You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

8081 lines
301KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  18. *
  19. */
  20. /**
  21. * @file h264.c
  22. * H.264 / AVC / MPEG4 part10 codec.
  23. * @author Michael Niedermayer <michaelni@gmx.at>
  24. */
  25. #include "common.h"
  26. #include "dsputil.h"
  27. #include "avcodec.h"
  28. #include "mpegvideo.h"
  29. #include "h264data.h"
  30. #include "golomb.h"
  31. #include "cabac.h"
  32. #undef NDEBUG
  33. #include <assert.h>
  34. #define interlaced_dct interlaced_dct_is_a_bad_name
  35. #define mb_intra mb_intra_isnt_initalized_see_mb_type
  36. #define LUMA_DC_BLOCK_INDEX 25
  37. #define CHROMA_DC_BLOCK_INDEX 26
  38. #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
  39. #define COEFF_TOKEN_VLC_BITS 8
  40. #define TOTAL_ZEROS_VLC_BITS 9
  41. #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
  42. #define RUN_VLC_BITS 3
  43. #define RUN7_VLC_BITS 6
  44. #define MAX_SPS_COUNT 32
  45. #define MAX_PPS_COUNT 256
  46. #define MAX_MMCO_COUNT 66
  47. /**
  48. * Sequence parameter set
  49. */
  50. typedef struct SPS{
  51. int profile_idc;
  52. int level_idc;
  53. int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
  54. int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
  55. int poc_type; ///< pic_order_cnt_type
  56. int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
  57. int delta_pic_order_always_zero_flag;
  58. int offset_for_non_ref_pic;
  59. int offset_for_top_to_bottom_field;
  60. int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
  61. int ref_frame_count; ///< num_ref_frames
  62. int gaps_in_frame_num_allowed_flag;
  63. int mb_width; ///< frame_width_in_mbs_minus1 + 1
  64. int mb_height; ///< frame_height_in_mbs_minus1 + 1
  65. int frame_mbs_only_flag;
  66. int mb_aff; ///<mb_adaptive_frame_field_flag
  67. int direct_8x8_inference_flag;
  68. int crop; ///< frame_cropping_flag
  69. int crop_left; ///< frame_cropping_rect_left_offset
  70. int crop_right; ///< frame_cropping_rect_right_offset
  71. int crop_top; ///< frame_cropping_rect_top_offset
  72. int crop_bottom; ///< frame_cropping_rect_bottom_offset
  73. int vui_parameters_present_flag;
  74. AVRational sar;
  75. int timing_info_present_flag;
  76. uint32_t num_units_in_tick;
  77. uint32_t time_scale;
  78. int fixed_frame_rate_flag;
  79. short offset_for_ref_frame[256]; //FIXME dyn aloc?
  80. int bitstream_restriction_flag;
  81. int num_reorder_frames;
  82. int scaling_matrix_present;
  83. uint8_t scaling_matrix4[6][16];
  84. uint8_t scaling_matrix8[2][64];
  85. }SPS;
  86. /**
  87. * Picture parameter set
  88. */
  89. typedef struct PPS{
  90. int sps_id;
  91. int cabac; ///< entropy_coding_mode_flag
  92. int pic_order_present; ///< pic_order_present_flag
  93. int slice_group_count; ///< num_slice_groups_minus1 + 1
  94. int mb_slice_group_map_type;
  95. int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
  96. int weighted_pred; ///< weighted_pred_flag
  97. int weighted_bipred_idc;
  98. int init_qp; ///< pic_init_qp_minus26 + 26
  99. int init_qs; ///< pic_init_qs_minus26 + 26
  100. int chroma_qp_index_offset;
  101. int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
  102. int constrained_intra_pred; ///< constrained_intra_pred_flag
  103. int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
  104. int transform_8x8_mode; ///< transform_8x8_mode_flag
  105. uint8_t scaling_matrix4[6][16];
  106. uint8_t scaling_matrix8[2][64];
  107. }PPS;
  108. /**
  109. * Memory management control operation opcode.
  110. */
  111. typedef enum MMCOOpcode{
  112. MMCO_END=0,
  113. MMCO_SHORT2UNUSED,
  114. MMCO_LONG2UNUSED,
  115. MMCO_SHORT2LONG,
  116. MMCO_SET_MAX_LONG,
  117. MMCO_RESET,
  118. MMCO_LONG,
  119. } MMCOOpcode;
  120. /**
  121. * Memory management control operation.
  122. */
  123. typedef struct MMCO{
  124. MMCOOpcode opcode;
  125. int short_frame_num;
  126. int long_index;
  127. } MMCO;
  128. /**
  129. * H264Context
  130. */
  131. typedef struct H264Context{
  132. MpegEncContext s;
  133. int nal_ref_idc;
  134. int nal_unit_type;
  135. #define NAL_SLICE 1
  136. #define NAL_DPA 2
  137. #define NAL_DPB 3
  138. #define NAL_DPC 4
  139. #define NAL_IDR_SLICE 5
  140. #define NAL_SEI 6
  141. #define NAL_SPS 7
  142. #define NAL_PPS 8
  143. #define NAL_AUD 9
  144. #define NAL_END_SEQUENCE 10
  145. #define NAL_END_STREAM 11
  146. #define NAL_FILLER_DATA 12
  147. #define NAL_SPS_EXT 13
  148. #define NAL_AUXILIARY_SLICE 19
  149. uint8_t *rbsp_buffer;
  150. unsigned int rbsp_buffer_size;
  151. /**
  152. * Used to parse AVC variant of h264
  153. */
  154. int is_avc; ///< this flag is != 0 if codec is avc1
  155. int got_avcC; ///< flag used to parse avcC data only once
  156. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  157. int chroma_qp; //QPc
  158. int prev_mb_skipped; //FIXME remove (IMHO not used)
  159. //prediction stuff
  160. int chroma_pred_mode;
  161. int intra16x16_pred_mode;
  162. int top_mb_xy;
  163. int left_mb_xy[2];
  164. int8_t intra4x4_pred_mode_cache[5*8];
  165. int8_t (*intra4x4_pred_mode)[8];
  166. void (*pred4x4 [9+3])(uint8_t *src, uint8_t *topright, int stride);//FIXME move to dsp?
  167. void (*pred8x8l [9+3])(uint8_t *src, int topleft, int topright, int stride);
  168. void (*pred8x8 [4+3])(uint8_t *src, int stride);
  169. void (*pred16x16[4+3])(uint8_t *src, int stride);
  170. unsigned int topleft_samples_available;
  171. unsigned int top_samples_available;
  172. unsigned int topright_samples_available;
  173. unsigned int left_samples_available;
  174. uint8_t (*top_borders[2])[16+2*8];
  175. uint8_t left_border[2*(17+2*9)];
  176. /**
  177. * non zero coeff count cache.
  178. * is 64 if not available.
  179. */
  180. DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache[6*8]);
  181. uint8_t (*non_zero_count)[16];
  182. /**
  183. * Motion vector cache.
  184. */
  185. DECLARE_ALIGNED_8(int16_t, mv_cache[2][5*8][2]);
  186. DECLARE_ALIGNED_8(int8_t, ref_cache[2][5*8]);
  187. #define LIST_NOT_USED -1 //FIXME rename?
  188. #define PART_NOT_AVAILABLE -2
  189. /**
  190. * is 1 if the specific list MV&references are set to 0,0,-2.
  191. */
  192. int mv_cache_clean[2];
  193. /**
  194. * number of neighbors (top and/or left) that used 8x8 dct
  195. */
  196. int neighbor_transform_size;
  197. /**
  198. * block_offset[ 0..23] for frame macroblocks
  199. * block_offset[24..47] for field macroblocks
  200. */
  201. int block_offset[2*(16+8)];
  202. uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
  203. uint32_t *mb2b8_xy;
  204. int b_stride; //FIXME use s->b4_stride
  205. int b8_stride;
  206. int halfpel_flag;
  207. int thirdpel_flag;
  208. int unknown_svq3_flag;
  209. int next_slice_index;
  210. SPS sps_buffer[MAX_SPS_COUNT];
  211. SPS sps; ///< current sps
  212. PPS pps_buffer[MAX_PPS_COUNT];
  213. /**
  214. * current pps
  215. */
  216. PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
  217. uint32_t dequant4_buffer[6][52][16];
  218. uint32_t dequant8_buffer[2][52][64];
  219. uint32_t (*dequant4_coeff[6])[16];
  220. uint32_t (*dequant8_coeff[2])[64];
  221. int dequant_coeff_pps; ///< reinit tables when pps changes
  222. int slice_num;
  223. uint8_t *slice_table_base;
  224. uint8_t *slice_table; ///< slice_table_base + mb_stride + 1
  225. int slice_type;
  226. int slice_type_fixed;
  227. //interlacing specific flags
  228. int mb_aff_frame;
  229. int mb_field_decoding_flag;
  230. int sub_mb_type[4];
  231. //POC stuff
  232. int poc_lsb;
  233. int poc_msb;
  234. int delta_poc_bottom;
  235. int delta_poc[2];
  236. int frame_num;
  237. int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
  238. int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
  239. int frame_num_offset; ///< for POC type 2
  240. int prev_frame_num_offset; ///< for POC type 2
  241. int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
  242. /**
  243. * frame_num for frames or 2*frame_num for field pics.
  244. */
  245. int curr_pic_num;
  246. /**
  247. * max_frame_num or 2*max_frame_num for field pics.
  248. */
  249. int max_pic_num;
  250. //Weighted pred stuff
  251. int use_weight;
  252. int use_weight_chroma;
  253. int luma_log2_weight_denom;
  254. int chroma_log2_weight_denom;
  255. int luma_weight[2][16];
  256. int luma_offset[2][16];
  257. int chroma_weight[2][16][2];
  258. int chroma_offset[2][16][2];
  259. int implicit_weight[16][16];
  260. //deblock
  261. int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
  262. int slice_alpha_c0_offset;
  263. int slice_beta_offset;
  264. int redundant_pic_count;
  265. int direct_spatial_mv_pred;
  266. int dist_scale_factor[16];
  267. int map_col_to_list0[2][16];
  268. /**
  269. * num_ref_idx_l0/1_active_minus1 + 1
  270. */
  271. int ref_count[2];// FIXME split for AFF
  272. Picture *short_ref[32];
  273. Picture *long_ref[32];
  274. Picture default_ref_list[2][32];
  275. Picture ref_list[2][32]; //FIXME size?
  276. Picture field_ref_list[2][32]; //FIXME size?
  277. Picture *delayed_pic[16]; //FIXME size?
  278. Picture *delayed_output_pic;
  279. /**
  280. * memory management control operations buffer.
  281. */
  282. MMCO mmco[MAX_MMCO_COUNT];
  283. int mmco_index;
  284. int long_ref_count; ///< number of actual long term references
  285. int short_ref_count; ///< number of actual short term references
  286. //data partitioning
  287. GetBitContext intra_gb;
  288. GetBitContext inter_gb;
  289. GetBitContext *intra_gb_ptr;
  290. GetBitContext *inter_gb_ptr;
  291. DECLARE_ALIGNED_8(DCTELEM, mb[16*24]);
  292. /**
  293. * Cabac
  294. */
  295. CABACContext cabac;
  296. uint8_t cabac_state[460];
  297. int cabac_init_idc;
  298. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
  299. uint16_t *cbp_table;
  300. int top_cbp;
  301. int left_cbp;
  302. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  303. uint8_t *chroma_pred_mode_table;
  304. int last_qscale_diff;
  305. int16_t (*mvd_table[2])[2];
  306. DECLARE_ALIGNED_8(int16_t, mvd_cache[2][5*8][2]);
  307. uint8_t *direct_table;
  308. uint8_t direct_cache[5*8];
  309. uint8_t zigzag_scan[16];
  310. uint8_t field_scan[16];
  311. uint8_t zigzag_scan8x8[64];
  312. uint8_t zigzag_scan8x8_cavlc[64];
  313. const uint8_t *zigzag_scan_q0;
  314. const uint8_t *field_scan_q0;
  315. const uint8_t *zigzag_scan8x8_q0;
  316. const uint8_t *zigzag_scan8x8_cavlc_q0;
  317. int x264_build;
  318. }H264Context;
  319. static VLC coeff_token_vlc[4];
  320. static VLC chroma_dc_coeff_token_vlc;
  321. static VLC total_zeros_vlc[15];
  322. static VLC chroma_dc_total_zeros_vlc[3];
  323. static VLC run_vlc[6];
  324. static VLC run7_vlc;
  325. static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
  326. static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
  327. static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  328. static always_inline uint32_t pack16to32(int a, int b){
  329. #ifdef WORDS_BIGENDIAN
  330. return (b&0xFFFF) + (a<<16);
  331. #else
  332. return (a&0xFFFF) + (b<<16);
  333. #endif
  334. }
  335. /**
  336. * fill a rectangle.
  337. * @param h height of the rectangle, should be a constant
  338. * @param w width of the rectangle, should be a constant
  339. * @param size the size of val (1 or 4), should be a constant
  340. */
  341. static always_inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){
  342. uint8_t *p= (uint8_t*)vp;
  343. assert(size==1 || size==4);
  344. w *= size;
  345. stride *= size;
  346. assert((((long)vp)&(FFMIN(w, STRIDE_ALIGN)-1)) == 0);
  347. assert((stride&(w-1))==0);
  348. //FIXME check what gcc generates for 64 bit on x86 and possibly write a 32 bit ver of it
  349. if(w==2 && h==2){
  350. *(uint16_t*)(p + 0)=
  351. *(uint16_t*)(p + stride)= size==4 ? val : val*0x0101;
  352. }else if(w==2 && h==4){
  353. *(uint16_t*)(p + 0*stride)=
  354. *(uint16_t*)(p + 1*stride)=
  355. *(uint16_t*)(p + 2*stride)=
  356. *(uint16_t*)(p + 3*stride)= size==4 ? val : val*0x0101;
  357. }else if(w==4 && h==1){
  358. *(uint32_t*)(p + 0*stride)= size==4 ? val : val*0x01010101;
  359. }else if(w==4 && h==2){
  360. *(uint32_t*)(p + 0*stride)=
  361. *(uint32_t*)(p + 1*stride)= size==4 ? val : val*0x01010101;
  362. }else if(w==4 && h==4){
  363. *(uint32_t*)(p + 0*stride)=
  364. *(uint32_t*)(p + 1*stride)=
  365. *(uint32_t*)(p + 2*stride)=
  366. *(uint32_t*)(p + 3*stride)= size==4 ? val : val*0x01010101;
  367. }else if(w==8 && h==1){
  368. *(uint32_t*)(p + 0)=
  369. *(uint32_t*)(p + 4)= size==4 ? val : val*0x01010101;
  370. }else if(w==8 && h==2){
  371. *(uint32_t*)(p + 0 + 0*stride)=
  372. *(uint32_t*)(p + 4 + 0*stride)=
  373. *(uint32_t*)(p + 0 + 1*stride)=
  374. *(uint32_t*)(p + 4 + 1*stride)= size==4 ? val : val*0x01010101;
  375. }else if(w==8 && h==4){
  376. *(uint64_t*)(p + 0*stride)=
  377. *(uint64_t*)(p + 1*stride)=
  378. *(uint64_t*)(p + 2*stride)=
  379. *(uint64_t*)(p + 3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
  380. }else if(w==16 && h==2){
  381. *(uint64_t*)(p + 0+0*stride)=
  382. *(uint64_t*)(p + 8+0*stride)=
  383. *(uint64_t*)(p + 0+1*stride)=
  384. *(uint64_t*)(p + 8+1*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
  385. }else if(w==16 && h==4){
  386. *(uint64_t*)(p + 0+0*stride)=
  387. *(uint64_t*)(p + 8+0*stride)=
  388. *(uint64_t*)(p + 0+1*stride)=
  389. *(uint64_t*)(p + 8+1*stride)=
  390. *(uint64_t*)(p + 0+2*stride)=
  391. *(uint64_t*)(p + 8+2*stride)=
  392. *(uint64_t*)(p + 0+3*stride)=
  393. *(uint64_t*)(p + 8+3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
  394. }else
  395. assert(0);
  396. }
  397. static void fill_caches(H264Context *h, int mb_type, int for_deblock){
  398. MpegEncContext * const s = &h->s;
  399. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  400. int topleft_xy, top_xy, topright_xy, left_xy[2];
  401. int topleft_type, top_type, topright_type, left_type[2];
  402. int left_block[8];
  403. int i;
  404. //FIXME deblocking can skip fill_caches much of the time with multiple slices too.
  405. // the actual condition is whether we're on the edge of a slice,
  406. // and even then the intra and nnz parts are unnecessary.
  407. if(for_deblock && h->slice_num == 1)
  408. return;
  409. //wow what a mess, why didn't they simplify the interlacing&intra stuff, i can't imagine that these complex rules are worth it
  410. top_xy = mb_xy - s->mb_stride;
  411. topleft_xy = top_xy - 1;
  412. topright_xy= top_xy + 1;
  413. left_xy[1] = left_xy[0] = mb_xy-1;
  414. left_block[0]= 0;
  415. left_block[1]= 1;
  416. left_block[2]= 2;
  417. left_block[3]= 3;
  418. left_block[4]= 7;
  419. left_block[5]= 10;
  420. left_block[6]= 8;
  421. left_block[7]= 11;
  422. if(h->mb_aff_frame){
  423. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  424. const int top_pair_xy = pair_xy - s->mb_stride;
  425. const int topleft_pair_xy = top_pair_xy - 1;
  426. const int topright_pair_xy = top_pair_xy + 1;
  427. const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
  428. const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  429. const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
  430. const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  431. const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
  432. const int bottom = (s->mb_y & 1);
  433. tprintf("fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
  434. if (bottom
  435. ? !curr_mb_frame_flag // bottom macroblock
  436. : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
  437. ) {
  438. top_xy -= s->mb_stride;
  439. }
  440. if (bottom
  441. ? !curr_mb_frame_flag // bottom macroblock
  442. : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
  443. ) {
  444. topleft_xy -= s->mb_stride;
  445. }
  446. if (bottom
  447. ? !curr_mb_frame_flag // bottom macroblock
  448. : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
  449. ) {
  450. topright_xy -= s->mb_stride;
  451. }
  452. if (left_mb_frame_flag != curr_mb_frame_flag) {
  453. left_xy[1] = left_xy[0] = pair_xy - 1;
  454. if (curr_mb_frame_flag) {
  455. if (bottom) {
  456. left_block[0]= 2;
  457. left_block[1]= 2;
  458. left_block[2]= 3;
  459. left_block[3]= 3;
  460. left_block[4]= 8;
  461. left_block[5]= 11;
  462. left_block[6]= 8;
  463. left_block[7]= 11;
  464. } else {
  465. left_block[0]= 0;
  466. left_block[1]= 0;
  467. left_block[2]= 1;
  468. left_block[3]= 1;
  469. left_block[4]= 7;
  470. left_block[5]= 10;
  471. left_block[6]= 7;
  472. left_block[7]= 10;
  473. }
  474. } else {
  475. left_xy[1] += s->mb_stride;
  476. //left_block[0]= 0;
  477. left_block[1]= 2;
  478. left_block[2]= 0;
  479. left_block[3]= 2;
  480. //left_block[4]= 7;
  481. left_block[5]= 10;
  482. left_block[6]= 7;
  483. left_block[7]= 10;
  484. }
  485. }
  486. }
  487. h->top_mb_xy = top_xy;
  488. h->left_mb_xy[0] = left_xy[0];
  489. h->left_mb_xy[1] = left_xy[1];
  490. if(for_deblock){
  491. topleft_type = h->slice_table[topleft_xy ] < 255 ? s->current_picture.mb_type[topleft_xy] : 0;
  492. top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
  493. topright_type= h->slice_table[topright_xy] < 255 ? s->current_picture.mb_type[topright_xy]: 0;
  494. left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
  495. left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
  496. }else{
  497. topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
  498. top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
  499. topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
  500. left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
  501. left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
  502. }
  503. if(IS_INTRA(mb_type)){
  504. h->topleft_samples_available=
  505. h->top_samples_available=
  506. h->left_samples_available= 0xFFFF;
  507. h->topright_samples_available= 0xEEEA;
  508. if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
  509. h->topleft_samples_available= 0xB3FF;
  510. h->top_samples_available= 0x33FF;
  511. h->topright_samples_available= 0x26EA;
  512. }
  513. for(i=0; i<2; i++){
  514. if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
  515. h->topleft_samples_available&= 0xDF5F;
  516. h->left_samples_available&= 0x5F5F;
  517. }
  518. }
  519. if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
  520. h->topleft_samples_available&= 0x7FFF;
  521. if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
  522. h->topright_samples_available&= 0xFBFF;
  523. if(IS_INTRA4x4(mb_type)){
  524. if(IS_INTRA4x4(top_type)){
  525. h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
  526. h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
  527. h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
  528. h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
  529. }else{
  530. int pred;
  531. if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
  532. pred= -1;
  533. else{
  534. pred= 2;
  535. }
  536. h->intra4x4_pred_mode_cache[4+8*0]=
  537. h->intra4x4_pred_mode_cache[5+8*0]=
  538. h->intra4x4_pred_mode_cache[6+8*0]=
  539. h->intra4x4_pred_mode_cache[7+8*0]= pred;
  540. }
  541. for(i=0; i<2; i++){
  542. if(IS_INTRA4x4(left_type[i])){
  543. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
  544. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
  545. }else{
  546. int pred;
  547. if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
  548. pred= -1;
  549. else{
  550. pred= 2;
  551. }
  552. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  553. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
  554. }
  555. }
  556. }
  557. }
  558. /*
  559. 0 . T T. T T T T
  560. 1 L . .L . . . .
  561. 2 L . .L . . . .
  562. 3 . T TL . . . .
  563. 4 L . .L . . . .
  564. 5 L . .. . . . .
