You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1330 lines
43KB

  1. /*
  2. * The simplest AC-3 encoder
  3. * Copyright (c) 2000 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * The simplest AC-3 encoder.
  24. */
  25. //#define DEBUG
  26. #include "libavcore/audioconvert.h"
  27. #include "libavutil/crc.h"
  28. #include "avcodec.h"
  29. #include "put_bits.h"
  30. #include "ac3.h"
  31. #include "audioconvert.h"
  32. #define MDCT_NBITS 9
  33. #define MDCT_SAMPLES (1 << MDCT_NBITS)
  34. #define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits)))
  35. #define FIX15(a) av_clip_int16(SCALE_FLOAT(a, 15))
  36. typedef struct IComplex {
  37. int16_t re,im;
  38. } IComplex;
  39. typedef struct AC3EncodeContext {
  40. PutBitContext pb; ///< bitstream writer context
  41. int bitstream_id; ///< bitstream id (bsid)
  42. int bitstream_mode; ///< bitstream mode (bsmod)
  43. int bit_rate; ///< target bit rate, in bits-per-second
  44. int sample_rate; ///< sampling frequency, in Hz
  45. int frame_size_min; ///< minimum frame size in case rounding is necessary
  46. int frame_size; ///< current frame size in words
  47. int frame_size_code; ///< frame size code (frmsizecod)
  48. int bits_written; ///< bit count (used to avg. bitrate)
  49. int samples_written; ///< sample count (used to avg. bitrate)
  50. int fbw_channels; ///< number of full-bandwidth channels (nfchans)
  51. int channels; ///< total number of channels (nchans)
  52. int lfe_on; ///< indicates if there is an LFE channel (lfeon)
  53. int lfe_channel; ///< channel index of the LFE channel
  54. int channel_mode; ///< channel mode (acmod)
  55. const uint8_t *channel_map; ///< channel map used to reorder channels
  56. int bandwidth_code[AC3_MAX_CHANNELS]; ///< bandwidth code (0 to 60) (chbwcod)
  57. int nb_coefs[AC3_MAX_CHANNELS];
  58. /* bitrate allocation control */
  59. int slow_gain_code; ///< slow gain code (sgaincod)
  60. int slow_decay_code; ///< slow decay code (sdcycod)
  61. int fast_decay_code; ///< fast decay code (fdcycod)
  62. int db_per_bit_code; ///< dB/bit code (dbpbcod)
  63. int floor_code; ///< floor code (floorcod)
  64. AC3BitAllocParameters bit_alloc; ///< bit allocation parameters
  65. int coarse_snr_offset; ///< coarse SNR offsets (csnroffst)
  66. int fast_gain_code[AC3_MAX_CHANNELS]; ///< fast gain codes (signal-to-mask ratio) (fgaincod)
  67. int fine_snr_offset[AC3_MAX_CHANNELS]; ///< fine SNR offsets (fsnroffst)
  68. /* mantissa encoding */
  69. int mant1_cnt, mant2_cnt, mant4_cnt; ///< mantissa counts for bap=1,2,4
  70. int16_t last_samples[AC3_MAX_CHANNELS][AC3_BLOCK_SIZE]; ///< last 256 samples from previous frame
  71. } AC3EncodeContext;
  72. static int16_t costab[64];
  73. static int16_t sintab[64];
  74. static int16_t xcos1[128];
  75. static int16_t xsin1[128];
  76. static av_cold void fft_init(int ln)
  77. {
  78. int i, n, n2;
  79. float alpha;
  80. n = 1 << ln;
  81. n2 = n >> 1;
  82. for (i = 0; i < n2; i++) {
  83. alpha = 2.0 * M_PI * i / n;
  84. costab[i] = FIX15(cos(alpha));
  85. sintab[i] = FIX15(sin(alpha));
  86. }
  87. }
  88. static av_cold void mdct_init(int nbits)
  89. {
  90. int i, n, n4;
  91. n = 1 << nbits;
  92. n4 = n >> 2;
  93. fft_init(nbits - 2);
  94. for (i = 0; i < n4; i++) {
  95. float alpha = 2.0 * M_PI * (i + 1.0 / 8.0) / n;
  96. xcos1[i] = FIX15(-cos(alpha));
  97. xsin1[i] = FIX15(-sin(alpha));
  98. }
  99. }
  100. /* butter fly op */
  101. #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
  102. { \
  103. int ax, ay, bx, by; \
  104. bx = pre1; \
  105. by = pim1; \
  106. ax = qre1; \
  107. ay = qim1; \
  108. pre = (bx + ax) >> 1; \
  109. pim = (by + ay) >> 1; \
  110. qre = (bx - ax) >> 1; \
  111. qim = (by - ay) >> 1; \
  112. }
  113. #define CMUL(pre, pim, are, aim, bre, bim) \
  114. { \
  115. pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15; \
  116. pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15; \
  117. }
  118. /* do a 2^n point complex fft on 2^ln points. */
  119. static void fft(IComplex *z, int ln)
  120. {
  121. int j, l, np, np2;
  122. int nblocks, nloops;
  123. register IComplex *p,*q;
  124. int tmp_re, tmp_im;
  125. np = 1 << ln;
  126. /* reverse */
  127. for (j = 0; j < np; j++) {
  128. int k = av_reverse[j] >> (8 - ln);
  129. if (k < j)
  130. FFSWAP(IComplex, z[k], z[j]);
  131. }
  132. /* pass 0 */
  133. p = &z[0];
  134. j = np >> 1;
  135. do {
  136. BF(p[0].re, p[0].im, p[1].re, p[1].im,
  137. p[0].re, p[0].im, p[1].re, p[1].im);
  138. p += 2;
  139. } while (--j);
  140. /* pass 1 */
  141. p = &z[0];
  142. j = np >> 2;
  143. do {
  144. BF(p[0].re, p[0].im, p[2].re, p[2].im,
  145. p[0].re, p[0].im, p[2].re, p[2].im);
  146. BF(p[1].re, p[1].im, p[3].re, p[3].im,
  147. p[1].re, p[1].im, p[3].im, -p[3].re);
  148. p+=4;
  149. } while (--j);
  150. /* pass 2 .. ln-1 */
  151. nblocks = np >> 3;
  152. nloops = 1 << 2;
  153. np2 = np >> 1;
  154. do {
  155. p = z;
  156. q = z + nloops;
