You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

378 lines
12KB

  1. /*
  2. * Atrac 1 compatible decoder
  3. * Copyright (c) 2009 Maxim Poliakovski
  4. * Copyright (c) 2009 Benjamin Larsson
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Atrac 1 compatible decoder.
  25. * This decoder handles raw ATRAC1 data and probably SDDS data.
  26. */
  27. /* Many thanks to Tim Craig for all the help! */
  28. #include <math.h>
  29. #include <stddef.h>
  30. #include <stdio.h>
  31. #include "avcodec.h"
  32. #include "get_bits.h"
  33. #include "dsputil.h"
  34. #include "fft.h"
  35. #include "atrac.h"
  36. #include "atrac1data.h"
  37. #define AT1_MAX_BFU 52 ///< max number of block floating units in a sound unit
  38. #define AT1_SU_SIZE 212 ///< number of bytes in a sound unit
  39. #define AT1_SU_SAMPLES 512 ///< number of samples in a sound unit
  40. #define AT1_FRAME_SIZE AT1_SU_SIZE * 2
  41. #define AT1_SU_MAX_BITS AT1_SU_SIZE * 8
  42. #define AT1_MAX_CHANNELS 2
  43. #define AT1_QMF_BANDS 3
  44. #define IDX_LOW_BAND 0
  45. #define IDX_MID_BAND 1
  46. #define IDX_HIGH_BAND 2
  47. /**
  48. * Sound unit struct, one unit is used per channel
  49. */
  50. typedef struct {
  51. int log2_block_count[AT1_QMF_BANDS]; ///< log2 number of blocks in a band
  52. int num_bfus; ///< number of Block Floating Units
  53. float* spectrum[2];
  54. DECLARE_ALIGNED(16, float, spec1)[AT1_SU_SAMPLES]; ///< mdct buffer
  55. DECLARE_ALIGNED(16, float, spec2)[AT1_SU_SAMPLES]; ///< mdct buffer
  56. DECLARE_ALIGNED(16, float, fst_qmf_delay)[46]; ///< delay line for the 1st stacked QMF filter
  57. DECLARE_ALIGNED(16, float, snd_qmf_delay)[46]; ///< delay line for the 2nd stacked QMF filter
  58. DECLARE_ALIGNED(16, float, last_qmf_delay)[256+23]; ///< delay line for the last stacked QMF filter
  59. } AT1SUCtx;
  60. /**
  61. * The atrac1 context, holds all needed parameters for decoding
  62. */
  63. typedef struct {
  64. AT1SUCtx SUs[AT1_MAX_CHANNELS]; ///< channel sound unit
  65. DECLARE_ALIGNED(16, float, spec)[AT1_SU_SAMPLES]; ///< the mdct spectrum buffer
  66. DECLARE_ALIGNED(16, float, low)[256];
  67. DECLARE_ALIGNED(16, float, mid)[256];
  68. DECLARE_ALIGNED(16, float, high)[512];
  69. float* bands[3];
  70. DECLARE_ALIGNED(16, float, out_samples)[AT1_MAX_CHANNELS][AT1_SU_SAMPLES];
  71. FFTContext mdct_ctx[3];
  72. int channels;
  73. DSPContext dsp;
  74. } AT1Ctx;
  75. /** size of the transform in samples in the long mode for each QMF band */
  76. static const uint16_t samples_per_band[3] = {128, 128, 256};
  77. static const uint8_t mdct_long_nbits[3] = {7, 7, 8};
  78. static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits,
  79. int rev_spec)
  80. {
  81. FFTContext* mdct_context = &q->mdct_ctx[nbits - 5 - (nbits > 6)];
  82. int transf_size = 1 << nbits;
  83. if (rev_spec) {
  84. int i;
  85. for (i = 0; i < transf_size / 2; i++)
  86. FFSWAP(float, spec[i], spec[transf_size - 1 - i]);
  87. }
  88. ff_imdct_half(mdct_context, out, spec);
  89. }
  90. static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q)
  91. {
  92. int band_num, band_samples, log2_block_count, nbits, num_blocks, block_size;
  93. unsigned int start_pos, ref_pos = 0, pos = 0;
  94. for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
  95. float *prev_buf;
  96. int j;
  97. band_samples = samples_per_band[band_num];
  98. log2_block_count = su->log2_block_count[band_num];
  99. /* number of mdct blocks in the current QMF band: 1 - for long mode */
  100. /* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/
  101. num_blocks = 1 << log2_block_count;
  102. if (num_blocks == 1) {
  103. /* mdct block size in samples: 128 (long mode, low & mid bands), */
  104. /* 256 (long mode, high band) and 32 (short mode, all bands) */
  105. block_size = band_samples >> log2_block_count;
