You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1049 lines
39KB

  1. /*
  2. * AMR narrowband decoder
  3. * Copyright (c) 2006-2007 Robert Swain
  4. * Copyright (c) 2009 Colin McQuillan
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AMR narrowband decoder
  25. *
  26. * This decoder uses floats for simplicity and so is not bit-exact. One
  27. * difference is that differences in phase can accumulate. The test sequences
  28. * in 3GPP TS 26.074 can still be useful.
  29. *
  30. * - Comparing this file's output to the output of the ref decoder gives a
  31. * PSNR of 30 to 80. Plotting the output samples shows a difference in
  32. * phase in some areas.
  33. *
  34. * - Comparing both decoders against their input, this decoder gives a similar
  35. * PSNR. If the test sequence homing frames are removed (this decoder does
  36. * not detect them), the PSNR is at least as good as the reference on 140
  37. * out of 169 tests.
  38. */
  39. #include <string.h>
  40. #include <math.h>
  41. #include "avcodec.h"
  42. #include "get_bits.h"
  43. #include "libavutil/common.h"
  44. #include "celp_math.h"
  45. #include "celp_filters.h"
  46. #include "acelp_filters.h"
  47. #include "acelp_vectors.h"
  48. #include "acelp_pitch_delay.h"
  49. #include "lsp.h"
  50. #include "amr.h"
  51. #include "amrnbdata.h"
  52. #define AMR_BLOCK_SIZE 160 ///< samples per frame
  53. #define AMR_SAMPLE_BOUND 32768.0 ///< threshold for synthesis overflow
  54. /**
  55. * Scale from constructed speech to [-1,1]
  56. *
  57. * AMR is designed to produce 16-bit PCM samples (3GPP TS 26.090 4.2) but
  58. * upscales by two (section 6.2.2).
  59. *
  60. * Fundamentally, this scale is determined by energy_mean through
  61. * the fixed vector contribution to the excitation vector.
  62. */
  63. #define AMR_SAMPLE_SCALE (2.0 / 32768.0)
  64. /** Prediction factor for 12.2kbit/s mode */
  65. #define PRED_FAC_MODE_12k2 0.65
  66. #define LSF_R_FAC (8000.0 / 32768.0) ///< LSF residual tables to Hertz
  67. #define MIN_LSF_SPACING (50.0488 / 8000.0) ///< Ensures stability of LPC filter
  68. #define PITCH_LAG_MIN_MODE_12k2 18 ///< Lower bound on decoded lag search in 12.2kbit/s mode
  69. /** Initial energy in dB. Also used for bad frames (unimplemented). */
  70. #define MIN_ENERGY -14.0
  71. /** Maximum sharpening factor
  72. *
  73. * The specification says 0.8, which should be 13107, but the reference C code
  74. * uses 13017 instead. (Amusingly the same applies to SHARP_MAX in g729dec.c.)
  75. */
  76. #define SHARP_MAX 0.79449462890625
  77. /** Number of impulse response coefficients used for tilt factor */
  78. #define AMR_TILT_RESPONSE 22
  79. /** Tilt factor = 1st reflection coefficient * gamma_t */
  80. #define AMR_TILT_GAMMA_T 0.8
  81. /** Adaptive gain control factor used in post-filter */
  82. #define AMR_AGC_ALPHA 0.9
  83. typedef struct AMRContext {
  84. AMRNBFrame frame; ///< decoded AMR parameters (lsf coefficients, codebook indexes, etc)
  85. uint8_t bad_frame_indicator; ///< bad frame ? 1 : 0
  86. enum Mode cur_frame_mode;
  87. int16_t prev_lsf_r[LP_FILTER_ORDER]; ///< residual LSF vector from previous subframe
  88. double lsp[4][LP_FILTER_ORDER]; ///< lsp vectors from current frame
  89. double prev_lsp_sub4[LP_FILTER_ORDER]; ///< lsp vector for the 4th subframe of the previous frame
  90. float lsf_q[4][LP_FILTER_ORDER]; ///< Interpolated LSF vector for fixed gain smoothing
  91. float lsf_avg[LP_FILTER_ORDER]; ///< vector of averaged lsf vector
  92. float lpc[4][LP_FILTER_ORDER]; ///< lpc coefficient vectors for 4 subframes
  93. uint8_t pitch_lag_int; ///< integer part of pitch lag from current subframe
  94. float excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1 + AMR_SUBFRAME_SIZE]; ///< current excitation and all necessary excitation history
  95. float *excitation; ///< pointer to the current excitation vector in excitation_buf
  96. float pitch_vector[AMR_SUBFRAME_SIZE]; ///< adaptive code book (pitch) vector
  97. float fixed_vector[AMR_SUBFRAME_SIZE]; ///< algebraic codebook (fixed) vector (must be kept zero between frames)
  98. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  99. float pitch_gain[5]; ///< quantified pitch gains for the current and previous four subframes
  100. float fixed_gain[5]; ///< quantified fixed gains for the current and previous four subframes
  101. float beta; ///< previous pitch_gain, bounded by [0.0,SHARP_MAX]
  102. uint8_t diff_count; ///< the number of subframes for which diff has been above 0.65
  103. uint8_t hang_count; ///< the number of subframes since a hangover period started
  104. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness processing to determine "onset"
  105. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  106. uint8_t ir_filter_onset; ///< flag for impulse response filter strength
  107. float postfilter_mem[10]; ///< previous intermediate values in the formant filter
  108. float tilt_mem; ///< previous input to tilt compensation filter
  109. float postfilter_agc; ///< previous factor used for adaptive gain control
  110. float high_pass_mem[2]; ///< previous intermediate values in the high-pass filter
  111. float samples_in[LP_FILTER_ORDER + AMR_SUBFRAME_SIZE]; ///< floating point samples
  112. } AMRContext;
  113. /** Double version of ff_weighted_vector_sumf() */
  114. static void weighted_vector_sumd(double *out, const double *in_a,
  115. const double *in_b, double weight_coeff_a,
  116. double weight_coeff_b, int length)
  117. {
  118. int i;
  119. for (i = 0; i < length; i++)
  120. out[i] = weight_coeff_a * in_a[i]
  121. + weight_coeff_b * in_b[i];
  122. }
  123. static av_cold int amrnb_decode_init(AVCodecContext *avctx)
  124. {
  125. AMRContext *p = avctx->priv_data;
  126. int i;
  127. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  128. // p->excitation always points to the same position in p->excitation_buf
  129. p->excitation = &p->excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1];
  130. for (i = 0; i < LP_FILTER_ORDER; i++) {
  131. p->prev_lsp_sub4[i] = lsp_sub4_init[i] * 1000 / (float)(1 << 15);
  132. p->lsf_avg[i] = p->lsf_q[3][i] = lsp_avg_init[i] / (float)(1 << 15);
  133. }
  134. for (i = 0; i < 4; i++)
  135. p->prediction_error[i] = MIN_ENERGY;
  136. return 0;
  137. }
  138. /**
  139. * Unpack an RFC4867 speech frame into the AMR frame mode and parameters.