  157. for (j = 0; j < nblocks; j++) {
  158. BF(p->re, p->im, q->re, q->im,
  159. p->re, p->im, q->re, q->im);
  160. p++;
  161. q++;
  162. for(l = nblocks; l < np2; l += nblocks) {
  163. CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);
  164. BF(p->re, p->im, q->re, q->im,
  165. p->re, p->im, tmp_re, tmp_im);
  166. p++;
  167. q++;
  168. }
  169. p += nloops;
  170. q += nloops;
  171. }
  172. nblocks = nblocks >> 1;
  173. nloops = nloops << 1;
  174. } while (nblocks);
  175. }
  176. static void mdct512(int32_t *out, int16_t *in)
  177. {
  178. int i, re, im, re1, im1;
  179. int16_t rot[MDCT_SAMPLES];
  180. IComplex x[MDCT_SAMPLES/4];
  181. /* shift to simplify computations */
  182. for (i = 0; i < MDCT_SAMPLES/4; i++)
  183. rot[i] = -in[i + 3*MDCT_SAMPLES/4];
  184. for (;i < MDCT_SAMPLES; i++)
  185. rot[i] = in[i - MDCT_SAMPLES/4];
  186. /* pre rotation */
  187. for (i = 0; i < MDCT_SAMPLES/4; i++) {
  188. re = ((int)rot[ 2*i] - (int)rot[MDCT_SAMPLES -1-2*i]) >> 1;
  189. im = -((int)rot[MDCT_SAMPLES/2+2*i] - (int)rot[MDCT_SAMPLES/2-1-2*i]) >> 1;
  190. CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);
  191. }
  192. fft(x, MDCT_NBITS - 2);
  193. /* post rotation */
  194. for (i = 0; i < MDCT_SAMPLES/4; i++) {
  195. re = x[i].re;
  196. im = x[i].im;
  197. CMUL(re1, im1, re, im, xsin1[i], xcos1[i]);
  198. out[ 2*i] = im1;
  199. out[MDCT_SAMPLES/2-1-2*i] = re1;
  200. }
  201. }
  202. /* compute log2(max(abs(tab[]))) */
  203. static int log2_tab(int16_t *tab, int n)
  204. {
  205. int i, v;
  206. v = 0;
  207. for (i = 0; i < n; i++)
  208. v |= abs(tab[i]);
  209. return av_log2(v);
  210. }
  211. static void lshift_tab(int16_t *tab, int n, int lshift)
  212. {
  213. int i;
  214. if (lshift > 0) {
  215. for(i = 0; i < n; i++)
  216. tab[i] <<= lshift;
  217. } else if (lshift < 0) {
  218. lshift = -lshift;
  219. for (i = 0; i < n; i++)
  220. tab[i] >>= lshift;
  221. }
  222. }
  223. static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n)
  224. {
  225. int sum, i;
  226. sum = 0;
  227. for (i = 0; i < n; i++)
  228. sum += abs(exp1[i] - exp2[i]);
  229. return sum;
  230. }
  231. /* new exponents are sent if their Norm 1 exceed this number */
  232. #define EXP_DIFF_THRESHOLD 1000
  233. static void compute_exp_strategy(uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
  234. uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
  235. int ch, int is_lfe)
  236. {
  237. int i, j;
  238. int exp_diff;
  239. /* estimate if the exponent variation & decide if they should be
  240. reused in the next frame */
  241. exp_strategy[0][ch] = EXP_NEW;
  242. for (i = 1; i < AC3_MAX_BLOCKS; i++) {
  243. exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], AC3_MAX_COEFS);
  244. if (exp_diff > EXP_DIFF_THRESHOLD)
  245. exp_strategy[i][ch] = EXP_NEW;
  246. else
  247. exp_strategy[i][ch] = EXP_REUSE;
  248. }
  249. if (is_lfe)
  250. return;
  251. /* now select the encoding strategy type : if exponents are often
  252. recoded, we use a coarse encoding */
  253. i = 0;
  254. while (i < AC3_MAX_BLOCKS) {
  255. j = i + 1;
  256. while (j < AC3_MAX_BLOCKS && exp_strategy[j][ch] == EXP_REUSE)
  257. j++;
  258. switch (j - i) {
  259. case 1: exp_strategy[i][ch] = EXP_D45; break;
  260. case 2:
  261. case 3: exp_strategy[i][ch] = EXP_D25; break;
  262. default: exp_strategy[i][ch] = EXP_D15; break;
  263. }
  264. i = j;
  265. }
  266. }
  267. /* set exp[i] to min(exp[i], exp1[i]) */
  268. static void exponent_min(uint8_t exp[AC3_MAX_COEFS], uint8_t exp1[AC3_MAX_COEFS], int n)
  269. {
  270. int i;
  271. for (i = 0; i < n; i++) {
  272. if (exp1[i] < exp[i])
  273. exp[i] = exp1[i];
  274. }
  275. }
  276. /* update the exponents so that they are the ones the decoder will
  277. decode. Return the number of bits used to code the exponents */
  278. static int encode_exp(uint8_t encoded_exp[AC3_MAX_COEFS],
  279. uint8_t exp[AC3_MAX_COEFS],
  280. int nb_exps, int exp_strategy)
  281. {
  282. int group_size, nb_groups, i, j, k, exp_min;
  283. uint8_t exp1[AC3_MAX_COEFS];
  284. group_size = exp_strategy + (exp_strategy == EXP_D45);
  285. nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3;
  286. /* for each group, compute the minimum exponent */
  287. exp1[0] = exp[0]; /* DC exponent is handled separately */
  288. k = 1;
  289. for (i = 1; i <= nb_groups; i++) {
  290. exp_min = exp[k];
  291. assert(exp_min >= 0 && exp_min <= 24);
  292. for (j = 1; j < group_size; j++) {
  293. if (exp[k+j] < exp_min)
  294. exp_min = exp[k+j];
  295. }
  296. exp1[i] = exp_min;
  297. k += group_size;
  298. }
  299. /* constraint for DC exponent */
  300. if (exp1[0] > 15)
  301. exp1[0] = 15;
  302. /* decrease the delta between each groups to within 2 so that they can be
  303. differentially encoded */
  304. for (i = 1; i <= nb_groups; i++)
  305. exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2);
  306. for (i = nb_groups-1; i >= 0; i--)
  307. exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2);
