You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1536 lines
50KB

  1. /*
  2. * DSP utils
  3. * Copyright (c) 2000, 2001 Fabrice Bellard
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * gmc & q-pel & 32/64 bit based MC by Michael Niedermayer <michaelni@gmx.at>
  7. *
  8. * This file is part of Libav.
  9. *
  10. * Libav is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * Libav is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with Libav; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. /**
  25. * @file
  26. * DSP utils
  27. */
  28. #include "libavutil/attributes.h"
  29. #include "libavutil/imgutils.h"
  30. #include "avcodec.h"
  31. #include "copy_block.h"
  32. #include "dct.h"
  33. #include "dsputil.h"
  34. #include "simple_idct.h"
  35. #include "faandct.h"
  36. #include "faanidct.h"
  37. #include "imgconvert.h"
  38. #include "mathops.h"
  39. #include "mpegvideo.h"
  40. #include "config.h"
  41. uint32_t ff_square_tab[512] = { 0, };
  42. #define BIT_DEPTH 16
  43. #include "dsputilenc_template.c"
  44. #undef BIT_DEPTH
  45. #define BIT_DEPTH 8
  46. #include "dsputilenc_template.c"
  47. /* Input permutation for the simple_idct_mmx */
  48. static const uint8_t simple_mmx_permutation[64] = {
  49. 0x00, 0x08, 0x04, 0x09, 0x01, 0x0C, 0x05, 0x0D,
  50. 0x10, 0x18, 0x14, 0x19, 0x11, 0x1C, 0x15, 0x1D,
  51. 0x20, 0x28, 0x24, 0x29, 0x21, 0x2C, 0x25, 0x2D,
  52. 0x12, 0x1A, 0x16, 0x1B, 0x13, 0x1E, 0x17, 0x1F,
  53. 0x02, 0x0A, 0x06, 0x0B, 0x03, 0x0E, 0x07, 0x0F,
  54. 0x30, 0x38, 0x34, 0x39, 0x31, 0x3C, 0x35, 0x3D,
  55. 0x22, 0x2A, 0x26, 0x2B, 0x23, 0x2E, 0x27, 0x2F,
  56. 0x32, 0x3A, 0x36, 0x3B, 0x33, 0x3E, 0x37, 0x3F,
  57. };
  58. static const uint8_t idct_sse2_row_perm[8] = { 0, 4, 1, 5, 2, 6, 3, 7 };
  59. av_cold void ff_init_scantable(uint8_t *permutation, ScanTable *st,
  60. const uint8_t *src_scantable)
  61. {
  62. int i, end;
  63. st->scantable = src_scantable;
  64. for (i = 0; i < 64; i++) {
  65. int j = src_scantable[i];
  66. st->permutated[i] = permutation[j];
  67. }
  68. end = -1;
  69. for (i = 0; i < 64; i++) {
  70. int j = st->permutated[i];
  71. if (j > end)
  72. end = j;
  73. st->raster_end[i] = end;
  74. }
  75. }
  76. av_cold void ff_init_scantable_permutation(uint8_t *idct_permutation,
  77. int idct_permutation_type)
  78. {
  79. int i;
  80. switch (idct_permutation_type) {
  81. case FF_NO_IDCT_PERM:
  82. for (i = 0; i < 64; i++)
  83. idct_permutation[i] = i;
  84. break;
  85. case FF_LIBMPEG2_IDCT_PERM:
  86. for (i = 0; i < 64; i++)
  87. idct_permutation[i] = (i & 0x38) | ((i & 6) >> 1) | ((i & 1) << 2);
  88. break;
  89. case FF_SIMPLE_IDCT_PERM:
  90. for (i = 0; i < 64; i++)
  91. idct_permutation[i] = simple_mmx_permutation[i];
  92. break;
  93. case FF_TRANSPOSE_IDCT_PERM:
  94. for (i = 0; i < 64; i++)
  95. idct_permutation[i] = ((i & 7) << 3) | (i >> 3);
  96. break;
  97. case FF_PARTTRANS_IDCT_PERM:
  98. for (i = 0; i < 64; i++)
  99. idct_permutation[i] = (i & 0x24) | ((i & 3) << 3) | ((i >> 3) & 3);
  100. break;
  101. case FF_SSE2_IDCT_PERM:
  102. for (i = 0; i < 64; i++)
  103. idct_permutation[i] = (i & 0x38) | idct_sse2_row_perm[i & 7];
  104. break;
  105. default:
  106. av_log(NULL, AV_LOG_ERROR,
  107. "Internal error, IDCT permutation not set\n");
  108. }
  109. }
  110. static int pix_sum_c(uint8_t *pix, int line_size)
  111. {
  112. int s = 0, i, j;
  113. for (i = 0; i < 16; i++) {
  114. for (j = 0; j < 16; j += 8) {
  115. s += pix[0];
  116. s += pix[1];
  117. s += pix[2];
  118. s += pix[3];
  119. s += pix[4];
  120. s += pix[5];
  121. s += pix[6];
  122. s += pix[7];
  123. pix += 8;
  124. }
  125. pix += line_size - 16;
  126. }
  127. return s;
  128. }
  129. static int pix_norm1_c(uint8_t *pix, int line_size)
  130. {
  131. int s = 0, i, j;
  132. uint32_t *sq = ff_square_tab + 256;
  133. for (i = 0; i < 16; i++) {
  134. for (j = 0; j < 16; j += 8) {
  135. #if 0
  136. s += sq[pix[0]];
  137. s += sq[pix[1]];
  138. s += sq[pix[2]];
  139. s += sq[pix[3]];
  140. s += sq[pix[4]];
  141. s += sq[pix[5]];
  142. s += sq[pix[6]];
  143. s += sq[pix[7]];
  144. #else
  145. #if HAVE_FAST_64BIT
  146. register uint64_t x = *(uint64_t *) pix;
  147. s += sq[x & 0xff];
  148. s += sq[(x >> 8) & 0xff];
  149. s += sq[(x >> 16) & 0xff];
  150. s += sq[(x >> 24) & 0xff];
  151. s += sq[(x >> 32) & 0xff];
  152. s += sq[(x >> 40) & 0xff];
  153. s += sq[(x >> 48) & 0xff];
  154. s += sq[(x >> 56) & 0xff];
  155. #else
  156. register uint32_t x = *(uint32_t *) pix;
  157. s += sq[x & 0xff];
  158. s += sq[(x >> 8) & 0xff];
  159. s += sq[(x >> 16) & 0xff];
  160. s += sq[(x >> 24) & 0xff];
  161. x = *(uint32_t *) (pix + 4);
  162. s += sq[x & 0xff];
  163. s += sq[(x >> 8) & 0xff];
  164. s += sq[(x >> 16) & 0xff];
  165. s += sq[(x >> 24) & 0xff];
  166. #endif
  167. #endif
  168. pix += 8;
  169. }
  170. pix += line_size - 16;
  171. }
  172. return s;
  173. }
  174. static void bswap_buf(uint32_t *dst, const uint32_t *src, int w)
  175. {
  176. int i;
  177. for (i = 0; i + 8 <= w; i += 8) {
  178. dst[i + 0] = av_bswap32(src[i + 0]);
  179. dst[i + 1] = av_bswap32(src[i + 1]);
  180. dst[i + 2] = av_bswap32(src[i + 2]);
  181. dst[i + 3] = av_bswap32(src[i + 3]);
  182. dst[i + 4] = av_bswap32(src[i + 4]);
  183. dst[i + 5] = av_bswap32(src[i + 5]);
  184. dst[i + 6] = av_bswap32(src[i + 6]);
  185. dst[i + 7] = av_bswap32(src[i + 7]);
  186. }
  187. for (; i < w; i++)
  188. dst[i + 0] = av_bswap32(src[i + 0]);
  189. }
  190. static void bswap16_buf(uint16_t *dst, const uint16_t *src, int len)
  191. {
  192. while (len--)
  193. *dst++ = av_bswap16(*src++);
  194. }
  195. static int sse4_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  196. int line_size, int h)
  197. {
  198. int s = 0, i;