  140. *
  141. * The order of speech bits is specified by 3GPP TS 26.101.
  142. *
  143. * @param p the context
  144. * @param buf pointer to the input buffer
  145. * @param buf_size size of the input buffer
  146. *
  147. * @return the frame mode
  148. */
  149. static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf,
  150. int buf_size)
  151. {
  152. GetBitContext gb;
  153. enum Mode mode;
  154. init_get_bits(&gb, buf, buf_size * 8);
  155. // Decode the first octet.
  156. skip_bits(&gb, 1); // padding bit
  157. mode = get_bits(&gb, 4); // frame type
  158. p->bad_frame_indicator = !get_bits1(&gb); // quality bit
  159. skip_bits(&gb, 2); // two padding bits
  160. if (mode < MODE_DTX)
  161. ff_amr_bit_reorder((uint16_t *) &p->frame, sizeof(AMRNBFrame), buf + 1,
  162. amr_unpacking_bitmaps_per_mode[mode]);
  163. return mode;
  164. }
  165. /// @defgroup amr_lpc_decoding AMR pitch LPC coefficient decoding functions
  166. /// @{
  167. /**
  168. * Interpolate the LSF vector (used for fixed gain smoothing).
  169. * The interpolation is done over all four subframes even in MODE_12k2.
  170. *
  171. * @param[in,out] lsf_q LSFs in [0,1] for each subframe
  172. * @param[in] lsf_new New LSFs in [0,1] for subframe 4
  173. */
  174. static void interpolate_lsf(float lsf_q[4][LP_FILTER_ORDER], float *lsf_new)
  175. {
  176. int i;
  177. for (i = 0; i < 4; i++)
  178. ff_weighted_vector_sumf(lsf_q[i], lsf_q[3], lsf_new,
  179. 0.25 * (3 - i), 0.25 * (i + 1),
  180. LP_FILTER_ORDER);
  181. }
  182. /**
  183. * Decode a set of 5 split-matrix quantized lsf indexes into an lsp vector.
  184. *
  185. * @param p the context
  186. * @param lsp output LSP vector
  187. * @param lsf_no_r LSF vector without the residual vector added
  188. * @param lsf_quantizer pointers to LSF dictionary tables
  189. * @param quantizer_offset offset in tables
  190. * @param sign for the 3 dictionary table
  191. * @param update store data for computing the next frame's LSFs
  192. */
  193. static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER],
  194. const float lsf_no_r[LP_FILTER_ORDER],
  195. const int16_t *lsf_quantizer[5],
  196. const int quantizer_offset,
  197. const int sign, const int update)
  198. {
  199. int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
  200. float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
  201. int i;
  202. for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
  203. memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
  204. 2 * sizeof(*lsf_r));
  205. if (sign) {
  206. lsf_r[4] *= -1;
  207. lsf_r[5] *= -1;
  208. }
  209. if (update)
  210. memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(float));
  211. for (i = 0; i < LP_FILTER_ORDER; i++)
  212. lsf_q[i] = lsf_r[i] * (LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);
  213. ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
  214. if (update)
  215. interpolate_lsf(p->lsf_q, lsf_q);
  216. ff_acelp_lsf2lspd(lsp, lsf_q, LP_FILTER_ORDER);
  217. }
  218. /**
  219. * Decode a set of 5 split-matrix quantized lsf indexes into 2 lsp vectors.