  565. */
  566. //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
  567. if(top_type){
  568. h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
  569. h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
  570. h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
  571. h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
  572. h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
  573. h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
  574. h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
  575. h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
  576. }else{
  577. h->non_zero_count_cache[4+8*0]=
  578. h->non_zero_count_cache[5+8*0]=
  579. h->non_zero_count_cache[6+8*0]=
  580. h->non_zero_count_cache[7+8*0]=
  581. h->non_zero_count_cache[1+8*0]=
  582. h->non_zero_count_cache[2+8*0]=
  583. h->non_zero_count_cache[1+8*3]=
  584. h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  585. }
  586. for (i=0; i<2; i++) {
  587. if(left_type[i]){
  588. h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
  589. h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
  590. h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
  591. h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
  592. }else{
  593. h->non_zero_count_cache[3+8*1 + 2*8*i]=
  594. h->non_zero_count_cache[3+8*2 + 2*8*i]=
  595. h->non_zero_count_cache[0+8*1 + 8*i]=
  596. h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  597. }
  598. }
  599. if( h->pps.cabac ) {
  600. // top_cbp
  601. if(top_type) {
  602. h->top_cbp = h->cbp_table[top_xy];
  603. } else if(IS_INTRA(mb_type)) {
  604. h->top_cbp = 0x1C0;
  605. } else {
  606. h->top_cbp = 0;
  607. }
  608. // left_cbp
  609. if (left_type[0]) {
  610. h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
  611. } else if(IS_INTRA(mb_type)) {
  612. h->left_cbp = 0x1C0;
  613. } else {
  614. h->left_cbp = 0;
  615. }
  616. if (left_type[0]) {
  617. h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
  618. }
  619. if (left_type[1]) {
  620. h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
  621. }
  622. }
  623. #if 1
  624. //FIXME direct mb can skip much of this
  625. if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
  626. int list;
  627. for(list=0; list<1+(h->slice_type==B_TYPE); list++){
  628. if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
  629. /*if(!h->mv_cache_clean[list]){
  630. memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
  631. memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
  632. h->mv_cache_clean[list]= 1;
  633. }*/
  634. continue;
  635. }
  636. h->mv_cache_clean[list]= 0;
  637. if(IS_INTER(top_type)){
  638. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  639. const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
  640. *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
  641. *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
  642. *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
  643. *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
  644. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  645. h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
  646. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  647. h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
  648. }else{
  649. *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
  650. *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
  651. *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
  652. *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
  653. *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
  654. }
  655. //FIXME unify cleanup or sth
  656. if(IS_INTER(left_type[0])){
  657. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  658. const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
  659. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]];
  660. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1]];
  661. h->ref_cache[list][scan8[0] - 1 + 0*8]=
  662. h->ref_cache[list][scan8[0] - 1 + 1*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0]>>1)];
  663. }else{
  664. *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0*8]=
  665. *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 1*8]= 0;
  666. h->ref_cache[list][scan8[0] - 1 + 0*8]=
  667. h->ref_cache[list][scan8[0] - 1 + 1*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  668. }
  669. if(IS_INTER(left_type[1])){
  670. const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
  671. const int b8_xy= h->mb2b8_xy[left_xy[1]] + 1;
  672. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[2]];
  673. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[3]];
  674. h->ref_cache[list][scan8[0] - 1 + 2*8]=
  675. h->ref_cache[list][scan8[0] - 1 + 3*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[2]>>1)];
  676. }else{
  677. *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 2*8]=
  678. *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 3*8]= 0;
  679. h->ref_cache[list][scan8[0] - 1 + 2*8]=
  680. h->ref_cache[list][scan8[0] - 1 + 3*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  681. assert((!left_type[0]) == (!left_type[1]));
  682. }
  683. if(for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred))
  684. continue;
  685. if(IS_INTER(topleft_type)){
  686. const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
  687. const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
  688. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  689. h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  690. }else{
  691. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
  692. h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  693. }
  694. if(IS_INTER(topright_type)){
  695. const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
  696. const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
  697. *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  698. h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  699. }else{
  700. *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
  701. h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  702. }
  703. h->ref_cache[list][scan8[5 ]+1] =
  704. h->ref_cache[list][scan8[7 ]+1] =
  705. h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
  706. h->ref_cache[list][scan8[4 ]] =
  707. h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
  708. *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
  709. *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
  710. *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  711. *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
  712. *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
  713. if( h->pps.cabac ) {
  714. /* XXX beurk, Load mvd */
  715. if(IS_INTER(topleft_type)){
  716. const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
  717. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy];
  718. }else{
  719. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 - 1*8]= 0;
  720. }
  721. if(IS_INTER(top_type)){
  722. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  723. *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
  724. *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
  725. *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
  726. *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
  727. }else{
  728. *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
  729. *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
  730. *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
  731. *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
  732. }
  733. if(IS_INTER(left_type[0])){
  734. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  735. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
  736. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
  737. }else{
  738. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
  739. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
  740. }
  741. if(IS_INTER(left_type[1])){
  742. const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
  743. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
  744. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
  745. }else{
  746. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
  747. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
  748. }
  749. *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
  750. *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
  751. *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  752. *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
  753. *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
  754. if(h->slice_type == B_TYPE){
  755. fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
  756. if(IS_DIRECT(top_type)){
  757. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
  758. }else if(IS_8X8(top_type)){
  759. int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
  760. h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
  761. h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
  762. }else{
  763. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
  764. }
  765. //FIXME interlacing
  766. if(IS_DIRECT(left_type[0])){
  767. h->direct_cache[scan8[0] - 1 + 0*8]=
  768. h->direct_cache[scan8[0] - 1 + 2*8]= 1;
  769. }else if(IS_8X8(left_type[0])){
  770. int b8_xy = h->mb2b8_xy[left_xy[0]] + 1;
  771. h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[b8_xy];
  772. h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[b8_xy + h->b8_stride];
  773. }else{
  774. h->direct_cache[scan8[0] - 1 + 0*8]=
  775. h->direct_cache[scan8[0] - 1 + 2*8]= 0;
  776. }
  777. }
  778. }
  779. }
  780. }
  781. #endif
  782. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
  783. }
  784. static inline void write_back_intra_pred_mode(H264Context *h){
  785. MpegEncContext * const s = &h->s;
  786. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  787. h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
  788. h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
  789. h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
  790. h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
  791. h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
  792. h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
  793. h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
  794. }
  795. /**
  796. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  797. */
  798. static inline int check_intra4x4_pred_mode(H264Context *h){
  799. MpegEncContext * const s = &h->s;
  800. static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
  801. static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
  802. int i;
  803. if(!(h->top_samples_available&0x8000)){
  804. for(i=0; i<4; i++){
  805. int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
  806. if(status<0){
  807. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  808. return -1;
  809. } else if(status){
  810. h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
  811. }
  812. }
  813. }
  814. if(!(h->left_samples_available&0x8000)){
  815. for(i=0; i<4; i++){
  816. int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
  817. if(status<0){
  818. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  819. return -1;
  820. } else if(status){
  821. h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
  822. }
  823. }
  824. }
  825. return 0;
  826. } //FIXME cleanup like next
  827. /**
  828. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  829. */
  830. static inline int check_intra_pred_mode(H264Context *h, int mode){
  831. MpegEncContext * const s = &h->s;
  832. static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
  833. static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
  834. if(mode < 0 || mode > 6) {
  835. av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
  836. return -1;
  837. }
  838. if(!(h->top_samples_available&0x8000)){
  839. mode= top[ mode ];
  840. if(mode<0){
  841. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  842. return -1;
  843. }
  844. }
  845. if(!(h->left_samples_available&0x8000)){
  846. mode= left[ mode ];
  847. if(mode<0){
  848. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  849. return -1;
  850. }
  851. }
  852. return mode;
  853. }
  854. /**
  855. * gets the predicted intra4x4 prediction mode.
  856. */
  857. static inline int pred_intra_mode(H264Context *h, int n){
  858. const int index8= scan8[n];
  859. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  860. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  861. const int min= FFMIN(left, top);
  862. tprintf("mode:%d %d min:%d\n", left ,top, min);
  863. if(min<0) return DC_PRED;
  864. else return min;
  865. }
  866. static inline void write_back_non_zero_count(H264Context *h){
  867. MpegEncContext * const s = &h->s;
  868. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  869. h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
  870. h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
  871. h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
  872. h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
  873. h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
  874. h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
  875. h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
  876. h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
  877. h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
  878. h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
  879. h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
  880. h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
  881. h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
  882. }
  883. /**
  884. * gets the predicted number of non zero coefficients.
  885. * @param n block index
  886. */
  887. static inline int pred_non_zero_count(H264Context *h, int n){
  888. const int index8= scan8[n];
  889. const int left= h->non_zero_count_cache[index8 - 1];
  890. const int top = h->non_zero_count_cache[index8 - 8];
  891. int i= left + top;
  892. if(i<64) i= (i+1)>>1;
  893. tprintf("pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
  894. return i&31;
  895. }
  896. static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
  897. const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
  898. if(topright_ref != PART_NOT_AVAILABLE){
  899. *C= h->mv_cache[list][ i - 8 + part_width ];
  900. return topright_ref;
  901. }else{
  902. tprintf("topright MV not available\n");
  903. *C= h->mv_cache[list][ i - 8 - 1 ];
  904. return h->ref_cache[list][ i - 8 - 1 ];
  905. }
  906. }
  907. /**
  908. * gets the predicted MV.
  909. * @param n the block index
  910. * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
  911. * @param mx the x component of the predicted motion vector
  912. * @param my the y component of the predicted motion vector
  913. */
  914. static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
  915. const int index8= scan8[n];
  916. const int top_ref= h->ref_cache[list][ index8 - 8 ];
  917. const int left_ref= h->ref_cache[list][ index8 - 1 ];
  918. const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
  919. const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
  920. const int16_t * C;
  921. int diagonal_ref, match_count;
  922. assert(part_width==1 || part_width==2 || part_width==4);
  923. /* mv_cache
  924. B . . A T T T T
  925. U . . L . . , .
  926. U . . L . . . .
  927. U . . L . . , .
  928. . . . L . . . .
  929. */
  930. diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
  931. match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
  932. tprintf("pred_motion match_count=%d\n", match_count);
  933. if(match_count > 1){ //most common
  934. *mx= mid_pred(A[0], B[0], C[0]);
  935. *my= mid_pred(A[1], B[1], C[1]);
  936. }else if(match_count==1){
  937. if(left_ref==ref){
  938. *mx= A[0];
  939. *my= A[1];
  940. }else if(top_ref==ref){
  941. *mx= B[0];
  942. *my= B[1];
  943. }else{
  944. *mx= C[0];
  945. *my= C[1];
  946. }
  947. }else{
  948. if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
  949. *mx= A[0];
  950. *my= A[1];
  951. }else{
  952. *mx= mid_pred(A[0], B[0], C[0]);
  953. *my= mid_pred(A[1], B[1], C[1]);
  954. }
  955. }
  956. tprintf("pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
  957. }
  958. /**
  959. * gets the directionally predicted 16x8 MV.
  960. * @param n the block index
  961. * @param mx the x component of the predicted motion vector
  962. * @param my the y component of the predicted motion vector
  963. */
  964. static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
  965. if(n==0){
  966. const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
  967. const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
  968. tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
  969. if(top_ref == ref){
  970. *mx= B[0];
  971. *my= B[1];
  972. return;
  973. }
  974. }else{
  975. const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
  976. const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
  977. tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
  978. if(left_ref == ref){
  979. *mx= A[0];
  980. *my= A[1];
  981. return;
  982. }
  983. }
  984. //RARE
  985. pred_motion(h, n, 4, list, ref, mx, my);
  986. }
  987. /**
  988. * gets the directionally predicted 8x16 MV.
  989. * @param n the block index
  990. * @param mx the x component of the predicted motion vector
  991. * @param my the y component of the predicted motion vector
  992. */
  993. static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
  994. if(n==0){
  995. const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
  996. const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
  997. tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
  998. if(left_ref == ref){
  999. *mx= A[0];
  1000. *my= A[1];
  1001. return;
  1002. }
  1003. }else{
  1004. const int16_t * C;
  1005. int diagonal_ref;
  1006. diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
  1007. tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
  1008. if(diagonal_ref == ref){
  1009. *mx= C[0];
  1010. *my= C[1];
  1011. return;
  1012. }
  1013. }
  1014. //RARE
  1015. pred_motion(h, n, 2, list, ref, mx, my);
  1016. }
  1017. static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
  1018. const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
  1019. const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
  1020. tprintf("pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
  1021. if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
  1022. || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
  1023. || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
  1024. *mx = *my = 0;
  1025. return;
  1026. }
  1027. pred_motion(h, 0, 4, 0, 0, mx, my);
  1028. return;
  1029. }
  1030. static inline void direct_dist_scale_factor(H264Context * const h){
  1031. const int poc = h->s.current_picture_ptr->poc;
  1032. const int poc1 = h->ref_list[1][0].poc;
  1033. int i;
  1034. for(i=0; i<h->ref_count[0]; i++){
  1035. int poc0 = h->ref_list[0][i].poc;
  1036. int td = clip(poc1 - poc0, -128, 127);
  1037. if(td == 0 /* FIXME || pic0 is a long-term ref */){
  1038. h->dist_scale_factor[i] = 256;
  1039. }else{
  1040. int tb = clip(poc - poc0, -128, 127);
  1041. int tx = (16384 + (ABS(td) >> 1)) / td;
  1042. h->dist_scale_factor[i] = clip((tb*tx + 32) >> 6, -1024, 1023);
  1043. }
  1044. }
  1045. }
  1046. static inline void direct_ref_list_init(H264Context * const h){
  1047. MpegEncContext * const s = &h->s;
  1048. Picture * const ref1 = &h->ref_list[1][0];
  1049. Picture * const cur = s->current_picture_ptr;
  1050. int list, i, j;
  1051. if(cur->pict_type == I_TYPE)
  1052. cur->ref_count[0] = 0;
  1053. if(cur->pict_type != B_TYPE)
  1054. cur->ref_count[1] = 0;
  1055. for(list=0; list<2; list++){
  1056. cur->ref_count[list] = h->ref_count[list];
  1057. for(j=0; j<h->ref_count[list]; j++)
  1058. cur->ref_poc[list][j] = h->ref_list[list][j].poc;
  1059. }
  1060. if(cur->pict_type != B_TYPE || h->direct_spatial_mv_pred)
  1061. return;
  1062. for(list=0; list<2; list++){
  1063. for(i=0; i<ref1->ref_count[list]; i++){
  1064. const int poc = ref1->ref_poc[list][i];
  1065. h->map_col_to_list0[list][i] = 0; /* bogus; fills in for missing frames */
  1066. for(j=0; j<h->ref_count[list]; j++)
  1067. if(h->ref_list[list][j].poc == poc){
  1068. h->map_col_to_list0[list][i] = j;
  1069. break;
  1070. }
  1071. }
  1072. }
  1073. }
  1074. static inline void pred_direct_motion(H264Context * const h, int *mb_type){
  1075. MpegEncContext * const s = &h->s;
  1076. const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  1077. const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  1078. const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  1079. const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
  1080. const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
  1081. const int16_t (*l1mv1)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[1][b4_xy];
  1082. const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
  1083. const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy];
  1084. const int is_b8x8 = IS_8X8(*mb_type);
  1085. int sub_mb_type;
  1086. int i8, i4;
  1087. if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
  1088. /* FIXME save sub mb types from previous frames (or derive from MVs)
  1089. * so we know exactly what block size to use */
  1090. sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
  1091. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
  1092. }else if(!is_b8x8 && (IS_16X16(mb_type_col) || IS_INTRA(mb_type_col))){
  1093. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  1094. *mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
  1095. }else{
  1096. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  1097. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
  1098. }
  1099. if(!is_b8x8)
  1100. *mb_type |= MB_TYPE_DIRECT2;
  1101. tprintf("mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
  1102. if(h->direct_spatial_mv_pred){
  1103. int ref[2];
  1104. int mv[2][2];
  1105. int list;
  1106. /* ref = min(neighbors) */
  1107. for(list=0; list<2; list++){
  1108. int refa = h->ref_cache[list][scan8[0] - 1];
  1109. int refb = h->ref_cache[list][scan8[0] - 8];
  1110. int refc = h->ref_cache[list][scan8[0] - 8 + 4];
  1111. if(refc == -2)
  1112. refc = h->ref_cache[list][scan8[0] - 8 - 1];
  1113. ref[list] = refa;
  1114. if(ref[list] < 0 || (refb < ref[list] && refb >= 0))
  1115. ref[list] = refb;
  1116. if(ref[list] < 0 || (refc < ref[list] && refc >= 0))
  1117. ref[list] = refc;
  1118. if(ref[list] < 0)
  1119. ref[list] = -1;
  1120. }
  1121. if(ref[0] < 0 && ref[1] < 0){
  1122. ref[0] = ref[1] = 0;
  1123. mv[0][0] = mv[0][1] =
  1124. mv[1][0] = mv[1][1] = 0;
  1125. }else{
  1126. for(list=0; list<2; list++){
  1127. if(ref[list] >= 0)
  1128. pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
  1129. else
  1130. mv[list][0] = mv[list][1] = 0;
  1131. }
  1132. }
  1133. if(ref[1] < 0){
  1134. *mb_type &= ~MB_TYPE_P0L1;
  1135. sub_mb_type &= ~MB_TYPE_P0L1;
  1136. }else if(ref[0] < 0){
  1137. *mb_type &= ~MB_TYPE_P0L0;
  1138. sub_mb_type &= ~MB_TYPE_P0L0;
  1139. }
  1140. if(IS_16X16(*mb_type)){
  1141. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
  1142. fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
  1143. if(!IS_INTRA(mb_type_col)
  1144. && ( (l1ref0[0] == 0 && ABS(l1mv0[0][0]) <= 1 && ABS(l1mv0[0][1]) <= 1)
  1145. || (l1ref0[0] < 0 && l1ref1[0] == 0 && ABS(l1mv1[0][0]) <= 1 && ABS(l1mv1[0][1]) <= 1
  1146. && (h->x264_build>33 || !h->x264_build)))){
  1147. if(ref[0] > 0)
  1148. fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
  1149. else
  1150. fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
  1151. if(ref[1] > 0)
  1152. fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
  1153. else
  1154. fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
  1155. }else{
  1156. fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
  1157. fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
  1158. }
  1159. }else{
  1160. for(i8=0; i8<4; i8++){
  1161. const int x8 = i8&1;
  1162. const int y8 = i8>>1;
  1163. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1164. continue;
  1165. h->sub_mb_type[i8] = sub_mb_type;
  1166. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
  1167. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
  1168. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
  1169. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
  1170. /* col_zero_flag */
  1171. if(!IS_INTRA(mb_type_col) && ( l1ref0[x8 + y8*h->b8_stride] == 0
  1172. || (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0
  1173. && (h->x264_build>33 || !h->x264_build)))){
  1174. const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1;
  1175. if(IS_SUB_8X8(sub_mb_type)){
  1176. const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
  1177. if(ABS(mv_col[0]) <= 1 && ABS(mv_col[1]) <= 1){
  1178. if(ref[0] == 0)
  1179. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1180. if(ref[1] == 0)
  1181. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1182. }
  1183. }else
  1184. for(i4=0; i4<4; i4++){
  1185. const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
  1186. if(ABS(mv_col[0]) <= 1 && ABS(mv_col[1]) <= 1){
  1187. if(ref[0] == 0)
  1188. *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
  1189. if(ref[1] == 0)
  1190. *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
  1191. }
  1192. }
  1193. }
  1194. }
  1195. }
  1196. }else{ /* direct temporal mv pred */
  1197. if(IS_16X16(*mb_type)){
  1198. fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
  1199. if(IS_INTRA(mb_type_col)){
  1200. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  1201. fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
  1202. fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
  1203. }else{
  1204. const int ref0 = l1ref0[0] >= 0 ? h->map_col_to_list0[0][l1ref0[0]]
  1205. : h->map_col_to_list0[1][l1ref1[0]];
  1206. const int dist_scale_factor = h->dist_scale_factor[ref0];
  1207. const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
  1208. int mv_l0[2];
  1209. mv_l0[0] = (dist_scale_factor * mv_col[0] + 128) >> 8;
  1210. mv_l0[1] = (dist_scale_factor * mv_col[1] + 128) >> 8;
  1211. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref0, 1);
  1212. fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0],mv_l0[1]), 4);
  1213. fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]), 4);
  1214. }
  1215. }else{
  1216. for(i8=0; i8<4; i8++){
  1217. const int x8 = i8&1;
  1218. const int y8 = i8>>1;
  1219. int ref0, dist_scale_factor;
  1220. const int16_t (*l1mv)[2]= l1mv0;
  1221. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1222. continue;
  1223. h->sub_mb_type[i8] = sub_mb_type;
  1224. if(IS_INTRA(mb_type_col)){
  1225. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
  1226. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
  1227. fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1228. fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1229. continue;
  1230. }
  1231. ref0 = l1ref0[x8 + y8*h->b8_stride];
  1232. if(ref0 >= 0)
  1233. ref0 = h->map_col_to_list0[0][ref0];
  1234. else{
  1235. ref0 = h->map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
  1236. l1mv= l1mv1;
  1237. }
  1238. dist_scale_factor = h->dist_scale_factor[ref0];
  1239. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
  1240. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
  1241. if(IS_SUB_8X8(sub_mb_type)){
  1242. const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
  1243. int mx = (dist_scale_factor * mv_col[0] + 128) >> 8;
  1244. int my = (dist_scale_factor * mv_col[1] + 128) >> 8;
  1245. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
  1246. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
  1247. }else
  1248. for(i4=0; i4<4; i4++){
  1249. const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
  1250. int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
  1251. mv_l0[0] = (dist_scale_factor * mv_col[0] + 128) >> 8;
  1252. mv_l0[1] = (dist_scale_factor * mv_col[1] + 128) >> 8;
  1253. *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
  1254. pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
  1255. }
  1256. }
  1257. }
  1258. }
  1259. }
  1260. static inline void write_back_motion(H264Context *h, int mb_type){
  1261. MpegEncContext * const s = &h->s;
  1262. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  1263. const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  1264. int list;
  1265. for(list=0; list<2; list++){
  1266. int y;
  1267. if(!USES_LIST(mb_type, list)){
  1268. if(1){ //FIXME skip or never read if mb_type doesn't use it
  1269. for(y=0; y<4; y++){
  1270. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]=
  1271. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= 0;
  1272. }
  1273. if( h->pps.cabac ) {
  1274. /* FIXME needed ? */
  1275. for(y=0; y<4; y++){
  1276. *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]=
  1277. *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= 0;
  1278. }
  1279. }
  1280. for(y=0; y<2; y++){
  1281. s->current_picture.ref_index[list][b8_xy + 0 + y*h->b8_stride]=
  1282. s->current_picture.ref_index[list][b8_xy + 1 + y*h->b8_stride]= LIST_NOT_USED;
  1283. }
  1284. }
  1285. continue;
  1286. }
  1287. for(y=0; y<4; y++){
  1288. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
  1289. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
  1290. }
  1291. if( h->pps.cabac ) {
  1292. for(y=0; y<4; y++){
  1293. *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
  1294. *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
  1295. }
  1296. }
  1297. for(y=0; y<2; y++){
  1298. s->current_picture.ref_index[list][b8_xy + 0 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+0 + 16*y];
  1299. s->current_picture.ref_index[list][b8_xy + 1 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+2 + 16*y];
  1300. }
  1301. }
  1302. if(h->slice_type == B_TYPE && h->pps.cabac){
  1303. if(IS_8X8(mb_type)){
  1304. h->direct_table[b8_xy+1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
  1305. h->direct_table[b8_xy+0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
  1306. h->direct_table[b8_xy+1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
  1307. }
  1308. }
  1309. }
  1310. /**
  1311. * Decodes a network abstraction layer unit.