  106. /* calc transform size in bits according to the block_size_mode */
  107. nbits = mdct_long_nbits[band_num] - log2_block_count;
  108. if (nbits != 5 && nbits != 7 && nbits != 8)
  109. return -1;
  110. } else {
  111. block_size = 32;
  112. nbits = 5;
  113. }
  114. start_pos = 0;
  115. prev_buf = &su->spectrum[1][ref_pos + band_samples - 16];
  116. for (j=0; j < num_blocks; j++) {
  117. at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos + start_pos], nbits, band_num);
  118. /* overlap and window */
  119. q->dsp.vector_fmul_window(&q->bands[band_num][start_pos], prev_buf,
  120. &su->spectrum[0][ref_pos + start_pos], ff_sine_32, 0, 16);
  121. prev_buf = &su->spectrum[0][ref_pos+start_pos + 16];
  122. start_pos += block_size;
  123. pos += block_size;
  124. }
  125. if (num_blocks == 1)
  126. memcpy(q->bands[band_num] + 32, &su->spectrum[0][ref_pos + 16], 240 * sizeof(float));
  127. ref_pos += band_samples;
  128. }
  129. /* Swap buffers so the mdct overlap works */
  130. FFSWAP(float*, su->spectrum[0], su->spectrum[1]);
  131. return 0;
  132. }
  133. /**
  134. * Parse the block size mode byte
  135. */
  136. static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS])
  137. {
  138. int log2_block_count_tmp, i;
  139. for (i = 0; i < 2; i++) {
  140. /* low and mid band */
  141. log2_block_count_tmp = get_bits(gb, 2);
  142. if (log2_block_count_tmp & 1)
  143. return -1;
  144. log2_block_cnt[i] = 2 - log2_block_count_tmp;
  145. }
  146. /* high band */
  147. log2_block_count_tmp = get_bits(gb, 2);
  148. if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3)
  149. return -1;
  150. log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp;
  151. skip_bits(gb, 2);
  152. return 0;
  153. }
  154. static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su,
  155. float spec[AT1_SU_SAMPLES])
  156. {
  157. int bits_used, band_num, bfu_num, i;
  158. uint8_t idwls[AT1_MAX_BFU]; ///< the word length indexes for each BFU
  159. uint8_t idsfs[AT1_MAX_BFU]; ///< the scalefactor indexes for each BFU
  160. /* parse the info byte (2nd byte) telling how much BFUs were coded */
  161. su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)];
  162. /* calc number of consumed bits:
  163. num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits)
  164. + info_byte_copy(8bits) + log2_block_count_copy(8bits) */
  165. bits_used = su->num_bfus * 10 + 32 +
  166. bfu_amount_tab2[get_bits(gb, 2)] +
  167. (bfu_amount_tab3[get_bits(gb, 3)] << 1);
  168. /* get word length index (idwl) for each BFU */
  169. for (i = 0; i < su->num_bfus; i++)
  170. idwls[i] = get_bits(gb, 4);
  171. /* get scalefactor index (idsf) for each BFU */
  172. for (i = 0; i < su->num_bfus; i++)
  173. idsfs[i] = get_bits(gb, 6);
  174. /* zero idwl/idsf for empty BFUs */
  175. for (i = su->num_bfus; i < AT1_MAX_BFU; i++)
  176. idwls[i] = idsfs[i] = 0;
  177. /* read in the spectral data and reconstruct MDCT spectrum of this channel */
  178. for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
  179. for (bfu_num = bfu_bands_t[band_num]; bfu_num < bfu_bands_t[band_num+1]; bfu_num++) {
  180. int pos;
  181. int num_specs = specs_per_bfu[bfu_num];
  182. int word_len = !!idwls[bfu_num] + idwls[bfu_num];
  183. float scale_factor = ff_atrac_sf_table[idsfs[bfu_num]];
  184. bits_used += word_len * num_specs; /* add number of bits consumed by current BFU */
  185. /* check for bitstream overflow */
  186. if (bits_used > AT1_SU_MAX_BITS)
  187. return -1;
  188. /* get the position of the 1st spec according to the block size mode */
  189. pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num];
  190. if (word_len) {
  191. float max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1);
  192. for (i = 0; i < num_specs; i++) {
  193. /* read in a quantized spec and convert it to