  220. *
  221. * @param p pointer to the AMRContext
  222. */
  223. static void lsf2lsp_5(AMRContext *p)
  224. {
  225. const uint16_t *lsf_param = p->frame.lsf;
  226. float lsf_no_r[LP_FILTER_ORDER]; // LSFs without the residual vector
  227. const int16_t *lsf_quantizer[5];
  228. int i;
  229. lsf_quantizer[0] = lsf_5_1[lsf_param[0]];
  230. lsf_quantizer[1] = lsf_5_2[lsf_param[1]];
  231. lsf_quantizer[2] = lsf_5_3[lsf_param[2] >> 1];
  232. lsf_quantizer[3] = lsf_5_4[lsf_param[3]];
  233. lsf_quantizer[4] = lsf_5_5[lsf_param[4]];
  234. for (i = 0; i < LP_FILTER_ORDER; i++)
  235. lsf_no_r[i] = p->prev_lsf_r[i] * LSF_R_FAC * PRED_FAC_MODE_12k2 + lsf_5_mean[i];
  236. lsf2lsp_for_mode12k2(p, p->lsp[1], lsf_no_r, lsf_quantizer, 0, lsf_param[2] & 1, 0);
  237. lsf2lsp_for_mode12k2(p, p->lsp[3], lsf_no_r, lsf_quantizer, 2, lsf_param[2] & 1, 1);
  238. // interpolate LSP vectors at subframes 1 and 3
  239. weighted_vector_sumd(p->lsp[0], p->prev_lsp_sub4, p->lsp[1], 0.5, 0.5, LP_FILTER_ORDER);
  240. weighted_vector_sumd(p->lsp[2], p->lsp[1] , p->lsp[3], 0.5, 0.5, LP_FILTER_ORDER);
  241. }
  242. /**
  243. * Decode a set of 3 split-matrix quantized lsf indexes into an lsp vector.
  244. *
  245. * @param p pointer to the AMRContext
  246. */
  247. static void lsf2lsp_3(AMRContext *p)
  248. {
  249. const uint16_t *lsf_param = p->frame.lsf;
  250. int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
  251. float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
  252. const int16_t *lsf_quantizer;
  253. int i, j;
  254. lsf_quantizer = (p->cur_frame_mode == MODE_7k95 ? lsf_3_1_MODE_7k95 : lsf_3_1)[lsf_param[0]];
  255. memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r));
  256. lsf_quantizer = lsf_3_2[lsf_param[1] << (p->cur_frame_mode <= MODE_5k15)];
  257. memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r));
  258. lsf_quantizer = (p->cur_frame_mode <= MODE_5k15 ? lsf_3_3_MODE_5k15 : lsf_3_3)[lsf_param[2]];
  259. memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r));
  260. // calculate mean-removed LSF vector and add mean
  261. for (i = 0; i < LP_FILTER_ORDER; i++)
  262. lsf_q[i] = (lsf_r[i] + p->prev_lsf_r[i] * pred_fac[i]) * (LSF_R_FAC / 8000.0) + lsf_3_mean[i] * (1.0 / 8000.0);
  263. ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
  264. // store data for computing the next frame's LSFs
  265. interpolate_lsf(p->lsf_q, lsf_q);
  266. memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
  267. ff_acelp_lsf2lspd(p->lsp[3], lsf_q, LP_FILTER_ORDER);
  268. // interpolate LSP vectors at subframes 1, 2 and 3
  269. for (i = 1; i <= 3; i++)
  270. for(j = 0; j < LP_FILTER_ORDER; j++)
  271. p->lsp[i-1][j] = p->prev_lsp_sub4[j] +
  272. (p->lsp[3][j] - p->prev_lsp_sub4[j]) * 0.25 * i;
  273. }
  274. /// @}
  275. /// @defgroup amr_pitch_vector_decoding AMR pitch vector decoding functions
  276. /// @{
  277. /**
  278. * Like ff_decode_pitch_lag(), but with 1/6 resolution
  279. */
  280. static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index,
  281. const int prev_lag_int, const int subframe)
  282. {
  283. if (subframe == 0 || subframe == 2) {
  284. if (pitch_index < 463) {
  285. *lag_int = (pitch_index + 107) * 10923 >> 16;
  286. *lag_frac = pitch_index - *lag_int * 6 + 105;
  287. } else {
  288. *lag_int = pitch_index - 368;
  289. *lag_frac = 0;
  290. }
  291. } else {
  292. *lag_int = ((pitch_index + 5) * 10923 >> 16) - 1;
  293. *lag_frac = pitch_index - *lag_int * 6 - 3;
  294. *lag_int += av_clip(prev_lag_int - 5, PITCH_LAG_MIN_MODE_12k2,
  295. PITCH_DELAY_MAX - 9);
  296. }
  297. }
  298. static void decode_pitch_vector(AMRContext *p,
  299. const AMRNBSubframe *amr_subframe,
  300. const int subframe)
  301. {
  302. int pitch_lag_int, pitch_lag_frac;
  303. enum Mode mode = p->cur_frame_mode;
  304. if (p->cur_frame_mode == MODE_12k2) {
  305. decode_pitch_lag_1_6(&pitch_lag_int, &pitch_lag_frac,
  306. amr_subframe->p_lag, p->pitch_lag_int,
  307. subframe);
  308. } else
  309. ff_decode_pitch_lag(&pitch_lag_int, &pitch_lag_frac,
  310. amr_subframe->p_lag,
  311. p->pitch_lag_int, subframe,
  312. mode != MODE_4k75 && mode != MODE_5k15,
  313. mode <= MODE_6k7 ? 4 : (mode == MODE_7k95 ? 5 : 6));
  314. p->pitch_lag_int = pitch_lag_int; // store previous lag in a uint8_t
  315. pitch_lag_frac <<= (p->cur_frame_mode != MODE_12k2);
  316. pitch_lag_int += pitch_lag_frac > 0;
  317. /* Calculate the pitch vector by interpolating the past excitation at the
  318. pitch lag using a b60 hamming windowed sinc function. */
  319. ff_acelp_interpolatef(p->excitation, p->excitation + 1 - pitch_lag_int,
  320. ff_b60_sinc, 6,
  321. pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
  322. 10, AMR_SUBFRAME_SIZE);
  323. memcpy(p->pitch_vector, p->excitation, AMR_SUBFRAME_SIZE * sizeof(float));
  324. }
  325. /// @}
  326. /// @defgroup amr_algebraic_code_book AMR algebraic code book (fixed) vector decoding functions
  327. /// @{
  328. /**
  329. * Decode a 10-bit algebraic codebook index from a 10.2 kbit/s frame.