  1312. * @param consumed is the number of bytes used as input
  1313. * @param length is the length of the array
  1314. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  1315. * @returns decoded bytes, might be src+1 if no escapes
  1316. */
  1317. static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
  1318. int i, si, di;
  1319. uint8_t *dst;
  1320. // src[0]&0x80; //forbidden bit
  1321. h->nal_ref_idc= src[0]>>5;
  1322. h->nal_unit_type= src[0]&0x1F;
  1323. src++; length--;
  1324. #if 0
  1325. for(i=0; i<length; i++)
  1326. printf("%2X ", src[i]);
  1327. #endif
  1328. for(i=0; i+1<length; i+=2){
  1329. if(src[i]) continue;
  1330. if(i>0 && src[i-1]==0) i--;
  1331. if(i+2<length && src[i+1]==0 && src[i+2]<=3){
  1332. if(src[i+2]!=3){
  1333. /* startcode, so we must be past the end */
  1334. length=i;
  1335. }
  1336. break;
  1337. }
  1338. }
  1339. if(i>=length-1){ //no escaped 0
  1340. *dst_length= length;
  1341. *consumed= length+1; //+1 for the header
  1342. return src;
  1343. }
  1344. h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length);
  1345. dst= h->rbsp_buffer;
  1346. //printf("decoding esc\n");
  1347. si=di=0;
  1348. while(si<length){
  1349. //remove escapes (very rare 1:2^22)
  1350. if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
  1351. if(src[si+2]==3){ //escape
  1352. dst[di++]= 0;
  1353. dst[di++]= 0;
  1354. si+=3;
  1355. continue;
  1356. }else //next start code
  1357. break;
  1358. }
  1359. dst[di++]= src[si++];
  1360. }
  1361. *dst_length= di;
  1362. *consumed= si + 1;//+1 for the header
  1363. //FIXME store exact number of bits in the getbitcontext (its needed for decoding)
  1364. return dst;
  1365. }
  1366. #if 0
  1367. /**
  1368. * @param src the data which should be escaped
  1369. * @param dst the target buffer, dst+1 == src is allowed as a special case
  1370. * @param length the length of the src data
  1371. * @param dst_length the length of the dst array
  1372. * @returns length of escaped data in bytes or -1 if an error occured
  1373. */
  1374. static int encode_nal(H264Context *h, uint8_t *dst, uint8_t *src, int length, int dst_length){
  1375. int i, escape_count, si, di;
  1376. uint8_t *temp;
  1377. assert(length>=0);
  1378. assert(dst_length>0);
  1379. dst[0]= (h->nal_ref_idc<<5) + h->nal_unit_type;
  1380. if(length==0) return 1;
  1381. escape_count= 0;
  1382. for(i=0; i<length; i+=2){
  1383. if(src[i]) continue;
  1384. if(i>0 && src[i-1]==0)
  1385. i--;
  1386. if(i+2<length && src[i+1]==0 && src[i+2]<=3){
  1387. escape_count++;
  1388. i+=2;
  1389. }
  1390. }
  1391. if(escape_count==0){
  1392. if(dst+1 != src)
  1393. memcpy(dst+1, src, length);
  1394. return length + 1;
  1395. }
  1396. if(length + escape_count + 1> dst_length)
  1397. return -1;
  1398. //this should be damn rare (hopefully)
  1399. h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length + escape_count);
  1400. temp= h->rbsp_buffer;
  1401. //printf("encoding esc\n");
  1402. si= 0;
  1403. di= 0;
  1404. while(si < length){
  1405. if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
  1406. temp[di++]= 0; si++;
  1407. temp[di++]= 0; si++;
  1408. temp[di++]= 3;
  1409. temp[di++]= src[si++];
  1410. }
  1411. else
  1412. temp[di++]= src[si++];
  1413. }
  1414. memcpy(dst+1, temp, length+escape_count);
  1415. assert(di == length+escape_count);
  1416. return di + 1;
  1417. }
  1418. /**
  1419. * write 1,10,100,1000,... for alignment, yes its exactly inverse to mpeg4
  1420. */
  1421. static void encode_rbsp_trailing(PutBitContext *pb){
  1422. int length;
  1423. put_bits(pb, 1, 1);
  1424. length= (-put_bits_count(pb))&7;
  1425. if(length) put_bits(pb, length, 0);
  1426. }
  1427. #endif
  1428. /**
  1429. * identifies the exact end of the bitstream
  1430. * @return the length of the trailing, or 0 if damaged
  1431. */
  1432. static int decode_rbsp_trailing(uint8_t *src){
  1433. int v= *src;
  1434. int r;
  1435. tprintf("rbsp trailing %X\n", v);
  1436. for(r=1; r<9; r++){
  1437. if(v&1) return r;
  1438. v>>=1;
  1439. }
  1440. return 0;
  1441. }
  1442. /**
  1443. * idct tranforms the 16 dc values and dequantize them.
  1444. * @param qp quantization parameter
  1445. */
  1446. static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  1447. #define stride 16
  1448. int i;
  1449. int temp[16]; //FIXME check if this is a good idea
  1450. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  1451. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  1452. //memset(block, 64, 2*256);
  1453. //return;
  1454. for(i=0; i<4; i++){
  1455. const int offset= y_offset[i];
  1456. const int z0= block[offset+stride*0] + block[offset+stride*4];
  1457. const int z1= block[offset+stride*0] - block[offset+stride*4];
  1458. const int z2= block[offset+stride*1] - block[offset+stride*5];
  1459. const int z3= block[offset+stride*1] + block[offset+stride*5];
  1460. temp[4*i+0]= z0+z3;
  1461. temp[4*i+1]= z1+z2;
  1462. temp[4*i+2]= z1-z2;
  1463. temp[4*i+3]= z0-z3;
  1464. }
  1465. for(i=0; i<4; i++){
  1466. const int offset= x_offset[i];
  1467. const int z0= temp[4*0+i] + temp[4*2+i];
  1468. const int z1= temp[4*0+i] - temp[4*2+i];
  1469. const int z2= temp[4*1+i] - temp[4*3+i];
  1470. const int z3= temp[4*1+i] + temp[4*3+i];
  1471. block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_resdual
  1472. block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
  1473. block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
  1474. block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
  1475. }
  1476. }
  1477. #if 0
  1478. /**
  1479. * dct tranforms the 16 dc values.
  1480. * @param qp quantization parameter ??? FIXME
  1481. */
  1482. static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
  1483. // const int qmul= dequant_coeff[qp][0];
  1484. int i;
  1485. int temp[16]; //FIXME check if this is a good idea
  1486. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  1487. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  1488. for(i=0; i<4; i++){
  1489. const int offset= y_offset[i];
  1490. const int z0= block[offset+stride*0] + block[offset+stride*4];
  1491. const int z1= block[offset+stride*0] - block[offset+stride*4];
  1492. const int z2= block[offset+stride*1] - block[offset+stride*5];
  1493. const int z3= block[offset+stride*1] + block[offset+stride*5];
  1494. temp[4*i+0]= z0+z3;
  1495. temp[4*i+1]= z1+z2;
  1496. temp[4*i+2]= z1-z2;
  1497. temp[4*i+3]= z0-z3;
  1498. }
  1499. for(i=0; i<4; i++){
  1500. const int offset= x_offset[i];
  1501. const int z0= temp[4*0+i] + temp[4*2+i];
  1502. const int z1= temp[4*0+i] - temp[4*2+i];
  1503. const int z2= temp[4*1+i] - temp[4*3+i];
  1504. const int z3= temp[4*1+i] + temp[4*3+i];
  1505. block[stride*0 +offset]= (z0 + z3)>>1;
  1506. block[stride*2 +offset]= (z1 + z2)>>1;
  1507. block[stride*8 +offset]= (z1 - z2)>>1;
  1508. block[stride*10+offset]= (z0 - z3)>>1;
  1509. }
  1510. }
  1511. #endif
  1512. #undef xStride
  1513. #undef stride
  1514. static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  1515. const int stride= 16*2;
  1516. const int xStride= 16;
  1517. int a,b,c,d,e;
  1518. a= block[stride*0 + xStride*0];
  1519. b= block[stride*0 + xStride*1];
  1520. c= block[stride*1 + xStride*0];
  1521. d= block[stride*1 + xStride*1];
  1522. e= a-b;
  1523. a= a+b;
  1524. b= c-d;
  1525. c= c+d;
  1526. block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
  1527. block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
  1528. block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
  1529. block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
  1530. }
  1531. #if 0
  1532. static void chroma_dc_dct_c(DCTELEM *block){
  1533. const int stride= 16*2;
  1534. const int xStride= 16;
  1535. int a,b,c,d,e;
  1536. a= block[stride*0 + xStride*0];
  1537. b= block[stride*0 + xStride*1];
  1538. c= block[stride*1 + xStride*0];
  1539. d= block[stride*1 + xStride*1];
  1540. e= a-b;
  1541. a= a+b;
  1542. b= c-d;
  1543. c= c+d;
  1544. block[stride*0 + xStride*0]= (a+c);
  1545. block[stride*0 + xStride*1]= (e+b);
  1546. block[stride*1 + xStride*0]= (a-c);
  1547. block[stride*1 + xStride*1]= (e-b);
  1548. }
  1549. #endif
  1550. /**
  1551. * gets the chroma qp.
  1552. */
  1553. static inline int get_chroma_qp(int chroma_qp_index_offset, int qscale){
  1554. return chroma_qp[clip(qscale + chroma_qp_index_offset, 0, 51)];
  1555. }
  1556. #if 0
  1557. static void h264_diff_dct_c(DCTELEM *block, uint8_t *src1, uint8_t *src2, int stride){
  1558. int i;
  1559. //FIXME try int temp instead of block
  1560. for(i=0; i<4; i++){
  1561. const int d0= src1[0 + i*stride] - src2[0 + i*stride];
  1562. const int d1= src1[1 + i*stride] - src2[1 + i*stride];
  1563. const int d2= src1[2 + i*stride] - src2[2 + i*stride];
  1564. const int d3= src1[3 + i*stride] - src2[3 + i*stride];
  1565. const int z0= d0 + d3;
  1566. const int z3= d0 - d3;
  1567. const int z1= d1 + d2;
  1568. const int z2= d1 - d2;
  1569. block[0 + 4*i]= z0 + z1;
  1570. block[1 + 4*i]= 2*z3 + z2;
  1571. block[2 + 4*i]= z0 - z1;
  1572. block[3 + 4*i]= z3 - 2*z2;
  1573. }
  1574. for(i=0; i<4; i++){
  1575. const int z0= block[0*4 + i] + block[3*4 + i];
  1576. const int z3= block[0*4 + i] - block[3*4 + i];
  1577. const int z1= block[1*4 + i] + block[2*4 + i];
  1578. const int z2= block[1*4 + i] - block[2*4 + i];
  1579. block[0*4 + i]= z0 + z1;
  1580. block[1*4 + i]= 2*z3 + z2;
  1581. block[2*4 + i]= z0 - z1;
  1582. block[3*4 + i]= z3 - 2*z2;
  1583. }
  1584. }
  1585. #endif
  1586. //FIXME need to check that this doesnt overflow signed 32 bit for low qp, i am not sure, it's very close
  1587. //FIXME check that gcc inlines this (and optimizes intra & seperate_dc stuff away)
  1588. static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int seperate_dc){
  1589. int i;
  1590. const int * const quant_table= quant_coeff[qscale];
  1591. const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
  1592. const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
  1593. const unsigned int threshold2= (threshold1<<1);
  1594. int last_non_zero;
  1595. if(seperate_dc){
  1596. if(qscale<=18){
  1597. //avoid overflows
  1598. const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
  1599. const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
  1600. const unsigned int dc_threshold2= (dc_threshold1<<1);
  1601. int level= block[0]*quant_coeff[qscale+18][0];
  1602. if(((unsigned)(level+dc_threshold1))>dc_threshold2){
  1603. if(level>0){
  1604. level= (dc_bias + level)>>(QUANT_SHIFT-2);
  1605. block[0]= level;
  1606. }else{
  1607. level= (dc_bias - level)>>(QUANT_SHIFT-2);
  1608. block[0]= -level;
  1609. }
  1610. // last_non_zero = i;
  1611. }else{
  1612. block[0]=0;
  1613. }
  1614. }else{
  1615. const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
  1616. const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
  1617. const unsigned int dc_threshold2= (dc_threshold1<<1);
  1618. int level= block[0]*quant_table[0];
  1619. if(((unsigned)(level+dc_threshold1))>dc_threshold2){
  1620. if(level>0){
  1621. level= (dc_bias + level)>>(QUANT_SHIFT+1);
  1622. block[0]= level;
  1623. }else{
  1624. level= (dc_bias - level)>>(QUANT_SHIFT+1);
  1625. block[0]= -level;
  1626. }
  1627. // last_non_zero = i;
  1628. }else{
  1629. block[0]=0;
  1630. }
  1631. }
  1632. last_non_zero= 0;
  1633. i=1;
  1634. }else{
  1635. last_non_zero= -1;
  1636. i=0;
  1637. }
  1638. for(; i<16; i++){
  1639. const int j= scantable[i];
  1640. int level= block[j]*quant_table[j];
  1641. // if( bias+level >= (1<<(QMAT_SHIFT - 3))
  1642. // || bias-level >= (1<<(QMAT_SHIFT - 3))){
  1643. if(((unsigned)(level+threshold1))>threshold2){
  1644. if(level>0){
  1645. level= (bias + level)>>QUANT_SHIFT;
  1646. block[j]= level;
  1647. }else{
  1648. level= (bias - level)>>QUANT_SHIFT;
  1649. block[j]= -level;
  1650. }
  1651. last_non_zero = i;
  1652. }else{
  1653. block[j]=0;
  1654. }
  1655. }
  1656. return last_non_zero;
  1657. }
  1658. static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){
  1659. const uint32_t a= ((uint32_t*)(src-stride))[0];
  1660. ((uint32_t*)(src+0*stride))[0]= a;
  1661. ((uint32_t*)(src+1*stride))[0]= a;
  1662. ((uint32_t*)(src+2*stride))[0]= a;
  1663. ((uint32_t*)(src+3*stride))[0]= a;
  1664. }
  1665. static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){
  1666. ((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101;
  1667. ((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101;
  1668. ((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101;
  1669. ((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101;
  1670. }
  1671. static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){
  1672. const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride]
  1673. + src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3;
  1674. ((uint32_t*)(src+0*stride))[0]=
  1675. ((uint32_t*)(src+1*stride))[0]=
  1676. ((uint32_t*)(src+2*stride))[0]=
  1677. ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
  1678. }
  1679. static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){
  1680. const int dc= ( src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2;
  1681. ((uint32_t*)(src+0*stride))[0]=
  1682. ((uint32_t*)(src+1*stride))[0]=
  1683. ((uint32_t*)(src+2*stride))[0]=
  1684. ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
  1685. }
  1686. static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){
  1687. const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2;
  1688. ((uint32_t*)(src+0*stride))[0]=
  1689. ((uint32_t*)(src+1*stride))[0]=
  1690. ((uint32_t*)(src+2*stride))[0]=
  1691. ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
  1692. }
  1693. static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){
  1694. ((uint32_t*)(src+0*stride))[0]=
  1695. ((uint32_t*)(src+1*stride))[0]=
  1696. ((uint32_t*)(src+2*stride))[0]=
  1697. ((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U;
  1698. }
  1699. #define LOAD_TOP_RIGHT_EDGE\
  1700. const int t4= topright[0];\
  1701. const int t5= topright[1];\
  1702. const int t6= topright[2];\
  1703. const int t7= topright[3];\
  1704. #define LOAD_LEFT_EDGE\
  1705. const int l0= src[-1+0*stride];\
  1706. const int l1= src[-1+1*stride];\
  1707. const int l2= src[-1+2*stride];\
  1708. const int l3= src[-1+3*stride];\
  1709. #define LOAD_TOP_EDGE\
  1710. const int t0= src[ 0-1*stride];\
  1711. const int t1= src[ 1-1*stride];\
  1712. const int t2= src[ 2-1*stride];\
  1713. const int t3= src[ 3-1*stride];\
  1714. static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){
  1715. const int lt= src[-1-1*stride];
  1716. LOAD_TOP_EDGE
  1717. LOAD_LEFT_EDGE
  1718. src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2;
  1719. src[0+2*stride]=
  1720. src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2;
  1721. src[0+1*stride]=
  1722. src[1+2*stride]=
  1723. src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2;
  1724. src[0+0*stride]=
  1725. src[1+1*stride]=
  1726. src[2+2*stride]=
  1727. src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
  1728. src[1+0*stride]=
  1729. src[2+1*stride]=
  1730. src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2;
  1731. src[2+0*stride]=
  1732. src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
  1733. src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2;
  1734. }
  1735. static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){
  1736. LOAD_TOP_EDGE
  1737. LOAD_TOP_RIGHT_EDGE
  1738. // LOAD_LEFT_EDGE
  1739. src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2;
  1740. src[1+0*stride]=
  1741. src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2;
  1742. src[2+0*stride]=
  1743. src[1+1*stride]=
  1744. src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2;
  1745. src[3+0*stride]=
  1746. src[2+1*stride]=
  1747. src[1+2*stride]=
  1748. src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2;
  1749. src[3+1*stride]=
  1750. src[2+2*stride]=
  1751. src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2;
  1752. src[3+2*stride]=
  1753. src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2;
  1754. src[3+3*stride]=(t6 + 3*t7 + 2)>>2;
  1755. }
  1756. static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){
  1757. const int lt= src[-1-1*stride];
  1758. LOAD_TOP_EDGE
  1759. LOAD_LEFT_EDGE
  1760. const __attribute__((unused)) int unu= l3;
  1761. src[0+0*stride]=
  1762. src[1+2*stride]=(lt + t0 + 1)>>1;
  1763. src[1+0*stride]=
  1764. src[2+2*stride]=(t0 + t1 + 1)>>1;
  1765. src[2+0*stride]=
  1766. src[3+2*stride]=(t1 + t2 + 1)>>1;
  1767. src[3+0*stride]=(t2 + t3 + 1)>>1;
  1768. src[0+1*stride]=
  1769. src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
  1770. src[1+1*stride]=
  1771. src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2;
  1772. src[2+1*stride]=
  1773. src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2;
  1774. src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2;
  1775. src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
  1776. src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
  1777. }
  1778. static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){
  1779. LOAD_TOP_EDGE
  1780. LOAD_TOP_RIGHT_EDGE
  1781. const __attribute__((unused)) int unu= t7;
  1782. src[0+0*stride]=(t0 + t1 + 1)>>1;
  1783. src[1+0*stride]=
  1784. src[0+2*stride]=(t1 + t2 + 1)>>1;
  1785. src[2+0*stride]=
  1786. src[1+2*stride]=(t2 + t3 + 1)>>1;
  1787. src[3+0*stride]=
  1788. src[2+2*stride]=(t3 + t4+ 1)>>1;
  1789. src[3+2*stride]=(t4 + t5+ 1)>>1;
  1790. src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
  1791. src[1+1*stride]=
  1792. src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2;
  1793. src[2+1*stride]=
  1794. src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2;
  1795. src[3+1*stride]=
  1796. src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2;
  1797. src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2;
  1798. }
  1799. static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){
  1800. LOAD_LEFT_EDGE
  1801. src[0+0*stride]=(l0 + l1 + 1)>>1;
  1802. src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2;
  1803. src[2+0*stride]=
  1804. src[0+1*stride]=(l1 + l2 + 1)>>1;
  1805. src[3+0*stride]=
  1806. src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2;
  1807. src[2+1*stride]=
  1808. src[0+2*stride]=(l2 + l3 + 1)>>1;
  1809. src[3+1*stride]=
  1810. src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2;
  1811. src[3+2*stride]=
  1812. src[1+3*stride]=
  1813. src[0+3*stride]=
  1814. src[2+2*stride]=
  1815. src[2+3*stride]=
  1816. src[3+3*stride]=l3;
  1817. }
  1818. static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){
  1819. const int lt= src[-1-1*stride];
  1820. LOAD_TOP_EDGE
  1821. LOAD_LEFT_EDGE
  1822. const __attribute__((unused)) int unu= t3;
  1823. src[0+0*stride]=
  1824. src[2+1*stride]=(lt + l0 + 1)>>1;
  1825. src[1+0*stride]=
  1826. src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2;
  1827. src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2;
  1828. src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2;
  1829. src[0+1*stride]=
  1830. src[2+2*stride]=(l0 + l1 + 1)>>1;
  1831. src[1+1*stride]=
  1832. src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
  1833. src[0+2*stride]=
  1834. src[2+3*stride]=(l1 + l2+ 1)>>1;
  1835. src[1+2*stride]=
  1836. src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
  1837. src[0+3*stride]=(l2 + l3 + 1)>>1;
  1838. src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2;
  1839. }
  1840. static void pred16x16_vertical_c(uint8_t *src, int stride){
  1841. int i;
  1842. const uint32_t a= ((uint32_t*)(src-stride))[0];
  1843. const uint32_t b= ((uint32_t*)(src-stride))[1];
  1844. const uint32_t c= ((uint32_t*)(src-stride))[2];
  1845. const uint32_t d= ((uint32_t*)(src-stride))[3];
  1846. for(i=0; i<16; i++){
  1847. ((uint32_t*)(src+i*stride))[0]= a;
  1848. ((uint32_t*)(src+i*stride))[1]= b;
  1849. ((uint32_t*)(src+i*stride))[2]= c;
  1850. ((uint32_t*)(src+i*stride))[3]= d;