  308. /* now we have the exponent values the decoder will see */
  309. encoded_exp[0] = exp1[0];
  310. k = 1;
  311. for (i = 1; i <= nb_groups; i++) {
  312. for (j = 0; j < group_size; j++)
  313. encoded_exp[k+j] = exp1[i];
  314. k += group_size;
  315. }
  316. return 4 + (nb_groups / 3) * 7;
  317. }
  318. /* return the size in bits taken by the mantissa */
  319. static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs)
  320. {
  321. int bits, mant, i;
  322. bits = 0;
  323. for (i = 0; i < nb_coefs; i++) {
  324. mant = m[i];
  325. switch (mant) {
  326. case 0:
  327. /* nothing */
  328. break;
  329. case 1:
  330. /* 3 mantissa in 5 bits */
  331. if (s->mant1_cnt == 0)
  332. bits += 5;
  333. if (++s->mant1_cnt == 3)
  334. s->mant1_cnt = 0;
  335. break;
  336. case 2:
  337. /* 3 mantissa in 7 bits */
  338. if (s->mant2_cnt == 0)
  339. bits += 7;
  340. if (++s->mant2_cnt == 3)
  341. s->mant2_cnt = 0;
  342. break;
  343. case 3:
  344. bits += 3;
  345. break;
  346. case 4:
  347. /* 2 mantissa in 7 bits */
  348. if (s->mant4_cnt == 0)
  349. bits += 7;
  350. if (++s->mant4_cnt == 2)
  351. s->mant4_cnt = 0;
  352. break;
  353. case 14:
  354. bits += 14;
  355. break;
  356. case 15:
  357. bits += 16;
  358. break;
  359. default:
  360. bits += mant - 1;
  361. break;
  362. }
  363. }
  364. return bits;
  365. }
  366. static void bit_alloc_masking(AC3EncodeContext *s,
  367. uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
  368. uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
  369. int16_t psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
  370. int16_t mask[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][50])
  371. {
  372. int blk, ch;
  373. int16_t band_psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][50];
  374. for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
  375. for (ch = 0; ch < s->channels; ch++) {
  376. if(exp_strategy[blk][ch] == EXP_REUSE) {
  377. memcpy(psd[blk][ch], psd[blk-1][ch], AC3_MAX_COEFS*sizeof(int16_t));
  378. memcpy(mask[blk][ch], mask[blk-1][ch], 50*sizeof(int16_t));
  379. } else {
  380. ff_ac3_bit_alloc_calc_psd(encoded_exp[blk][ch], 0,
  381. s->nb_coefs[ch],
  382. psd[blk][ch], band_psd[blk][ch]);
  383. ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, band_psd[blk][ch],
  384. 0, s->nb_coefs[ch],
  385. ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
  386. ch == s->lfe_channel,
  387. DBA_NONE, 0, NULL, NULL, NULL,
  388. mask[blk][ch]);
  389. }
  390. }
  391. }
  392. }
  393. static int bit_alloc(AC3EncodeContext *s,
  394. int16_t mask[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][50],
  395. int16_t psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
  396. uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
  397. int frame_bits, int coarse_snr_offset, int fine_snr_offset)
  398. {
  399. int i, ch;
  400. int snr_offset;
  401. snr_offset = (((coarse_snr_offset - 15) << 4) + fine_snr_offset) << 2;
  402. for (i = 0; i < AC3_MAX_BLOCKS; i++) {
  403. s->mant1_cnt = 0;
  404. s->mant2_cnt = 0;
  405. s->mant4_cnt = 0;
  406. for (ch = 0; ch < s->channels; ch++) {
  407. ff_ac3_bit_alloc_calc_bap(mask[i][ch], psd[i][ch], 0,
  408. s->nb_coefs[ch], snr_offset,
  409. s->bit_alloc.floor, ff_ac3_bap_tab,
  410. bap[i][ch]);
  411. frame_bits += compute_mantissa_size(s, bap[i][ch], s->nb_coefs[ch]);
  412. }
  413. }
  414. return 16 * s->frame_size - frame_bits;
  415. }
  416. #define SNR_INC1 4
  417. static int compute_bit_allocation(AC3EncodeContext *s,
  418. uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
  419. uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
  420. uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
  421. int frame_bits)
  422. {
  423. int i, ch;
  424. int coarse_snr_offset, fine_snr_offset;
  425. uint8_t bap1[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
  426. int16_t psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
  427. int16_t mask[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][50];
  428. static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
  429. /* init default parameters */
  430. s->slow_decay_code = 2;
  431. s->fast_decay_code = 1;
  432. s->slow_gain_code = 1;
  433. s->db_per_bit_code = 2;
  434. s->floor_code = 4;
  435. for (ch = 0; ch < s->channels; ch++)
  436. s->fast_gain_code[ch] = 4;
  437. /* compute real values */
  438. s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift;
  439. s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift;
  440. s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code];
  441. s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
  442. s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code];
  443. /* header size */
  444. frame_bits += 65;
  445. // if (s->channel_mode == 2)
  446. // frame_bits += 2;
  447. frame_bits += frame_bits_inc[s->channel_mode];
  448. /* audio blocks */
  449. for (i = 0; i < AC3_MAX_BLOCKS; i++) {