  330. */
  331. static void decode_10bit_pulse(int code, int pulse_position[8],
  332. int i1, int i2, int i3)
  333. {
  334. // coded using 7+3 bits with the 3 LSBs being, individually, the LSB of 1 of
  335. // the 3 pulses and the upper 7 bits being coded in base 5
  336. const uint8_t *positions = base_five_table[code >> 3];
  337. pulse_position[i1] = (positions[2] << 1) + ( code & 1);
  338. pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
  339. pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
  340. }
  341. /**
  342. * Decode the algebraic codebook index to pulse positions and signs and
  343. * construct the algebraic codebook vector for MODE_10k2.
  344. *
  345. * @param fixed_index positions of the eight pulses
  346. * @param fixed_sparse pointer to the algebraic codebook vector
  347. */
  348. static void decode_8_pulses_31bits(const int16_t *fixed_index,
  349. AMRFixed *fixed_sparse)
  350. {
  351. int pulse_position[8];
  352. int i, temp;
  353. decode_10bit_pulse(fixed_index[4], pulse_position, 0, 4, 1);
  354. decode_10bit_pulse(fixed_index[5], pulse_position, 2, 6, 5);
  355. // coded using 5+2 bits with the 2 LSBs being, individually, the LSB of 1 of
  356. // the 2 pulses and the upper 5 bits being coded in base 5
  357. temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
  358. pulse_position[3] = temp % 5;
  359. pulse_position[7] = temp / 5;
  360. if (pulse_position[7] & 1)
  361. pulse_position[3] = 4 - pulse_position[3];
  362. pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6] & 1);
  363. pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);
  364. fixed_sparse->n = 8;
  365. for (i = 0; i < 4; i++) {
  366. const int pos1 = (pulse_position[i] << 2) + i;
  367. const int pos2 = (pulse_position[i + 4] << 2) + i;
  368. const float sign = fixed_index[i] ? -1.0 : 1.0;
  369. fixed_sparse->x[i ] = pos1;
  370. fixed_sparse->x[i + 4] = pos2;
  371. fixed_sparse->y[i ] = sign;
  372. fixed_sparse->y[i + 4] = pos2 < pos1 ? -sign : sign;
  373. }
  374. }
  375. /**
  376. * Decode the algebraic codebook index to pulse positions and signs,
  377. * then construct the algebraic codebook vector.
  378. *
  379. * nb of pulses | bits encoding pulses
  380. * For MODE_4k75 or MODE_5k15, 2 | 1-3, 4-6, 7
  381. * MODE_5k9, 2 | 1, 2-4, 5-6, 7-9
  382. * MODE_6k7, 3 | 1-3, 4, 5-7, 8, 9-11
  383. * MODE_7k4 or MODE_7k95, 4 | 1-3, 4-6, 7-9, 10, 11-13
  384. *
  385. * @param fixed_sparse pointer to the algebraic codebook vector
  386. * @param pulses algebraic codebook indexes
  387. * @param mode mode of the current frame
  388. * @param subframe current subframe number
  389. */
  390. static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses,
  391. const enum Mode mode, const int subframe)
  392. {
  393. assert(MODE_4k75 <= mode && mode <= MODE_12k2);
  394. if (mode == MODE_12k2) {
  395. ff_decode_10_pulses_35bits(pulses, fixed_sparse, gray_decode, 5, 3);
  396. } else if (mode == MODE_10k2) {
  397. decode_8_pulses_31bits(pulses, fixed_sparse);
  398. } else {
  399. int *pulse_position = fixed_sparse->x;
  400. int i, pulse_subset;
  401. const int fixed_index = pulses[0];
  402. if (mode <= MODE_5k15) {
  403. pulse_subset = ((fixed_index >> 3) & 8) + (subframe << 1);
  404. pulse_position[0] = ( fixed_index & 7) * 5 + track_position[pulse_subset];
  405. pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + track_position[pulse_subset + 1];
  406. fixed_sparse->n = 2;
  407. } else if (mode == MODE_5k9) {
  408. pulse_subset = ((fixed_index & 1) << 1) + 1;
  409. pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
  410. pulse_subset = (fixed_index >> 4) & 3;
  411. pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
  412. fixed_sparse->n = pulse_position[0] == pulse_position[1] ? 1 : 2;
  413. } else if (mode == MODE_6k7) {
  414. pulse_position[0] = (fixed_index & 7) * 5;
  415. pulse_subset = (fixed_index >> 2) & 2;
  416. pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
  417. pulse_subset = (fixed_index >> 6) & 2;
  418. pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
  419. fixed_sparse->n = 3;
  420. } else { // mode <= MODE_7k95
  421. pulse_position[0] = gray_decode[ fixed_index & 7];
  422. pulse_position[1] = gray_decode[(fixed_index >> 3) & 7] + 1;
  423. pulse_position[2] = gray_decode[(fixed_index >> 6) & 7] + 2;
  424. pulse_subset = (fixed_index >> 9) & 1;
  425. pulse_position[3] = gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
  426. fixed_sparse->n = 4;
  427. }
  428. for (i = 0; i < fixed_sparse->n; i++)
  429. fixed_sparse->y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
  430. }
  431. }
  432. /**
  433. * Apply pitch lag to obtain the sharpened fixed vector (section 6.1.2)
  434. *
  435. * @param p the context
  436. * @param subframe unpacked amr subframe
  437. * @param mode mode of the current frame
  438. * @param fixed_sparse sparse respresentation of the fixed vector
  439. */
  440. static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode,
  441. AMRFixed *fixed_sparse)
  442. {
  443. // The spec suggests the current pitch gain is always used, but in other
  444. // modes the pitch and codebook gains are joinly quantized (sec 5.8.2)
  445. // so the codebook gain cannot depend on the quantized pitch gain.