  199. uint32_t *sq = ff_square_tab + 256;
  200. for (i = 0; i < h; i++) {
  201. s += sq[pix1[0] - pix2[0]];
  202. s += sq[pix1[1] - pix2[1]];
  203. s += sq[pix1[2] - pix2[2]];
  204. s += sq[pix1[3] - pix2[3]];
  205. pix1 += line_size;
  206. pix2 += line_size;
  207. }
  208. return s;
  209. }
  210. static int sse8_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  211. int line_size, int h)
  212. {
  213. int s = 0, i;
  214. uint32_t *sq = ff_square_tab + 256;
  215. for (i = 0; i < h; i++) {
  216. s += sq[pix1[0] - pix2[0]];
  217. s += sq[pix1[1] - pix2[1]];
  218. s += sq[pix1[2] - pix2[2]];
  219. s += sq[pix1[3] - pix2[3]];
  220. s += sq[pix1[4] - pix2[4]];
  221. s += sq[pix1[5] - pix2[5]];
  222. s += sq[pix1[6] - pix2[6]];
  223. s += sq[pix1[7] - pix2[7]];
  224. pix1 += line_size;
  225. pix2 += line_size;
  226. }
  227. return s;
  228. }
  229. static int sse16_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  230. int line_size, int h)
  231. {
  232. int s = 0, i;
  233. uint32_t *sq = ff_square_tab + 256;
  234. for (i = 0; i < h; i++) {
  235. s += sq[pix1[0] - pix2[0]];
  236. s += sq[pix1[1] - pix2[1]];
  237. s += sq[pix1[2] - pix2[2]];
  238. s += sq[pix1[3] - pix2[3]];
  239. s += sq[pix1[4] - pix2[4]];
  240. s += sq[pix1[5] - pix2[5]];
  241. s += sq[pix1[6] - pix2[6]];
  242. s += sq[pix1[7] - pix2[7]];
  243. s += sq[pix1[8] - pix2[8]];
  244. s += sq[pix1[9] - pix2[9]];
  245. s += sq[pix1[10] - pix2[10]];
  246. s += sq[pix1[11] - pix2[11]];
  247. s += sq[pix1[12] - pix2[12]];
  248. s += sq[pix1[13] - pix2[13]];
  249. s += sq[pix1[14] - pix2[14]];
  250. s += sq[pix1[15] - pix2[15]];
  251. pix1 += line_size;
  252. pix2 += line_size;
  253. }
  254. return s;
  255. }
  256. static void diff_pixels_c(int16_t *restrict block, const uint8_t *s1,
  257. const uint8_t *s2, int stride)
  258. {
  259. int i;
  260. /* read the pixels */
  261. for (i = 0; i < 8; i++) {
  262. block[0] = s1[0] - s2[0];
  263. block[1] = s1[1] - s2[1];
  264. block[2] = s1[2] - s2[2];
  265. block[3] = s1[3] - s2[3];
  266. block[4] = s1[4] - s2[4];
  267. block[5] = s1[5] - s2[5];
  268. block[6] = s1[6] - s2[6];
  269. block[7] = s1[7] - s2[7];
  270. s1 += stride;
  271. s2 += stride;
  272. block += 8;
  273. }
  274. }
  275. static void put_pixels_clamped_c(const int16_t *block, uint8_t *restrict pixels,
  276. int line_size)
  277. {
  278. int i;
  279. /* read the pixels */
  280. for (i = 0; i < 8; i++) {
  281. pixels[0] = av_clip_uint8(block[0]);
  282. pixels[1] = av_clip_uint8(block[1]);
  283. pixels[2] = av_clip_uint8(block[2]);
  284. pixels[3] = av_clip_uint8(block[3]);
  285. pixels[4] = av_clip_uint8(block[4]);
  286. pixels[5] = av_clip_uint8(block[5]);
  287. pixels[6] = av_clip_uint8(block[6]);
  288. pixels[7] = av_clip_uint8(block[7]);
  289. pixels += line_size;
  290. block += 8;
  291. }
  292. }
  293. static void put_signed_pixels_clamped_c(const int16_t *block,
  294. uint8_t *restrict pixels,
  295. int line_size)
  296. {
  297. int i, j;
  298. for (i = 0; i < 8; i++) {
  299. for (j = 0; j < 8; j++) {
  300. if (*block < -128)
  301. *pixels = 0;
  302. else if (*block > 127)
  303. *pixels = 255;
  304. else
  305. *pixels = (uint8_t) (*block + 128);
  306. block++;
  307. pixels++;
  308. }
  309. pixels += (line_size - 8);
  310. }
  311. }
  312. static void add_pixels_clamped_c(const int16_t *block, uint8_t *restrict pixels,
  313. int line_size)
  314. {
  315. int i;
  316. /* read the pixels */
  317. for (i = 0; i < 8; i++) {
  318. pixels[0] = av_clip_uint8(pixels[0] + block[0]);
  319. pixels[1] = av_clip_uint8(pixels[1] + block[1]);
  320. pixels[2] = av_clip_uint8(pixels[2] + block[2]);
  321. pixels[3] = av_clip_uint8(pixels[3] + block[3]);
  322. pixels[4] = av_clip_uint8(pixels[4] + block[4]);
  323. pixels[5] = av_clip_uint8(pixels[5] + block[5]);
  324. pixels[6] = av_clip_uint8(pixels[6] + block[6]);
  325. pixels[7] = av_clip_uint8(pixels[7] + block[7]);
  326. pixels += line_size;
  327. block += 8;
  328. }
  329. }
  330. static int sum_abs_dctelem_c(int16_t *block)
  331. {
  332. int sum = 0, i;
  333. for (i = 0; i < 64; i++)
  334. sum += FFABS(block[i]);
  335. return sum;
  336. }
  337. #define avg2(a, b) ((a + b + 1) >> 1)
  338. #define avg4(a, b, c, d) ((a + b + c + d + 2) >> 2)
  339. static void gmc1_c(uint8_t *dst, uint8_t *src, int stride, int h,
  340. int x16, int y16, int rounder)
  341. {
  342. const int A = (16 - x16) * (16 - y16);
  343. const int B = (x16) * (16 - y16);
  344. const int C = (16 - x16) * (y16);
  345. const int D = (x16) * (y16);
  346. int i;
  347. for (i = 0; i < h; i++) {
  348. dst[0] = (A * src[0] + B * src[1] + C * src[stride + 0] + D * src[stride + 1] + rounder) >> 8;
  349. dst[1] = (A * src[1] + B * src[2] + C * src[stride + 1] + D * src[stride + 2] + rounder) >> 8;
  350. dst[2] = (A * src[2] + B * src[3] + C * src[stride + 2] + D * src[stride + 3] + rounder) >> 8;
  351. dst[3] = (A * src[3] + B * src[4] + C * src[stride + 3] + D * src[stride + 4] + rounder) >> 8;
  352. dst[4] = (A * src[4] + B * src[5] + C * src[stride + 4] + D * src[stride + 5] + rounder) >> 8;
  353. dst[5] = (A * src[5] + B * src[6] + C * src[stride + 5] + D * src[stride + 6] + rounder) >> 8;
  354. dst[6] = (A * src[6] + B * src[7] + C * src[stride + 6] + D * src[stride + 7] + rounder) >> 8;
  355. dst[7] = (A * src[7] + B * src[8] + C * src[stride + 7] + D * src[stride + 8] + rounder) >> 8;
  356. dst += stride;
  357. src += stride;
  358. }
  359. }
  360. void ff_gmc_c(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy,
  361. int dxx, int dxy, int dyx, int dyy, int shift, int r,
  362. int width, int height)
  363. {
  364. int y, vx, vy;
  365. const int s = 1 << shift;
  366. width--;
  367. height--;
  368. for (y = 0; y < h; y++) {
  369. int x;