  1851. }
  1852. }
  1853. static void pred16x16_horizontal_c(uint8_t *src, int stride){
  1854. int i;
  1855. for(i=0; i<16; i++){
  1856. ((uint32_t*)(src+i*stride))[0]=
  1857. ((uint32_t*)(src+i*stride))[1]=
  1858. ((uint32_t*)(src+i*stride))[2]=
  1859. ((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101;
  1860. }
  1861. }
  1862. static void pred16x16_dc_c(uint8_t *src, int stride){
  1863. int i, dc=0;
  1864. for(i=0;i<16; i++){
  1865. dc+= src[-1+i*stride];
  1866. }
  1867. for(i=0;i<16; i++){
  1868. dc+= src[i-stride];
  1869. }
  1870. dc= 0x01010101*((dc + 16)>>5);
  1871. for(i=0; i<16; i++){
  1872. ((uint32_t*)(src+i*stride))[0]=
  1873. ((uint32_t*)(src+i*stride))[1]=
  1874. ((uint32_t*)(src+i*stride))[2]=
  1875. ((uint32_t*)(src+i*stride))[3]= dc;
  1876. }
  1877. }
  1878. static void pred16x16_left_dc_c(uint8_t *src, int stride){
  1879. int i, dc=0;
  1880. for(i=0;i<16; i++){
  1881. dc+= src[-1+i*stride];
  1882. }
  1883. dc= 0x01010101*((dc + 8)>>4);
  1884. for(i=0; i<16; i++){
  1885. ((uint32_t*)(src+i*stride))[0]=
  1886. ((uint32_t*)(src+i*stride))[1]=
  1887. ((uint32_t*)(src+i*stride))[2]=
  1888. ((uint32_t*)(src+i*stride))[3]= dc;
  1889. }
  1890. }
  1891. static void pred16x16_top_dc_c(uint8_t *src, int stride){
  1892. int i, dc=0;
  1893. for(i=0;i<16; i++){
  1894. dc+= src[i-stride];
  1895. }
  1896. dc= 0x01010101*((dc + 8)>>4);
  1897. for(i=0; i<16; i++){
  1898. ((uint32_t*)(src+i*stride))[0]=
  1899. ((uint32_t*)(src+i*stride))[1]=
  1900. ((uint32_t*)(src+i*stride))[2]=
  1901. ((uint32_t*)(src+i*stride))[3]= dc;
  1902. }
  1903. }
  1904. static void pred16x16_128_dc_c(uint8_t *src, int stride){
  1905. int i;
  1906. for(i=0; i<16; i++){
  1907. ((uint32_t*)(src+i*stride))[0]=
  1908. ((uint32_t*)(src+i*stride))[1]=
  1909. ((uint32_t*)(src+i*stride))[2]=
  1910. ((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U;
  1911. }
  1912. }
  1913. static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){
  1914. int i, j, k;
  1915. int a;
  1916. uint8_t *cm = cropTbl + MAX_NEG_CROP;
  1917. const uint8_t * const src0 = src+7-stride;
  1918. const uint8_t *src1 = src+8*stride-1;
  1919. const uint8_t *src2 = src1-2*stride; // == src+6*stride-1;
  1920. int H = src0[1] - src0[-1];
  1921. int V = src1[0] - src2[ 0];
  1922. for(k=2; k<=8; ++k) {
  1923. src1 += stride; src2 -= stride;
  1924. H += k*(src0[k] - src0[-k]);
  1925. V += k*(src1[0] - src2[ 0]);
  1926. }
  1927. if(svq3){
  1928. H = ( 5*(H/4) ) / 16;
  1929. V = ( 5*(V/4) ) / 16;
  1930. /* required for 100% accuracy */
  1931. i = H; H = V; V = i;
  1932. }else{
  1933. H = ( 5*H+32 ) >> 6;
  1934. V = ( 5*V+32 ) >> 6;
  1935. }
  1936. a = 16*(src1[0] + src2[16] + 1) - 7*(V+H);
  1937. for(j=16; j>0; --j) {
  1938. int b = a;
  1939. a += V;
  1940. for(i=-16; i<0; i+=4) {
  1941. src[16+i] = cm[ (b ) >> 5 ];
  1942. src[17+i] = cm[ (b+ H) >> 5 ];
  1943. src[18+i] = cm[ (b+2*H) >> 5 ];
  1944. src[19+i] = cm[ (b+3*H) >> 5 ];
  1945. b += 4*H;
  1946. }
  1947. src += stride;
  1948. }
  1949. }
  1950. static void pred16x16_plane_c(uint8_t *src, int stride){
  1951. pred16x16_plane_compat_c(src, stride, 0);
  1952. }
  1953. static void pred8x8_vertical_c(uint8_t *src, int stride){
  1954. int i;
  1955. const uint32_t a= ((uint32_t*)(src-stride))[0];
  1956. const uint32_t b= ((uint32_t*)(src-stride))[1];
  1957. for(i=0; i<8; i++){
  1958. ((uint32_t*)(src+i*stride))[0]= a;
  1959. ((uint32_t*)(src+i*stride))[1]= b;
  1960. }
  1961. }
  1962. static void pred8x8_horizontal_c(uint8_t *src, int stride){
  1963. int i;
  1964. for(i=0; i<8; i++){
  1965. ((uint32_t*)(src+i*stride))[0]=
  1966. ((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101;
  1967. }
  1968. }
  1969. static void pred8x8_128_dc_c(uint8_t *src, int stride){
  1970. int i;
  1971. for(i=0; i<8; i++){
  1972. ((uint32_t*)(src+i*stride))[0]=
  1973. ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
  1974. }
  1975. }
  1976. static void pred8x8_left_dc_c(uint8_t *src, int stride){
  1977. int i;
  1978. int dc0, dc2;
  1979. dc0=dc2=0;
  1980. for(i=0;i<4; i++){
  1981. dc0+= src[-1+i*stride];
  1982. dc2+= src[-1+(i+4)*stride];
  1983. }
  1984. dc0= 0x01010101*((dc0 + 2)>>2);
  1985. dc2= 0x01010101*((dc2 + 2)>>2);
  1986. for(i=0; i<4; i++){
  1987. ((uint32_t*)(src+i*stride))[0]=
  1988. ((uint32_t*)(src+i*stride))[1]= dc0;
  1989. }
  1990. for(i=4; i<8; i++){
  1991. ((uint32_t*)(src+i*stride))[0]=
  1992. ((uint32_t*)(src+i*stride))[1]= dc2;
  1993. }
  1994. }
  1995. static void pred8x8_top_dc_c(uint8_t *src, int stride){
  1996. int i;
  1997. int dc0, dc1;
  1998. dc0=dc1=0;
  1999. for(i=0;i<4; i++){
  2000. dc0+= src[i-stride];
  2001. dc1+= src[4+i-stride];
  2002. }
  2003. dc0= 0x01010101*((dc0 + 2)>>2);
  2004. dc1= 0x01010101*((dc1 + 2)>>2);
  2005. for(i=0; i<4; i++){
  2006. ((uint32_t*)(src+i*stride))[0]= dc0;
  2007. ((uint32_t*)(src+i*stride))[1]= dc1;
  2008. }
  2009. for(i=4; i<8; i++){
  2010. ((uint32_t*)(src+i*stride))[0]= dc0;
  2011. ((uint32_t*)(src+i*stride))[1]= dc1;
  2012. }
  2013. }
  2014. static void pred8x8_dc_c(uint8_t *src, int stride){
  2015. int i;
  2016. int dc0, dc1, dc2, dc3;
  2017. dc0=dc1=dc2=0;
  2018. for(i=0;i<4; i++){
  2019. dc0+= src[-1+i*stride] + src[i-stride];
  2020. dc1+= src[4+i-stride];
  2021. dc2+= src[-1+(i+4)*stride];
  2022. }
  2023. dc3= 0x01010101*((dc1 + dc2 + 4)>>3);
  2024. dc0= 0x01010101*((dc0 + 4)>>3);
  2025. dc1= 0x01010101*((dc1 + 2)>>2);
  2026. dc2= 0x01010101*((dc2 + 2)>>2);
  2027. for(i=0; i<4; i++){
  2028. ((uint32_t*)(src+i*stride))[0]= dc0;
  2029. ((uint32_t*)(src+i*stride))[1]= dc1;
  2030. }
  2031. for(i=4; i<8; i++){
  2032. ((uint32_t*)(src+i*stride))[0]= dc2;
  2033. ((uint32_t*)(src+i*stride))[1]= dc3;
  2034. }
  2035. }
  2036. static void pred8x8_plane_c(uint8_t *src, int stride){
  2037. int j, k;
  2038. int a;
  2039. uint8_t *cm = cropTbl + MAX_NEG_CROP;
  2040. const uint8_t * const src0 = src+3-stride;
  2041. const uint8_t *src1 = src+4*stride-1;
  2042. const uint8_t *src2 = src1-2*stride; // == src+2*stride-1;
  2043. int H = src0[1] - src0[-1];
  2044. int V = src1[0] - src2[ 0];
  2045. for(k=2; k<=4; ++k) {
  2046. src1 += stride; src2 -= stride;
  2047. H += k*(src0[k] - src0[-k]);
  2048. V += k*(src1[0] - src2[ 0]);
  2049. }
  2050. H = ( 17*H+16 ) >> 5;
  2051. V = ( 17*V+16 ) >> 5;
  2052. a = 16*(src1[0] + src2[8]+1) - 3*(V+H);
  2053. for(j=8; j>0; --j) {
  2054. int b = a;
  2055. a += V;
  2056. src[0] = cm[ (b ) >> 5 ];
  2057. src[1] = cm[ (b+ H) >> 5 ];
  2058. src[2] = cm[ (b+2*H) >> 5 ];
  2059. src[3] = cm[ (b+3*H) >> 5 ];
  2060. src[4] = cm[ (b+4*H) >> 5 ];
  2061. src[5] = cm[ (b+5*H) >> 5 ];
  2062. src[6] = cm[ (b+6*H) >> 5 ];
  2063. src[7] = cm[ (b+7*H) >> 5 ];
  2064. src += stride;
  2065. }
  2066. }
  2067. #define SRC(x,y) src[(x)+(y)*stride]
  2068. #define PL(y) \
  2069. const int l##y = (SRC(-1,y-1) + 2*SRC(-1,y) + SRC(-1,y+1) + 2) >> 2;
  2070. #define PREDICT_8x8_LOAD_LEFT \
  2071. const int l0 = ((has_topleft ? SRC(-1,-1) : SRC(-1,0)) \
  2072. + 2*SRC(-1,0) + SRC(-1,1) + 2) >> 2; \
  2073. PL(1) PL(2) PL(3) PL(4) PL(5) PL(6) \
  2074. const int l7 attribute_unused = (SRC(-1,6) + 3*SRC(-1,7) + 2) >> 2
  2075. #define PT(x) \
  2076. const int t##x = (SRC(x-1,-1) + 2*SRC(x,-1) + SRC(x+1,-1) + 2) >> 2;
  2077. #define PREDICT_8x8_LOAD_TOP \
  2078. const int t0 = ((has_topleft ? SRC(-1,-1) : SRC(0,-1)) \
  2079. + 2*SRC(0,-1) + SRC(1,-1) + 2) >> 2; \
  2080. PT(1) PT(2) PT(3) PT(4) PT(5) PT(6) \
  2081. const int t7 attribute_unused = ((has_topright ? SRC(8,-1) : SRC(7,-1)) \
  2082. + 2*SRC(7,-1) + SRC(6,-1) + 2) >> 2
  2083. #define PTR(x) \
  2084. t##x = (SRC(x-1,-1) + 2*SRC(x,-1) + SRC(x+1,-1) + 2) >> 2;
  2085. #define PREDICT_8x8_LOAD_TOPRIGHT \
  2086. int t8, t9, t10, t11, t12, t13, t14, t15; \
  2087. if(has_topright) { \
  2088. PTR(8) PTR(9) PTR(10) PTR(11) PTR(12) PTR(13) PTR(14) \
  2089. t15 = (SRC(14,-1) + 3*SRC(15,-1) + 2) >> 2; \
  2090. } else t8=t9=t10=t11=t12=t13=t14=t15= SRC(7,-1);
  2091. #define PREDICT_8x8_LOAD_TOPLEFT \
  2092. const int lt = (SRC(-1,0) + 2*SRC(-1,-1) + SRC(0,-1) + 2) >> 2
  2093. #define PREDICT_8x8_DC(v) \
  2094. int y; \
  2095. for( y = 0; y < 8; y++ ) { \
  2096. ((uint32_t*)src)[0] = \
  2097. ((uint32_t*)src)[1] = v; \
  2098. src += stride; \
  2099. }
  2100. static void pred8x8l_128_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2101. {
  2102. PREDICT_8x8_DC(0x80808080);
  2103. }
  2104. static void pred8x8l_left_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2105. {
  2106. PREDICT_8x8_LOAD_LEFT;
  2107. const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7+4) >> 3) * 0x01010101;
  2108. PREDICT_8x8_DC(dc);
  2109. }
  2110. static void pred8x8l_top_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2111. {
  2112. PREDICT_8x8_LOAD_TOP;
  2113. const uint32_t dc = ((t0+t1+t2+t3+t4+t5+t6+t7+4) >> 3) * 0x01010101;
  2114. PREDICT_8x8_DC(dc);
  2115. }
  2116. static void pred8x8l_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2117. {
  2118. PREDICT_8x8_LOAD_LEFT;
  2119. PREDICT_8x8_LOAD_TOP;
  2120. const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7
  2121. +t0+t1+t2+t3+t4+t5+t6+t7+8) >> 4) * 0x01010101;
  2122. PREDICT_8x8_DC(dc);
  2123. }
  2124. static void pred8x8l_horizontal_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2125. {
  2126. PREDICT_8x8_LOAD_LEFT;
  2127. #define ROW(y) ((uint32_t*)(src+y*stride))[0] =\
  2128. ((uint32_t*)(src+y*stride))[1] = 0x01010101 * l##y
  2129. ROW(0); ROW(1); ROW(2); ROW(3); ROW(4); ROW(5); ROW(6); ROW(7);
  2130. #undef ROW
  2131. }
  2132. static void pred8x8l_vertical_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2133. {
  2134. int y;
  2135. PREDICT_8x8_LOAD_TOP;
  2136. src[0] = t0;
  2137. src[1] = t1;
  2138. src[2] = t2;
  2139. src[3] = t3;
  2140. src[4] = t4;
  2141. src[5] = t5;
  2142. src[6] = t6;
  2143. src[7] = t7;
  2144. for( y = 1; y < 8; y++ )
  2145. *(uint64_t*)(src+y*stride) = *(uint64_t*)src;
  2146. }
  2147. static void pred8x8l_down_left_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2148. {
  2149. PREDICT_8x8_LOAD_TOP;
  2150. PREDICT_8x8_LOAD_TOPRIGHT;
  2151. SRC(0,0)= (t0 + 2*t1 + t2 + 2) >> 2;
  2152. SRC(0,1)=SRC(1,0)= (t1 + 2*t2 + t3 + 2) >> 2;
  2153. SRC(0,2)=SRC(1,1)=SRC(2,0)= (t2 + 2*t3 + t4 + 2) >> 2;
  2154. SRC(0,3)=SRC(1,2)=SRC(2,1)=SRC(3,0)= (t3 + 2*t4 + t5 + 2) >> 2;
  2155. SRC(0,4)=SRC(1,3)=SRC(2,2)=SRC(3,1)=SRC(4,0)= (t4 + 2*t5 + t6 + 2) >> 2;
  2156. SRC(0,5)=SRC(1,4)=SRC(2,3)=SRC(3,2)=SRC(4,1)=SRC(5,0)= (t5 + 2*t6 + t7 + 2) >> 2;
  2157. SRC(0,6)=SRC(1,5)=SRC(2,4)=SRC(3,3)=SRC(4,2)=SRC(5,1)=SRC(6,0)= (t6 + 2*t7 + t8 + 2) >> 2;
  2158. SRC(0,7)=SRC(1,6)=SRC(2,5)=SRC(3,4)=SRC(4,3)=SRC(5,2)=SRC(6,1)=SRC(7,0)= (t7 + 2*t8 + t9 + 2) >> 2;
  2159. SRC(1,7)=SRC(2,6)=SRC(3,5)=SRC(4,4)=SRC(5,3)=SRC(6,2)=SRC(7,1)= (t8 + 2*t9 + t10 + 2) >> 2;
  2160. SRC(2,7)=SRC(3,6)=SRC(4,5)=SRC(5,4)=SRC(6,3)=SRC(7,2)= (t9 + 2*t10 + t11 + 2) >> 2;
  2161. SRC(3,7)=SRC(4,6)=SRC(5,5)=SRC(6,4)=SRC(7,3)= (t10 + 2*t11 + t12 + 2) >> 2;
  2162. SRC(4,7)=SRC(5,6)=SRC(6,5)=SRC(7,4)= (t11 + 2*t12 + t13 + 2) >> 2;
  2163. SRC(5,7)=SRC(6,6)=SRC(7,5)= (t12 + 2*t13 + t14 + 2) >> 2;
  2164. SRC(6,7)=SRC(7,6)= (t13 + 2*t14 + t15 + 2) >> 2;
  2165. SRC(7,7)= (t14 + 3*t15 + 2) >> 2;
  2166. }
  2167. static void pred8x8l_down_right_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2168. {
  2169. PREDICT_8x8_LOAD_TOP;
  2170. PREDICT_8x8_LOAD_LEFT;
  2171. PREDICT_8x8_LOAD_TOPLEFT;
  2172. SRC(0,7)= (l7 + 2*l6 + l5 + 2) >> 2;
  2173. SRC(0,6)=SRC(1,7)= (l6 + 2*l5 + l4 + 2) >> 2;
  2174. SRC(0,5)=SRC(1,6)=SRC(2,7)= (l5 + 2*l4 + l3 + 2) >> 2;
  2175. SRC(0,4)=SRC(1,5)=SRC(2,6)=SRC(3,7)= (l4 + 2*l3 + l2 + 2) >> 2;
  2176. SRC(0,3)=SRC(1,4)=SRC(2,5)=SRC(3,6)=SRC(4,7)= (l3 + 2*l2 + l1 + 2) >> 2;
  2177. SRC(0,2)=SRC(1,3)=SRC(2,4)=SRC(3,5)=SRC(4,6)=SRC(5,7)= (l2 + 2*l1 + l0 + 2) >> 2;
  2178. SRC(0,1)=SRC(1,2)=SRC(2,3)=SRC(3,4)=SRC(4,5)=SRC(5,6)=SRC(6,7)= (l1 + 2*l0 + lt + 2) >> 2;
  2179. SRC(0,0)=SRC(1,1)=SRC(2,2)=SRC(3,3)=SRC(4,4)=SRC(5,5)=SRC(6,6)=SRC(7,7)= (l0 + 2*lt + t0 + 2) >> 2;
  2180. SRC(1,0)=SRC(2,1)=SRC(3,2)=SRC(4,3)=SRC(5,4)=SRC(6,5)=SRC(7,6)= (lt + 2*t0 + t1 + 2) >> 2;
  2181. SRC(2,0)=SRC(3,1)=SRC(4,2)=SRC(5,3)=SRC(6,4)=SRC(7,5)= (t0 + 2*t1 + t2 + 2) >> 2;
  2182. SRC(3,0)=SRC(4,1)=SRC(5,2)=SRC(6,3)=SRC(7,4)= (t1 + 2*t2 + t3 + 2) >> 2;
  2183. SRC(4,0)=SRC(5,1)=SRC(6,2)=SRC(7,3)= (t2 + 2*t3 + t4 + 2) >> 2;
  2184. SRC(5,0)=SRC(6,1)=SRC(7,2)= (t3 + 2*t4 + t5 + 2) >> 2;
  2185. SRC(6,0)=SRC(7,1)= (t4 + 2*t5 + t6 + 2) >> 2;
  2186. SRC(7,0)= (t5 + 2*t6 + t7 + 2) >> 2;
  2187. }
  2188. static void pred8x8l_vertical_right_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2189. {
  2190. PREDICT_8x8_LOAD_TOP;
  2191. PREDICT_8x8_LOAD_LEFT;
  2192. PREDICT_8x8_LOAD_TOPLEFT;
  2193. SRC(0,6)= (l5 + 2*l4 + l3 + 2) >> 2;
  2194. SRC(0,7)= (l6 + 2*l5 + l4 + 2) >> 2;
  2195. SRC(0,4)=SRC(1,6)= (l3 + 2*l2 + l1 + 2) >> 2;
  2196. SRC(0,5)=SRC(1,7)= (l4 + 2*l3 + l2 + 2) >> 2;
  2197. SRC(0,2)=SRC(1,4)=SRC(2,6)= (l1 + 2*l0 + lt + 2) >> 2;
  2198. SRC(0,3)=SRC(1,5)=SRC(2,7)= (l2 + 2*l1 + l0 + 2) >> 2;
  2199. SRC(0,1)=SRC(1,3)=SRC(2,5)=SRC(3,7)= (l0 + 2*lt + t0 + 2) >> 2;
  2200. SRC(0,0)=SRC(1,2)=SRC(2,4)=SRC(3,6)= (lt + t0 + 1) >> 1;
  2201. SRC(1,1)=SRC(2,3)=SRC(3,5)=SRC(4,7)= (lt + 2*t0 + t1 + 2) >> 2;
  2202. SRC(1,0)=SRC(2,2)=SRC(3,4)=SRC(4,6)= (t0 + t1 + 1) >> 1;
  2203. SRC(2,1)=SRC(3,3)=SRC(4,5)=SRC(5,7)= (t0 + 2*t1 + t2 + 2) >> 2;
  2204. SRC(2,0)=SRC(3,2)=SRC(4,4)=SRC(5,6)= (t1 + t2 + 1) >> 1;
  2205. SRC(3,1)=SRC(4,3)=SRC(5,5)=SRC(6,7)= (t1 + 2*t2 + t3 + 2) >> 2;
  2206. SRC(3,0)=SRC(4,2)=SRC(5,4)=SRC(6,6)= (t2 + t3 + 1) >> 1;
  2207. SRC(4,1)=SRC(5,3)=SRC(6,5)=SRC(7,7)= (t2 + 2*t3 + t4 + 2) >> 2;
  2208. SRC(4,0)=SRC(5,2)=SRC(6,4)=SRC(7,6)= (t3 + t4 + 1) >> 1;
  2209. SRC(5,1)=SRC(6,3)=SRC(7,5)= (t3 + 2*t4 + t5 + 2) >> 2;
  2210. SRC(5,0)=SRC(6,2)=SRC(7,4)= (t4 + t5 + 1) >> 1;
  2211. SRC(6,1)=SRC(7,3)= (t4 + 2*t5 + t6 + 2) >> 2;
  2212. SRC(6,0)=SRC(7,2)= (t5 + t6 + 1) >> 1;
  2213. SRC(7,1)= (t5 + 2*t6 + t7 + 2) >> 2;
  2214. SRC(7,0)= (t6 + t7 + 1) >> 1;
  2215. }
  2216. static void pred8x8l_horizontal_down_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2217. {
  2218. PREDICT_8x8_LOAD_TOP;
  2219. PREDICT_8x8_LOAD_LEFT;
  2220. PREDICT_8x8_LOAD_TOPLEFT;
  2221. SRC(0,7)= (l6 + l7 + 1) >> 1;
  2222. SRC(1,7)= (l5 + 2*l6 + l7 + 2) >> 2;
  2223. SRC(0,6)=SRC(2,7)= (l5 + l6 + 1) >> 1;
  2224. SRC(1,6)=SRC(3,7)= (l4 + 2*l5 + l6 + 2) >> 2;
  2225. SRC(0,5)=SRC(2,6)=SRC(4,7)= (l4 + l5 + 1) >> 1;
  2226. SRC(1,5)=SRC(3,6)=SRC(5,7)= (l3 + 2*l4 + l5 + 2) >> 2;
  2227. SRC(0,4)=SRC(2,5)=SRC(4,6)=SRC(6,7)= (l3 + l4 + 1) >> 1;
  2228. SRC(1,4)=SRC(3,5)=SRC(5,6)=SRC(7,7)= (l2 + 2*l3 + l4 + 2) >> 2;
  2229. SRC(0,3)=SRC(2,4)=SRC(4,5)=SRC(6,6)= (l2 + l3 + 1) >> 1;
  2230. SRC(1,3)=SRC(3,4)=SRC(5,5)=SRC(7,6)= (l1 + 2*l2 + l3 + 2) >> 2;
  2231. SRC(0,2)=SRC(2,3)=SRC(4,4)=SRC(6,5)= (l1 + l2 + 1) >> 1;
  2232. SRC(1,2)=SRC(3,3)=SRC(5,4)=SRC(7,5)= (l0 + 2*l1 + l2 + 2) >> 2;
  2233. SRC(0,1)=SRC(2,2)=SRC(4,3)=SRC(6,4)= (l0 + l1 + 1) >> 1;
  2234. SRC(1,1)=SRC(3,2)=SRC(5,3)=SRC(7,4)= (lt + 2*l0 + l1 + 2) >> 2;
  2235. SRC(0,0)=SRC(2,1)=SRC(4,2)=SRC(6,3)= (lt + l0 + 1) >> 1;
  2236. SRC(1,0)=SRC(3,1)=SRC(5,2)=SRC(7,3)= (l0 + 2*lt + t0 + 2) >> 2;
  2237. SRC(2,0)=SRC(4,1)=SRC(6,2)= (t1 + 2*t0 + lt + 2) >> 2;
  2238. SRC(3,0)=SRC(5,1)=SRC(7,2)= (t2 + 2*t1 + t0 + 2) >> 2;
  2239. SRC(4,0)=SRC(6,1)= (t3 + 2*t2 + t1 + 2) >> 2;
  2240. SRC(5,0)=SRC(7,1)= (t4 + 2*t3 + t2 + 2) >> 2;
  2241. SRC(6,0)= (t5 + 2*t4 + t3 + 2) >> 2;
  2242. SRC(7,0)= (t6 + 2*t5 + t4 + 2) >> 2;
  2243. }
  2244. static void pred8x8l_vertical_left_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2245. {
  2246. PREDICT_8x8_LOAD_TOP;
  2247. PREDICT_8x8_LOAD_TOPRIGHT;
  2248. SRC(0,0)= (t0 + t1 + 1) >> 1;
  2249. SRC(0,1)= (t0 + 2*t1 + t2 + 2) >> 2;
  2250. SRC(0,2)=SRC(1,0)= (t1 + t2 + 1) >> 1;
  2251. SRC(0,3)=SRC(1,1)= (t1 + 2*t2 + t3 + 2) >> 2;
  2252. SRC(0,4)=SRC(1,2)=SRC(2,0)= (t2 + t3 + 1) >> 1;
  2253. SRC(0,5)=SRC(1,3)=SRC(2,1)= (t2 + 2*t3 + t4 + 2) >> 2;
  2254. SRC(0,6)=SRC(1,4)=SRC(2,2)=SRC(3,0)= (t3 + t4 + 1) >> 1;
  2255. SRC(0,7)=SRC(1,5)=SRC(2,3)=SRC(3,1)= (t3 + 2*t4 + t5 + 2) >> 2;
  2256. SRC(1,6)=SRC(2,4)=SRC(3,2)=SRC(4,0)= (t4 + t5 + 1) >> 1;
  2257. SRC(1,7)=SRC(2,5)=SRC(3,3)=SRC(4,1)= (t4 + 2*t5 + t6 + 2) >> 2;
  2258. SRC(2,6)=SRC(3,4)=SRC(4,2)=SRC(5,0)= (t5 + t6 + 1) >> 1;
  2259. SRC(2,7)=SRC(3,5)=SRC(4,3)=SRC(5,1)= (t5 + 2*t6 + t7 + 2) >> 2;
  2260. SRC(3,6)=SRC(4,4)=SRC(5,2)=SRC(6,0)= (t6 + t7 + 1) >> 1;
  2261. SRC(3,7)=SRC(4,5)=SRC(5,3)=SRC(6,1)= (t6 + 2*t7 + t8 + 2) >> 2;
  2262. SRC(4,6)=SRC(5,4)=SRC(6,2)=SRC(7,0)= (t7 + t8 + 1) >> 1;
  2263. SRC(4,7)=SRC(5,5)=SRC(6,3)=SRC(7,1)= (t7 + 2*t8 + t9 + 2) >> 2;
  2264. SRC(5,6)=SRC(6,4)=SRC(7,2)= (t8 + t9 + 1) >> 1;
  2265. SRC(5,7)=SRC(6,5)=SRC(7,3)= (t8 + 2*t9 + t10 + 2) >> 2;
  2266. SRC(6,6)=SRC(7,4)= (t9 + t10 + 1) >> 1;
  2267. SRC(6,7)=SRC(7,5)= (t9 + 2*t10 + t11 + 2) >> 2;
  2268. SRC(7,6)= (t10 + t11 + 1) >> 1;
  2269. SRC(7,7)= (t10 + 2*t11 + t12 + 2) >> 2;
  2270. }
  2271. static void pred8x8l_horizontal_up_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2272. {
  2273. PREDICT_8x8_LOAD_LEFT;
  2274. SRC(0,0)= (l0 + l1 + 1) >> 1;
  2275. SRC(1,0)= (l0 + 2*l1 + l2 + 2) >> 2;
  2276. SRC(0,1)=SRC(2,0)= (l1 + l2 + 1) >> 1;
  2277. SRC(1,1)=SRC(3,0)= (l1 + 2*l2 + l3 + 2) >> 2;
  2278. SRC(0,2)=SRC(2,1)=SRC(4,0)= (l2 + l3 + 1) >> 1;
  2279. SRC(1,2)=SRC(3,1)=SRC(5,0)= (l2 + 2*l3 + l4 + 2) >> 2;
  2280. SRC(0,3)=SRC(2,2)=SRC(4,1)=SRC(6,0)= (l3 + l4 + 1) >> 1;
  2281. SRC(1,3)=SRC(3,2)=SRC(5,1)=SRC(7,0)= (l3 + 2*l4 + l5 + 2) >> 2;
  2282. SRC(0,4)=SRC(2,3)=SRC(4,2)=SRC(6,1)= (l4 + l5 + 1) >> 1;
  2283. SRC(1,4)=SRC(3,3)=SRC(5,2)=SRC(7,1)= (l4 + 2*l5 + l6 + 2) >> 2;
  2284. SRC(0,5)=SRC(2,4)=SRC(4,3)=SRC(6,2)= (l5 + l6 + 1) >> 1;
  2285. SRC(1,5)=SRC(3,4)=SRC(5,3)=SRC(7,2)= (l5 + 2*l6 + l7 + 2) >> 2;
  2286. SRC(0,6)=SRC(2,5)=SRC(4,4)=SRC(6,3)= (l6 + l7 + 1) >> 1;
  2287. SRC(1,6)=SRC(3,5)=SRC(5,4)=SRC(7,3)= (l6 + 3*l7 + 2) >> 2;
  2288. SRC(0,7)=SRC(1,7)=SRC(2,6)=SRC(2,7)=SRC(3,6)=
  2289. SRC(3,7)=SRC(4,5)=SRC(4,6)=SRC(4,7)=SRC(5,5)=
  2290. SRC(5,6)=SRC(5,7)=SRC(6,4)=SRC(6,5)=SRC(6,6)=
  2291. SRC(6,7)=SRC(7,4)=SRC(7,5)=SRC(7,6)=SRC(7,7)= l7;
  2292. }
  2293. #undef PREDICT_8x8_LOAD_LEFT
  2294. #undef PREDICT_8x8_LOAD_TOP
  2295. #undef PREDICT_8x8_LOAD_TOPLEFT
  2296. #undef PREDICT_8x8_LOAD_TOPRIGHT
  2297. #undef PREDICT_8x8_DC
  2298. #undef PTR
  2299. #undef PT
  2300. #undef PL
  2301. #undef SRC
  2302. static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
  2303. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  2304. int src_x_offset, int src_y_offset,
  2305. qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
  2306. MpegEncContext * const s = &h->s;
  2307. const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
  2308. const int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
  2309. const int luma_xy= (mx&3) + ((my&3)<<2);
  2310. uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*s->linesize;
  2311. uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*s->uvlinesize;
  2312. uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*s->uvlinesize;
  2313. int extra_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16; //FIXME increase edge?, IMHO not worth it
  2314. int extra_height= extra_width;
  2315. int emu=0;
  2316. const int full_mx= mx>>2;
  2317. const int full_my= my>>2;
  2318. const int pic_width = 16*s->mb_width;
  2319. const int pic_height = 16*s->mb_height;
  2320. if(!pic->data[0])
  2321. return;
  2322. if(mx&7) extra_width -= 3;
  2323. if(my&7) extra_height -= 3;
  2324. if( full_mx < 0-extra_width
  2325. || full_my < 0-extra_height
  2326. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  2327. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  2328. ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*s->linesize, s->linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  2329. src_y= s->edge_emu_buffer + 2 + 2*s->linesize;
  2330. emu=1;
  2331. }
  2332. qpix_op[luma_xy](dest_y, src_y, s->linesize); //FIXME try variable height perhaps?