  446. if (mode == MODE_12k2)
  447. p->beta = FFMIN(p->pitch_gain[4], 1.0);
  448. fixed_sparse->pitch_lag = p->pitch_lag_int;
  449. fixed_sparse->pitch_fac = p->beta;
  450. // Save pitch sharpening factor for the next subframe
  451. // MODE_4k75 only updates on the 2nd and 4th subframes - this follows from
  452. // the fact that the gains for two subframes are jointly quantized.
  453. if (mode != MODE_4k75 || subframe & 1)
  454. p->beta = av_clipf(p->pitch_gain[4], 0.0, SHARP_MAX);
  455. }
  456. /// @}
  457. /// @defgroup amr_gain_decoding AMR gain decoding functions
  458. /// @{
  459. /**
  460. * fixed gain smoothing
  461. * Note that where the spec specifies the "spectrum in the q domain"
  462. * in section 6.1.4, in fact frequencies should be used.
  463. *
  464. * @param p the context
  465. * @param lsf LSFs for the current subframe, in the range [0,1]
  466. * @param lsf_avg averaged LSFs
  467. * @param mode mode of the current frame
  468. *
  469. * @return fixed gain smoothed
  470. */
  471. static float fixed_gain_smooth(AMRContext *p , const float *lsf,
  472. const float *lsf_avg, const enum Mode mode)
  473. {
  474. float diff = 0.0;
  475. int i;
  476. for (i = 0; i < LP_FILTER_ORDER; i++)
  477. diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];
  478. // If diff is large for ten subframes, disable smoothing for a 40-subframe
  479. // hangover period.
  480. p->diff_count++;
  481. if (diff <= 0.65)
  482. p->diff_count = 0;
  483. if (p->diff_count > 10) {
  484. p->hang_count = 0;
  485. p->diff_count--; // don't let diff_count overflow
  486. }
  487. if (p->hang_count < 40) {
  488. p->hang_count++;
  489. } else if (mode < MODE_7k4 || mode == MODE_10k2) {
  490. const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
  491. const float fixed_gain_mean = (p->fixed_gain[0] + p->fixed_gain[1] +
  492. p->fixed_gain[2] + p->fixed_gain[3] +
  493. p->fixed_gain[4]) * 0.2;
  494. return smoothing_factor * p->fixed_gain[4] +
  495. (1.0 - smoothing_factor) * fixed_gain_mean;
  496. }
  497. return p->fixed_gain[4];
  498. }
  499. /**
  500. * Decode pitch gain and fixed gain factor (part of section 6.1.3).
  501. *
  502. * @param p the context
  503. * @param amr_subframe unpacked amr subframe
  504. * @param mode mode of the current frame
  505. * @param subframe current subframe number
  506. * @param fixed_gain_factor decoded gain correction factor
  507. */
  508. static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe,
  509. const enum Mode mode, const int subframe,
  510. float *fixed_gain_factor)
  511. {
  512. if (mode == MODE_12k2 || mode == MODE_7k95) {
  513. p->pitch_gain[4] = qua_gain_pit [amr_subframe->p_gain ]
  514. * (1.0 / 16384.0);
  515. *fixed_gain_factor = qua_gain_code[amr_subframe->fixed_gain]
  516. * (1.0 / 2048.0);
  517. } else {
  518. const uint16_t *gains;
  519. if (mode >= MODE_6k7) {
  520. gains = gains_high[amr_subframe->p_gain];
  521. } else if (mode >= MODE_5k15) {
  522. gains = gains_low [amr_subframe->p_gain];
  523. } else {
  524. // gain index is only coded in subframes 0,2 for MODE_4k75
  525. gains = gains_MODE_4k75[(p->frame.subframe[subframe & 2].p_gain << 1) + (subframe & 1)];
  526. }
  527. p->pitch_gain[4] = gains[0] * (1.0 / 16384.0);
  528. *fixed_gain_factor = gains[1] * (1.0 / 4096.0);
  529. }
  530. }
  531. /// @}
  532. /// @defgroup amr_pre_processing AMR pre-processing functions
  533. /// @{
  534. /**
  535. * Circularly convolve a sparse fixed vector with a phase dispersion impulse
  536. * response filter (D.6.2 of G.729 and 6.1.5 of AMR).
  537. *
  538. * @param out vector with filter applied
  539. * @param in source vector
  540. * @param filter phase filter coefficients
  541. *
  542. * out[n] = sum(i,0,len-1){ in[i] * filter[(len + n - i)%len] }
  543. */
  544. static void apply_ir_filter(float *out, const AMRFixed *in,
  545. const float *filter)
  546. {
  547. float filter1[AMR_SUBFRAME_SIZE], //!< filters at pitch lag*1 and *2
  548. filter2[AMR_SUBFRAME_SIZE];
  549. int lag = in->pitch_lag;
  550. float fac = in->pitch_fac;
  551. int i;
  552. if (lag < AMR_SUBFRAME_SIZE) {
  553. ff_celp_circ_addf(filter1, filter, filter, lag, fac,
  554. AMR_SUBFRAME_SIZE);
  555. if (lag < AMR_SUBFRAME_SIZE >> 1)
  556. ff_celp_circ_addf(filter2, filter, filter1, lag, fac,
  557. AMR_SUBFRAME_SIZE);
  558. }
  559. memset(out, 0, sizeof(float) * AMR_SUBFRAME_SIZE);
  560. for (i = 0; i < in->n; i++) {
  561. int x = in->x[i];
  562. float y = in->y[i];
  563. const float *filterp;
  564. if (x >= AMR_SUBFRAME_SIZE - lag) {
  565. filterp = filter;
  566. } else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
  567. filterp = filter1;
  568. } else
  569. filterp = filter2;
  570. ff_celp_circ_addf(out, out, filterp, x, y, AMR_SUBFRAME_SIZE);
  571. }
  572. }
  573. /**
  574. * Reduce fixed vector sparseness by smoothing with one of three IR filters.