  370. vx = ox;
  371. vy = oy;
  372. for (x = 0; x < 8; x++) { // FIXME: optimize
  373. int index;
  374. int src_x = vx >> 16;
  375. int src_y = vy >> 16;
  376. int frac_x = src_x & (s - 1);
  377. int frac_y = src_y & (s - 1);
  378. src_x >>= shift;
  379. src_y >>= shift;
  380. if ((unsigned) src_x < width) {
  381. if ((unsigned) src_y < height) {
  382. index = src_x + src_y * stride;
  383. dst[y * stride + x] =
  384. ((src[index] * (s - frac_x) +
  385. src[index + 1] * frac_x) * (s - frac_y) +
  386. (src[index + stride] * (s - frac_x) +
  387. src[index + stride + 1] * frac_x) * frac_y +
  388. r) >> (shift * 2);
  389. } else {
  390. index = src_x + av_clip(src_y, 0, height) * stride;
  391. dst[y * stride + x] =
  392. ((src[index] * (s - frac_x) +
  393. src[index + 1] * frac_x) * s +
  394. r) >> (shift * 2);
  395. }
  396. } else {
  397. if ((unsigned) src_y < height) {
  398. index = av_clip(src_x, 0, width) + src_y * stride;
  399. dst[y * stride + x] =
  400. ((src[index] * (s - frac_y) +
  401. src[index + stride] * frac_y) * s +
  402. r) >> (shift * 2);
  403. } else {
  404. index = av_clip(src_x, 0, width) +
  405. av_clip(src_y, 0, height) * stride;
  406. dst[y * stride + x] = src[index];
  407. }
  408. }
  409. vx += dxx;
  410. vy += dyx;
  411. }
  412. ox += dxy;
  413. oy += dyy;
  414. }
  415. }
  416. static inline int pix_abs16_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  417. int line_size, int h)
  418. {
  419. int s = 0, i;
  420. for (i = 0; i < h; i++) {
  421. s += abs(pix1[0] - pix2[0]);
  422. s += abs(pix1[1] - pix2[1]);
  423. s += abs(pix1[2] - pix2[2]);
  424. s += abs(pix1[3] - pix2[3]);
  425. s += abs(pix1[4] - pix2[4]);
  426. s += abs(pix1[5] - pix2[5]);
  427. s += abs(pix1[6] - pix2[6]);
  428. s += abs(pix1[7] - pix2[7]);
  429. s += abs(pix1[8] - pix2[8]);
  430. s += abs(pix1[9] - pix2[9]);
  431. s += abs(pix1[10] - pix2[10]);
  432. s += abs(pix1[11] - pix2[11]);
  433. s += abs(pix1[12] - pix2[12]);
  434. s += abs(pix1[13] - pix2[13]);
  435. s += abs(pix1[14] - pix2[14]);
  436. s += abs(pix1[15] - pix2[15]);
  437. pix1 += line_size;
  438. pix2 += line_size;
  439. }
  440. return s;
  441. }
  442. static int pix_abs16_x2_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  443. int line_size, int h)
  444. {
  445. int s = 0, i;
  446. for (i = 0; i < h; i++) {
  447. s += abs(pix1[0] - avg2(pix2[0], pix2[1]));
  448. s += abs(pix1[1] - avg2(pix2[1], pix2[2]));
  449. s += abs(pix1[2] - avg2(pix2[2], pix2[3]));
  450. s += abs(pix1[3] - avg2(pix2[3], pix2[4]));
  451. s += abs(pix1[4] - avg2(pix2[4], pix2[5]));
  452. s += abs(pix1[5] - avg2(pix2[5], pix2[6]));
  453. s += abs(pix1[6] - avg2(pix2[6], pix2[7]));
  454. s += abs(pix1[7] - avg2(pix2[7], pix2[8]));
  455. s += abs(pix1[8] - avg2(pix2[8], pix2[9]));
  456. s += abs(pix1[9] - avg2(pix2[9], pix2[10]));
  457. s += abs(pix1[10] - avg2(pix2[10], pix2[11]));
  458. s += abs(pix1[11] - avg2(pix2[11], pix2[12]));
  459. s += abs(pix1[12] - avg2(pix2[12], pix2[13]));
  460. s += abs(pix1[13] - avg2(pix2[13], pix2[14]));
  461. s += abs(pix1[14] - avg2(pix2[14], pix2[15]));
  462. s += abs(pix1[15] - avg2(pix2[15], pix2[16]));
  463. pix1 += line_size;
  464. pix2 += line_size;
  465. }
  466. return s;
  467. }
  468. static int pix_abs16_y2_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  469. int line_size, int h)
  470. {
  471. int s = 0, i;
  472. uint8_t *pix3 = pix2 + line_size;
  473. for (i = 0; i < h; i++) {
  474. s += abs(pix1[0] - avg2(pix2[0], pix3[0]));
  475. s += abs(pix1[1] - avg2(pix2[1], pix3[1]));
  476. s += abs(pix1[2] - avg2(pix2[2], pix3[2]));
  477. s += abs(pix1[3] - avg2(pix2[3], pix3[3]));
  478. s += abs(pix1[4] - avg2(pix2[4], pix3[4]));
  479. s += abs(pix1[5] - avg2(pix2[5], pix3[5]));
  480. s += abs(pix1[6] - avg2(pix2[6], pix3[6]));
  481. s += abs(pix1[7] - avg2(pix2[7], pix3[7]));
  482. s += abs(pix1[8] - avg2(pix2[8], pix3[8]));
  483. s += abs(pix1[9] - avg2(pix2[9], pix3[9]));
  484. s += abs(pix1[10] - avg2(pix2[10], pix3[10]));
  485. s += abs(pix1[11] - avg2(pix2[11], pix3[11]));
  486. s += abs(pix1[12] - avg2(pix2[12], pix3[12]));
  487. s += abs(pix1[13] - avg2(pix2[13], pix3[13]));
  488. s += abs(pix1[14] - avg2(pix2[14], pix3[14]));
  489. s += abs(pix1[15] - avg2(pix2[15], pix3[15]));
  490. pix1 += line_size;
  491. pix2 += line_size;
  492. pix3 += line_size;
  493. }
  494. return s;
  495. }
  496. static int pix_abs16_xy2_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  497. int line_size, int h)
  498. {
  499. int s = 0, i;
  500. uint8_t *pix3 = pix2 + line_size;
  501. for (i = 0; i < h; i++) {
  502. s += abs(pix1[0] - avg4(pix2[0], pix2[1], pix3[0], pix3[1]));
  503. s += abs(pix1[1] - avg4(pix2[1], pix2[2], pix3[1], pix3[2]));
  504. s += abs(pix1[2] - avg4(pix2[2], pix2[3], pix3[2], pix3[3]));
  505. s += abs(pix1[3] - avg4(pix2[3], pix2[4], pix3[3], pix3[4]));
  506. s += abs(pix1[4] - avg4(pix2[4], pix2[5], pix3[4], pix3[5]));
  507. s += abs(pix1[5] - avg4(pix2[5], pix2[6], pix3[5], pix3[6]));
  508. s += abs(pix1[6] - avg4(pix2[6], pix2[7], pix3[6], pix3[7]));
  509. s += abs(pix1[7] - avg4(pix2[7], pix2[8], pix3[7], pix3[8]));
  510. s += abs(pix1[8] - avg4(pix2[8], pix2[9], pix3[8], pix3[9]));
  511. s += abs(pix1[9] - avg4(pix2[9], pix2[10], pix3[9], pix3[10]));
  512. s += abs(pix1[10] - avg4(pix2[10], pix2[11], pix3[10], pix3[11]));
  513. s += abs(pix1[11] - avg4(pix2[11], pix2[12], pix3[11], pix3[12]));
  514. s += abs(pix1[12] - avg4(pix2[12], pix2[13], pix3[12], pix3[13]));
  515. s += abs(pix1[13] - avg4(pix2[13], pix2[14], pix3[13], pix3[14]));
  516. s += abs(pix1[14] - avg4(pix2[14], pix2[15], pix3[14], pix3[15]));
  517. s += abs(pix1[15] - avg4(pix2[15], pix2[16], pix3[15], pix3[16]));
  518. pix1 += line_size;
