted bits */
-
- /* subframe */
- if (sub->type == FLAC_SUBFRAME_CONSTANT) {
- put_sbits(&s->pb, sub->obits, res[0]);
- } else if (sub->type == FLAC_SUBFRAME_VERBATIM) {
- while (res < frame_end)
- put_sbits(&s->pb, sub->obits, *res++);
- } else {
- /* warm-up samples */
- for (i = 0; i < sub->order; i++)
- put_sbits(&s->pb, sub->obits, *res++);
-
- /* LPC coefficients */
- if (sub->type == FLAC_SUBFRAME_LPC) {
- int cbits = s->options.lpc_coeff_precision;
- put_bits( &s->pb, 4, cbits-1);
- put_sbits(&s->pb, 5, sub->shift);
- for (i = 0; i < sub->order; i++)
- put_sbits(&s->pb, cbits, sub->coefs[i]);
- }
-
- /* rice-encoded block */
- put_bits(&s->pb, 2, 0);
-
- /* partition order */
- porder = sub->rc.porder;
- psize = s->frame.blocksize >> porder;
- put_bits(&s->pb, 4, porder);
-
- /* residual */
- part_end = &sub->residual[psize];
- for (p = 0; p < 1 << porder; p++) {
- int k = sub->rc.params[p];
- put_bits(&s->pb, 4, k);
- while (res < part_end)
- set_sr_golomb_flac(&s->pb, *res++, k, INT32_MAX, 0);
- part_end = FFMIN(frame_end, part_end + psize);
- }
- }
- }
- }
-
-
- static void write_frame_footer(FlacEncodeContext *s)
- {
- int crc;
- flush_put_bits(&s->pb);
- crc = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, s->pb.buf,
- put_bits_count(&s->pb)>>3));
- put_bits(&s->pb, 16, crc);
- flush_put_bits(&s->pb);
- }
-
-
- static int write_frame(FlacEncodeContext *s, uint8_t *frame, int buf_size)
- {
- init_put_bits(&s->pb, frame, buf_size);
- write_frame_header(s);
- write_subframes(s);
- write_frame_footer(s);
- return put_bits_count(&s->pb) >> 3;
- }
-
-
- static void update_md5_sum(FlacEncodeContext *s, const int16_t *samples)
- {
- #if HAVE_BIGENDIAN
- int i;
- for (i = 0; i < s->frame.blocksize * s->channels; i++) {
- int16_t smp = av_le2ne16(samples[i]);
- av_md5_update(s->md5ctx, (uint8_t *)&smp, 2);
- }
- #else
- av_md5_update(s->md5ctx, (const uint8_t *)samples, s->frame.blocksize*s->channels*2);
- #endif
- }
-
-
- static int flac_encode_frame(AVCodecContext *avctx, uint8_t *frame,
- int buf_size, void *data)
- {
- FlacEncodeContext *s;
- const int16_t *samples = data;
- int frame_bytes, out_bytes;
-
- s = avctx->priv_data;
-
- /* when the last block is reached, update the header in extradata */
- if (!data) {
- s->max_framesize = s->max_encoded_framesize;
- av_md5_final(s->md5ctx, s->md5sum);
- write_streaminfo(s, avctx->extradata);
- return 0;
- }
-
- /* change max_framesize for small final frame */
- if (avctx->frame_size < s->frame.blocksize) {
- s->max_framesize = ff_flac_get_max_frame_size(avctx->frame_size,
- s->channels, 16);
- }
-
- init_frame(s);
-
- copy_samples(s, samples);
-
- channel_decorrelation(s);
-
- frame_bytes = encode_frame(s);
-
- /* fallback to verbatim mode if the compressed frame is larger than it
- would be if encoded uncompressed. */
- if (frame_bytes > s->max_framesize) {
- s->frame.verbatim_only = 1;
- frame_bytes = encode_frame(s);
- }
-
- if (buf_size < frame_bytes) {
- av_log(avctx, AV_LOG_ERROR, "output buffer too small\n");
- return 0;
- }
- out_bytes = write_frame(s, frame, buf_size);
-
- s->frame_count++;
- avctx->coded_frame->pts = s->sample_count;
- s->sample_count += avctx->frame_size;
- update_md5_sum(s, samples);
- if (out_bytes > s->max_encoded_framesize)
- s->max_encoded_framesize = out_bytes;
- if (out_bytes < s->min_framesize)
- s->min_framesize = out_bytes;
-
- return out_bytes;
- }
-
-
- static av_cold int flac_encode_close(AVCodecContext *avctx)
- {
- if (avctx->priv_data) {
- FlacEncodeContext *s = avctx->priv_data;
- av_freep(&s->md5ctx);
- ff_lpc_end(&s->lpc_ctx);
- }
- av_freep(&avctx->extradata);
- avctx->extradata_size = 0;
- av_freep(&avctx->coded_frame);
- return 0;
- }
-
-
- AVCodec ff_flac_encoder = {
- "flac",
- AVMEDIA_TYPE_AUDIO,
- CODEC_ID_FLAC,
- sizeof(FlacEncodeContext),
- flac_encode_init,
- flac_encode_frame,
- flac_encode_close,
- NULL,
- .capabilities = CODEC_CAP_SMALL_LAST_FRAME | CODEC_CAP_DELAY,
- .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
- .long_name = NULL_IF_CONFIG_SMALL("FLAC (Free Lossless Audio Codec)"),
- };
|