  575. * Also know as "adaptive phase dispersion".
  576. *
  577. * This implements 3GPP TS 26.090 section 6.1(5).
  578. *
  579. * @param p the context
  580. * @param fixed_sparse algebraic codebook vector
  581. * @param fixed_vector unfiltered fixed vector
  582. * @param fixed_gain smoothed gain
  583. * @param out space for modified vector if necessary
  584. */
  585. static const float *anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse,
  586. const float *fixed_vector,
  587. float fixed_gain, float *out)
  588. {
  589. int ir_filter_nr;
  590. if (p->pitch_gain[4] < 0.6) {
  591. ir_filter_nr = 0; // strong filtering
  592. } else if (p->pitch_gain[4] < 0.9) {
  593. ir_filter_nr = 1; // medium filtering
  594. } else
  595. ir_filter_nr = 2; // no filtering
  596. // detect 'onset'
  597. if (fixed_gain > 2.0 * p->prev_sparse_fixed_gain) {
  598. p->ir_filter_onset = 2;
  599. } else if (p->ir_filter_onset)
  600. p->ir_filter_onset--;
  601. if (!p->ir_filter_onset) {
  602. int i, count = 0;
  603. for (i = 0; i < 5; i++)
  604. if (p->pitch_gain[i] < 0.6)
  605. count++;
  606. if (count > 2)
  607. ir_filter_nr = 0;
  608. if (ir_filter_nr > p->prev_ir_filter_nr + 1)
  609. ir_filter_nr--;
  610. } else if (ir_filter_nr < 2)
  611. ir_filter_nr++;
  612. // Disable filtering for very low level of fixed_gain.
  613. // Note this step is not specified in the technical description but is in
  614. // the reference source in the function Ph_disp.
  615. if (fixed_gain < 5.0)
  616. ir_filter_nr = 2;
  617. if (p->cur_frame_mode != MODE_7k4 && p->cur_frame_mode < MODE_10k2
  618. && ir_filter_nr < 2) {
  619. apply_ir_filter(out, fixed_sparse,
  620. (p->cur_frame_mode == MODE_7k95 ?
  621. ir_filters_lookup_MODE_7k95 :
  622. ir_filters_lookup)[ir_filter_nr]);
  623. fixed_vector = out;
  624. }
  625. // update ir filter strength history
  626. p->prev_ir_filter_nr = ir_filter_nr;
  627. p->prev_sparse_fixed_gain = fixed_gain;
  628. return fixed_vector;
  629. }
  630. /// @}
  631. /// @defgroup amr_synthesis AMR synthesis functions
  632. /// @{
  633. /**
  634. * Conduct 10th order linear predictive coding synthesis.
  635. *
  636. * @param p pointer to the AMRContext
  637. * @param lpc pointer to the LPC coefficients
  638. * @param fixed_gain fixed codebook gain for synthesis
  639. * @param fixed_vector algebraic codebook vector
  640. * @param samples pointer to the output speech samples
  641. * @param overflow 16-bit overflow flag
  642. */
  643. static int synthesis(AMRContext *p, float *lpc,
  644. float fixed_gain, const float *fixed_vector,
  645. float *samples, uint8_t overflow)
  646. {
  647. int i;
  648. float excitation[AMR_SUBFRAME_SIZE];
  649. // if an overflow has been detected, the pitch vector is scaled down by a
  650. // factor of 4
  651. if (overflow)
  652. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  653. p->pitch_vector[i] *= 0.25;
  654. ff_weighted_vector_sumf(excitation, p->pitch_vector, fixed_vector,
  655. p->pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);
  656. // emphasize pitch vector contribution
  657. if (p->pitch_gain[4] > 0.5 && !overflow) {
  658. float energy = ff_dot_productf(excitation, excitation,
  659. AMR_SUBFRAME_SIZE);
  660. float pitch_factor =
  661. p->pitch_gain[4] *
  662. (p->cur_frame_mode == MODE_12k2 ?
  663. 0.25 * FFMIN(p->pitch_gain[4], 1.0) :
  664. 0.5 * FFMIN(p->pitch_gain[4], SHARP_MAX));
  665. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  666. excitation[i] += pitch_factor * p->pitch_vector[i];
  667. ff_scale_vector_to_given_sum_of_squares(excitation, excitation, energy,
  668. AMR_SUBFRAME_SIZE);
  669. }
  670. ff_celp_lp_synthesis_filterf(samples, lpc, excitation, AMR_SUBFRAME_SIZE,
  671. LP_FILTER_ORDER);
  672. // detect overflow
  673. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  674. if (fabsf(samples[i]) > AMR_SAMPLE_BOUND) {
  675. return 1;
  676. }
  677. return 0;
  678. }
  679. /// @}
  680. /// @defgroup amr_update AMR update functions
  681. /// @{
  682. /**
  683. * Update buffers and history at the end of decoding a subframe.