  2333. if(!square){
  2334. qpix_op[luma_xy](dest_y + delta, src_y + delta, s->linesize);
  2335. }
  2336. if(s->flags&CODEC_FLAG_GRAY) return;
  2337. if(emu){
  2338. ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  2339. src_cb= s->edge_emu_buffer;
  2340. }
  2341. chroma_op(dest_cb, src_cb, s->uvlinesize, chroma_height, mx&7, my&7);
  2342. if(emu){
  2343. ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  2344. src_cr= s->edge_emu_buffer;
  2345. }
  2346. chroma_op(dest_cr, src_cr, s->uvlinesize, chroma_height, mx&7, my&7);
  2347. }
  2348. static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
  2349. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  2350. int x_offset, int y_offset,
  2351. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  2352. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  2353. int list0, int list1){
  2354. MpegEncContext * const s = &h->s;
  2355. qpel_mc_func *qpix_op= qpix_put;
  2356. h264_chroma_mc_func chroma_op= chroma_put;
  2357. dest_y += 2*x_offset + 2*y_offset*s-> linesize;
  2358. dest_cb += x_offset + y_offset*s->uvlinesize;
  2359. dest_cr += x_offset + y_offset*s->uvlinesize;
  2360. x_offset += 8*s->mb_x;
  2361. y_offset += 8*s->mb_y;
  2362. if(list0){
  2363. Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
  2364. mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
  2365. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2366. qpix_op, chroma_op);
  2367. qpix_op= qpix_avg;
  2368. chroma_op= chroma_avg;
  2369. }
  2370. if(list1){
  2371. Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
  2372. mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
  2373. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2374. qpix_op, chroma_op);
  2375. }
  2376. }
  2377. static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
  2378. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  2379. int x_offset, int y_offset,
  2380. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  2381. h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
  2382. h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
  2383. int list0, int list1){
  2384. MpegEncContext * const s = &h->s;
  2385. dest_y += 2*x_offset + 2*y_offset*s-> linesize;
  2386. dest_cb += x_offset + y_offset*s->uvlinesize;
  2387. dest_cr += x_offset + y_offset*s->uvlinesize;
  2388. x_offset += 8*s->mb_x;
  2389. y_offset += 8*s->mb_y;
  2390. if(list0 && list1){
  2391. /* don't optimize for luma-only case, since B-frames usually
  2392. * use implicit weights => chroma too. */
  2393. uint8_t *tmp_cb = s->obmc_scratchpad;
  2394. uint8_t *tmp_cr = tmp_cb + 8*s->uvlinesize;
  2395. uint8_t *tmp_y = tmp_cr + 8*s->uvlinesize;
  2396. int refn0 = h->ref_cache[0][ scan8[n] ];
  2397. int refn1 = h->ref_cache[1][ scan8[n] ];
  2398. mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
  2399. dest_y, dest_cb, dest_cr,
  2400. x_offset, y_offset, qpix_put, chroma_put);
  2401. mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
  2402. tmp_y, tmp_cb, tmp_cr,
  2403. x_offset, y_offset, qpix_put, chroma_put);
  2404. if(h->use_weight == 2){
  2405. int weight0 = h->implicit_weight[refn0][refn1];
  2406. int weight1 = 64 - weight0;
  2407. luma_weight_avg( dest_y, tmp_y, s-> linesize, 5, weight0, weight1, 0);
  2408. chroma_weight_avg(dest_cb, tmp_cb, s->uvlinesize, 5, weight0, weight1, 0);
  2409. chroma_weight_avg(dest_cr, tmp_cr, s->uvlinesize, 5, weight0, weight1, 0);
  2410. }else{
  2411. luma_weight_avg(dest_y, tmp_y, s->linesize, h->luma_log2_weight_denom,
  2412. h->luma_weight[0][refn0], h->luma_weight[1][refn1],
  2413. h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
  2414. chroma_weight_avg(dest_cb, tmp_cb, s->uvlinesize, h->chroma_log2_weight_denom,
  2415. h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
  2416. h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
  2417. chroma_weight_avg(dest_cr, tmp_cr, s->uvlinesize, h->chroma_log2_weight_denom,
  2418. h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
  2419. h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
  2420. }
  2421. }else{
  2422. int list = list1 ? 1 : 0;
  2423. int refn = h->ref_cache[list][ scan8[n] ];
  2424. Picture *ref= &h->ref_list[list][refn];
  2425. mc_dir_part(h, ref, n, square, chroma_height, delta, list,
  2426. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2427. qpix_put, chroma_put);
  2428. luma_weight_op(dest_y, s->linesize, h->luma_log2_weight_denom,
  2429. h->luma_weight[list][refn], h->luma_offset[list][refn]);
  2430. if(h->use_weight_chroma){
  2431. chroma_weight_op(dest_cb, s->uvlinesize, h->chroma_log2_weight_denom,
  2432. h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
  2433. chroma_weight_op(dest_cr, s->uvlinesize, h->chroma_log2_weight_denom,
  2434. h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
  2435. }
  2436. }
  2437. }
  2438. static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
  2439. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  2440. int x_offset, int y_offset,
  2441. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  2442. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  2443. h264_weight_func *weight_op, h264_biweight_func *weight_avg,
  2444. int list0, int list1){
  2445. if((h->use_weight==2 && list0 && list1
  2446. && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
  2447. || h->use_weight==1)
  2448. mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  2449. x_offset, y_offset, qpix_put, chroma_put,
  2450. weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
  2451. else
  2452. mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  2453. x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
  2454. }
  2455. static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  2456. qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
  2457. qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
  2458. h264_weight_func *weight_op, h264_biweight_func *weight_avg){
  2459. MpegEncContext * const s = &h->s;
  2460. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  2461. const int mb_type= s->current_picture.mb_type[mb_xy];
  2462. assert(IS_INTER(mb_type));
  2463. if(IS_16X16(mb_type)){
  2464. mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
  2465. qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
  2466. &weight_op[0], &weight_avg[0],
  2467. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  2468. }else if(IS_16X8(mb_type)){
  2469. mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
  2470. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  2471. &weight_op[1], &weight_avg[1],
  2472. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  2473. mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
  2474. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  2475. &weight_op[1], &weight_avg[1],
  2476. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  2477. }else if(IS_8X16(mb_type)){
  2478. mc_part(h, 0, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 0, 0,
  2479. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  2480. &weight_op[2], &weight_avg[2],
  2481. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  2482. mc_part(h, 4, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 4, 0,
  2483. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  2484. &weight_op[2], &weight_avg[2],
  2485. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  2486. }else{
  2487. int i;
  2488. assert(IS_8X8(mb_type));
  2489. for(i=0; i<4; i++){
  2490. const int sub_mb_type= h->sub_mb_type[i];
  2491. const int n= 4*i;
  2492. int x_offset= (i&1)<<2;
  2493. int y_offset= (i&2)<<1;
  2494. if(IS_SUB_8X8(sub_mb_type)){
  2495. mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2496. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  2497. &weight_op[3], &weight_avg[3],
  2498. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2499. }else if(IS_SUB_8X4(sub_mb_type)){
  2500. mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2501. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  2502. &weight_op[4], &weight_avg[4],
  2503. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2504. mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
  2505. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  2506. &weight_op[4], &weight_avg[4],
  2507. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2508. }else if(IS_SUB_4X8(sub_mb_type)){
  2509. mc_part(h, n , 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2510. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  2511. &weight_op[5], &weight_avg[5],
  2512. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2513. mc_part(h, n+1, 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
  2514. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  2515. &weight_op[5], &weight_avg[5],
  2516. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2517. }else{
  2518. int j;
  2519. assert(IS_SUB_4X4(sub_mb_type));
  2520. for(j=0; j<4; j++){
  2521. int sub_x_offset= x_offset + 2*(j&1);
  2522. int sub_y_offset= y_offset + (j&2);
  2523. mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
  2524. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  2525. &weight_op[6], &weight_avg[6],
  2526. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2527. }
  2528. }
  2529. }
  2530. }
  2531. }
  2532. static void decode_init_vlc(H264Context *h){
  2533. static int done = 0;
  2534. if (!done) {
  2535. int i;
  2536. done = 1;
  2537. init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
  2538. &chroma_dc_coeff_token_len [0], 1, 1,
  2539. &chroma_dc_coeff_token_bits[0], 1, 1, 1);
  2540. for(i=0; i<4; i++){
  2541. init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
  2542. &coeff_token_len [i][0], 1, 1,
  2543. &coeff_token_bits[i][0], 1, 1, 1);
  2544. }
  2545. for(i=0; i<3; i++){
  2546. init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
  2547. &chroma_dc_total_zeros_len [i][0], 1, 1,
  2548. &chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
  2549. }
  2550. for(i=0; i<15; i++){
  2551. init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
  2552. &total_zeros_len [i][0], 1, 1,
  2553. &total_zeros_bits[i][0], 1, 1, 1);
  2554. }
  2555. for(i=0; i<6; i++){
  2556. init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
  2557. &run_len [i][0], 1, 1,
  2558. &run_bits[i][0], 1, 1, 1);
  2559. }
  2560. init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
  2561. &run_len [6][0], 1, 1,
  2562. &run_bits[6][0], 1, 1, 1);
  2563. }
  2564. }
  2565. /**
  2566. * Sets the intra prediction function pointers.
  2567. */
  2568. static void init_pred_ptrs(H264Context *h){
  2569. // MpegEncContext * const s = &h->s;
  2570. h->pred4x4[VERT_PRED ]= pred4x4_vertical_c;
  2571. h->pred4x4[HOR_PRED ]= pred4x4_horizontal_c;
  2572. h->pred4x4[DC_PRED ]= pred4x4_dc_c;
  2573. h->pred4x4[DIAG_DOWN_LEFT_PRED ]= pred4x4_down_left_c;
  2574. h->pred4x4[DIAG_DOWN_RIGHT_PRED]= pred4x4_down_right_c;
  2575. h->pred4x4[VERT_RIGHT_PRED ]= pred4x4_vertical_right_c;
  2576. h->pred4x4[HOR_DOWN_PRED ]= pred4x4_horizontal_down_c;
  2577. h->pred4x4[VERT_LEFT_PRED ]= pred4x4_vertical_left_c;
  2578. h->pred4x4[HOR_UP_PRED ]= pred4x4_horizontal_up_c;
  2579. h->pred4x4[LEFT_DC_PRED ]= pred4x4_left_dc_c;
  2580. h->pred4x4[TOP_DC_PRED ]= pred4x4_top_dc_c;
  2581. h->pred4x4[DC_128_PRED ]= pred4x4_128_dc_c;
  2582. h->pred8x8l[VERT_PRED ]= pred8x8l_vertical_c;
  2583. h->pred8x8l[HOR_PRED ]= pred8x8l_horizontal_c;
  2584. h->pred8x8l[DC_PRED ]= pred8x8l_dc_c;
  2585. h->pred8x8l[DIAG_DOWN_LEFT_PRED ]= pred8x8l_down_left_c;
  2586. h->pred8x8l[DIAG_DOWN_RIGHT_PRED]= pred8x8l_down_right_c;
  2587. h->pred8x8l[VERT_RIGHT_PRED ]= pred8x8l_vertical_right_c;
  2588. h->pred8x8l[HOR_DOWN_PRED ]= pred8x8l_horizontal_down_c;
  2589. h->pred8x8l[VERT_LEFT_PRED ]= pred8x8l_vertical_left_c;
  2590. h->pred8x8l[HOR_UP_PRED ]= pred8x8l_horizontal_up_c;
  2591. h->pred8x8l[LEFT_DC_PRED ]= pred8x8l_left_dc_c;
  2592. h->pred8x8l[TOP_DC_PRED ]= pred8x8l_top_dc_c;
  2593. h->pred8x8l[DC_128_PRED ]= pred8x8l_128_dc_c;
  2594. h->pred8x8[DC_PRED8x8 ]= pred8x8_dc_c;
  2595. h->pred8x8[VERT_PRED8x8 ]= pred8x8_vertical_c;
  2596. h->pred8x8[HOR_PRED8x8 ]= pred8x8_horizontal_c;
  2597. h->pred8x8[PLANE_PRED8x8 ]= pred8x8_plane_c;
  2598. h->pred8x8[LEFT_DC_PRED8x8]= pred8x8_left_dc_c;
  2599. h->pred8x8[TOP_DC_PRED8x8 ]= pred8x8_top_dc_c;
  2600. h->pred8x8[DC_128_PRED8x8 ]= pred8x8_128_dc_c;
  2601. h->pred16x16[DC_PRED8x8 ]= pred16x16_dc_c;
  2602. h->pred16x16[VERT_PRED8x8 ]= pred16x16_vertical_c;
  2603. h->pred16x16[HOR_PRED8x8 ]= pred16x16_horizontal_c;
  2604. h->pred16x16[PLANE_PRED8x8 ]= pred16x16_plane_c;
  2605. h->pred16x16[LEFT_DC_PRED8x8]= pred16x16_left_dc_c;
  2606. h->pred16x16[TOP_DC_PRED8x8 ]= pred16x16_top_dc_c;
  2607. h->pred16x16[DC_128_PRED8x8 ]= pred16x16_128_dc_c;
  2608. }
  2609. static void free_tables(H264Context *h){
  2610. av_freep(&h->intra4x4_pred_mode);
  2611. av_freep(&h->chroma_pred_mode_table);
  2612. av_freep(&h->cbp_table);
  2613. av_freep(&h->mvd_table[0]);
  2614. av_freep(&h->mvd_table[1]);
  2615. av_freep(&h->direct_table);
  2616. av_freep(&h->non_zero_count);
  2617. av_freep(&h->slice_table_base);
  2618. av_freep(&h->top_borders[1]);
  2619. av_freep(&h->top_borders[0]);
  2620. h->slice_table= NULL;
  2621. av_freep(&h->mb2b_xy);
  2622. av_freep(&h->mb2b8_xy);
  2623. av_freep(&h->s.obmc_scratchpad);
  2624. }
  2625. static void init_dequant8_coeff_table(H264Context *h){
  2626. int i,q,x;
  2627. const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
  2628. h->dequant8_coeff[0] = h->dequant8_buffer[0];
  2629. h->dequant8_coeff[1] = h->dequant8_buffer[1];
  2630. for(i=0; i<2; i++ ){
  2631. if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
  2632. h->dequant8_coeff[1] = h->dequant8_buffer[0];
  2633. break;
  2634. }
  2635. for(q=0; q<52; q++){
  2636. int shift = div6[q];
  2637. int idx = rem6[q];
  2638. for(x=0; x<64; x++)
  2639. h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
  2640. ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
  2641. h->pps.scaling_matrix8[i][x]) << shift;
  2642. }
  2643. }
  2644. }
  2645. static void init_dequant4_coeff_table(H264Context *h){
  2646. int i,j,q,x;
  2647. const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
  2648. for(i=0; i<6; i++ ){
  2649. h->dequant4_coeff[i] = h->dequant4_buffer[i];
  2650. for(j=0; j<i; j++){
  2651. if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
  2652. h->dequant4_coeff[i] = h->dequant4_buffer[j];
  2653. break;
  2654. }
  2655. }
  2656. if(j<i)
  2657. continue;
  2658. for(q=0; q<52; q++){
  2659. int shift = div6[q] + 2;
  2660. int idx = rem6[q];
  2661. for(x=0; x<16; x++)
  2662. h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
  2663. ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
  2664. h->pps.scaling_matrix4[i][x]) << shift;
  2665. }
  2666. }
  2667. }
  2668. static void init_dequant_tables(H264Context *h){
  2669. int i,x;
  2670. init_dequant4_coeff_table(h);
  2671. if(h->pps.transform_8x8_mode)
  2672. init_dequant8_coeff_table(h);
  2673. if(h->sps.transform_bypass){
  2674. for(i=0; i<6; i++)
  2675. for(x=0; x<16; x++)
  2676. h->dequant4_coeff[i][0][x] = 1<<6;
  2677. if(h->pps.transform_8x8_mode)
  2678. for(i=0; i<2; i++)
  2679. for(x=0; x<64; x++)
  2680. h->dequant8_coeff[i][0][x] = 1<<6;
  2681. }
  2682. }
  2683. /**
  2684. * allocates tables.