  450. frame_bits += s->fbw_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
  451. if (s->channel_mode == AC3_CHMODE_STEREO) {
  452. frame_bits++; /* rematstr */
  453. if (!i)
  454. frame_bits += 4;
  455. }
  456. frame_bits += 2 * s->fbw_channels; /* chexpstr[2] * c */
  457. if (s->lfe_on)
  458. frame_bits++; /* lfeexpstr */
  459. for (ch = 0; ch < s->fbw_channels; ch++) {
  460. if (exp_strategy[i][ch] != EXP_REUSE)
  461. frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
  462. }
  463. frame_bits++; /* baie */
  464. frame_bits++; /* snr */
  465. frame_bits += 2; /* delta / skip */
  466. }
  467. frame_bits++; /* cplinu for block 0 */
  468. /* bit alloc info */
  469. /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
  470. /* csnroffset[6] */
  471. /* (fsnoffset[4] + fgaincod[4]) * c */
  472. frame_bits += 2*4 + 3 + 6 + s->channels * (4 + 3);
  473. /* auxdatae, crcrsv */
  474. frame_bits += 2;
  475. /* CRC */
  476. frame_bits += 16;
  477. /* calculate psd and masking curve before doing bit allocation */
  478. bit_alloc_masking(s, encoded_exp, exp_strategy, psd, mask);
  479. /* now the big work begins : do the bit allocation. Modify the snr
  480. offset until we can pack everything in the requested frame size */
  481. coarse_snr_offset = s->coarse_snr_offset;
  482. while (coarse_snr_offset >= 0 &&
  483. bit_alloc(s, mask, psd, bap, frame_bits, coarse_snr_offset, 0) < 0)
  484. coarse_snr_offset -= SNR_INC1;
  485. if (coarse_snr_offset < 0) {
  486. av_log(NULL, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
  487. return -1;
  488. }
  489. while (coarse_snr_offset + SNR_INC1 <= 63 &&
  490. bit_alloc(s, mask, psd, bap1, frame_bits,
  491. coarse_snr_offset + SNR_INC1, 0) >= 0) {
  492. coarse_snr_offset += SNR_INC1;
  493. memcpy(bap, bap1, sizeof(bap1));
  494. }
  495. while (coarse_snr_offset + 1 <= 63 &&
  496. bit_alloc(s, mask, psd, bap1, frame_bits, coarse_snr_offset + 1, 0) >= 0) {
  497. coarse_snr_offset++;
  498. memcpy(bap, bap1, sizeof(bap1));
  499. }
  500. fine_snr_offset = 0;
  501. while (fine_snr_offset + SNR_INC1 <= 15 &&
  502. bit_alloc(s, mask, psd, bap1, frame_bits,
  503. coarse_snr_offset, fine_snr_offset + SNR_INC1) >= 0) {
  504. fine_snr_offset += SNR_INC1;
  505. memcpy(bap, bap1, sizeof(bap1));
  506. }
  507. while (fine_snr_offset + 1 <= 15 &&
  508. bit_alloc(s, mask, psd, bap1, frame_bits,
  509. coarse_snr_offset, fine_snr_offset + 1) >= 0) {
  510. fine_snr_offset++;
  511. memcpy(bap, bap1, sizeof(bap1));
  512. }
  513. s->coarse_snr_offset = coarse_snr_offset;
  514. for (ch = 0; ch < s->channels; ch++)
  515. s->fine_snr_offset[ch] = fine_snr_offset;
  516. return 0;
  517. }
  518. /* output the AC-3 frame header */
  519. static void output_frame_header(AC3EncodeContext *s, unsigned char *frame)
  520. {
  521. init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
  522. put_bits(&s->pb, 16, 0x0b77); /* frame header */
  523. put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
  524. put_bits(&s->pb, 2, s->bit_alloc.sr_code);
  525. put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min));
  526. put_bits(&s->pb, 5, s->bitstream_id);
  527. put_bits(&s->pb, 3, s->bitstream_mode);
  528. put_bits(&s->pb, 3, s->channel_mode);
  529. if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
  530. put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */
  531. if (s->channel_mode & 0x04)
  532. put_bits(&s->pb, 2, 1); /* XXX -6 dB */
  533. if (s->channel_mode == AC3_CHMODE_STEREO)
  534. put_bits(&s->pb, 2, 0); /* surround not indicated */
  535. put_bits(&s->pb, 1, s->lfe_on); /* LFE */
  536. put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */
  537. put_bits(&s->pb, 1, 0); /* no compression control word */
  538. put_bits(&s->pb, 1, 0); /* no lang code */
  539. put_bits(&s->pb, 1, 0); /* no audio production info */
  540. put_bits(&s->pb, 1, 0); /* no copyright */
  541. put_bits(&s->pb, 1, 1); /* original bitstream */
  542. put_bits(&s->pb, 1, 0); /* no time code 1 */
  543. put_bits(&s->pb, 1, 0); /* no time code 2 */
  544. put_bits(&s->pb, 1, 0); /* no additional bit stream info */
  545. }
  546. /* symetric quantization on 'levels' levels */
  547. static inline int sym_quant(int c, int e, int levels)
  548. {
  549. int v;
  550. if (c >= 0) {
  551. v = (levels * (c << e)) >> 24;
  552. v = (v + 1) >> 1;
  553. v = (levels >> 1) + v;
  554. } else {
  555. v = (levels * ((-c) << e)) >> 24;
  556. v = (v + 1) >> 1;
  557. v = (levels >> 1) - v;
  558. }
  559. assert (v >= 0 && v < levels);
  560. return v;
  561. }
  562. /* asymetric quantization on 2^qbits levels */
  563. static inline int asym_quant(int c, int e, int qbits)
  564. {
  565. int lshift, m, v;
  566. lshift = e + qbits - 24;
  567. if (lshift >= 0)
  568. v = c << lshift;
  569. else
  570. v = c >> (-lshift);
  571. /* rounding */
  572. v = (v + 1) >> 1;
  573. m = (1 << (qbits-1));
  574. if (v >= m)
  575. v = m - 1;
  576. assert(v >= -m);
  577. return v & ((1 << qbits)-1);