  519. pix2 += line_size;
  520. pix3 += line_size;
  521. }
  522. return s;
  523. }
  524. static inline int pix_abs8_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  525. int line_size, int h)
  526. {
  527. int s = 0, i;
  528. for (i = 0; i < h; i++) {
  529. s += abs(pix1[0] - pix2[0]);
  530. s += abs(pix1[1] - pix2[1]);
  531. s += abs(pix1[2] - pix2[2]);
  532. s += abs(pix1[3] - pix2[3]);
  533. s += abs(pix1[4] - pix2[4]);
  534. s += abs(pix1[5] - pix2[5]);
  535. s += abs(pix1[6] - pix2[6]);
  536. s += abs(pix1[7] - pix2[7]);
  537. pix1 += line_size;
  538. pix2 += line_size;
  539. }
  540. return s;
  541. }
  542. static int pix_abs8_x2_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  543. int line_size, int h)
  544. {
  545. int s = 0, i;
  546. for (i = 0; i < h; i++) {
  547. s += abs(pix1[0] - avg2(pix2[0], pix2[1]));
  548. s += abs(pix1[1] - avg2(pix2[1], pix2[2]));
  549. s += abs(pix1[2] - avg2(pix2[2], pix2[3]));
  550. s += abs(pix1[3] - avg2(pix2[3], pix2[4]));
  551. s += abs(pix1[4] - avg2(pix2[4], pix2[5]));
  552. s += abs(pix1[5] - avg2(pix2[5], pix2[6]));
  553. s += abs(pix1[6] - avg2(pix2[6], pix2[7]));
  554. s += abs(pix1[7] - avg2(pix2[7], pix2[8]));
  555. pix1 += line_size;
  556. pix2 += line_size;
  557. }
  558. return s;
  559. }
  560. static int pix_abs8_y2_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  561. int line_size, int h)
  562. {
  563. int s = 0, i;
  564. uint8_t *pix3 = pix2 + line_size;
  565. for (i = 0; i < h; i++) {
  566. s += abs(pix1[0] - avg2(pix2[0], pix3[0]));
  567. s += abs(pix1[1] - avg2(pix2[1], pix3[1]));
  568. s += abs(pix1[2] - avg2(pix2[2], pix3[2]));
  569. s += abs(pix1[3] - avg2(pix2[3], pix3[3]));
  570. s += abs(pix1[4] - avg2(pix2[4], pix3[4]));
  571. s += abs(pix1[5] - avg2(pix2[5], pix3[5]));
  572. s += abs(pix1[6] - avg2(pix2[6], pix3[6]));
  573. s += abs(pix1[7] - avg2(pix2[7], pix3[7]));
  574. pix1 += line_size;
  575. pix2 += line_size;
  576. pix3 += line_size;
  577. }
  578. return s;
  579. }
  580. static int pix_abs8_xy2_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  581. int line_size, int h)
  582. {
  583. int s = 0, i;
  584. uint8_t *pix3 = pix2 + line_size;
  585. for (i = 0; i < h; i++) {
  586. s += abs(pix1[0] - avg4(pix2[0], pix2[1], pix3[0], pix3[1]));
  587. s += abs(pix1[1] - avg4(pix2[1], pix2[2], pix3[1], pix3[2]));
  588. s += abs(pix1[2] - avg4(pix2[2], pix2[3], pix3[2], pix3[3]));
  589. s += abs(pix1[3] - avg4(pix2[3], pix2[4], pix3[3], pix3[4]));
  590. s += abs(pix1[4] - avg4(pix2[4], pix2[5], pix3[4], pix3[5]));
  591. s += abs(pix1[5] - avg4(pix2[5], pix2[6], pix3[5], pix3[6]));
  592. s += abs(pix1[6] - avg4(pix2[6], pix2[7], pix3[6], pix3[7]));
  593. s += abs(pix1[7] - avg4(pix2[7], pix2[8], pix3[7], pix3[8]));
  594. pix1 += line_size;
  595. pix2 += line_size;
  596. pix3 += line_size;
  597. }
  598. return s;
  599. }
  600. static int nsse16_c(MpegEncContext *c, uint8_t *s1, uint8_t *s2, int stride, int h)
  601. {
  602. int score1 = 0, score2 = 0, x, y;
  603. for (y = 0; y < h; y++) {
  604. for (x = 0; x < 16; x++)
  605. score1 += (s1[x] - s2[x]) * (s1[x] - s2[x]);
  606. if (y + 1 < h) {
  607. for (x = 0; x < 15; x++)
  608. score2 += FFABS(s1[x] - s1[x + stride] -
  609. s1[x + 1] + s1[x + stride + 1]) -
  610. FFABS(s2[x] - s2[x + stride] -
  611. s2[x + 1] + s2[x + stride + 1]);
  612. }
  613. s1 += stride;
  614. s2 += stride;
  615. }
  616. if (c)
  617. return score1 + FFABS(score2) * c->avctx->nsse_weight;
  618. else
  619. return score1 + FFABS(score2) * 8;
  620. }
  621. static int nsse8_c(MpegEncContext *c, uint8_t *s1, uint8_t *s2, int stride, int h)
  622. {
  623. int score1 = 0, score2 = 0, x, y;
  624. for (y = 0; y < h; y++) {
  625. for (x = 0; x < 8; x++)
  626. score1 += (s1[x] - s2[x]) * (s1[x] - s2[x]);
  627. if (y + 1 < h) {
  628. for (x = 0; x < 7; x++)
  629. score2 += FFABS(s1[x] - s1[x + stride] -
  630. s1[x + 1] + s1[x + stride + 1]) -
  631. FFABS(s2[x] - s2[x + stride] -
  632. s2[x + 1] + s2[x + stride + 1]);
  633. }
  634. s1 += stride;
  635. s2 += stride;
  636. }
  637. if (c)
  638. return score1 + FFABS(score2) * c->avctx->nsse_weight;
  639. else
  640. return score1 + FFABS(score2) * 8;
  641. }
  642. static int try_8x8basis_c(int16_t rem[64], int16_t weight[64],
  643. int16_t basis[64], int scale)
  644. {
  645. int i;
  646. unsigned int sum = 0;
  647. for (i = 0; i < 8 * 8; i++) {
  648. int b = rem[i] + ((basis[i] * scale +
  649. (1 << (BASIS_SHIFT - RECON_SHIFT - 1))) >>
  650. (BASIS_SHIFT - RECON_SHIFT));
  651. int w = weight[i];
  652. b >>= RECON_SHIFT;
  653. assert(-512 < b && b < 512);
  654. sum += (w * b) * (w * b) >> 4;
  655. }
  656. return sum >> 2;
  657. }
  658. static void add_8x8basis_c(int16_t rem[64], int16_t basis[64], int scale)
  659. {
  660. int i;
  661. for (i = 0; i < 8 * 8; i++)
  662. rem[i] += (basis[i] * scale +
  663. (1 << (BASIS_SHIFT - RECON_SHIFT - 1))) >>
  664. (BASIS_SHIFT - RECON_SHIFT);
  665. }
  666. static int zero_cmp(MpegEncContext *s, uint8_t *a, uint8_t *b,
  667. int stride, int h)
  668. {
  669. return 0;
  670. }
  671. void ff_set_cmp(DSPContext *c, me_cmp_func *cmp, int type)
  672. {
  673. int i;
  674. memset(cmp, 0, sizeof(void *) * 6);
  675. for (i = 0; i < 6; i++) {
  676. switch (type & 0xFF) {
  677. case FF_CMP_SAD:
  678. cmp[i] = c->sad[i];
  679. break;
  680. case FF_CMP_SATD:
  681. cmp[i] = c->hadamard8_diff[i];
  682. break;
  683. case FF_CMP_SSE:
  684. cmp[i] = c->sse[i];
  685. break;
  686. case FF_CMP_DCT:
  687. cmp[i] = c->dct_sad[i];
  688. break;
  689. case FF_CMP_DCT264:
  690. cmp[i] = c->dct264_sad[i];
  691. break;
  692. case FF_CMP_DCTMAX:
  693. cmp[i] = c->dct_max[i];
  694. break;
  695. case FF_CMP_PSNR:
  696. cmp[i] = c->quant_psnr[i];
  697. break;