  2685. * needs width/height
  2686. */
  2687. static int alloc_tables(H264Context *h){
  2688. MpegEncContext * const s = &h->s;
  2689. const int big_mb_num= s->mb_stride * (s->mb_height+1);
  2690. int x,y;
  2691. CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
  2692. CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
  2693. CHECKED_ALLOCZ(h->slice_table_base , big_mb_num * sizeof(uint8_t))
  2694. CHECKED_ALLOCZ(h->top_borders[0] , s->mb_width * (16+8+8) * sizeof(uint8_t))
  2695. CHECKED_ALLOCZ(h->top_borders[1] , s->mb_width * (16+8+8) * sizeof(uint8_t))
  2696. CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
  2697. if( h->pps.cabac ) {
  2698. CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
  2699. CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
  2700. CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
  2701. CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
  2702. }
  2703. memset(h->slice_table_base, -1, big_mb_num * sizeof(uint8_t));
  2704. h->slice_table= h->slice_table_base + s->mb_stride + 1;
  2705. CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
  2706. CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
  2707. for(y=0; y<s->mb_height; y++){
  2708. for(x=0; x<s->mb_width; x++){
  2709. const int mb_xy= x + y*s->mb_stride;
  2710. const int b_xy = 4*x + 4*y*h->b_stride;
  2711. const int b8_xy= 2*x + 2*y*h->b8_stride;
  2712. h->mb2b_xy [mb_xy]= b_xy;
  2713. h->mb2b8_xy[mb_xy]= b8_xy;
  2714. }
  2715. }
  2716. s->obmc_scratchpad = NULL;
  2717. if(!h->dequant4_coeff[0])
  2718. init_dequant_tables(h);
  2719. return 0;
  2720. fail:
  2721. free_tables(h);
  2722. return -1;
  2723. }
  2724. static void common_init(H264Context *h){
  2725. MpegEncContext * const s = &h->s;
  2726. s->width = s->avctx->width;
  2727. s->height = s->avctx->height;
  2728. s->codec_id= s->avctx->codec->id;
  2729. init_pred_ptrs(h);
  2730. h->dequant_coeff_pps= -1;
  2731. s->unrestricted_mv=1;
  2732. s->decode=1; //FIXME
  2733. memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  2734. memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  2735. }
  2736. static int decode_init(AVCodecContext *avctx){
  2737. H264Context *h= avctx->priv_data;
  2738. MpegEncContext * const s = &h->s;
  2739. MPV_decode_defaults(s);
  2740. s->avctx = avctx;
  2741. common_init(h);
  2742. s->out_format = FMT_H264;
  2743. s->workaround_bugs= avctx->workaround_bugs;
  2744. // set defaults
  2745. // s->decode_mb= ff_h263_decode_mb;
  2746. s->low_delay= 1;
  2747. avctx->pix_fmt= PIX_FMT_YUV420P;
  2748. decode_init_vlc(h);
  2749. if(avctx->extradata_size > 0 && avctx->extradata &&
  2750. *(char *)avctx->extradata == 1){
  2751. h->is_avc = 1;
  2752. h->got_avcC = 0;
  2753. } else {
  2754. h->is_avc = 0;
  2755. }
  2756. return 0;
  2757. }
  2758. static int frame_start(H264Context *h){
  2759. MpegEncContext * const s = &h->s;
  2760. int i;
  2761. if(MPV_frame_start(s, s->avctx) < 0)
  2762. return -1;
  2763. ff_er_frame_start(s);
  2764. assert(s->linesize && s->uvlinesize);
  2765. for(i=0; i<16; i++){
  2766. h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
  2767. h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
  2768. }
  2769. for(i=0; i<4; i++){
  2770. h->block_offset[16+i]=
  2771. h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  2772. h->block_offset[24+16+i]=
  2773. h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  2774. }
  2775. /* can't be in alloc_tables because linesize isn't known there.
  2776. * FIXME: redo bipred weight to not require extra buffer? */
  2777. if(!s->obmc_scratchpad)
  2778. s->obmc_scratchpad = av_malloc(16*s->linesize + 2*8*s->uvlinesize);
  2779. // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
  2780. return 0;
  2781. }
  2782. static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
  2783. MpegEncContext * const s = &h->s;
  2784. int i;
  2785. src_y -= linesize;
  2786. src_cb -= uvlinesize;
  2787. src_cr -= uvlinesize;
  2788. // There are two lines saved, the line above the the top macroblock of a pair,
  2789. // and the line above the bottom macroblock
  2790. h->left_border[0]= h->top_borders[0][s->mb_x][15];
  2791. for(i=1; i<17; i++){
  2792. h->left_border[i]= src_y[15+i* linesize];
  2793. }
  2794. *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
  2795. *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
  2796. if(!(s->flags&CODEC_FLAG_GRAY)){
  2797. h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7];
  2798. h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7];
  2799. for(i=1; i<9; i++){
  2800. h->left_border[i+17 ]= src_cb[7+i*uvlinesize];
  2801. h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
  2802. }
  2803. *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
  2804. *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
  2805. }
  2806. }
  2807. static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
  2808. MpegEncContext * const s = &h->s;
  2809. int temp8, i;
  2810. uint64_t temp64;
  2811. int deblock_left = (s->mb_x > 0);
  2812. int deblock_top = (s->mb_y > 0);
  2813. src_y -= linesize + 1;
  2814. src_cb -= uvlinesize + 1;
  2815. src_cr -= uvlinesize + 1;
  2816. #define XCHG(a,b,t,xchg)\
  2817. t= a;\
  2818. if(xchg)\
  2819. a= b;\
  2820. b= t;
  2821. if(deblock_left){
  2822. for(i = !deblock_top; i<17; i++){
  2823. XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
  2824. }
  2825. }
  2826. if(deblock_top){
  2827. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
  2828. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
  2829. if(s->mb_x+1 < s->mb_width){
  2830. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
  2831. }
  2832. }
  2833. if(!(s->flags&CODEC_FLAG_GRAY)){
  2834. if(deblock_left){
  2835. for(i = !deblock_top; i<9; i++){
  2836. XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
  2837. XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
  2838. }
  2839. }
  2840. if(deblock_top){
  2841. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
  2842. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
  2843. }
  2844. }
  2845. }
  2846. static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
  2847. MpegEncContext * const s = &h->s;
  2848. int i;
  2849. src_y -= 2 * linesize;
  2850. src_cb -= 2 * uvlinesize;
  2851. src_cr -= 2 * uvlinesize;
  2852. // There are two lines saved, the line above the the top macroblock of a pair,
  2853. // and the line above the bottom macroblock
  2854. h->left_border[0]= h->top_borders[0][s->mb_x][15];
  2855. h->left_border[1]= h->top_borders[1][s->mb_x][15];
  2856. for(i=2; i<34; i++){
  2857. h->left_border[i]= src_y[15+i* linesize];
  2858. }
  2859. *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize);
  2860. *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize);
  2861. *(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize);
  2862. *(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize);
  2863. if(!(s->flags&CODEC_FLAG_GRAY)){
  2864. h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7];
  2865. h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7];
  2866. h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7];
  2867. h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7];
  2868. for(i=2; i<18; i++){
  2869. h->left_border[i+34 ]= src_cb[7+i*uvlinesize];
  2870. h->left_border[i+34+18]= src_cr[7+i*uvlinesize];
  2871. }
  2872. *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize);
  2873. *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize);
  2874. *(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize);
  2875. *(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize);
  2876. }
  2877. }
  2878. static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
  2879. MpegEncContext * const s = &h->s;
  2880. int temp8, i;
  2881. uint64_t temp64;
  2882. int deblock_left = (s->mb_x > 0);
  2883. int deblock_top = (s->mb_y > 0);
  2884. tprintf("xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize);
  2885. src_y -= 2 * linesize + 1;
  2886. src_cb -= 2 * uvlinesize + 1;
  2887. src_cr -= 2 * uvlinesize + 1;
  2888. #define XCHG(a,b,t,xchg)\
  2889. t= a;\
  2890. if(xchg)\
  2891. a= b;\
  2892. b= t;
  2893. if(deblock_left){
  2894. for(i = (!deblock_top)<<1; i<34; i++){
  2895. XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
  2896. }
  2897. }
  2898. if(deblock_top){
  2899. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
  2900. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
  2901. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+0), *(uint64_t*)(src_y +1 +linesize), temp64, xchg);
  2902. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+8), *(uint64_t*)(src_y +9 +linesize), temp64, 1);
  2903. }
  2904. if(!(s->flags&CODEC_FLAG_GRAY)){
  2905. if(deblock_left){
  2906. for(i = (!deblock_top) << 1; i<18; i++){
  2907. XCHG(h->left_border[i+34 ], src_cb[i*uvlinesize], temp8, xchg);
  2908. XCHG(h->left_border[i+34+18], src_cr[i*uvlinesize], temp8, xchg);
  2909. }
  2910. }
  2911. if(deblock_top){
  2912. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
  2913. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
  2914. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+16), *(uint64_t*)(src_cb+1 +uvlinesize), temp64, 1);
  2915. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+24), *(uint64_t*)(src_cr+1 +uvlinesize), temp64, 1);
  2916. }
  2917. }
  2918. }
  2919. static void hl_decode_mb(H264Context *h){
  2920. MpegEncContext * const s = &h->s;
  2921. const int mb_x= s->mb_x;
  2922. const int mb_y= s->mb_y;
  2923. const int mb_xy= mb_x + mb_y*s->mb_stride;
  2924. const int mb_type= s->current_picture.mb_type[mb_xy];
  2925. uint8_t *dest_y, *dest_cb, *dest_cr;
  2926. int linesize, uvlinesize /*dct_offset*/;
  2927. int i;
  2928. int *block_offset = &h->block_offset[0];
  2929. const unsigned int bottom = mb_y & 1;
  2930. const int transform_bypass = (s->qscale == 0 && h->sps.transform_bypass);
  2931. void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  2932. void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
  2933. if(!s->decode)
  2934. return;
  2935. dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
  2936. dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2937. dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2938. if (h->mb_field_decoding_flag) {
  2939. linesize = s->linesize * 2;
  2940. uvlinesize = s->uvlinesize * 2;
  2941. block_offset = &h->block_offset[24];
  2942. if(mb_y&1){ //FIXME move out of this func?
  2943. dest_y -= s->linesize*15;
  2944. dest_cb-= s->uvlinesize*7;
  2945. dest_cr-= s->uvlinesize*7;
  2946. }
  2947. } else {
  2948. linesize = s->linesize;
  2949. uvlinesize = s->uvlinesize;
  2950. // dct_offset = s->linesize * 16;
  2951. }
  2952. if(transform_bypass){
  2953. idct_dc_add =
  2954. idct_add = IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
  2955. }else if(IS_8x8DCT(mb_type)){
  2956. idct_dc_add = s->dsp.h264_idct8_dc_add;
  2957. idct_add = s->dsp.h264_idct8_add;
  2958. }else{
  2959. idct_dc_add = s->dsp.h264_idct_dc_add;
  2960. idct_add = s->dsp.h264_idct_add;
  2961. }
  2962. if (IS_INTRA_PCM(mb_type)) {
  2963. unsigned int x, y;
  2964. // The pixels are stored in h->mb array in the same order as levels,
  2965. // copy them in output in the correct order.
  2966. for(i=0; i<16; i++) {
  2967. for (y=0; y<4; y++) {
  2968. for (x=0; x<4; x++) {
  2969. *(dest_y + block_offset[i] + y*linesize + x) = h->mb[i*16+y*4+x];
  2970. }
  2971. }
  2972. }
  2973. for(i=16; i<16+4; i++) {
  2974. for (y=0; y<4; y++) {
  2975. for (x=0; x<4; x++) {
  2976. *(dest_cb + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
  2977. }
  2978. }
  2979. }
  2980. for(i=20; i<20+4; i++) {
  2981. for (y=0; y<4; y++) {
  2982. for (x=0; x<4; x++) {
  2983. *(dest_cr + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
  2984. }
  2985. }
  2986. }
  2987. } else {
  2988. if(IS_INTRA(mb_type)){
  2989. if(h->deblocking_filter) {
  2990. if (h->mb_aff_frame) {
  2991. if (!bottom)
  2992. xchg_pair_border(h, dest_y, dest_cb, dest_cr, s->linesize, s->uvlinesize, 1);
  2993. } else {
  2994. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1);
  2995. }
  2996. }
  2997. if(!(s->flags&CODEC_FLAG_GRAY)){
  2998. h->pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
  2999. h->pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
  3000. }
  3001. if(IS_INTRA4x4(mb_type)){
  3002. if(!s->encoding){
  3003. if(IS_8x8DCT(mb_type)){
  3004. for(i=0; i<16; i+=4){
  3005. uint8_t * const ptr= dest_y + block_offset[i];
  3006. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  3007. const int nnz = h->non_zero_count_cache[ scan8[i] ];
  3008. h->pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
  3009. (h->topright_samples_available<<(i+1))&0x8000, linesize);
  3010. if(nnz){
  3011. if(nnz == 1 && h->mb[i*16])
  3012. idct_dc_add(ptr, h->mb + i*16, linesize);
  3013. else
  3014. idct_add(ptr, h->mb + i*16, linesize);
  3015. }
  3016. }
  3017. }else
  3018. for(i=0; i<16; i++){
  3019. uint8_t * const ptr= dest_y + block_offset[i];
  3020. uint8_t *topright;
  3021. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  3022. int nnz, tr;
  3023. if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
  3024. const int topright_avail= (h->topright_samples_available<<i)&0x8000;
  3025. assert(mb_y || linesize <= block_offset[i]);
  3026. if(!topright_avail){
  3027. tr= ptr[3 - linesize]*0x01010101;
  3028. topright= (uint8_t*) &tr;
  3029. }else
  3030. topright= ptr + 4 - linesize;
  3031. }else
  3032. topright= NULL;
  3033. h->pred4x4[ dir ](ptr, topright, linesize);
  3034. nnz = h->non_zero_count_cache[ scan8[i] ];
  3035. if(nnz){
  3036. if(s->codec_id == CODEC_ID_H264){
  3037. if(nnz == 1 && h->mb[i*16])
  3038. idct_dc_add(ptr, h->mb + i*16, linesize);
  3039. else
  3040. idct_add(ptr, h->mb + i*16, linesize);
  3041. }else
  3042. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
  3043. }
  3044. }
  3045. }
  3046. }else{
  3047. h->pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
  3048. if(s->codec_id == CODEC_ID_H264){
  3049. if(!transform_bypass)
  3050. h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[IS_INTRA(mb_type) ? 0:3][s->qscale][0]);
  3051. }else
  3052. svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
  3053. }
  3054. if(h->deblocking_filter) {
  3055. if (h->mb_aff_frame) {
  3056. if (bottom) {
  3057. uint8_t *pair_dest_y = s->current_picture.data[0] + ((mb_y-1) * 16* s->linesize ) + mb_x * 16;
  3058. uint8_t *pair_dest_cb = s->current_picture.data[1] + ((mb_y-1) * 8 * s->uvlinesize) + mb_x * 8;
  3059. uint8_t *pair_dest_cr = s->current_picture.data[2] + ((mb_y-1) * 8 * s->uvlinesize) + mb_x * 8;
  3060. s->mb_y--;
  3061. xchg_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize, 0);
  3062. s->mb_y++;
  3063. }
  3064. } else {
  3065. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0);
  3066. }
  3067. }
  3068. }else if(s->codec_id == CODEC_ID_H264){
  3069. hl_motion(h, dest_y, dest_cb, dest_cr,
  3070. s->dsp.put_h264_qpel_pixels_tab, s->dsp.put_h264_chroma_pixels_tab,
  3071. s->dsp.avg_h264_qpel_pixels_tab, s->dsp.avg_h264_chroma_pixels_tab,
  3072. s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
  3073. }
  3074. if(!IS_INTRA4x4(mb_type)){
  3075. if(s->codec_id == CODEC_ID_H264){
  3076. if(IS_INTRA16x16(mb_type)){
  3077. for(i=0; i<16; i++){
  3078. if(h->non_zero_count_cache[ scan8[i] ])
  3079. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  3080. else if(h->mb[i*16])
  3081. idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  3082. }
  3083. }else{
  3084. const int di = IS_8x8DCT(mb_type) ? 4 : 1;
  3085. for(i=0; i<16; i+=di){
  3086. int nnz = h->non_zero_count_cache[ scan8[i] ];
  3087. if(nnz){
  3088. if(nnz==1 && h->mb[i*16])
  3089. idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  3090. else
  3091. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  3092. }
  3093. }
  3094. }
  3095. }else{
  3096. for(i=0; i<16; i++){
  3097. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
  3098. uint8_t * const ptr= dest_y + block_offset[i];
  3099. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
  3100. }
  3101. }
  3102. }
  3103. }
  3104. if(!(s->flags&CODEC_FLAG_GRAY)){
  3105. uint8_t *dest[2] = {dest_cb, dest_cr};
  3106. if(transform_bypass){
  3107. idct_add = idct_dc_add = s->dsp.add_pixels4;
  3108. }else{
  3109. idct_add = s->dsp.h264_idct_add;
  3110. idct_dc_add = s->dsp.h264_idct_dc_add;
  3111. chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp, h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp][0]);
  3112. chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp, h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp][0]);
  3113. }
  3114. if(s->codec_id == CODEC_ID_H264){
  3115. for(i=16; i<16+8; i++){
  3116. if(h->non_zero_count_cache[ scan8[i] ])
  3117. idct_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  3118. else if(h->mb[i*16])
  3119. idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  3120. }
  3121. }else{
  3122. for(i=16; i<16+8; i++){
  3123. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
  3124. uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
  3125. svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
  3126. }
  3127. }
  3128. }
  3129. }
  3130. }
  3131. if(h->deblocking_filter) {
  3132. if (h->mb_aff_frame) {
  3133. const int mb_y = s->mb_y - 1;
  3134. uint8_t *pair_dest_y, *pair_dest_cb, *pair_dest_cr;
  3135. const int mb_xy= mb_x + mb_y*s->mb_stride;
  3136. const int mb_type_top = s->current_picture.mb_type[mb_xy];
  3137. const int mb_type_bottom= s->current_picture.mb_type[mb_xy+s->mb_stride];
  3138. uint8_t tmp = s->current_picture.data[1][384];
  3139. if (!bottom) return;
  3140. pair_dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
  3141. pair_dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  3142. pair_dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  3143. backup_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize);
  3144. // TODO deblock a pair
  3145. // top
  3146. s->mb_y--;
  3147. tprintf("call mbaff filter_mb mb_x:%d mb_y:%d pair_dest_y = %p, dest_y = %p\n", mb_x, mb_y, pair_dest_y, dest_y);
  3148. fill_caches(h, mb_type_top, 1); //FIXME don't fill stuff which isn't used by filter_mb
  3149. filter_mb(h, mb_x, mb_y, pair_dest_y, pair_dest_cb, pair_dest_cr, linesize, uvlinesize);
  3150. if (tmp != s->current_picture.data[1][384]) {
  3151. tprintf("modified pixel 8,1 (1)\n");
  3152. }
  3153. // bottom
  3154. s->mb_y++;
  3155. tprintf("call mbaff filter_mb\n");
  3156. fill_caches(h, mb_type_bottom, 1); //FIXME don't fill stuff which isn't used by filter_mb
  3157. filter_mb(h, mb_x, mb_y+1, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  3158. if (tmp != s->current_picture.data[1][384]) {
  3159. tprintf("modified pixel 8,1 (2)\n");
  3160. }
  3161. } else {
  3162. tprintf("call filter_mb\n");
  3163. backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  3164. fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
  3165. filter_mb(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  3166. }
  3167. }
  3168. }
  3169. /**
  3170. * fills the default_ref_list.