  578. }
  579. /* Output one audio block. There are AC3_MAX_BLOCKS audio blocks in one AC-3
  580. frame */
  581. static void output_audio_block(AC3EncodeContext *s,
  582. uint8_t exp_strategy[AC3_MAX_CHANNELS],
  583. uint8_t encoded_exp[AC3_MAX_CHANNELS][AC3_MAX_COEFS],
  584. uint8_t bap[AC3_MAX_CHANNELS][AC3_MAX_COEFS],
  585. int32_t mdct_coefs[AC3_MAX_CHANNELS][AC3_MAX_COEFS],
  586. int8_t global_exp[AC3_MAX_CHANNELS],
  587. int block_num)
  588. {
  589. int ch, nb_groups, group_size, i, baie, rbnd;
  590. uint8_t *p;
  591. uint16_t qmant[AC3_MAX_CHANNELS][AC3_MAX_COEFS];
  592. int exp0, exp1;
  593. int mant1_cnt, mant2_cnt, mant4_cnt;
  594. uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr;
  595. int delta0, delta1, delta2;
  596. for (ch = 0; ch < s->fbw_channels; ch++)
  597. put_bits(&s->pb, 1, 0); /* no block switching */
  598. for (ch = 0; ch < s->fbw_channels; ch++)
  599. put_bits(&s->pb, 1, 1); /* no dither */
  600. put_bits(&s->pb, 1, 0); /* no dynamic range */
  601. if (!block_num) {
  602. put_bits(&s->pb, 1, 1); /* coupling strategy present */
  603. put_bits(&s->pb, 1, 0); /* no coupling strategy */
  604. } else {
  605. put_bits(&s->pb, 1, 0); /* no new coupling strategy */
  606. }
  607. if (s->channel_mode == AC3_CHMODE_STEREO) {
  608. if (!block_num) {
  609. /* first block must define rematrixing (rematstr) */
  610. put_bits(&s->pb, 1, 1);
  611. /* dummy rematrixing rematflg(1:4)=0 */
  612. for (rbnd = 0; rbnd < 4; rbnd++)
  613. put_bits(&s->pb, 1, 0);
  614. } else {
  615. /* no matrixing (but should be used in the future) */
  616. put_bits(&s->pb, 1, 0);
  617. }
  618. }
  619. /* exponent strategy */
  620. for (ch = 0; ch < s->fbw_channels; ch++)
  621. put_bits(&s->pb, 2, exp_strategy[ch]);
  622. if (s->lfe_on)
  623. put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]);
  624. /* bandwidth */
  625. for (ch = 0; ch < s->fbw_channels; ch++) {
  626. if (exp_strategy[ch] != EXP_REUSE)
  627. put_bits(&s->pb, 6, s->bandwidth_code[ch]);
  628. }
  629. /* exponents */
  630. for (ch = 0; ch < s->channels; ch++) {
  631. if (exp_strategy[ch] == EXP_REUSE)
  632. continue;
  633. group_size = exp_strategy[ch] + (exp_strategy[ch] == EXP_D45);
  634. nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size);
  635. p = encoded_exp[ch];
  636. /* first exponent */
  637. exp1 = *p++;
  638. put_bits(&s->pb, 4, exp1);
  639. /* next ones are delta encoded */
  640. for (i = 0; i < nb_groups; i++) {
  641. /* merge three delta in one code */
  642. exp0 = exp1;
  643. exp1 = p[0];
  644. p += group_size;
  645. delta0 = exp1 - exp0 + 2;
  646. exp0 = exp1;
  647. exp1 = p[0];
  648. p += group_size;
  649. delta1 = exp1 - exp0 + 2;
  650. exp0 = exp1;
  651. exp1 = p[0];
  652. p += group_size;
  653. delta2 = exp1 - exp0 + 2;
  654. put_bits(&s->pb, 7, ((delta0 * 5 + delta1) * 5) + delta2);
  655. }
  656. if (ch != s->lfe_channel)
  657. put_bits(&s->pb, 2, 0); /* no gain range info */
  658. }
  659. /* bit allocation info */
  660. baie = (block_num == 0);
  661. put_bits(&s->pb, 1, baie);
  662. if (baie) {
  663. put_bits(&s->pb, 2, s->slow_decay_code);
  664. put_bits(&s->pb, 2, s->fast_decay_code);
  665. put_bits(&s->pb, 2, s->slow_gain_code);
  666. put_bits(&s->pb, 2, s->db_per_bit_code);
  667. put_bits(&s->pb, 3, s->floor_code);
  668. }
  669. /* snr offset */
  670. put_bits(&s->pb, 1, baie);
  671. if (baie) {
  672. put_bits(&s->pb, 6, s->coarse_snr_offset);
  673. for (ch = 0; ch < s->channels; ch++) {
  674. put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
  675. put_bits(&s->pb, 3, s->fast_gain_code[ch]);
  676. }
  677. }
  678. put_bits(&s->pb, 1, 0); /* no delta bit allocation */
  679. put_bits(&s->pb, 1, 0); /* no data to skip */
  680. /* mantissa encoding : we use two passes to handle the grouping. A
  681. one pass method may be faster, but it would necessitate to
  682. modify the output stream. */
  683. /* first pass: quantize */
  684. mant1_cnt = mant2_cnt = mant4_cnt = 0;
  685. qmant1_ptr = qmant2_ptr = qmant4_ptr = NULL;
  686. for (ch = 0; ch < s->channels; ch++) {
  687. int b, c, e, v;
  688. for (i = 0; i < s->nb_coefs[ch]; i++) {
  689. c = mdct_coefs[ch][i];
  690. e = encoded_exp[ch][i] - global_exp[ch];
  691. b = bap[ch][i];
  692. switch (b) {
  693. case 0:
  694. v = 0;
  695. break;
  696. case 1:
  697. v = sym_quant(c, e, 3);
  698. switch (mant1_cnt) {
  699. case 0:
  700. qmant1_ptr = &qmant[ch][i];
  701. v = 9 * v;
  702. mant1_cnt = 1;
  703. break;
  704. case 1:
  705. *qmant1_ptr += 3 * v;
  706. mant1_cnt = 2;
  707. v = 128;
  708. break;
  709. default:
  710. *qmant1_ptr += v;
  711. mant1_cnt = 0;
  712. v = 128;
  713. break;
  714. }
  715. break;
  716. case 2:
  717. v = sym_quant(c, e, 5);
  718. switch (mant2_cnt) {
  719. case 0:
  720. qmant2_ptr = &qmant[ch][i];
  721. v = 25 * v;
  722. mant2_cnt = 1;
  723. break;
  724. case 1:
  725. *qmant2_ptr += 5 * v;
  726. mant2_cnt = 2;
  727. v = 128;
  728. break;
  729. default:
  730. *qmant2_ptr += v;
  731. mant2_cnt = 0;
  732. v = 128;
  733. break;
  734. }
  735. break;
  736. case 3:
  737. v = sym_quant(c, e, 7);
  738. break;
  739. case 4:
  740. v = sym_quant(c, e, 11);
  741. switch (mant4_cnt) {
  742. case 0:
  743. qmant4_ptr = &qmant[ch][i];
  744. v = 11 * v;
  745. mant4_cnt = 1;
  746. break;
  747. default:
  748. *qmant4_ptr += v;
  749. mant4_cnt = 0;
  750. v = 128;
  751. break;
  752. }
  753. break;
  754. case 5:
  755. v = sym_quant(c, e, 15);
  756. break;
  757. case 14:
  758. v = asym_quant(c, e, 14);
  759. break;
  760. case 15:
  761. v = asym_quant(c, e, 16);
  762. break;
  763. default:
  764. v = asym_quant(c, e, b - 1);
  765. break;
  766. }
  767. qmant[ch][i] = v;
  768. }
  769. }
  770. /* second pass : output the values */
  771. for (ch = 0; ch < s->channels; ch++) {
  772. int b, q;
  773. for (i = 0; i < s->nb_coefs[ch]; i++) {
  774. q = qmant[ch][i];
  775. b = bap[ch][i];
  776. switch (b) {
  777. case 0: break;
  778. case 1: if (q != 128) put_bits(&s->pb, 5, q); break;
  779. case 2: if (q != 128) put_bits(&s->pb, 7, q); break;
  780. case 3: put_bits(&s->pb, 3, q); break;
  781. case 4: if (q != 128) put_bits(&s->pb, 7, q); break;
  782. case 14: put_bits(&s->pb, 14, q); break;
  783. case 15: put_bits(&s->pb, 16, q); break;
  784. default: put_bits(&s->pb, b-1, q); break;
  785. }
  786. }
  787. }
  788. }
  789. #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
  790. static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
  791. {
  792. unsigned int c;
  793. c = 0;
  794. while (a) {
  795. if (a & 1)
  796. c ^= b;
  797. a = a >> 1;
  798. b = b << 1;
  799. if (b & (1 << 16))
  800. b ^= poly;
  801. }
  802. return c;
  803. }
  804. static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
  805. {
  806. unsigned int r;
  807. r = 1;
  808. while (n) {
  809. if (n & 1)
  810. r = mul_poly(r, a, poly);
  811. a = mul_poly(a, a, poly);
  812. n >>= 1;
  813. }
  814. return r;
  815. }
  816. /* fill the end of the frame and compute the two crcs */
  817. static int output_frame_end(AC3EncodeContext *s)
  818. {
  819. int frame_size, frame_size_58, n, crc1, crc2, crc_inv;
  820. uint8_t *frame;
  821. frame_size = s->frame_size; /* frame size in words */
  822. /* align to 8 bits */
  823. flush_put_bits(&s->pb);
  824. /* add zero bytes to reach the frame size */
  825. frame = s->pb.buf;
  826. n = 2 * s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
  827. assert(n >= 0);
  828. if (n > 0)
  829. memset(put_bits_ptr(&s->pb), 0, n);
  830. /* Now we must compute both crcs : this is not so easy for crc1
  831. because it is at the beginning of the data... */
  832. frame_size_58 = (frame_size >> 1) + (frame_size >> 3);
  833. crc1 = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
  834. frame + 4, 2 * frame_size_58 - 4));
  835. /* XXX: could precompute crc_inv */
  836. crc_inv = pow_poly((CRC16_POLY >> 1), (16 * frame_size_58) - 16, CRC16_POLY);
  837. crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
  838. AV_WB16(frame + 2, crc1);
  839. crc2 = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
  840. frame + 2 * frame_size_58,
  841. (frame_size - frame_size_58) * 2 - 2));
  842. AV_WB16(frame + 2*frame_size - 2, crc2);
  843. return frame_size * 2;
  844. }
  845. static int AC3_encode_frame(AVCodecContext *avctx,
  846. unsigned char *frame, int buf_size, void *data)
  847. {
  848. AC3EncodeContext *s = avctx->priv_data;
  849. const int16_t *samples = data;
  850. int i, j, k, v, ch;
  851. int16_t input_samples[AC3_WINDOW_SIZE];
  852. int32_t mdct_coef[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
  853. uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
  854. uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS];
  855. uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
  856. uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
  857. int8_t exp_samples[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS];
  858. int frame_bits;
  859. frame_bits = 0;
  860. for (ch = 0; ch < s->channels; ch++) {
  861. int ich = s->channel_map[ch];
  862. /* fixed mdct to the six sub blocks & exponent computation */
  863. for (i = 0; i < AC3_MAX_BLOCKS; i++) {
  864. const int16_t *sptr;
  865. int sinc;
  866. /* compute input samples */
  867. memcpy(input_samples, s->last_samples[ich], AC3_BLOCK_SIZE * sizeof(int16_t));
  868. sinc = s->channels;
  869. sptr = samples + (sinc * AC3_BLOCK_SIZE * i) + ich;
  870. for (j = 0; j < AC3_BLOCK_SIZE; j++) {
  871. v = *sptr;
  872. input_samples[j + AC3_BLOCK_SIZE] = v;
  873. s->last_samples[ich][j] = v;
  874. sptr += sinc;
  875. }
  876. /* apply the MDCT window */
  877. for (j = 0; j < AC3_BLOCK_SIZE; j++) {
  878. input_samples[j] = MUL16(input_samples[j],
  879. ff_ac3_window[j]) >> 15;
  880. input_samples[AC3_WINDOW_SIZE-j-1] = MUL16(input_samples[AC3_WINDOW_SIZE-j-1],
  881. ff_ac3_window[j]) >> 15;
  882. }
  883. /* Normalize the samples to use the maximum available precision */