  684. *
  685. * @param p pointer to the AMRContext
  686. */
  687. static void update_state(AMRContext *p)
  688. {
  689. memcpy(p->prev_lsp_sub4, p->lsp[3], LP_FILTER_ORDER * sizeof(p->lsp[3][0]));
  690. memmove(&p->excitation_buf[0], &p->excitation_buf[AMR_SUBFRAME_SIZE],
  691. (PITCH_DELAY_MAX + LP_FILTER_ORDER + 1) * sizeof(float));
  692. memmove(&p->pitch_gain[0], &p->pitch_gain[1], 4 * sizeof(float));
  693. memmove(&p->fixed_gain[0], &p->fixed_gain[1], 4 * sizeof(float));
  694. memmove(&p->samples_in[0], &p->samples_in[AMR_SUBFRAME_SIZE],
  695. LP_FILTER_ORDER * sizeof(float));
  696. }
  697. /// @}
  698. /// @defgroup amr_postproc AMR Post processing functions
  699. /// @{
  700. /**
  701. * Get the tilt factor of a formant filter from its transfer function
  702. *
  703. * @param lpc_n LP_FILTER_ORDER coefficients of the numerator
  704. * @param lpc_d LP_FILTER_ORDER coefficients of the denominator
  705. */
  706. static float tilt_factor(float *lpc_n, float *lpc_d)
  707. {
  708. float rh0, rh1; // autocorrelation at lag 0 and 1
  709. // LP_FILTER_ORDER prior zeros are needed for ff_celp_lp_synthesis_filterf
  710. float impulse_buffer[LP_FILTER_ORDER + AMR_TILT_RESPONSE] = { 0 };
  711. float *hf = impulse_buffer + LP_FILTER_ORDER; // start of impulse response
  712. hf[0] = 1.0;
  713. memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER);
  714. ff_celp_lp_synthesis_filterf(hf, lpc_d, hf, AMR_TILT_RESPONSE,
  715. LP_FILTER_ORDER);
  716. rh0 = ff_dot_productf(hf, hf, AMR_TILT_RESPONSE);
  717. rh1 = ff_dot_productf(hf, hf + 1, AMR_TILT_RESPONSE - 1);
  718. // The spec only specifies this check for 12.2 and 10.2 kbit/s
  719. // modes. But in the ref source the tilt is always non-negative.
  720. return rh1 >= 0.0 ? rh1 / rh0 * AMR_TILT_GAMMA_T : 0.0;
  721. }
  722. /**
  723. * Perform adaptive post-filtering to enhance the quality of the speech.
  724. * See section 6.2.1.
  725. *
  726. * @param p pointer to the AMRContext
  727. * @param lpc interpolated LP coefficients for this subframe
  728. * @param buf_out output of the filter
  729. */
  730. static void postfilter(AMRContext *p, float *lpc, float *buf_out)
  731. {
  732. int i;
  733. float *samples = p->samples_in + LP_FILTER_ORDER; // Start of input
  734. float speech_gain = ff_dot_productf(samples, samples,
  735. AMR_SUBFRAME_SIZE);
  736. float pole_out[AMR_SUBFRAME_SIZE + LP_FILTER_ORDER]; // Output of pole filter
  737. const float *gamma_n, *gamma_d; // Formant filter factor table
  738. float lpc_n[LP_FILTER_ORDER], lpc_d[LP_FILTER_ORDER]; // Transfer function coefficients
  739. if (p->cur_frame_mode == MODE_12k2 || p->cur_frame_mode == MODE_10k2) {
  740. gamma_n = ff_pow_0_7;
  741. gamma_d = ff_pow_0_75;
  742. } else {
  743. gamma_n = ff_pow_0_55;
  744. gamma_d = ff_pow_0_7;
  745. }
  746. for (i = 0; i < LP_FILTER_ORDER; i++) {
  747. lpc_n[i] = lpc[i] * gamma_n[i];
  748. lpc_d[i] = lpc[i] * gamma_d[i];
  749. }
  750. memcpy(pole_out, p->postfilter_mem, sizeof(float) * LP_FILTER_ORDER);
  751. ff_celp_lp_synthesis_filterf(pole_out + LP_FILTER_ORDER, lpc_d, samples,
  752. AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
  753. memcpy(p->postfilter_mem, pole_out + AMR_SUBFRAME_SIZE,
  754. sizeof(float) * LP_FILTER_ORDER);
  755. ff_celp_lp_zero_synthesis_filterf(buf_out, lpc_n,
  756. pole_out + LP_FILTER_ORDER,
  757. AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
  758. ff_tilt_compensation(&p->tilt_mem, tilt_factor(lpc_n, lpc_d), buf_out,
  759. AMR_SUBFRAME_SIZE);
  760. ff_adaptive_gain_control(buf_out, buf_out, speech_gain, AMR_SUBFRAME_SIZE,
  761. AMR_AGC_ALPHA, &p->postfilter_agc);
  762. }
  763. /// @}
  764. static int amrnb_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
  765. AVPacket *avpkt)
  766. {
  767. AMRContext *p = avctx->priv_data; // pointer to private data
  768. const uint8_t *buf = avpkt->data;
  769. int buf_size = avpkt->size;
  770. float *buf_out = data; // pointer to the output data buffer
  771. int i, subframe;
  772. float fixed_gain_factor;
  773. AMRFixed fixed_sparse = {0}; // fixed vector up to anti-sparseness processing
  774. float spare_vector[AMR_SUBFRAME_SIZE]; // extra stack space to hold result from anti-sparseness processing
  775. float synth_fixed_gain; // the fixed gain that synthesis should use
  776. const float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  777. p->cur_frame_mode = unpack_bitstream(p, buf, buf_size);
  778. if (p->cur_frame_mode == MODE_DTX) {
  779. av_log_missing_feature(avctx, "dtx mode", 1);
  780. return -1;
  781. }
  782. if (p->cur_frame_mode == MODE_12k2) {
  783. lsf2lsp_5(p);
  784. } else
  785. lsf2lsp_3(p);
  786. for (i = 0; i < 4; i++)
  787. ff_acelp_lspd2lpc(p->lsp[i], p->lpc[i], 5);
  788. for (subframe = 0; subframe < 4; subframe++) {
  789. const AMRNBSubframe *amr_subframe = &p->frame.subframe[subframe];
  790. decode_pitch_vector(p, amr_subframe, subframe);
  791. decode_fixed_sparse(&fixed_sparse, amr_subframe->pulses,
  792. p->cur_frame_mode, subframe);
  793. // The fixed gain (section 6.1.3) depends on the fixed vector
  794. // (section 6.1.2), but the fixed vector calculation uses
  795. // pitch sharpening based on the on the pitch gain (section 6.1.3).
