You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

441 lines
11KB

  1. /*
  2. * The simplest AC-3 encoder
  3. * Copyright (c) 2000 Fabrice Bellard
  4. * Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
  5. * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * fixed-point AC-3 encoder.
  26. */
  27. #undef CONFIG_AC3ENC_FLOAT
  28. #include "ac3enc.c"
  29. /** Scale a float value by 2^15, convert to an integer, and clip to range -32767..32767. */
  30. #define FIX15(a) av_clip(SCALE_FLOAT(a, 15), -32767, 32767)
  31. /**
  32. * Finalize MDCT and free allocated memory.
  33. */
  34. static av_cold void mdct_end(AC3MDCTContext *mdct)
  35. {
  36. mdct->nbits = 0;
  37. av_freep(&mdct->costab);
  38. av_freep(&mdct->sintab);
  39. av_freep(&mdct->xcos1);
  40. av_freep(&mdct->xsin1);
  41. av_freep(&mdct->rot_tmp);
  42. av_freep(&mdct->cplx_tmp);
  43. }
  44. /**
  45. * Initialize FFT tables.
  46. * @param ln log2(FFT size)
  47. */
  48. static av_cold int fft_init(AVCodecContext *avctx, AC3MDCTContext *mdct, int ln)
  49. {
  50. int i, n, n2;
  51. float alpha;
  52. n = 1 << ln;
  53. n2 = n >> 1;
  54. FF_ALLOC_OR_GOTO(avctx, mdct->costab, n2 * sizeof(*mdct->costab), fft_alloc_fail);
  55. FF_ALLOC_OR_GOTO(avctx, mdct->sintab, n2 * sizeof(*mdct->sintab), fft_alloc_fail);
  56. for (i = 0; i < n2; i++) {
  57. alpha = 2.0 * M_PI * i / n;
  58. mdct->costab[i] = FIX15(cos(alpha));
  59. mdct->sintab[i] = FIX15(sin(alpha));
  60. }
  61. return 0;
  62. fft_alloc_fail:
  63. mdct_end(mdct);
  64. return AVERROR(ENOMEM);
  65. }
  66. /**
  67. * Initialize MDCT tables.
  68. * @param nbits log2(MDCT size)
  69. */
  70. static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct,
  71. int nbits)
  72. {
  73. int i, n, n4, ret;
  74. n = 1 << nbits;
  75. n4 = n >> 2;
  76. mdct->nbits = nbits;
  77. ret = fft_init(avctx, mdct, nbits - 2);
  78. if (ret)
  79. return ret;
  80. mdct->window = ff_ac3_window;
  81. FF_ALLOC_OR_GOTO(avctx, mdct->xcos1, n4 * sizeof(*mdct->xcos1), mdct_alloc_fail);
  82. FF_ALLOC_OR_GOTO(avctx, mdct->xsin1, n4 * sizeof(*mdct->xsin1), mdct_alloc_fail);
  83. FF_ALLOC_OR_GOTO(avctx, mdct->rot_tmp, n * sizeof(*mdct->rot_tmp), mdct_alloc_fail);
  84. FF_ALLOC_OR_GOTO(avctx, mdct->cplx_tmp, n4 * sizeof(*mdct->cplx_tmp), mdct_alloc_fail);
  85. for (i = 0; i < n4; i++) {
  86. float alpha = 2.0 * M_PI * (i + 1.0 / 8.0) / n;
  87. mdct->xcos1[i] = FIX15(-cos(alpha));
  88. mdct->xsin1[i] = FIX15(-sin(alpha));
  89. }
  90. return 0;
  91. mdct_alloc_fail:
  92. mdct_end(mdct);
  93. return AVERROR(ENOMEM);
  94. }
  95. /** Butterfly op */
  96. #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
  97. { \
  98. int ax, ay, bx, by; \
  99. bx = pre1; \
  100. by = pim1; \
  101. ax = qre1; \
  102. ay = qim1; \
  103. pre = (bx + ax) >> 1; \
  104. pim = (by + ay) >> 1; \
  105. qre = (bx - ax) >> 1; \
  106. qim = (by - ay) >> 1; \
  107. }
  108. /** Complex multiply */
  109. #define CMUL(pre, pim, are, aim, bre, bim) \
  110. { \
  111. pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15; \
  112. pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15; \
  113. }
  114. /**
  115. * Calculate a 2^n point complex FFT on 2^ln points.