  884. v = 14 - log2_tab(input_samples, AC3_WINDOW_SIZE);
  885. if (v < 0)
  886. v = 0;
  887. exp_samples[i][ch] = v - 9;
  888. lshift_tab(input_samples, AC3_WINDOW_SIZE, v);
  889. /* do the MDCT */
  890. mdct512(mdct_coef[i][ch], input_samples);
  891. /* compute "exponents". We take into account the normalization there */
  892. for (j = 0; j < AC3_MAX_COEFS; j++) {
  893. int e;
  894. v = abs(mdct_coef[i][ch][j]);
  895. if (v == 0)
  896. e = 24;
  897. else {
  898. e = 23 - av_log2(v) + exp_samples[i][ch];
  899. if (e >= 24) {
  900. e = 24;
  901. mdct_coef[i][ch][j] = 0;
  902. }
  903. }
  904. exp[i][ch][j] = e;
  905. }
  906. }
  907. compute_exp_strategy(exp_strategy, exp, ch, ch == s->lfe_channel);
  908. /* compute the exponents as the decoder will see them. The
  909. EXP_REUSE case must be handled carefully : we select the
  910. min of the exponents */
  911. i = 0;
  912. while (i < AC3_MAX_BLOCKS) {
  913. j = i + 1;
  914. while (j < AC3_MAX_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) {
  915. exponent_min(exp[i][ch], exp[j][ch], s->nb_coefs[ch]);
  916. j++;
  917. }
  918. frame_bits += encode_exp(encoded_exp[i][ch],
  919. exp[i][ch], s->nb_coefs[ch],
  920. exp_strategy[i][ch]);
  921. /* copy encoded exponents for reuse case */
  922. for (k = i+1; k < j; k++) {
  923. memcpy(encoded_exp[k][ch], encoded_exp[i][ch],
  924. s->nb_coefs[ch] * sizeof(uint8_t));
  925. }
  926. i = j;
  927. }
  928. }
  929. /* adjust for fractional frame sizes */
  930. while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
  931. s->bits_written -= s->bit_rate;
  932. s->samples_written -= s->sample_rate;
  933. }
  934. s->frame_size = s->frame_size_min + (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
  935. s->bits_written += s->frame_size * 16;
  936. s->samples_written += AC3_FRAME_SIZE;
  937. compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits);
  938. /* everything is known... let's output the frame */
  939. output_frame_header(s, frame);
  940. for (i = 0; i < AC3_MAX_BLOCKS; i++) {
  941. output_audio_block(s, exp_strategy[i], encoded_exp[i],
  942. bap[i], mdct_coef[i], exp_samples[i], i);
  943. }
  944. return output_frame_end(s);
  945. }
  946. static av_cold int AC3_encode_close(AVCodecContext *avctx)
  947. {
  948. av_freep(&avctx->coded_frame);
  949. return 0;
  950. }
  951. static av_cold int set_channel_info(AC3EncodeContext *s, int channels,
  952. int64_t *channel_layout)
  953. {
  954. int ch_layout;
  955. if (channels < 1 || channels > AC3_MAX_CHANNELS)
  956. return -1;
  957. if ((uint64_t)*channel_layout > 0x7FF)
  958. return -1;
  959. ch_layout = *channel_layout;
  960. if (!ch_layout)
  961. ch_layout = avcodec_guess_channel_layout(channels, CODEC_ID_AC3, NULL);
  962. if (av_get_channel_layout_nb_channels(ch_layout) != channels)
  963. return -1;
  964. s->lfe_on = !!(ch_layout & AV_CH_LOW_FREQUENCY);
  965. s->channels = channels;
  966. s->fbw_channels = channels - s->lfe_on;
  967. s->lfe_channel = s->lfe_on ? s->fbw_channels : -1;
  968. if (s->lfe_on)
  969. ch_layout -= AV_CH_LOW_FREQUENCY;
  970. switch (ch_layout) {
  971. case AV_CH_LAYOUT_MONO: s->channel_mode = AC3_CHMODE_MONO; break;
  972. case AV_CH_LAYOUT_STEREO: s->channel_mode = AC3_CHMODE_STEREO; break;
  973. case AV_CH_LAYOUT_SURROUND: s->channel_mode = AC3_CHMODE_3F; break;
  974. case AV_CH_LAYOUT_2_1: s->channel_mode = AC3_CHMODE_2F1R; break;
  975. case AV_CH_LAYOUT_4POINT0: s->channel_mode = AC3_CHMODE_3F1R; break;
  976. case AV_CH_LAYOUT_QUAD:
  977. case AV_CH_LAYOUT_2_2: s->channel_mode = AC3_CHMODE_2F2R; break;
  978. case AV_CH_LAYOUT_5POINT0:
  979. case AV_CH_LAYOUT_5POINT0_BACK: s->channel_mode = AC3_CHMODE_3F2R; break;
  980. default:
  981. return -1;
  982. }
  983. s->channel_map = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on];
  984. *channel_layout = ch_layout;
  985. if (s->lfe_on)
  986. *channel_layout |= AV_CH_LOW_FREQUENCY;
  987. return 0;
  988. }
  989. static av_cold int AC3_encode_init(AVCodecContext *avctx)
  990. {
  991. int freq = avctx->sample_rate;
  992. int bitrate = avctx->bit_rate;
  993. AC3EncodeContext *s = avctx->priv_data;
  994. int i, j, ch;
  995. int bw_code;
  996. avctx->frame_size = AC3_FRAME_SIZE;
  997. ac3_common_init();
  998. if (!avctx->channel_layout) {
  999. av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
  1000. "encoder will guess the layout, but it "
  1001. "might be incorrect.\n");
  1002. }
  1003. if (set_channel_info(s, avctx->channels, &avctx->channel_layout)) {
  1004. av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
  1005. return -1;
  1006. }
  1007. /* frequency */
  1008. for (i = 0; i < 3; i++) {
  1009. for (j = 0; j < 3; j++)
  1010. if ((ff_ac3_sample_rate_tab[j] >> i) == freq)
  1011. goto found;
  1012. }
  1013. return -1;
  1014. found:
  1015. s->sample_rate = freq;
  1016. s->bit_alloc.sr_shift = i;
  1017. s->bit_alloc.sr_code = j;
  1018. s->bitstream_id = 8 + s->bit_alloc.sr_shift;