  3171. */
  3172. static int fill_default_ref_list(H264Context *h){
  3173. MpegEncContext * const s = &h->s;
  3174. int i;
  3175. int smallest_poc_greater_than_current = -1;
  3176. Picture sorted_short_ref[32];
  3177. if(h->slice_type==B_TYPE){
  3178. int out_i;
  3179. int limit= INT_MIN;
  3180. /* sort frame according to poc in B slice */
  3181. for(out_i=0; out_i<h->short_ref_count; out_i++){
  3182. int best_i=INT_MIN;
  3183. int best_poc=INT_MAX;
  3184. for(i=0; i<h->short_ref_count; i++){
  3185. const int poc= h->short_ref[i]->poc;
  3186. if(poc > limit && poc < best_poc){
  3187. best_poc= poc;
  3188. best_i= i;
  3189. }
  3190. }
  3191. assert(best_i != INT_MIN);
  3192. limit= best_poc;
  3193. sorted_short_ref[out_i]= *h->short_ref[best_i];
  3194. tprintf("sorted poc: %d->%d poc:%d fn:%d\n", best_i, out_i, sorted_short_ref[out_i].poc, sorted_short_ref[out_i].frame_num);
  3195. if (-1 == smallest_poc_greater_than_current) {
  3196. if (h->short_ref[best_i]->poc >= s->current_picture_ptr->poc) {
  3197. smallest_poc_greater_than_current = out_i;
  3198. }
  3199. }
  3200. }
  3201. }
  3202. if(s->picture_structure == PICT_FRAME){
  3203. if(h->slice_type==B_TYPE){
  3204. int list;
  3205. tprintf("current poc: %d, smallest_poc_greater_than_current: %d\n", s->current_picture_ptr->poc, smallest_poc_greater_than_current);
  3206. // find the largest poc
  3207. for(list=0; list<2; list++){
  3208. int index = 0;
  3209. int j= -99;
  3210. int step= list ? -1 : 1;
  3211. for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++, j+=step) {
  3212. while(j<0 || j>= h->short_ref_count){
  3213. if(j != -99 && step == (list ? -1 : 1))
  3214. return -1;
  3215. step = -step;
  3216. j= smallest_poc_greater_than_current + (step>>1);
  3217. }
  3218. if(sorted_short_ref[j].reference != 3) continue;
  3219. h->default_ref_list[list][index ]= sorted_short_ref[j];
  3220. h->default_ref_list[list][index++].pic_id= sorted_short_ref[j].frame_num;
  3221. }
  3222. for(i = 0; i < 16 && index < h->ref_count[ list ]; i++){
  3223. if(h->long_ref[i] == NULL) continue;
  3224. if(h->long_ref[i]->reference != 3) continue;
  3225. h->default_ref_list[ list ][index ]= *h->long_ref[i];
  3226. h->default_ref_list[ list ][index++].pic_id= i;;
  3227. }
  3228. if(list && (smallest_poc_greater_than_current<=0 || smallest_poc_greater_than_current>=h->short_ref_count) && (1 < index)){
  3229. // swap the two first elements of L1 when
  3230. // L0 and L1 are identical
  3231. Picture temp= h->default_ref_list[1][0];
  3232. h->default_ref_list[1][0] = h->default_ref_list[1][1];
  3233. h->default_ref_list[1][1] = temp;
  3234. }
  3235. if(index < h->ref_count[ list ])
  3236. memset(&h->default_ref_list[list][index], 0, sizeof(Picture)*(h->ref_count[ list ] - index));
  3237. }
  3238. }else{
  3239. int index=0;
  3240. for(i=0; i<h->short_ref_count; i++){
  3241. if(h->short_ref[i]->reference != 3) continue; //FIXME refernce field shit
  3242. h->default_ref_list[0][index ]= *h->short_ref[i];
  3243. h->default_ref_list[0][index++].pic_id= h->short_ref[i]->frame_num;
  3244. }
  3245. for(i = 0; i < 16; i++){
  3246. if(h->long_ref[i] == NULL) continue;
  3247. if(h->long_ref[i]->reference != 3) continue;
  3248. h->default_ref_list[0][index ]= *h->long_ref[i];
  3249. h->default_ref_list[0][index++].pic_id= i;;
  3250. }
  3251. if(index < h->ref_count[0])
  3252. memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
  3253. }
  3254. }else{ //FIELD
  3255. if(h->slice_type==B_TYPE){
  3256. }else{
  3257. //FIXME second field balh
  3258. }
  3259. }
  3260. #ifdef TRACE
  3261. for (i=0; i<h->ref_count[0]; i++) {
  3262. tprintf("List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]);
  3263. }
  3264. if(h->slice_type==B_TYPE){
  3265. for (i=0; i<h->ref_count[1]; i++) {
  3266. tprintf("List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[0][i].data[0]);
  3267. }
  3268. }
  3269. #endif
  3270. return 0;
  3271. }
  3272. static void print_short_term(H264Context *h);
  3273. static void print_long_term(H264Context *h);
  3274. static int decode_ref_pic_list_reordering(H264Context *h){
  3275. MpegEncContext * const s = &h->s;
  3276. int list, index;
  3277. print_short_term(h);
  3278. print_long_term(h);
  3279. if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move before func
  3280. for(list=0; list<2; list++){
  3281. memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
  3282. if(get_bits1(&s->gb)){
  3283. int pred= h->curr_pic_num;
  3284. for(index=0; ; index++){
  3285. int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
  3286. int pic_id;
  3287. int i;
  3288. Picture *ref = NULL;
  3289. if(reordering_of_pic_nums_idc==3)
  3290. break;
  3291. if(index >= h->ref_count[list]){
  3292. av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
  3293. return -1;
  3294. }
  3295. if(reordering_of_pic_nums_idc<3){
  3296. if(reordering_of_pic_nums_idc<2){
  3297. const int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
  3298. if(abs_diff_pic_num >= h->max_pic_num){
  3299. av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
  3300. return -1;
  3301. }
  3302. if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
  3303. else pred+= abs_diff_pic_num;
  3304. pred &= h->max_pic_num - 1;
  3305. for(i= h->short_ref_count-1; i>=0; i--){
  3306. ref = h->short_ref[i];
  3307. assert(ref->reference == 3);
  3308. assert(!ref->long_ref);
  3309. if(ref->data[0] != NULL && ref->frame_num == pred && ref->long_ref == 0) // ignore non existing pictures by testing data[0] pointer
  3310. break;
  3311. }
  3312. if(i>=0)
  3313. ref->pic_id= ref->frame_num;
  3314. }else{
  3315. pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
  3316. ref = h->long_ref[pic_id];
  3317. ref->pic_id= pic_id;
  3318. assert(ref->reference == 3);
  3319. assert(ref->long_ref);
  3320. i=0;
  3321. }
  3322. if (i < 0) {
  3323. av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
  3324. memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
  3325. } else {
  3326. for(i=index; i+1<h->ref_count[list]; i++){
  3327. if(ref->long_ref == h->ref_list[list][i].long_ref && ref->pic_id == h->ref_list[list][i].pic_id)
  3328. break;
  3329. }
  3330. for(; i > index; i--){
  3331. h->ref_list[list][i]= h->ref_list[list][i-1];
  3332. }
  3333. h->ref_list[list][index]= *ref;
  3334. }
  3335. }else{
  3336. av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
  3337. return -1;
  3338. }
  3339. }
  3340. }
  3341. if(h->slice_type!=B_TYPE) break;
  3342. }
  3343. for(list=0; list<2; list++){
  3344. for(index= 0; index < h->ref_count[list]; index++){
  3345. if(!h->ref_list[list][index].data[0])
  3346. h->ref_list[list][index]= s->current_picture;
  3347. }
  3348. if(h->slice_type!=B_TYPE) break;
  3349. }
  3350. if(h->slice_type==B_TYPE && !h->direct_spatial_mv_pred)
  3351. direct_dist_scale_factor(h);
  3352. direct_ref_list_init(h);
  3353. return 0;
  3354. }
  3355. static int pred_weight_table(H264Context *h){
  3356. MpegEncContext * const s = &h->s;
  3357. int list, i;
  3358. int luma_def, chroma_def;
  3359. h->use_weight= 0;
  3360. h->use_weight_chroma= 0;
  3361. h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
  3362. h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
  3363. luma_def = 1<<h->luma_log2_weight_denom;
  3364. chroma_def = 1<<h->chroma_log2_weight_denom;
  3365. for(list=0; list<2; list++){
  3366. for(i=0; i<h->ref_count[list]; i++){
  3367. int luma_weight_flag, chroma_weight_flag;
  3368. luma_weight_flag= get_bits1(&s->gb);
  3369. if(luma_weight_flag){
  3370. h->luma_weight[list][i]= get_se_golomb(&s->gb);
  3371. h->luma_offset[list][i]= get_se_golomb(&s->gb);
  3372. if( h->luma_weight[list][i] != luma_def
  3373. || h->luma_offset[list][i] != 0)
  3374. h->use_weight= 1;
  3375. }else{
  3376. h->luma_weight[list][i]= luma_def;
  3377. h->luma_offset[list][i]= 0;
  3378. }
  3379. chroma_weight_flag= get_bits1(&s->gb);
  3380. if(chroma_weight_flag){
  3381. int j;
  3382. for(j=0; j<2; j++){
  3383. h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
  3384. h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
  3385. if( h->chroma_weight[list][i][j] != chroma_def
  3386. || h->chroma_offset[list][i][j] != 0)
  3387. h->use_weight_chroma= 1;
  3388. }
  3389. }else{
  3390. int j;
  3391. for(j=0; j<2; j++){
  3392. h->chroma_weight[list][i][j]= chroma_def;
  3393. h->chroma_offset[list][i][j]= 0;
  3394. }
  3395. }
  3396. }
  3397. if(h->slice_type != B_TYPE) break;
  3398. }
  3399. h->use_weight= h->use_weight || h->use_weight_chroma;
  3400. return 0;
  3401. }
  3402. static void implicit_weight_table(H264Context *h){
  3403. MpegEncContext * const s = &h->s;
  3404. int ref0, ref1;
  3405. int cur_poc = s->current_picture_ptr->poc;
  3406. if( h->ref_count[0] == 1 && h->ref_count[1] == 1
  3407. && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
  3408. h->use_weight= 0;
  3409. h->use_weight_chroma= 0;
  3410. return;
  3411. }
  3412. h->use_weight= 2;
  3413. h->use_weight_chroma= 2;
  3414. h->luma_log2_weight_denom= 5;
  3415. h->chroma_log2_weight_denom= 5;
  3416. /* FIXME: MBAFF */
  3417. for(ref0=0; ref0 < h->ref_count[0]; ref0++){
  3418. int poc0 = h->ref_list[0][ref0].poc;
  3419. for(ref1=0; ref1 < h->ref_count[1]; ref1++){
  3420. int poc1 = h->ref_list[1][ref1].poc;
  3421. int td = clip(poc1 - poc0, -128, 127);
  3422. if(td){
  3423. int tb = clip(cur_poc - poc0, -128, 127);
  3424. int tx = (16384 + (ABS(td) >> 1)) / td;
  3425. int dist_scale_factor = clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
  3426. if(dist_scale_factor < -64 || dist_scale_factor > 128)
  3427. h->implicit_weight[ref0][ref1] = 32;
  3428. else
  3429. h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
  3430. }else
  3431. h->implicit_weight[ref0][ref1] = 32;
  3432. }
  3433. }
  3434. }
  3435. static inline void unreference_pic(H264Context *h, Picture *pic){
  3436. int i;
  3437. pic->reference=0;
  3438. if(pic == h->delayed_output_pic)
  3439. pic->reference=1;
  3440. else{
  3441. for(i = 0; h->delayed_pic[i]; i++)
  3442. if(pic == h->delayed_pic[i]){
  3443. pic->reference=1;
  3444. break;
  3445. }
  3446. }
  3447. }
  3448. /**
  3449. * instantaneous decoder refresh.
  3450. */
  3451. static void idr(H264Context *h){
  3452. int i;
  3453. for(i=0; i<16; i++){
  3454. if (h->long_ref[i] != NULL) {
  3455. unreference_pic(h, h->long_ref[i]);
  3456. h->long_ref[i]= NULL;
  3457. }
  3458. }
  3459. h->long_ref_count=0;
  3460. for(i=0; i<h->short_ref_count; i++){
  3461. unreference_pic(h, h->short_ref[i]);
  3462. h->short_ref[i]= NULL;
  3463. }
  3464. h->short_ref_count=0;
  3465. }
  3466. /* forget old pics after a seek */
  3467. static void flush_dpb(AVCodecContext *avctx){
  3468. H264Context *h= avctx->priv_data;
  3469. int i;
  3470. for(i=0; i<16; i++) {
  3471. if(h->delayed_pic[i])
  3472. h->delayed_pic[i]->reference= 0;
  3473. h->delayed_pic[i]= NULL;
  3474. }
  3475. if(h->delayed_output_pic)
  3476. h->delayed_output_pic->reference= 0;
  3477. h->delayed_output_pic= NULL;
  3478. idr(h);
  3479. if(h->s.current_picture_ptr)
  3480. h->s.current_picture_ptr->reference= 0;
  3481. }
  3482. /**
  3483. *
  3484. * @return the removed picture or NULL if an error occurs
  3485. */
  3486. static Picture * remove_short(H264Context *h, int frame_num){
  3487. MpegEncContext * const s = &h->s;
  3488. int i;
  3489. if(s->avctx->debug&FF_DEBUG_MMCO)
  3490. av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
  3491. for(i=0; i<h->short_ref_count; i++){
  3492. Picture *pic= h->short_ref[i];
  3493. if(s->avctx->debug&FF_DEBUG_MMCO)
  3494. av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
  3495. if(pic->frame_num == frame_num){
  3496. h->short_ref[i]= NULL;
  3497. memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i - 1)*sizeof(Picture*));
  3498. h->short_ref_count--;
  3499. return pic;
  3500. }
  3501. }
  3502. return NULL;
  3503. }
  3504. /**
  3505. *
  3506. * @return the removed picture or NULL if an error occurs
  3507. */
  3508. static Picture * remove_long(H264Context *h, int i){
  3509. Picture *pic;
  3510. pic= h->long_ref[i];
  3511. h->long_ref[i]= NULL;
  3512. if(pic) h->long_ref_count--;
  3513. return pic;
  3514. }
  3515. /**
  3516. * print short term list
  3517. */
  3518. static void print_short_term(H264Context *h) {
  3519. uint32_t i;
  3520. if(h->s.avctx->debug&FF_DEBUG_MMCO) {
  3521. av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n");
  3522. for(i=0; i<h->short_ref_count; i++){
  3523. Picture *pic= h->short_ref[i];
  3524. av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
  3525. }
  3526. }
  3527. }
  3528. /**
  3529. * print long term list
  3530. */
  3531. static void print_long_term(H264Context *h) {
  3532. uint32_t i;
  3533. if(h->s.avctx->debug&FF_DEBUG_MMCO) {
  3534. av_log(h->s.avctx, AV_LOG_DEBUG, "long term list:\n");
  3535. for(i = 0; i < 16; i++){
  3536. Picture *pic= h->long_ref[i];
  3537. if (pic) {
  3538. av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
  3539. }
  3540. }
  3541. }
  3542. }
  3543. /**
  3544. * Executes the reference picture marking (memory management control operations).
  3545. */
  3546. static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
  3547. MpegEncContext * const s = &h->s;
  3548. int i, j;
  3549. int current_is_long=0;
  3550. Picture *pic;
  3551. if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
  3552. av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
  3553. for(i=0; i<mmco_count; i++){
  3554. if(s->avctx->debug&FF_DEBUG_MMCO)
  3555. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_frame_num, h->mmco[i].long_index);
  3556. switch(mmco[i].opcode){
  3557. case MMCO_SHORT2UNUSED:
  3558. pic= remove_short(h, mmco[i].short_frame_num);
  3559. if(pic)
  3560. unreference_pic(h, pic);
  3561. else if(s->avctx->debug&FF_DEBUG_MMCO)
  3562. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: remove_short() failure\n");
  3563. break;
  3564. case MMCO_SHORT2LONG:
  3565. pic= remove_long(h, mmco[i].long_index);
  3566. if(pic) unreference_pic(h, pic);
  3567. h->long_ref[ mmco[i].long_index ]= remove_short(h, mmco[i].short_frame_num);
  3568. h->long_ref[ mmco[i].long_index ]->long_ref=1;
  3569. h->long_ref_count++;
  3570. break;
  3571. case MMCO_LONG2UNUSED:
  3572. pic= remove_long(h, mmco[i].long_index);
  3573. if(pic)
  3574. unreference_pic(h, pic);
  3575. else if(s->avctx->debug&FF_DEBUG_MMCO)
  3576. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: remove_long() failure\n");
  3577. break;
  3578. case MMCO_LONG:
  3579. pic= remove_long(h, mmco[i].long_index);
  3580. if(pic) unreference_pic(h, pic);
  3581. h->long_ref[ mmco[i].long_index ]= s->current_picture_ptr;
  3582. h->long_ref[ mmco[i].long_index ]->long_ref=1;
  3583. h->long_ref_count++;
  3584. current_is_long=1;
  3585. break;
  3586. case MMCO_SET_MAX_LONG:
  3587. assert(mmco[i].long_index <= 16);
  3588. // just remove the long term which index is greater than new max
  3589. for(j = mmco[i].long_index; j<16; j++){
  3590. pic = remove_long(h, j);
  3591. if (pic) unreference_pic(h, pic);
  3592. }
  3593. break;
  3594. case MMCO_RESET:
  3595. while(h->short_ref_count){
  3596. pic= remove_short(h, h->short_ref[0]->frame_num);
  3597. unreference_pic(h, pic);
  3598. }
  3599. for(j = 0; j < 16; j++) {
  3600. pic= remove_long(h, j);
  3601. if(pic) unreference_pic(h, pic);
  3602. }
  3603. break;
  3604. default: assert(0);
  3605. }
  3606. }
  3607. if(!current_is_long){
  3608. pic= remove_short(h, s->current_picture_ptr->frame_num);
  3609. if(pic){
  3610. unreference_pic(h, pic);
  3611. av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
  3612. }
  3613. if(h->short_ref_count)
  3614. memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
  3615. h->short_ref[0]= s->current_picture_ptr;
  3616. h->short_ref[0]->long_ref=0;
  3617. h->short_ref_count++;
  3618. }
  3619. print_short_term(h);
  3620. print_long_term(h);
  3621. return 0;
  3622. }
  3623. static int decode_ref_pic_marking(H264Context *h){
  3624. MpegEncContext * const s = &h->s;
  3625. int i;
  3626. if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
  3627. s->broken_link= get_bits1(&s->gb) -1;
  3628. h->mmco[0].long_index= get_bits1(&s->gb) - 1; // current_long_term_idx
  3629. if(h->mmco[0].long_index == -1)
  3630. h->mmco_index= 0;
  3631. else{
  3632. h->mmco[0].opcode= MMCO_LONG;
  3633. h->mmco_index= 1;
  3634. }
  3635. }else{
  3636. if(get_bits1(&s->gb)){ // adaptive_ref_pic_marking_mode_flag
  3637. for(i= 0; i<MAX_MMCO_COUNT; i++) {
  3638. MMCOOpcode opcode= get_ue_golomb(&s->gb);;
  3639. h->mmco[i].opcode= opcode;
  3640. if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
  3641. h->mmco[i].short_frame_num= (h->frame_num - get_ue_golomb(&s->gb) - 1) & ((1<<h->sps.log2_max_frame_num)-1); //FIXME fields
  3642. /* if(h->mmco[i].short_frame_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_frame_num ] == NULL){
  3643. av_log(s->avctx, AV_LOG_ERROR, "illegal short ref in memory management control operation %d\n", mmco);
  3644. return -1;
  3645. }*/
  3646. }
  3647. if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
  3648. h->mmco[i].long_index= get_ue_golomb(&s->gb);
  3649. if(/*h->mmco[i].long_index >= h->long_ref_count || h->long_ref[ h->mmco[i].long_index ] == NULL*/ h->mmco[i].long_index >= 16){
  3650. av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
  3651. return -1;
  3652. }
  3653. }
  3654. if(opcode > MMCO_LONG){
  3655. av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
  3656. return -1;
  3657. }
  3658. if(opcode == MMCO_END)
  3659. break;
  3660. }
  3661. h->mmco_index= i;
  3662. }else{
  3663. assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
  3664. if(h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count){ //FIXME fields
  3665. h->mmco[0].opcode= MMCO_SHORT2UNUSED;
  3666. h->mmco[0].short_frame_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
  3667. h->mmco_index= 1;
  3668. }else
  3669. h->mmco_index= 0;
  3670. }
  3671. }
  3672. return 0;
  3673. }
  3674. static int init_poc(H264Context *h){
  3675. MpegEncContext * const s = &h->s;
  3676. const int max_frame_num= 1<<h->sps.log2_max_frame_num;
  3677. int field_poc[2];
  3678. if(h->nal_unit_type == NAL_IDR_SLICE){
  3679. h->frame_num_offset= 0;
  3680. }else{
  3681. if(h->frame_num < h->prev_frame_num)
  3682. h->frame_num_offset= h->prev_frame_num_offset + max_frame_num;
  3683. else
  3684. h->frame_num_offset= h->prev_frame_num_offset;
  3685. }
  3686. if(h->sps.poc_type==0){
  3687. const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
  3688. if(h->nal_unit_type == NAL_IDR_SLICE){
  3689. h->prev_poc_msb=
  3690. h->prev_poc_lsb= 0;
  3691. }
  3692. if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
  3693. h->poc_msb = h->prev_poc_msb + max_poc_lsb;
  3694. else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
  3695. h->poc_msb = h->prev_poc_msb - max_poc_lsb;
  3696. else
  3697. h->poc_msb = h->prev_poc_msb;
  3698. //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
  3699. field_poc[0] =
  3700. field_poc[1] = h->poc_msb + h->poc_lsb;
  3701. if(s->picture_structure == PICT_FRAME)
  3702. field_poc[1] += h->delta_poc_bottom;
  3703. }else if(h->sps.poc_type==1){
  3704. int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
  3705. int i;
  3706. if(h->sps.poc_cycle_length != 0)
  3707. abs_frame_num = h->frame_num_offset + h->frame_num;
  3708. else
  3709. abs_frame_num = 0;
  3710. if(h->nal_ref_idc==0 && abs_frame_num > 0)
  3711. abs_frame_num--;
  3712. expected_delta_per_poc_cycle = 0;
  3713. for(i=0; i < h->sps.poc_cycle_length; i++)
  3714. expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
  3715. if(abs_frame_num > 0){
  3716. int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
  3717. int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
  3718. expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
  3719. for(i = 0; i <= frame_num_in_poc_cycle; i++)
  3720. expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
  3721. } else
  3722. expectedpoc = 0;
  3723. if(h->nal_ref_idc == 0)
  3724. expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
  3725. field_poc[0] = expectedpoc + h->delta_poc[0];
  3726. field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
  3727. if(s->picture_structure == PICT_FRAME)
  3728. field_poc[1] += h->delta_poc[1];
  3729. }else{
  3730. int poc;
  3731. if(h->nal_unit_type == NAL_IDR_SLICE){
  3732. poc= 0;
  3733. }else{
  3734. if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num);
  3735. else poc= 2*(h->frame_num_offset + h->frame_num) - 1;
  3736. }
  3737. field_poc[0]= poc;
  3738. field_poc[1]= poc;
  3739. }
  3740. if(s->picture_structure != PICT_BOTTOM_FIELD)
  3741. s->current_picture_ptr->field_poc[0]= field_poc[0];
  3742. if(s->picture_structure != PICT_TOP_FIELD)
  3743. s->current_picture_ptr->field_poc[1]= field_poc[1];
  3744. if(s->picture_structure == PICT_FRAME) // FIXME field pix?
  3745. s->current_picture_ptr->poc= FFMIN(field_poc[0], field_poc[1]);
  3746. return 0;
  3747. }
  3748. /**
  3749. * decodes a slice header.