  116. * @param z complex input/output samples
  117. * @param ln log2(FFT size)
  118. */
  119. static void fft(AC3MDCTContext *mdct, IComplex *z, int ln)
  120. {
  121. int j, l, np, np2;
  122. int nblocks, nloops;
  123. register IComplex *p,*q;
  124. int tmp_re, tmp_im;
  125. np = 1 << ln;
  126. /* reverse */
  127. for (j = 0; j < np; j++) {
  128. int k = av_reverse[j] >> (8 - ln);
  129. if (k < j)
  130. FFSWAP(IComplex, z[k], z[j]);
  131. }
  132. /* pass 0 */
  133. p = &z[0];
  134. j = np >> 1;
  135. do {
  136. BF(p[0].re, p[0].im, p[1].re, p[1].im,
  137. p[0].re, p[0].im, p[1].re, p[1].im);
  138. p += 2;
  139. } while (--j);
  140. /* pass 1 */
  141. p = &z[0];
  142. j = np >> 2;
  143. do {
  144. BF(p[0].re, p[0].im, p[2].re, p[2].im,
  145. p[0].re, p[0].im, p[2].re, p[2].im);
  146. BF(p[1].re, p[1].im, p[3].re, p[3].im,
  147. p[1].re, p[1].im, p[3].im, -p[3].re);
  148. p+=4;
  149. } while (--j);
  150. /* pass 2 .. ln-1 */
  151. nblocks = np >> 3;
  152. nloops = 1 << 2;
  153. np2 = np >> 1;
  154. do {
  155. p = z;
  156. q = z + nloops;
  157. for (j = 0; j < nblocks; j++) {
  158. BF(p->re, p->im, q->re, q->im,
  159. p->re, p->im, q->re, q->im);
  160. p++;
  161. q++;
  162. for(l = nblocks; l < np2; l += nblocks) {
  163. CMUL(tmp_re, tmp_im, mdct->costab[l], -mdct->sintab[l], q->re, q->im);
  164. BF(p->re, p->im, q->re, q->im,
  165. p->re, p->im, tmp_re, tmp_im);
  166. p++;
  167. q++;
  168. }
  169. p += nloops;
  170. q += nloops;
  171. }
  172. nblocks = nblocks >> 1;
  173. nloops = nloops << 1;
  174. } while (nblocks);
  175. }
  176. /**
  177. * Calculate a 512-point MDCT
  178. * @param out 256 output frequency coefficients
  179. * @param in 512 windowed input audio samples
  180. */
  181. static void mdct512(AC3MDCTContext *mdct, int32_t *out, int16_t *in)
  182. {
  183. int i, re, im, n, n2, n4;
  184. int16_t *rot = mdct->rot_tmp;
  185. IComplex *x = mdct->cplx_tmp;
  186. n = 1 << mdct->nbits;
  187. n2 = n >> 1;
  188. n4 = n >> 2;
  189. /* shift to simplify computations */
  190. for (i = 0; i <n4; i++)
  191. rot[i] = -in[i + 3*n4];
  192. memcpy(&rot[n4], &in[0], 3*n4*sizeof(*in));
  193. /* pre rotation */
  194. for (i = 0; i < n4; i++) {
  195. re = ((int)rot[ 2*i] - (int)rot[ n-1-2*i]) >> 1;
  196. im = -((int)rot[n2+2*i] - (int)rot[n2-1-2*i]) >> 1;
  197. CMUL(x[i].re, x[i].im, re, im, -mdct->xcos1[i], mdct->xsin1[i]);
  198. }
  199. fft(mdct, x, mdct->nbits - 2);
  200. /* post rotation */
  201. for (i = 0; i < n4; i++) {
  202. re = x[i].re;
  203. im = x[i].im;
  204. CMUL(out[n2-1-2*i], out[2*i], re, im, mdct->xsin1[i], mdct->xcos1[i]);
  205. }
  206. }
  207. /**
  208. * Apply KBD window to input samples prior to MDCT.
  209. */
  210. static void apply_window(DSPContext *dsp, int16_t *output, const int16_t *input,
  211. const int16_t *window, int n)
  212. {
  213. int i;
  214. int n2 = n >> 1;
  215. for (i = 0; i < n2; i++) {
  216. output[i] = MUL16(input[i], window[i]) >> 15;
  217. output[n-i-1] = MUL16(input[n-i-1], window[i]) >> 15;
  218. }
  219. }
  220. /**
  221. * Calculate the log2() of the maximum absolute value in an array.
  222. * @param tab input array
  223. * @param n number of values in the array
  224. * @return log2(max(abs(tab[])))
  225. */
  226. static int log2_tab(int16_t *tab, int n)
  227. {
  228. int i, v;
  229. v = 0;
  230. for (i = 0; i < n; i++)
  231. v |= abs(tab[i]);
  232. return av_log2(v);
  233. }
  234. /**
  235. * Left-shift each value in an array by a specified amount.
  236. * @param tab input array
  237. * @param n number of values in the array
  238. * @param lshift left shift amount. a negative value means right shift.
  239. */
  240. static void lshift_tab(int16_t *tab, int n, int lshift)
  241. {
  242. int i;
  243. if (lshift > 0) {
  244. for (i = 0; i < n; i++)
  245. tab[i] <<= lshift;
  246. } else if (lshift < 0) {
  247. lshift = -lshift;
  248. for (i = 0; i < n; i++)
  249. tab[i] >>= lshift;
  250. }
  251. }
  252. /**
  253. * Normalize the input samples to use the maximum available precision.