  1019. s->bitstream_mode = 0; /* complete main audio service */
  1020. /* bitrate & frame size */
  1021. for (i = 0; i < 19; i++) {
  1022. if ((ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift)*1000 == bitrate)
  1023. break;
  1024. }
  1025. if (i == 19)
  1026. return -1;
  1027. s->bit_rate = bitrate;
  1028. s->frame_size_code = i << 1;
  1029. s->frame_size_min = ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code];
  1030. s->bits_written = 0;
  1031. s->samples_written = 0;
  1032. s->frame_size = s->frame_size_min;
  1033. /* set bandwidth */
  1034. if(avctx->cutoff) {
  1035. /* calculate bandwidth based on user-specified cutoff frequency */
  1036. int cutoff = av_clip(avctx->cutoff, 1, s->sample_rate >> 1);
  1037. int fbw_coeffs = cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
  1038. bw_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
  1039. } else {
  1040. /* use default bandwidth setting */
  1041. /* XXX: should compute the bandwidth according to the frame
  1042. size, so that we avoid annoying high frequency artifacts */
  1043. bw_code = 50;
  1044. }
  1045. for(ch=0;ch<s->fbw_channels;ch++) {
  1046. /* bandwidth for each channel */
  1047. s->bandwidth_code[ch] = bw_code;
  1048. s->nb_coefs[ch] = bw_code * 3 + 73;
  1049. }
  1050. if (s->lfe_on)
  1051. s->nb_coefs[s->lfe_channel] = 7; /* LFE channel always has 7 coefs */
  1052. /* initial snr offset */
  1053. s->coarse_snr_offset = 40;
  1054. mdct_init(9);
  1055. avctx->coded_frame= avcodec_alloc_frame();
  1056. avctx->coded_frame->key_frame= 1;
  1057. return 0;
  1058. }
  1059. #ifdef TEST
  1060. /*************************************************************************/
  1061. /* TEST */
  1062. #include "libavutil/lfg.h"
  1063. #define FN (MDCT_SAMPLES/4)
  1064. static void fft_test(AVLFG *lfg)
  1065. {
  1066. IComplex in[FN], in1[FN];
  1067. int k, n, i;
  1068. float sum_re, sum_im, a;
  1069. for (i = 0; i < FN; i++) {
  1070. in[i].re = av_lfg_get(lfg) % 65535 - 32767;
  1071. in[i].im = av_lfg_get(lfg) % 65535 - 32767;
  1072. in1[i] = in[i];
  1073. }
  1074. fft(in, 7);
  1075. /* do it by hand */
  1076. for (k = 0; k < FN; k++) {
  1077. sum_re = 0;
  1078. sum_im = 0;
  1079. for (n = 0; n < FN; n++) {
  1080. a = -2 * M_PI * (n * k) / FN;
  1081. sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
  1082. sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
  1083. }
  1084. av_log(NULL, AV_LOG_DEBUG, "%3d: %6d,%6d %6.0f,%6.0f\n",
  1085. k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
  1086. }
  1087. }
  1088. static void mdct_test(AVLFG *lfg)
  1089. {
  1090. int16_t input[MDCT_SAMPLES];
  1091. int32_t output[AC3_MAX_COEFS];
  1092. float input1[MDCT_SAMPLES];
  1093. float output1[AC3_MAX_COEFS];
  1094. float s, a, err, e, emax;
  1095. int i, k, n;
  1096. for (i = 0; i < MDCT_SAMPLES; i++) {
  1097. input[i] = (av_lfg_get(lfg) % 65535 - 32767) * 9 / 10;
  1098. input1[i] = input[i];
  1099. }
  1100. mdct512(output, input);
  1101. /* do it by hand */
  1102. for (k = 0; k < AC3_MAX_COEFS; k++) {
  1103. s = 0;
  1104. for (n = 0; n < MDCT_SAMPLES; n++) {
  1105. a = (2*M_PI*(2*n+1+MDCT_SAMPLES/2)*(2*k+1) / (4 * MDCT_SAMPLES));
  1106. s += input1[n] * cos(a);
  1107. }
  1108. output1[k] = -2 * s / MDCT_SAMPLES;
  1109. }
  1110. err = 0;
  1111. emax = 0;
  1112. for (i = 0; i < AC3_MAX_COEFS; i++) {
  1113. av_log(NULL, AV_LOG_DEBUG, "%3d: %7d %7.0f\n", i, output[i], output1[i]);
  1114. e = output[i] - output1[i];
  1115. if (e > emax)
  1116. emax = e;
  1117. err += e * e;
  1118. }
  1119. av_log(NULL, AV_LOG_DEBUG, "err2=%f emax=%f\n", err / AC3_MAX_COEFS, emax);
  1120. }
  1121. int main(void)
  1122. {
  1123. AVLFG lfg;
  1124. av_log_set_level(AV_LOG_DEBUG);
  1125. mdct_init(9);
  1126. fft_test(&lfg);
  1127. mdct_test(&lfg);
  1128. return 0;
  1129. }
  1130. #endif /* TEST */
  1131. AVCodec ac3_encoder = {
  1132. "ac3",
  1133. AVMEDIA_TYPE_AUDIO,
  1134. CODEC_ID_AC3,
  1135. sizeof(AC3EncodeContext),
  1136. AC3_encode_init,
  1137. AC3_encode_frame,
  1138. AC3_encode_close,
  1139. NULL,
  1140. .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
  1141. .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
  1142. .channel_layouts = (const int64_t[]){
  1143. AV_CH_LAYOUT_MONO,
  1144. AV_CH_LAYOUT_STEREO,
  1145. AV_CH_LAYOUT_2_1,
  1146. AV_CH_LAYOUT_SURROUND,
  1147. AV_CH_LAYOUT_2_2,
  1148. AV_CH_LAYOUT_QUAD,
  1149. AV_CH_LAYOUT_4POINT0,
  1150. AV_CH_LAYOUT_5POINT0,
  1151. AV_CH_LAYOUT_5POINT0_BACK,
  1152. (AV_CH_LAYOUT_MONO | AV_CH_LOW_FREQUENCY),
  1153. (AV_CH_LAYOUT_STEREO | AV_CH_LOW_FREQUENCY),
  1154. (AV_CH_LAYOUT_2_1 | AV_CH_LOW_FREQUENCY),
  1155. (AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY),
  1156. (AV_CH_LAYOUT_2_2 | AV_CH_LOW_FREQUENCY),
  1157. (AV_CH_LAYOUT_QUAD | AV_CH_LOW_FREQUENCY),
  1158. (AV_CH_LAYOUT_4POINT0 | AV_CH_LOW_FREQUENCY),
  1159. AV_CH_LAYOUT_5POINT1,
  1160. AV_CH_LAYOUT_5POINT1_BACK,
  1161. 0 },
  1162. };