  698. case FF_CMP_BIT:
  699. cmp[i] = c->bit[i];
  700. break;
  701. case FF_CMP_RD:
  702. cmp[i] = c->rd[i];
  703. break;
  704. case FF_CMP_VSAD:
  705. cmp[i] = c->vsad[i];
  706. break;
  707. case FF_CMP_VSSE:
  708. cmp[i] = c->vsse[i];
  709. break;
  710. case FF_CMP_ZERO:
  711. cmp[i] = zero_cmp;
  712. break;
  713. case FF_CMP_NSSE:
  714. cmp[i] = c->nsse[i];
  715. break;
  716. default:
  717. av_log(NULL, AV_LOG_ERROR,
  718. "internal error in cmp function selection\n");
  719. }
  720. }
  721. }
  722. #define BUTTERFLY2(o1, o2, i1, i2) \
  723. o1 = (i1) + (i2); \
  724. o2 = (i1) - (i2);
  725. #define BUTTERFLY1(x, y) \
  726. { \
  727. int a, b; \
  728. a = x; \
  729. b = y; \
  730. x = a + b; \
  731. y = a - b; \
  732. }
  733. #define BUTTERFLYA(x, y) (FFABS((x) + (y)) + FFABS((x) - (y)))
  734. static int hadamard8_diff8x8_c(MpegEncContext *s, uint8_t *dst,
  735. uint8_t *src, int stride, int h)
  736. {
  737. int i, temp[64], sum = 0;
  738. assert(h == 8);
  739. for (i = 0; i < 8; i++) {
  740. // FIXME: try pointer walks
  741. BUTTERFLY2(temp[8 * i + 0], temp[8 * i + 1],
  742. src[stride * i + 0] - dst[stride * i + 0],
  743. src[stride * i + 1] - dst[stride * i + 1]);
  744. BUTTERFLY2(temp[8 * i + 2], temp[8 * i + 3],
  745. src[stride * i + 2] - dst[stride * i + 2],
  746. src[stride * i + 3] - dst[stride * i + 3]);
  747. BUTTERFLY2(temp[8 * i + 4], temp[8 * i + 5],
  748. src[stride * i + 4] - dst[stride * i + 4],
  749. src[stride * i + 5] - dst[stride * i + 5]);
  750. BUTTERFLY2(temp[8 * i + 6], temp[8 * i + 7],
  751. src[stride * i + 6] - dst[stride * i + 6],
  752. src[stride * i + 7] - dst[stride * i + 7]);
  753. BUTTERFLY1(temp[8 * i + 0], temp[8 * i + 2]);
  754. BUTTERFLY1(temp[8 * i + 1], temp[8 * i + 3]);
  755. BUTTERFLY1(temp[8 * i + 4], temp[8 * i + 6]);
  756. BUTTERFLY1(temp[8 * i + 5], temp[8 * i + 7]);
  757. BUTTERFLY1(temp[8 * i + 0], temp[8 * i + 4]);
  758. BUTTERFLY1(temp[8 * i + 1], temp[8 * i + 5]);
  759. BUTTERFLY1(temp[8 * i + 2], temp[8 * i + 6]);
  760. BUTTERFLY1(temp[8 * i + 3], temp[8 * i + 7]);
  761. }
  762. for (i = 0; i < 8; i++) {
  763. BUTTERFLY1(temp[8 * 0 + i], temp[8 * 1 + i]);
  764. BUTTERFLY1(temp[8 * 2 + i], temp[8 * 3 + i]);
  765. BUTTERFLY1(temp[8 * 4 + i], temp[8 * 5 + i]);
  766. BUTTERFLY1(temp[8 * 6 + i], temp[8 * 7 + i]);
  767. BUTTERFLY1(temp[8 * 0 + i], temp[8 * 2 + i]);
  768. BUTTERFLY1(temp[8 * 1 + i], temp[8 * 3 + i]);
  769. BUTTERFLY1(temp[8 * 4 + i], temp[8 * 6 + i]);
  770. BUTTERFLY1(temp[8 * 5 + i], temp[8 * 7 + i]);
  771. sum += BUTTERFLYA(temp[8 * 0 + i], temp[8 * 4 + i]) +
  772. BUTTERFLYA(temp[8 * 1 + i], temp[8 * 5 + i]) +
  773. BUTTERFLYA(temp[8 * 2 + i], temp[8 * 6 + i]) +
  774. BUTTERFLYA(temp[8 * 3 + i], temp[8 * 7 + i]);
  775. }
  776. return sum;
  777. }
  778. static int hadamard8_intra8x8_c(MpegEncContext *s, uint8_t *src,
  779. uint8_t *dummy, int stride, int h)
  780. {
  781. int i, temp[64], sum = 0;
  782. assert(h == 8);
  783. for (i = 0; i < 8; i++) {
  784. // FIXME: try pointer walks
  785. BUTTERFLY2(temp[8 * i + 0], temp[8 * i + 1],
  786. src[stride * i + 0], src[stride * i + 1]);
  787. BUTTERFLY2(temp[8 * i + 2], temp[8 * i + 3],
  788. src[stride * i + 2], src[stride * i + 3]);
  789. BUTTERFLY2(temp[8 * i + 4], temp[8 * i + 5],
  790. src[stride * i + 4], src[stride * i + 5]);
  791. BUTTERFLY2(temp[8 * i + 6], temp[8 * i + 7],
  792. src[stride * i + 6], src[stride * i + 7]);
  793. BUTTERFLY1(temp[8 * i + 0], temp[8 * i + 2]);
  794. BUTTERFLY1(temp[8 * i + 1], temp[8 * i + 3]);
  795. BUTTERFLY1(temp[8 * i + 4], temp[8 * i + 6]);
  796. BUTTERFLY1(temp[8 * i + 5], temp[8 * i + 7]);
  797. BUTTERFLY1(temp[8 * i + 0], temp[8 * i + 4]);
  798. BUTTERFLY1(temp[8 * i + 1], temp[8 * i + 5]);
  799. BUTTERFLY1(temp[8 * i + 2], temp[8 * i + 6]);
  800. BUTTERFLY1(temp[8 * i + 3], temp[8 * i + 7]);
  801. }
  802. for (i = 0; i < 8; i++) {
  803. BUTTERFLY1(temp[8 * 0 + i], temp[8 * 1 + i]);
  804. BUTTERFLY1(temp[8 * 2 + i], temp[8 * 3 + i]);
  805. BUTTERFLY1(temp[8 * 4 + i], temp[8 * 5 + i]);
  806. BUTTERFLY1(temp[8 * 6 + i], temp[8 * 7 + i]);
  807. BUTTERFLY1(temp[8 * 0 + i], temp[8 * 2 + i]);
  808. BUTTERFLY1(temp[8 * 1 + i], temp[8 * 3 + i]);
  809. BUTTERFLY1(temp[8 * 4 + i], temp[8 * 6 + i]);
  810. BUTTERFLY1(temp[8 * 5 + i], temp[8 * 7 + i]);
  811. sum +=
  812. BUTTERFLYA(temp[8 * 0 + i], temp[8 * 4 + i])
  813. + BUTTERFLYA(temp[8 * 1 + i], temp[8 * 5 + i])
  814. + BUTTERFLYA(temp[8 * 2 + i], temp[8 * 6 + i])
  815. + BUTTERFLYA(temp[8 * 3 + i], temp[8 * 7 + i]);
  816. }
  817. sum -= FFABS(temp[8 * 0] + temp[8 * 4]); // -mean
  818. return sum;
  819. }
  820. static int dct_sad8x8_c(MpegEncContext *s, uint8_t *src1,
  821. uint8_t *src2, int stride, int h)
  822. {
  823. LOCAL_ALIGNED_16(int16_t, temp, [64]);
  824. assert(h == 8);
  825. s->dsp.diff_pixels(temp, src1, src2, stride);
  826. s->dsp.fdct(temp);
  827. return s->dsp.sum_abs_dctelem(temp);
  828. }
  829. #if CONFIG_GPL
  830. #define DCT8_1D \
  831. { \
  832. const int s07 = SRC(0) + SRC(7); \
  833. const int s16 = SRC(1) + SRC(6); \
  834. const int s25 = SRC(2) + SRC(5); \
  835. const int s34 = SRC(3) + SRC(4); \
  836. const int a0 = s07 + s34; \
  837. const int a1 = s16 + s25; \
  838. const int a2 = s07 - s34; \
  839. const int a3 = s16 - s25; \
  840. const int d07 = SRC(0) - SRC(7); \
  841. const int d16 = SRC(1) - SRC(6); \
  842. const int d25 = SRC(2) - SRC(5); \
  843. const int d34 = SRC(3) - SRC(4); \
  844. const int a4 = d16 + d25 + (d07 + (d07 >> 1)); \
  845. const int a5 = d07 - d34 - (d25 + (d25 >> 1)); \
  846. const int a6 = d07 + d34 - (d16 + (d16 >> 1)); \
  847. const int a7 = d16 - d25 + (d34 + (d34 >> 1)); \
  848. DST(0, a0 + a1); \
  849. DST(1, a4 + (a7 >> 2)); \
  850. DST(2, a2 + (a3 >> 1)); \