  254. * This assumes signed 16-bit input samples. Exponents are reduced by 9 to
  255. * match the 24-bit internal precision for MDCT coefficients.
  256. *
  257. * @return exponent shift
  258. */
  259. static int normalize_samples(AC3EncodeContext *s)
  260. {
  261. int v = 14 - log2_tab(s->windowed_samples, AC3_WINDOW_SIZE);
  262. v = FFMAX(0, v);
  263. lshift_tab(s->windowed_samples, AC3_WINDOW_SIZE, v);
  264. return v - 9;
  265. }
  266. /**
  267. * Scale MDCT coefficients from float to fixed-point.
  268. */
  269. static void scale_coefficients(AC3EncodeContext *s)
  270. {
  271. /* scaling/conversion is obviously not needed for the fixed-point encoder
  272. since the coefficients are already fixed-point. */
  273. return;
  274. }
  275. #ifdef TEST
  276. /*************************************************************************/
  277. /* TEST */
  278. #include "libavutil/lfg.h"
  279. #define MDCT_NBITS 9
  280. #define MDCT_SAMPLES (1 << MDCT_NBITS)
  281. #define FN (MDCT_SAMPLES/4)
  282. static void fft_test(AC3MDCTContext *mdct, AVLFG *lfg)
  283. {
  284. IComplex in[FN], in1[FN];
  285. int k, n, i;
  286. float sum_re, sum_im, a;
  287. for (i = 0; i < FN; i++) {
  288. in[i].re = av_lfg_get(lfg) % 65535 - 32767;
  289. in[i].im = av_lfg_get(lfg) % 65535 - 32767;
  290. in1[i] = in[i];
  291. }
  292. fft(mdct, in, 7);
  293. /* do it by hand */
  294. for (k = 0; k < FN; k++) {
  295. sum_re = 0;
  296. sum_im = 0;
  297. for (n = 0; n < FN; n++) {
  298. a = -2 * M_PI * (n * k) / FN;
  299. sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
  300. sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
  301. }
  302. av_log(NULL, AV_LOG_DEBUG, "%3d: %6d,%6d %6.0f,%6.0f\n",
  303. k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
  304. }
  305. }
  306. static void mdct_test(AC3MDCTContext *mdct, AVLFG *lfg)
  307. {
  308. int16_t input[MDCT_SAMPLES];
  309. int32_t output[AC3_MAX_COEFS];
  310. float input1[MDCT_SAMPLES];
  311. float output1[AC3_MAX_COEFS];
  312. float s, a, err, e, emax;
  313. int i, k, n;
  314. for (i = 0; i < MDCT_SAMPLES; i++) {
  315. input[i] = (av_lfg_get(lfg) % 65535 - 32767) * 9 / 10;
  316. input1[i] = input[i];
  317. }
  318. mdct512(mdct, output, input);
  319. /* do it by hand */
  320. for (k = 0; k < AC3_MAX_COEFS; k++) {
  321. s = 0;
  322. for (n = 0; n < MDCT_SAMPLES; n++) {
  323. a = (2*M_PI*(2*n+1+MDCT_SAMPLES/2)*(2*k+1) / (4 * MDCT_SAMPLES));
  324. s += input1[n] * cos(a);
  325. }
  326. output1[k] = -2 * s / MDCT_SAMPLES;
  327. }
  328. err = 0;
  329. emax = 0;
  330. for (i = 0; i < AC3_MAX_COEFS; i++) {
  331. av_log(NULL, AV_LOG_DEBUG, "%3d: %7d %7.0f\n", i, output[i], output1[i]);
  332. e = output[i] - output1[i];
  333. if (e > emax)
  334. emax = e;
  335. err += e * e;
  336. }
  337. av_log(NULL, AV_LOG_DEBUG, "err2=%f emax=%f\n", err / AC3_MAX_COEFS, emax);
  338. }
  339. int main(void)
  340. {
  341. AVLFG lfg;
  342. AC3MDCTContext mdct;
  343. mdct.avctx = NULL;
  344. av_log_set_level(AV_LOG_DEBUG);
  345. mdct_init(&mdct, 9);
  346. fft_test(&mdct, &lfg);
  347. mdct_test(&mdct, &lfg);
  348. return 0;
  349. }
  350. #endif /* TEST */
  351. AVCodec ff_ac3_fixed_encoder = {
  352. "ac3_fixed",
  353. AVMEDIA_TYPE_AUDIO,
  354. CODEC_ID_AC3,
  355. sizeof(AC3EncodeContext),
  356. ac3_encode_init,
  357. ac3_encode_frame,
  358. ac3_encode_close,
  359. NULL,
  360. .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
  361. .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
  362. .channel_layouts = ac3_channel_layouts,
  363. };