  194. * signed int and then inverse quantization
  195. */
  196. spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant;
  197. }
  198. } else { /* word_len = 0 -> empty BFU, zero all specs in the emty BFU */
  199. memset(&spec[pos], 0, num_specs * sizeof(float));
  200. }
  201. }
  202. }
  203. return 0;
  204. }
  205. static void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut)
  206. {
  207. float temp[256];
  208. float iqmf_temp[512 + 46];
  209. /* combine low and middle bands */
  210. atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp);
  211. /* delay the signal of the high band by 23 samples */
  212. memcpy( su->last_qmf_delay, &su->last_qmf_delay[256], sizeof(float) * 23);
  213. memcpy(&su->last_qmf_delay[23], q->bands[2], sizeof(float) * 256);
  214. /* combine (low + middle) and high bands */
  215. atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp);
  216. }
  217. static int atrac1_decode_frame(AVCodecContext *avctx, void *data,
  218. int *data_size, AVPacket *avpkt)
  219. {
  220. const uint8_t *buf = avpkt->data;
  221. int buf_size = avpkt->size;
  222. AT1Ctx *q = avctx->priv_data;
  223. int ch, ret, i;
  224. GetBitContext gb;
  225. float* samples = data;
  226. if (buf_size < 212 * q->channels) {
  227. av_log(q,AV_LOG_ERROR,"Not enought data to decode!\n");
  228. return -1;
  229. }
  230. for (ch = 0; ch < q->channels; ch++) {
  231. AT1SUCtx* su = &q->SUs[ch];
  232. init_get_bits(&gb, &buf[212 * ch], 212 * 8);
  233. /* parse block_size_mode, 1st byte */
  234. ret = at1_parse_bsm(&gb, su->log2_block_count);
  235. if (ret < 0)
  236. return ret;
  237. ret = at1_unpack_dequant(&gb, su, q->spec);
  238. if (ret < 0)
  239. return ret;
  240. ret = at1_imdct_block(su, q);
  241. if (ret < 0)
  242. return ret;
  243. at1_subband_synthesis(q, su, q->out_samples[ch]);
  244. }
  245. /* interleave; FIXME, should create/use a DSP function */
  246. if (q->channels == 1) {
  247. /* mono */
  248. memcpy(samples, q->out_samples[0], AT1_SU_SAMPLES * 4);
  249. } else {
  250. /* stereo */
  251. for (i = 0; i < AT1_SU_SAMPLES; i++) {
  252. samples[i * 2] = q->out_samples[0][i];
  253. samples[i * 2 + 1] = q->out_samples[1][i];
  254. }
  255. }
  256. *data_size = q->channels * AT1_SU_SAMPLES * sizeof(*samples);
  257. return avctx->block_align;
  258. }
  259. static av_cold int atrac1_decode_init(AVCodecContext *avctx)
  260. {
  261. AT1Ctx *q = avctx->priv_data;
  262. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  263. q->channels = avctx->channels;
  264. /* Init the mdct transforms */
  265. ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1 << 15));
  266. ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1 << 15));
  267. ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1 << 15));
  268. ff_init_ff_sine_windows(5);
  269. atrac_generate_tables();
  270. dsputil_init(&q->dsp, avctx);
  271. q->bands[0] = q->low;
  272. q->bands[1] = q->mid;
  273. q->bands[2] = q->high;
  274. /* Prepare the mdct overlap buffers */
  275. q->SUs[0].spectrum[0] = q->SUs[0].spec1;
  276. q->SUs[0].spectrum[1] = q->SUs[0].spec2;
  277. q->SUs[1].spectrum[0] = q->SUs[1].spec1;
  278. q->SUs[1].spectrum[1] = q->SUs[1].spec2;
  279. return 0;
  280. }
  281. static av_cold int atrac1_decode_end(AVCodecContext * avctx) {
  282. AT1Ctx *q = avctx->priv_data;
  283. ff_mdct_end(&q->mdct_ctx[0]);
  284. ff_mdct_end(&q->mdct_ctx[1]);
  285. ff_mdct_end(&q->mdct_ctx[2]);
  286. return 0;
  287. }
  288. AVCodec ff_atrac1_decoder = {
  289. .name = "atrac1",
  290. .type = AVMEDIA_TYPE_AUDIO,
  291. .id = CODEC_ID_ATRAC1,
  292. .priv_data_size = sizeof(AT1Ctx),
  293. .init = atrac1_decode_init,
  294. .close = atrac1_decode_end,
  295. .decode = atrac1_decode_frame,
  296. .long_name = NULL_IF_CONFIG_SMALL("Atrac 1 (Adaptive TRansform Acoustic Coding)"),
  297. };