  796. // So the correct order is: pitch gain, pitch sharpening, fixed gain.
  797. decode_gains(p, amr_subframe, p->cur_frame_mode, subframe,
  798. &fixed_gain_factor);
  799. pitch_sharpening(p, subframe, p->cur_frame_mode, &fixed_sparse);
  800. ff_set_fixed_vector(p->fixed_vector, &fixed_sparse, 1.0,
  801. AMR_SUBFRAME_SIZE);
  802. p->fixed_gain[4] =
  803. ff_amr_set_fixed_gain(fixed_gain_factor,
  804. ff_dot_productf(p->fixed_vector, p->fixed_vector,
  805. AMR_SUBFRAME_SIZE)/AMR_SUBFRAME_SIZE,
  806. p->prediction_error,
  807. energy_mean[p->cur_frame_mode], energy_pred_fac);
  808. // The excitation feedback is calculated without any processing such
  809. // as fixed gain smoothing. This isn't mentioned in the specification.
  810. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  811. p->excitation[i] *= p->pitch_gain[4];
  812. ff_set_fixed_vector(p->excitation, &fixed_sparse, p->fixed_gain[4],
  813. AMR_SUBFRAME_SIZE);
  814. // In the ref decoder, excitation is stored with no fractional bits.
  815. // This step prevents buzz in silent periods. The ref encoder can
  816. // emit long sequences with pitch factor greater than one. This
  817. // creates unwanted feedback if the excitation vector is nonzero.
  818. // (e.g. test sequence T19_795.COD in 3GPP TS 26.074)
  819. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  820. p->excitation[i] = truncf(p->excitation[i]);
  821. // Smooth fixed gain.
  822. // The specification is ambiguous, but in the reference source, the
  823. // smoothed value is NOT fed back into later fixed gain smoothing.
  824. synth_fixed_gain = fixed_gain_smooth(p, p->lsf_q[subframe],
  825. p->lsf_avg, p->cur_frame_mode);
  826. synth_fixed_vector = anti_sparseness(p, &fixed_sparse, p->fixed_vector,
  827. synth_fixed_gain, spare_vector);
  828. if (synthesis(p, p->lpc[subframe], synth_fixed_gain,
  829. synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 0))
  830. // overflow detected -> rerun synthesis scaling pitch vector down
  831. // by a factor of 4, skipping pitch vector contribution emphasis
  832. // and adaptive gain control
  833. synthesis(p, p->lpc[subframe], synth_fixed_gain,
  834. synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 1);
  835. postfilter(p, p->lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);
  836. // update buffers and history
  837. ff_clear_fixed_vector(p->fixed_vector, &fixed_sparse, AMR_SUBFRAME_SIZE);
  838. update_state(p);
  839. }
  840. ff_acelp_apply_order_2_transfer_function(buf_out, buf_out, highpass_zeros,
  841. highpass_poles,
  842. highpass_gain * AMR_SAMPLE_SCALE,
  843. p->high_pass_mem, AMR_BLOCK_SIZE);
  844. /* Update averaged lsf vector (used for fixed gain smoothing).
  845. *
  846. * Note that lsf_avg should not incorporate the current frame's LSFs
  847. * for fixed_gain_smooth.
  848. * The specification has an incorrect formula: the reference decoder uses
  849. * qbar(n-1) rather than qbar(n) in section 6.1(4) equation 71. */
  850. ff_weighted_vector_sumf(p->lsf_avg, p->lsf_avg, p->lsf_q[3],
  851. 0.84, 0.16, LP_FILTER_ORDER);
  852. /* report how many samples we got */
  853. *data_size = AMR_BLOCK_SIZE * sizeof(float);
  854. /* return the amount of bytes consumed if everything was OK */
  855. return frame_sizes_nb[p->cur_frame_mode] + 1; // +7 for rounding and +8 for TOC
  856. }
  857. AVCodec ff_amrnb_decoder = {
  858. .name = "amrnb",
  859. .type = AVMEDIA_TYPE_AUDIO,
  860. .id = CODEC_ID_AMR_NB,
  861. .priv_data_size = sizeof(AMRContext),
  862. .init = amrnb_decode_init,
  863. .decode = amrnb_decode_frame,
  864. .long_name = NULL_IF_CONFIG_SMALL("Adaptive Multi-Rate NarrowBand"),
  865. .sample_fmts = (enum AVSampleFormat[]){AV_SAMPLE_FMT_FLT,AV_SAMPLE_FMT_NONE},
  866. };