  851. DST(3, a5 + (a6 >> 2)); \
  852. DST(4, a0 - a1); \
  853. DST(5, a6 - (a5 >> 2)); \
  854. DST(6, (a2 >> 1) - a3); \
  855. DST(7, (a4 >> 2) - a7); \
  856. }
  857. static int dct264_sad8x8_c(MpegEncContext *s, uint8_t *src1,
  858. uint8_t *src2, int stride, int h)
  859. {
  860. int16_t dct[8][8];
  861. int i, sum = 0;
  862. s->dsp.diff_pixels(dct[0], src1, src2, stride);
  863. #define SRC(x) dct[i][x]
  864. #define DST(x, v) dct[i][x] = v
  865. for (i = 0; i < 8; i++)
  866. DCT8_1D
  867. #undef SRC
  868. #undef DST
  869. #define SRC(x) dct[x][i]
  870. #define DST(x, v) sum += FFABS(v)
  871. for (i = 0; i < 8; i++)
  872. DCT8_1D
  873. #undef SRC
  874. #undef DST
  875. return sum;
  876. }
  877. #endif
  878. static int dct_max8x8_c(MpegEncContext *s, uint8_t *src1,
  879. uint8_t *src2, int stride, int h)
  880. {
  881. LOCAL_ALIGNED_16(int16_t, temp, [64]);
  882. int sum = 0, i;
  883. assert(h == 8);
  884. s->dsp.diff_pixels(temp, src1, src2, stride);
  885. s->dsp.fdct(temp);
  886. for (i = 0; i < 64; i++)
  887. sum = FFMAX(sum, FFABS(temp[i]));
  888. return sum;
  889. }
  890. static int quant_psnr8x8_c(MpegEncContext *s, uint8_t *src1,
  891. uint8_t *src2, int stride, int h)
  892. {
  893. LOCAL_ALIGNED_16(int16_t, temp, [64 * 2]);
  894. int16_t *const bak = temp + 64;
  895. int sum = 0, i;
  896. assert(h == 8);
  897. s->mb_intra = 0;
  898. s->dsp.diff_pixels(temp, src1, src2, stride);
  899. memcpy(bak, temp, 64 * sizeof(int16_t));
  900. s->block_last_index[0 /* FIXME */] =
  901. s->fast_dct_quantize(s, temp, 0 /* FIXME */, s->qscale, &i);
  902. s->dct_unquantize_inter(s, temp, 0, s->qscale);
  903. ff_simple_idct_8(temp); // FIXME
  904. for (i = 0; i < 64; i++)
  905. sum += (temp[i] - bak[i]) * (temp[i] - bak[i]);
  906. return sum;
  907. }
  908. static int rd8x8_c(MpegEncContext *s, uint8_t *src1, uint8_t *src2,
  909. int stride, int h)
  910. {
  911. const uint8_t *scantable = s->intra_scantable.permutated;
  912. LOCAL_ALIGNED_16(int16_t, temp, [64]);
  913. LOCAL_ALIGNED_16(uint8_t, lsrc1, [64]);
  914. LOCAL_ALIGNED_16(uint8_t, lsrc2, [64]);
  915. int i, last, run, bits, level, distortion, start_i;
  916. const int esc_length = s->ac_esc_length;
  917. uint8_t *length, *last_length;
  918. assert(h == 8);
  919. copy_block8(lsrc1, src1, 8, stride, 8);
  920. copy_block8(lsrc2, src2, 8, stride, 8);
  921. s->dsp.diff_pixels(temp, lsrc1, lsrc2, 8);
  922. s->block_last_index[0 /* FIXME */] =
  923. last =
  924. s->fast_dct_quantize(s, temp, 0 /* FIXME */, s->qscale, &i);
  925. bits = 0;
  926. if (s->mb_intra) {
  927. start_i = 1;
  928. length = s->intra_ac_vlc_length;
  929. last_length = s->intra_ac_vlc_last_length;
  930. bits += s->luma_dc_vlc_length[temp[0] + 256]; // FIXME: chroma
  931. } else {
  932. start_i = 0;
  933. length = s->inter_ac_vlc_length;
  934. last_length = s->inter_ac_vlc_last_length;
  935. }
  936. if (last >= start_i) {
  937. run = 0;
  938. for (i = start_i; i < last; i++) {
  939. int j = scantable[i];
  940. level = temp[j];
  941. if (level) {
  942. level += 64;
  943. if ((level & (~127)) == 0)
  944. bits += length[UNI_AC_ENC_INDEX(run, level)];
  945. else
  946. bits += esc_length;
  947. run = 0;
  948. } else
  949. run++;
  950. }
  951. i = scantable[last];
  952. level = temp[i] + 64;
  953. assert(level - 64);
  954. if ((level & (~127)) == 0) {
  955. bits += last_length[UNI_AC_ENC_INDEX(run, level)];
  956. } else
  957. bits += esc_length;
  958. }
  959. if (last >= 0) {
  960. if (s->mb_intra)
  961. s->dct_unquantize_intra(s, temp, 0, s->qscale);
  962. else
  963. s->dct_unquantize_inter(s, temp, 0, s->qscale);
  964. }
  965. s->dsp.idct_add(lsrc2, 8, temp);
  966. distortion = s->dsp.sse[1](NULL, lsrc2, lsrc1, 8, 8);
  967. return distortion + ((bits * s->qscale * s->qscale * 109 + 64) >> 7);
  968. }
  969. static int bit8x8_c(MpegEncContext *s, uint8_t *src1, uint8_t *src2,
  970. int stride, int h)
  971. {
  972. const uint8_t *scantable = s->intra_scantable.permutated;
  973. LOCAL_ALIGNED_16(int16_t, temp, [64]);
  974. int i, last, run, bits, level, start_i;
  975. const int esc_length = s->ac_esc_length;
  976. uint8_t *length, *last_length;
  977. assert(h == 8);
  978. s->dsp.diff_pixels(temp, src1, src2, stride);
  979. s->block_last_index[0 /* FIXME */] =
  980. last =
  981. s->fast_dct_quantize(s, temp, 0 /* FIXME */, s->qscale, &i);
  982. bits = 0;
  983. if (s->mb_intra) {
  984. start_i = 1;
  985. length = s->intra_ac_vlc_length;
  986. last_length = s->intra_ac_vlc_last_length;
  987. bits += s->luma_dc_vlc_length[temp[0] + 256]; // FIXME: chroma
  988. } else {
  989. start_i = 0;
  990. length = s->inter_ac_vlc_length;
  991. last_length = s->inter_ac_vlc_last_length;
  992. }
  993. if (last >= start_i) {
  994. run = 0;
  995. for (i = start_i; i < last; i++) {
  996. int j = scantable[i];
  997. level = temp[j];
  998. if (level) {
  999. level += 64;
  1000. if ((level & (~127)) == 0)
  1001. bits += length[UNI_AC_ENC_INDEX(run, level)];
  1002. else
  1003. bits += esc_length;
  1004. run = 0;
  1005. } else
  1006. run++;
  1007. }
  1008. i = scantable[last];
  1009. level = temp[i] + 64;
  1010. assert(level - 64);
  1011. if ((level & (~127)) == 0)
  1012. bits += last_length[UNI_AC_ENC_INDEX(run, level)];
  1013. else
  1014. bits += esc_length;
  1015. }
  1016. return bits;
  1017. }
  1018. #define VSAD_INTRA(size) \
  1019. static int vsad_intra ## size ## _c(MpegEncContext *c, \
  1020. uint8_t *s, uint8_t *dummy, \
  1021. int stride, int h) \
  1022. { \
  1023. int score = 0, x, y; \
  1024. \
  1025. for (y = 1; y < h; y++) { \
  1026. for (x = 0; x < size; x += 4) { \
  1027. score += FFABS(s[x] - s[x + stride]) + \
  1028. FFABS(s[x + 1] - s[x + stride + 1]) + \
  1029. FFABS(s[x + 2] - s[x + 2 + stride]) + \
  1030. FFABS(s[x + 3] - s[x + 3 + stride]); \
  1031. } \
  1032. s += stride; \
  1033. } \
  1034. \
  1035. return score; \
  1036. }
  1037. VSAD_INTRA(8)
  1038. VSAD_INTRA(16)
  1039. static int vsad16_c(MpegEncContext *c, uint8_t *s1, uint8_t *s2,
  1040. int stride, int h)
  1041. {
  1042. int score = 0, x, y;
  1043. for (y = 1; y < h; y++) {
  1044. for (x = 0; x < 16; x++)
  1045. score += FFABS(s1[x] - s2[x] - s1[x + stride] + s2[x + stride]);
  1046. s1 += stride;
  1047. s2 += stride;
  1048. }
  1049. return score;
  1050. }
  1051. #define SQ(a) ((a) * (a))
  1052. #define VSSE_INTRA(size) \
  1053. static int vsse_intra ## size ## _c(MpegEncContext *c, \
  1054. uint8_t *s, uint8_t *dummy, \
  1055. int stride, int h) \
  1056. { \
  1057. int score = 0, x, y; \
  1058. \
  1059. for (y = 1; y < h; y++) { \
  1060. for (x = 0; x < size; x += 4) { \
  1061. score += SQ(s[x] - s[x + stride]) + \
  1062. SQ(s[x + 1] - s[x + stride + 1]) + \
  1063. SQ(s[x + 2] - s[x + stride + 2]) + \
  1064. SQ(s[x + 3] - s[x + stride + 3]); \
  1065. } \
  1066. s += stride; \
  1067. } \
  1068. \
  1069. return score; \
  1070. }
  1071. VSSE_INTRA(8)
  1072. VSSE_INTRA(16)
  1073. static int vsse16_c(MpegEncContext *c, uint8_t *s1, uint8_t *s2,
  1074. int stride, int h)
  1075. {
  1076. int score = 0, x, y;
  1077. for (y = 1; y < h; y++) {
  1078. for (x = 0; x < 16; x++)
  1079. score += SQ(s1[x] - s2[x] - s1[x + stride] + s2[x + stride]);
  1080. s1 += stride;
  1081. s2 += stride;
  1082. }
  1083. return score;
  1084. }
  1085. #define WRAPPER8_16_SQ(name8, name16) \
  1086. static int name16(MpegEncContext *s, uint8_t *dst, uint8_t *src, \
  1087. int stride, int h) \
  1088. { \
  1089. int score = 0; \
  1090. \
  1091. score += name8(s, dst, src, stride, 8); \
  1092. score += name8(s, dst + 8, src + 8, stride, 8); \
  1093. if (h == 16) { \
  1094. dst += 8 * stride; \
  1095. src += 8 * stride; \
  1096. score += name8(s, dst, src, stride, 8); \
  1097. score += name8(s, dst + 8, src + 8, stride, 8); \
  1098. } \
  1099. return score; \
  1100. }
  1101. WRAPPER8_16_SQ(hadamard8_diff8x8_c, hadamard8_diff16_c)
  1102. WRAPPER8_16_SQ(hadamard8_intra8x8_c, hadamard8_intra16_c)
  1103. WRAPPER8_16_SQ(dct_sad8x8_c, dct_sad16_c)
  1104. #if CONFIG_GPL
  1105. WRAPPER8_16_SQ(dct264_sad8x8_c, dct264_sad16_c)
  1106. #endif
  1107. WRAPPER8_16_SQ(dct_max8x8_c, dct_max16_c)
  1108. WRAPPER8_16_SQ(quant_psnr8x8_c, quant_psnr16_c)
  1109. WRAPPER8_16_SQ(rd8x8_c, rd16_c)
  1110. WRAPPER8_16_SQ(bit8x8_c, bit16_c)
  1111. static inline uint32_t clipf_c_one(uint32_t a, uint32_t mini,
  1112. uint32_t maxi, uint32_t maxisign)
  1113. {
  1114. if (a > mini)
  1115. return mini;
  1116. else if ((a ^ (1U << 31)) > maxisign)
  1117. return maxi;
  1118. else
  1119. return a;
  1120. }
  1121. static void vector_clipf_c_opposite_sign(float *dst, const float *src,
  1122. float *min, float *max, int len)
  1123. {
  1124. int i;
  1125. uint32_t mini = *(uint32_t *) min;
  1126. uint32_t maxi = *(uint32_t *) max;
  1127. uint32_t maxisign = maxi ^ (1U << 31);
  1128. uint32_t *dsti = (uint32_t *) dst;
  1129. const uint32_t *srci = (const uint32_t *) src;
  1130. for (i = 0; i < len; i += 8) {
  1131. dsti[i + 0] = clipf_c_one(srci[i + 0], mini, maxi, maxisign);
  1132. dsti[i + 1] = clipf_c_one(srci[i + 1], mini, maxi, maxisign);
  1133. dsti[i + 2] = clipf_c_one(srci[i + 2], mini, maxi, maxisign);
  1134. dsti[i + 3] = clipf_c_one(srci[i + 3], mini, maxi, maxisign);
  1135. dsti[i + 4] = clipf_c_one(srci[i + 4], mini, maxi, maxisign);
  1136. dsti[i + 5] = clipf_c_one(srci[i + 5], mini, maxi, maxisign);
  1137. dsti[i + 6] = clipf_c_one(srci[i + 6], mini, maxi, maxisign);
  1138. dsti[i + 7] = clipf_c_one(srci[i + 7], mini, maxi, maxisign);
  1139. }
  1140. }
  1141. static void vector_clipf_c(float *dst, const float *src,
  1142. float min, float max, int len)
  1143. {
  1144. int i;
  1145. if (min < 0 && max > 0) {
  1146. vector_clipf_c_opposite_sign(dst, src, &min, &max, len);
  1147. } else {
  1148. for (i = 0; i < len; i += 8) {
  1149. dst[i] = av_clipf(src[i], min, max);
  1150. dst[i + 1] = av_clipf(src[i + 1], min, max);
  1151. dst[i + 2] = av_clipf(src[i + 2], min, max);
  1152. dst[i + 3] = av_clipf(src[i + 3], min, max);
  1153. dst[i + 4] = av_clipf(src[i + 4], min, max);
  1154. dst[i + 5] = av_clipf(src[i + 5], min, max);
  1155. dst[i + 6] = av_clipf(src[i + 6], min, max);
  1156. dst[i + 7] = av_clipf(src[i + 7], min, max);
  1157. }
  1158. }
  1159. }
  1160. static int32_t scalarproduct_int16_c(const int16_t *v1, const int16_t *v2,
  1161. int order)
  1162. {
  1163. int res = 0;
  1164. while (order--)
  1165. res += *v1++ **v2++;
  1166. return res;
  1167. }
  1168. static void vector_clip_int32_c(int32_t *dst, const int32_t *src, int32_t min,
  1169. int32_t max, unsigned int len)
  1170. {
  1171. do {
  1172. *dst++ = av_clip(*src++, min, max);
  1173. *dst++ = av_clip(*src++, min, max);
  1174. *dst++ = av_clip(*src++, min, max);
  1175. *dst++ = av_clip(*src++, min, max);
  1176. *dst++ = av_clip(*src++, min, max);
  1177. *dst++ = av_clip(*src++, min, max);
  1178. *dst++ = av_clip(*src++, min, max);
  1179. *dst++ = av_clip(*src++, min, max);
  1180. len -= 8;
  1181. } while (len > 0);
  1182. }
  1183. static void jref_idct_put(uint8_t *dest, int line_size, int16_t *block)
  1184. {
  1185. ff_j_rev_dct(block);
  1186. put_pixels_clamped_c(block, dest, line_size);
  1187. }
  1188. static void jref_idct_add(uint8_t *dest, int line_size, int16_t *block)
  1189. {
  1190. ff_j_rev_dct(block);
  1191. add_pixels_clamped_c(block, dest, line_size);
  1192. }
  1193. /* draw the edges of width 'w' of an image of size width, height */
  1194. // FIXME: Check that this is OK for MPEG-4 interlaced.
  1195. static void draw_edges_8_c(uint8_t *buf, int wrap, int width, int height,
  1196. int w, int h, int sides)
  1197. {
  1198. uint8_t *ptr = buf, *last_line;
  1199. int i;
  1200. /* left and right */
  1201. for (i = 0; i < height; i++) {
  1202. memset(ptr - w, ptr[0], w);
  1203. memset(ptr + width, ptr[width - 1], w);
  1204. ptr += wrap;
  1205. }
  1206. /* top and bottom + corners */
  1207. buf -= w;
  1208. last_line = buf + (height - 1) * wrap;
  1209. if (sides & EDGE_TOP)
  1210. for (i = 0; i < h; i++)
  1211. // top
  1212. memcpy(buf - (i + 1) * wrap, buf, width + w + w);
  1213. if (sides & EDGE_BOTTOM)
  1214. for (i = 0; i < h; i++)
  1215. // bottom
  1216. memcpy(last_line + (i + 1) * wrap, last_line, width + w + w);
  1217. }
  1218. /* init static data */
  1219. av_cold void ff_dsputil_static_init(void)
  1220. {
  1221. int i;
  1222. for (i = 0; i < 512; i++)
  1223. ff_square_tab[i] = (i - 256) * (i - 256);
  1224. }
  1225. av_cold void ff_dsputil_init(DSPContext *c, AVCodecContext *avctx)
  1226. {
  1227. const unsigned high_bit_depth = avctx->bits_per_raw_sample > 8;
  1228. #if CONFIG_ENCODERS
  1229. if (avctx->bits_per_raw_sample == 10) {
  1230. c->fdct = ff_jpeg_fdct_islow_10;
  1231. c->fdct248 = ff_fdct248_islow_10;
  1232. } else {
  1233. if (avctx->dct_algo == FF_DCT_FASTINT) {
  1234. c->fdct = ff_fdct_ifast;
  1235. c->fdct248 = ff_fdct_ifast248;
  1236. } else if (avctx->dct_algo == FF_DCT_FAAN) {
  1237. c->fdct = ff_faandct;
  1238. c->fdct248 = ff_faandct248;
  1239. } else {
  1240. c->fdct = ff_jpeg_fdct_islow_8; // slow/accurate/default
  1241. c->fdct248 = ff_fdct248_islow_8;
  1242. }
  1243. }
  1244. #endif /* CONFIG_ENCODERS */
  1245. if (avctx->bits_per_raw_sample == 10) {
  1246. c->idct_put = ff_simple_idct_put_10;
  1247. c->idct_add = ff_simple_idct_add_10;
  1248. c->idct = ff_simple_idct_10;
  1249. c->idct_permutation_type = FF_NO_IDCT_PERM;
  1250. } else {
  1251. if (avctx->idct_algo == FF_IDCT_INT) {
  1252. c->idct_put = jref_idct_put;
  1253. c->idct_add = jref_idct_add;
  1254. c->idct = ff_j_rev_dct;
  1255. c->idct_permutation_type = FF_LIBMPEG2_IDCT_PERM;
  1256. } else if (avctx->idct_algo == FF_IDCT_FAAN) {
  1257. c->idct_put = ff_faanidct_put;
  1258. c->idct_add = ff_faanidct_add;
  1259. c->idct = ff_faanidct;
  1260. c->idct_permutation_type = FF_NO_IDCT_PERM;
  1261. } else { // accurate/default
  1262. c->idct_put = ff_simple_idct_put_8;
  1263. c->idct_add = ff_simple_idct_add_8;
  1264. c->idct = ff_simple_idct_8;
  1265. c->idct_permutation_type = FF_NO_IDCT_PERM;
  1266. }
  1267. }
  1268. c->diff_pixels = diff_pixels_c;
  1269. c->put_pixels_clamped = put_pixels_clamped_c;
  1270. c->put_signed_pixels_clamped = put_signed_pixels_clamped_c;
  1271. c->add_pixels_clamped = add_pixels_clamped_c;
  1272. c->sum_abs_dctelem = sum_abs_dctelem_c;
  1273. c->gmc1 = gmc1_c;
  1274. c->gmc = ff_gmc_c;
  1275. c->pix_sum = pix_sum_c;
  1276. c->pix_norm1 = pix_norm1_c;
  1277. /* TODO [0] 16 [1] 8 */
  1278. c->pix_abs[0][0] = pix_abs16_c;
  1279. c->pix_abs[0][1] = pix_abs16_x2_c;
  1280. c->pix_abs[0][2] = pix_abs16_y2_c;
  1281. c->pix_abs[0][3] = pix_abs16_xy2_c;
  1282. c->pix_abs[1][0] = pix_abs8_c;
  1283. c->pix_abs[1][1] = pix_abs8_x2_c;
  1284. c->pix_abs[1][2] = pix_abs8_y2_c;
  1285. c->pix_abs[1][3] = pix_abs8_xy2_c;
  1286. #define SET_CMP_FUNC(name) \
  1287. c->name[0] = name ## 16_c; \
  1288. c->name[1] = name ## 8x8_c;
  1289. SET_CMP_FUNC(hadamard8_diff)
  1290. c->hadamard8_diff[4] = hadamard8_intra16_c;
  1291. c->hadamard8_diff[5] = hadamard8_intra8x8_c;
  1292. SET_CMP_FUNC(dct_sad)
  1293. SET_CMP_FUNC(dct_max)
  1294. #if CONFIG_GPL
  1295. SET_CMP_FUNC(dct264_sad)
  1296. #endif
  1297. c->sad[0] = pix_abs16_c;
  1298. c->sad[1] = pix_abs8_c;
  1299. c->sse[0] = sse16_c;
  1300. c->sse[1] = sse8_c;
  1301. c->sse[2] = sse4_c;
  1302. SET_CMP_FUNC(quant_psnr)
  1303. SET_CMP_FUNC(rd)
  1304. SET_CMP_FUNC(bit)
  1305. c->vsad[0] = vsad16_c;
  1306. c->vsad[4] = vsad_intra16_c;
  1307. c->vsad[5] = vsad_intra8_c;
  1308. c->vsse[0] = vsse16_c;
  1309. c->vsse[4] = vsse_intra16_c;
  1310. c->vsse[5] = vsse_intra8_c;
  1311. c->nsse[0] = nsse16_c;
  1312. c->nsse[1] = nsse8_c;
  1313. c->bswap_buf = bswap_buf;
  1314. c->bswap16_buf = bswap16_buf;
  1315. c->try_8x8basis = try_8x8basis_c;
  1316. c->add_8x8basis = add_8x8basis_c;
  1317. c->scalarproduct_int16 = scalarproduct_int16_c;
  1318. c->vector_clip_int32 = vector_clip_int32_c;
  1319. c->vector_clipf = vector_clipf_c;
  1320. c->shrink[0] = av_image_copy_plane;
  1321. c->shrink[1] = ff_shrink22;
  1322. c->shrink[2] = ff_shrink44;
  1323. c->shrink[3] = ff_shrink88;
  1324. c->draw_edges = draw_edges_8_c;
  1325. switch (avctx->bits_per_raw_sample) {
  1326. case 9:
  1327. case 10:
  1328. c->get_pixels = get_pixels_16_c;
  1329. break;
  1330. default:
  1331. c->get_pixels = get_pixels_8_c;
  1332. break;
  1333. }
  1334. if (ARCH_ARM)
  1335. ff_dsputil_init_arm(c, avctx, high_bit_depth);
  1336. if (ARCH_PPC)
  1337. ff_dsputil_init_ppc(c, avctx, high_bit_depth);
  1338. if (ARCH_X86)
  1339. ff_dsputil_init_x86(c, avctx, high_bit_depth);
  1340. ff_init_scantable_permutation(c->idct_permutation,
  1341. c->idct_permutation_type);
  1342. }