  3750. * this will allso call MPV_common_init() and frame_start() as needed
  3751. */
  3752. static int decode_slice_header(H264Context *h){
  3753. MpegEncContext * const s = &h->s;
  3754. int first_mb_in_slice, pps_id;
  3755. int num_ref_idx_active_override_flag;
  3756. static const uint8_t slice_type_map[5]= {P_TYPE, B_TYPE, I_TYPE, SP_TYPE, SI_TYPE};
  3757. int slice_type;
  3758. int default_ref_list_done = 0;
  3759. s->current_picture.reference= h->nal_ref_idc != 0;
  3760. s->dropable= h->nal_ref_idc == 0;
  3761. first_mb_in_slice= get_ue_golomb(&s->gb);
  3762. slice_type= get_ue_golomb(&s->gb);
  3763. if(slice_type > 9){
  3764. av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
  3765. return -1;
  3766. }
  3767. if(slice_type > 4){
  3768. slice_type -= 5;
  3769. h->slice_type_fixed=1;
  3770. }else
  3771. h->slice_type_fixed=0;
  3772. slice_type= slice_type_map[ slice_type ];
  3773. if (slice_type == I_TYPE
  3774. || (h->slice_num != 0 && slice_type == h->slice_type) ) {
  3775. default_ref_list_done = 1;
  3776. }
  3777. h->slice_type= slice_type;
  3778. s->pict_type= h->slice_type; // to make a few old func happy, it's wrong though
  3779. pps_id= get_ue_golomb(&s->gb);
  3780. if(pps_id>255){
  3781. av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
  3782. return -1;
  3783. }
  3784. h->pps= h->pps_buffer[pps_id];
  3785. if(h->pps.slice_group_count == 0){
  3786. av_log(h->s.avctx, AV_LOG_ERROR, "non existing PPS referenced\n");
  3787. return -1;
  3788. }
  3789. h->sps= h->sps_buffer[ h->pps.sps_id ];
  3790. if(h->sps.log2_max_frame_num == 0){
  3791. av_log(h->s.avctx, AV_LOG_ERROR, "non existing SPS referenced\n");
  3792. return -1;
  3793. }
  3794. if(h->dequant_coeff_pps != pps_id){
  3795. h->dequant_coeff_pps = pps_id;
  3796. init_dequant_tables(h);
  3797. }
  3798. s->mb_width= h->sps.mb_width;
  3799. s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
  3800. h->b_stride= s->mb_width*4;
  3801. h->b8_stride= s->mb_width*2;
  3802. s->width = 16*s->mb_width - 2*(h->sps.crop_left + h->sps.crop_right );
  3803. if(h->sps.frame_mbs_only_flag)
  3804. s->height= 16*s->mb_height - 2*(h->sps.crop_top + h->sps.crop_bottom);
  3805. else
  3806. s->height= 16*s->mb_height - 4*(h->sps.crop_top + h->sps.crop_bottom); //FIXME recheck
  3807. if (s->context_initialized
  3808. && ( s->width != s->avctx->width || s->height != s->avctx->height)) {
  3809. free_tables(h);
  3810. MPV_common_end(s);
  3811. }
  3812. if (!s->context_initialized) {
  3813. if (MPV_common_init(s) < 0)
  3814. return -1;
  3815. if(s->dsp.h264_idct_add == ff_h264_idct_add_c){ //FIXME little ugly
  3816. memcpy(h->zigzag_scan, zigzag_scan, 16*sizeof(uint8_t));
  3817. memcpy(h-> field_scan, field_scan, 16*sizeof(uint8_t));
  3818. }else{
  3819. int i;
  3820. for(i=0; i<16; i++){
  3821. #define T(x) (x>>2) | ((x<<2) & 0xF)
  3822. h->zigzag_scan[i] = T(zigzag_scan[i]);
  3823. h-> field_scan[i] = T( field_scan[i]);
  3824. #undef T
  3825. }
  3826. }
  3827. if(s->dsp.h264_idct8_add == ff_h264_idct8_add_c){
  3828. memcpy(h->zigzag_scan8x8, zigzag_scan8x8, 64*sizeof(uint8_t));
  3829. memcpy(h->zigzag_scan8x8_cavlc, zigzag_scan8x8_cavlc, 64*sizeof(uint8_t));
  3830. }else{
  3831. int i;
  3832. for(i=0; i<64; i++){
  3833. #define T(x) (x>>3) | ((x&7)<<3)
  3834. h->zigzag_scan8x8[i] = T(zigzag_scan8x8[i]);
  3835. h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
  3836. #undef T
  3837. }
  3838. }
  3839. if(h->sps.transform_bypass){ //FIXME same ugly
  3840. h->zigzag_scan_q0 = zigzag_scan;
  3841. h->field_scan_q0 = field_scan;
  3842. h->zigzag_scan8x8_q0 = zigzag_scan8x8;
  3843. h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
  3844. }else{
  3845. h->zigzag_scan_q0 = h->zigzag_scan;
  3846. h->field_scan_q0 = h->field_scan;
  3847. h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
  3848. h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
  3849. }
  3850. alloc_tables(h);
  3851. s->avctx->width = s->width;
  3852. s->avctx->height = s->height;
  3853. s->avctx->sample_aspect_ratio= h->sps.sar;
  3854. if(!s->avctx->sample_aspect_ratio.den)
  3855. s->avctx->sample_aspect_ratio.den = 1;
  3856. if(h->sps.timing_info_present_flag){
  3857. s->avctx->time_base= (AVRational){h->sps.num_units_in_tick * 2, h->sps.time_scale};
  3858. if(h->x264_build > 0 && h->x264_build < 44)
  3859. s->avctx->time_base.den *= 2;
  3860. av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
  3861. s->avctx->time_base.num, s->avctx->time_base.den, 1<<30);
  3862. }
  3863. }
  3864. if(h->slice_num == 0){
  3865. if(frame_start(h) < 0)
  3866. return -1;
  3867. }
  3868. s->current_picture_ptr->frame_num= //FIXME frame_num cleanup
  3869. h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
  3870. h->mb_aff_frame = 0;
  3871. if(h->sps.frame_mbs_only_flag){
  3872. s->picture_structure= PICT_FRAME;
  3873. }else{
  3874. if(get_bits1(&s->gb)) { //field_pic_flag
  3875. s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
  3876. } else {
  3877. s->picture_structure= PICT_FRAME;
  3878. first_mb_in_slice <<= h->sps.mb_aff;
  3879. h->mb_aff_frame = h->sps.mb_aff;
  3880. }
  3881. }
  3882. s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
  3883. s->resync_mb_y = s->mb_y = first_mb_in_slice / s->mb_width;
  3884. if(s->mb_y >= s->mb_height){
  3885. return -1;
  3886. }
  3887. if(s->picture_structure==PICT_FRAME){
  3888. h->curr_pic_num= h->frame_num;
  3889. h->max_pic_num= 1<< h->sps.log2_max_frame_num;
  3890. }else{
  3891. h->curr_pic_num= 2*h->frame_num;
  3892. h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
  3893. }
  3894. if(h->nal_unit_type == NAL_IDR_SLICE){
  3895. get_ue_golomb(&s->gb); /* idr_pic_id */
  3896. }
  3897. if(h->sps.poc_type==0){
  3898. h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
  3899. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
  3900. h->delta_poc_bottom= get_se_golomb(&s->gb);
  3901. }
  3902. }
  3903. if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
  3904. h->delta_poc[0]= get_se_golomb(&s->gb);
  3905. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
  3906. h->delta_poc[1]= get_se_golomb(&s->gb);
  3907. }
  3908. init_poc(h);
  3909. if(h->pps.redundant_pic_cnt_present){
  3910. h->redundant_pic_count= get_ue_golomb(&s->gb);
  3911. }
  3912. //set defaults, might be overriden a few line later
  3913. h->ref_count[0]= h->pps.ref_count[0];
  3914. h->ref_count[1]= h->pps.ref_count[1];
  3915. if(h->slice_type == P_TYPE || h->slice_type == SP_TYPE || h->slice_type == B_TYPE){
  3916. if(h->slice_type == B_TYPE){
  3917. h->direct_spatial_mv_pred= get_bits1(&s->gb);
  3918. }
  3919. num_ref_idx_active_override_flag= get_bits1(&s->gb);
  3920. if(num_ref_idx_active_override_flag){
  3921. h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  3922. if(h->slice_type==B_TYPE)
  3923. h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  3924. if(h->ref_count[0] > 32 || h->ref_count[1] > 32){
  3925. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
  3926. return -1;
  3927. }
  3928. }
  3929. }
  3930. if(!default_ref_list_done){
  3931. fill_default_ref_list(h);
  3932. }
  3933. if(decode_ref_pic_list_reordering(h) < 0)
  3934. return -1;
  3935. if( (h->pps.weighted_pred && (h->slice_type == P_TYPE || h->slice_type == SP_TYPE ))
  3936. || (h->pps.weighted_bipred_idc==1 && h->slice_type==B_TYPE ) )
  3937. pred_weight_table(h);
  3938. else if(h->pps.weighted_bipred_idc==2 && h->slice_type==B_TYPE)
  3939. implicit_weight_table(h);
  3940. else
  3941. h->use_weight = 0;
  3942. if(s->current_picture.reference)
  3943. decode_ref_pic_marking(h);
  3944. if( h->slice_type != I_TYPE && h->slice_type != SI_TYPE && h->pps.cabac )
  3945. h->cabac_init_idc = get_ue_golomb(&s->gb);
  3946. h->last_qscale_diff = 0;
  3947. s->qscale = h->pps.init_qp + get_se_golomb(&s->gb);
  3948. if(s->qscale<0 || s->qscale>51){
  3949. av_log(s->avctx, AV_LOG_ERROR, "QP %d out of range\n", s->qscale);
  3950. return -1;
  3951. }
  3952. h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, s->qscale);
  3953. //FIXME qscale / qp ... stuff
  3954. if(h->slice_type == SP_TYPE){
  3955. get_bits1(&s->gb); /* sp_for_switch_flag */
  3956. }
  3957. if(h->slice_type==SP_TYPE || h->slice_type == SI_TYPE){
  3958. get_se_golomb(&s->gb); /* slice_qs_delta */
  3959. }
  3960. h->deblocking_filter = 1;
  3961. h->slice_alpha_c0_offset = 0;
  3962. h->slice_beta_offset = 0;
  3963. if( h->pps.deblocking_filter_parameters_present ) {
  3964. h->deblocking_filter= get_ue_golomb(&s->gb);
  3965. if(h->deblocking_filter < 2)
  3966. h->deblocking_filter^= 1; // 1<->0
  3967. if( h->deblocking_filter ) {
  3968. h->slice_alpha_c0_offset = get_se_golomb(&s->gb) << 1;
  3969. h->slice_beta_offset = get_se_golomb(&s->gb) << 1;
  3970. }
  3971. }
  3972. if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
  3973. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type != I_TYPE)
  3974. ||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type == B_TYPE)
  3975. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  3976. h->deblocking_filter= 0;
  3977. #if 0 //FMO
  3978. if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
  3979. slice_group_change_cycle= get_bits(&s->gb, ?);
  3980. #endif
  3981. h->slice_num++;
  3982. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  3983. av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c pps:%d frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s\n",
  3984. h->slice_num,
  3985. (s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
  3986. first_mb_in_slice,
  3987. av_get_pict_type_char(h->slice_type),
  3988. pps_id, h->frame_num,
  3989. s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
  3990. h->ref_count[0], h->ref_count[1],
  3991. s->qscale,
  3992. h->deblocking_filter, h->slice_alpha_c0_offset/2, h->slice_beta_offset/2,
  3993. h->use_weight,
  3994. h->use_weight==1 && h->use_weight_chroma ? "c" : ""
  3995. );
  3996. }
  3997. return 0;
  3998. }
  3999. /**
  4000. *
  4001. */
  4002. static inline int get_level_prefix(GetBitContext *gb){
  4003. unsigned int buf;
  4004. int log;
  4005. OPEN_READER(re, gb);
  4006. UPDATE_CACHE(re, gb);
  4007. buf=GET_CACHE(re, gb);
  4008. log= 32 - av_log2(buf);
  4009. #ifdef TRACE
  4010. print_bin(buf>>(32-log), log);
  4011. av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
  4012. #endif
  4013. LAST_SKIP_BITS(re, gb, log);
  4014. CLOSE_READER(re, gb);
  4015. return log-1;
  4016. }
  4017. static inline int get_dct8x8_allowed(H264Context *h){
  4018. int i;
  4019. for(i=0; i<4; i++){
  4020. if(!IS_SUB_8X8(h->sub_mb_type[i])
  4021. || (!h->sps.direct_8x8_inference_flag && IS_DIRECT(h->sub_mb_type[i])))
  4022. return 0;
  4023. }
  4024. return 1;
  4025. }
  4026. /**
  4027. * decodes a residual block.
  4028. * @param n block index
  4029. * @param scantable scantable
  4030. * @param max_coeff number of coefficients in the block
  4031. * @return <0 if an error occured
  4032. */
  4033. static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff){
  4034. MpegEncContext * const s = &h->s;
  4035. static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
  4036. int level[16];
  4037. int zeros_left, coeff_num, coeff_token, total_coeff, i, j, trailing_ones, run_before;
  4038. //FIXME put trailing_onex into the context
  4039. if(n == CHROMA_DC_BLOCK_INDEX){
  4040. coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
  4041. total_coeff= coeff_token>>2;
  4042. }else{
  4043. if(n == LUMA_DC_BLOCK_INDEX){
  4044. total_coeff= pred_non_zero_count(h, 0);
  4045. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  4046. total_coeff= coeff_token>>2;
  4047. }else{
  4048. total_coeff= pred_non_zero_count(h, n);
  4049. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  4050. total_coeff= coeff_token>>2;
  4051. h->non_zero_count_cache[ scan8[n] ]= total_coeff;
  4052. }
  4053. }
  4054. //FIXME set last_non_zero?
  4055. if(total_coeff==0)
  4056. return 0;
  4057. trailing_ones= coeff_token&3;
  4058. tprintf("trailing:%d, total:%d\n", trailing_ones, total_coeff);
  4059. assert(total_coeff<=16);
  4060. for(i=0; i<trailing_ones; i++){
  4061. level[i]= 1 - 2*get_bits1(gb);
  4062. }
  4063. if(i<total_coeff) {
  4064. int level_code, mask;
  4065. int suffix_length = total_coeff > 10 && trailing_ones < 3;
  4066. int prefix= get_level_prefix(gb);
  4067. //first coefficient has suffix_length equal to 0 or 1
  4068. if(prefix<14){ //FIXME try to build a large unified VLC table for all this
  4069. if(suffix_length)
  4070. level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
  4071. else
  4072. level_code= (prefix<<suffix_length); //part
  4073. }else if(prefix==14){
  4074. if(suffix_length)
  4075. level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
  4076. else
  4077. level_code= prefix + get_bits(gb, 4); //part
  4078. }else if(prefix==15){
  4079. level_code= (prefix<<suffix_length) + get_bits(gb, 12); //part
  4080. if(suffix_length==0) level_code+=15; //FIXME doesn't make (much)sense
  4081. }else{
  4082. av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
  4083. return -1;
  4084. }
  4085. if(trailing_ones < 3) level_code += 2;
  4086. suffix_length = 1;
  4087. if(level_code > 5)
  4088. suffix_length++;
  4089. mask= -(level_code&1);
  4090. level[i]= (((2+level_code)>>1) ^ mask) - mask;
  4091. i++;
  4092. //remaining coefficients have suffix_length > 0
  4093. for(;i<total_coeff;i++) {
  4094. static const int suffix_limit[7] = {0,5,11,23,47,95,INT_MAX };
  4095. prefix = get_level_prefix(gb);
  4096. if(prefix<15){
  4097. level_code = (prefix<<suffix_length) + get_bits(gb, suffix_length);
  4098. }else if(prefix==15){
  4099. level_code = (prefix<<suffix_length) + get_bits(gb, 12);
  4100. }else{
  4101. av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
  4102. return -1;
  4103. }
  4104. mask= -(level_code&1);
  4105. level[i]= (((2+level_code)>>1) ^ mask) - mask;
  4106. if(level_code > suffix_limit[suffix_length])
  4107. suffix_length++;
  4108. }
  4109. }
  4110. if(total_coeff == max_coeff)
  4111. zeros_left=0;
  4112. else{
  4113. if(n == CHROMA_DC_BLOCK_INDEX)
  4114. zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
  4115. else
  4116. zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
  4117. }
  4118. coeff_num = zeros_left + total_coeff - 1;
  4119. j = scantable[coeff_num];
  4120. if(n > 24){
  4121. block[j] = level[0];
  4122. for(i=1;i<total_coeff;i++) {
  4123. if(zeros_left <= 0)
  4124. run_before = 0;
  4125. else if(zeros_left < 7){
  4126. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  4127. }else{
  4128. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  4129. }
  4130. zeros_left -= run_before;
  4131. coeff_num -= 1 + run_before;
  4132. j= scantable[ coeff_num ];
  4133. block[j]= level[i];
  4134. }
  4135. }else{
  4136. block[j] = (level[0] * qmul[j] + 32)>>6;
  4137. for(i=1;i<total_coeff;i++) {
  4138. if(zeros_left <= 0)
  4139. run_before = 0;
  4140. else if(zeros_left < 7){
  4141. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  4142. }else{
  4143. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  4144. }
  4145. zeros_left -= run_before;
  4146. coeff_num -= 1 + run_before;
  4147. j= scantable[ coeff_num ];
  4148. block[j]= (level[i] * qmul[j] + 32)>>6;
  4149. }
  4150. }
  4151. if(zeros_left<0){
  4152. av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
  4153. return -1;
  4154. }
  4155. return 0;
  4156. }
  4157. /**
  4158. * decodes a P_SKIP or B_SKIP macroblock
  4159. */
  4160. static void decode_mb_skip(H264Context *h){
  4161. MpegEncContext * const s = &h->s;
  4162. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  4163. int mb_type=0;
  4164. memset(h->non_zero_count[mb_xy], 0, 16);
  4165. memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
  4166. if(h->mb_aff_frame && s->mb_skip_run==0 && (s->mb_y&1)==0){
  4167. h->mb_field_decoding_flag= get_bits1(&s->gb);
  4168. }
  4169. if(h->mb_field_decoding_flag)
  4170. mb_type|= MB_TYPE_INTERLACED;
  4171. if( h->slice_type == B_TYPE )
  4172. {
  4173. // just for fill_caches. pred_direct_motion will set the real mb_type
  4174. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  4175. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  4176. pred_direct_motion(h, &mb_type);
  4177. if(h->pps.cabac){
  4178. fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
  4179. fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 4);
  4180. }
  4181. }
  4182. else
  4183. {
  4184. int mx, my;
  4185. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  4186. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  4187. pred_pskip_motion(h, &mx, &my);
  4188. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  4189. fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
  4190. if(h->pps.cabac)
  4191. fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
  4192. }
  4193. write_back_motion(h, mb_type);
  4194. s->current_picture.mb_type[mb_xy]= mb_type|MB_TYPE_SKIP;
  4195. s->current_picture.qscale_table[mb_xy]= s->qscale;
  4196. h->slice_table[ mb_xy ]= h->slice_num;
  4197. h->prev_mb_skipped= 1;
  4198. }
  4199. /**
  4200. * decodes a macroblock
  4201. * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  4202. */
  4203. static int decode_mb_cavlc(H264Context *h){
  4204. MpegEncContext * const s = &h->s;
  4205. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  4206. int mb_type, partition_count, cbp;
  4207. int dct8x8_allowed= h->pps.transform_8x8_mode;
  4208. s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?
  4209. tprintf("pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  4210. cbp = 0; /* avoid warning. FIXME: find a solution without slowing
  4211. down the code */
  4212. if(h->slice_type != I_TYPE && h->slice_type != SI_TYPE){
  4213. if(s->mb_skip_run==-1)
  4214. s->mb_skip_run= get_ue_golomb(&s->gb);
  4215. if (s->mb_skip_run--) {
  4216. decode_mb_skip(h);
  4217. return 0;
  4218. }
  4219. }
  4220. if(h->mb_aff_frame){
  4221. if ( ((s->mb_y&1) == 0) || h->prev_mb_skipped)
  4222. h->mb_field_decoding_flag = get_bits1(&s->gb);
  4223. }else
  4224. h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
  4225. h->prev_mb_skipped= 0;
  4226. mb_type= get_ue_golomb(&s->gb);
  4227. if(h->slice_type == B_TYPE){
  4228. if(mb_type < 23){
  4229. partition_count= b_mb_type_info[mb_type].partition_count;
  4230. mb_type= b_mb_type_info[mb_type].type;
  4231. }else{
  4232. mb_type -= 23;
  4233. goto decode_intra_mb;
  4234. }
  4235. }else if(h->slice_type == P_TYPE /*|| h->slice_type == SP_TYPE */){
  4236. if(mb_type < 5){
  4237. partition_count= p_mb_type_info[mb_type].partition_count;
  4238. mb_type= p_mb_type_info[mb_type].type;
  4239. }else{
  4240. mb_type -= 5;
  4241. goto decode_intra_mb;
  4242. }
  4243. }else{
  4244. assert(h->slice_type == I_TYPE);
  4245. decode_intra_mb:
  4246. if(mb_type > 25){
  4247. av_log(h->s.avctx, AV_LOG_ERROR, "mb_type %d in %c slice to large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y);
  4248. return -1;
  4249. }
  4250. partition_count=0;
  4251. cbp= i_mb_type_info[mb_type].cbp;
  4252. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  4253. mb_type= i_mb_type_info[mb_type].type;
  4254. }
  4255. if(h->mb_field_decoding_flag)
  4256. mb_type |= MB_TYPE_INTERLACED;
  4257. h->slice_table[ mb_xy ]= h->slice_num;
  4258. if(IS_INTRA_PCM(mb_type)){
  4259. unsigned int x, y;
  4260. // we assume these blocks are very rare so we dont optimize it
  4261. align_get_bits(&s->gb);
  4262. // The pixels are stored in the same order as levels in h->mb array.
  4263. for(y=0; y<16; y++){
  4264. const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
  4265. for(x=0; x<16; x++){
  4266. tprintf("LUMA ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4267. h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= get_bits(&s->gb, 8);
  4268. }
  4269. }
  4270. for(y=0; y<8; y++){
  4271. const int index= 256 + 4*(y&3) + 32*(y>>2);
  4272. for(x=0; x<8; x++){
  4273. tprintf("CHROMA U ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4274. h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
  4275. }
  4276. }
  4277. for(y=0; y<8; y++){
  4278. const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
  4279. for(x=0; x<8; x++){
  4280. tprintf("CHROMA V ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4281. h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
  4282. }
  4283. }
  4284. // In deblocking, the quantizer is 0
  4285. s->current_picture.qscale_table[mb_xy]= 0;
  4286. h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, 0);
  4287. // All coeffs are present
  4288. memset(h->non_zero_count[mb_xy], 16, 16);
  4289. s->current_picture.mb_type[mb_xy]= mb_type;
  4290. return 0;
  4291. }
  4292. fill_caches(h, mb_type, 0);
  4293. //mb_pred
  4294. if(IS_INTRA(mb_type)){
  4295. // init_top_left_availability(h);
  4296. if(IS_INTRA4x4(mb_type)){
  4297. int i;
  4298. int di = 1;
  4299. if(dct8x8_allowed && get_bits1(&s->gb)){
  4300. mb_type |= MB_TYPE_8x8DCT;
  4301. di = 4;
  4302. }
  4303. // fill_intra4x4_pred_table(h);
  4304. for(i=0; i<16; i+=di){
  4305. const int mode_coded= !get_bits1(&s->gb);
  4306. const int predicted_mode= pred_intra_mode(h, i);
  4307. int mode;
  4308. if(mode_coded){
  4309. const int rem_mode= get_bits(&s->gb, 3);
  4310. if(rem_mode<predicted_mode)
  4311. mode= rem_mode;
  4312. else
  4313. mode= rem_mode + 1;
  4314. }else{
  4315. mode= predicted_mode;
  4316. }
  4317. if(di==4)
  4318. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  4319. else
  4320. h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
  4321. }
  4322. write_back_intra_pred_mode(h);
  4323. if( check_intra4x4_pred_mode(h) < 0)
  4324. return -1;
  4325. }else{
  4326. h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode);
  4327. if(h->intra16x16_pred_mode < 0)
  4328. return -1;
  4329. }
  4330. h->chroma_pred_mode= get_ue_golomb(&s->gb);
  4331. h->chroma_pred_mode= check_intra_pred_mode(h, h->chroma_pred_mode);
  4332. if(h->chroma_pred_mode < 0)
  4333. return -1;
  4334. }else if(partition_count==4){
  4335. int i, j, sub_partition_count[4], list, ref[2][4];
  4336. if(h->slice_type == B_TYPE){
  4337. for(i=0; i<4; i++){
  4338. h->sub_mb_type[i]= get_ue_golomb(&s->gb);
  4339. if(h->sub_mb_type[i] >=13){
  4340. av_log(h->s.avctx, AV_LOG_ERROR, "B sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  4341. return -1;
  4342. }
  4343. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  4344. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  4345. }
  4346. if( IS_DIRECT(h->sub_mb_type[0]) || IS_DIRECT(h->sub_mb_type[1])
  4347. || IS_DIRECT(h->sub_mb_type[2]) || IS_DIRECT(h->sub_mb_type[3])) {
  4348. pred_direct_motion(h, &mb_type);
  4349. h->ref_cache[0][scan8[4]] =
  4350. h->ref_cache[1][scan8[4]] =
  4351. h->ref_cache[0][scan8[12]] =
  4352. h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  4353. }
  4354. }else{
  4355. assert(h->slice_type == P_TYPE || h->slice_type == SP_TYPE); //FIXME SP correct ?
  4356. for(i=0; i<4; i++){
  4357. h->sub_mb_type[i]= get_ue_golomb(&s->gb);
  4358. if(h->sub_mb_type[i] >=4){
  4359. av_log(h->s.avctx, AV_LOG_ERROR, "P sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  4360. return -1;
  4361. }
  4362. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  4363. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  4364. }
  4365. }
  4366. for(list=0; list<2; list++){
  4367. int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
  4368. if(ref_count == 0) continue;
  4369. if (h->mb_aff_frame && h->mb_field_decoding_flag) {
  4370. ref_count <<= 1;
  4371. }
  4372. for(i=0; i<4; i++){
  4373. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  4374. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  4375. ref[list][i] = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip?
  4376. }else{
  4377. //FIXME
  4378. ref[list][i] = -1;
  4379. }
  4380. }
  4381. }
  4382. if(dct8x8_allowed)
  4383. dct8x8_allowed = get_dct8x8_allowed(h);
  4384. for(list=0; list<2; list++){
  4385. const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
  4386. if(ref_count == 0) continue;
  4387. for(i=0; i<4; i++){
  4388. if(IS_DIRECT(h->sub_mb_type[i])) {
  4389. h->ref_cache[list][ scan8[4*i] ] = h->ref_cache[list][ scan8[4*i]+1 ];
  4390. continue;
  4391. }
  4392. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ]=
  4393. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  4394. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  4395. const int sub_mb_type= h->sub_mb_type[i];
  4396. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  4397. for(j=0; j<sub_partition_count[i]; j++){
  4398. int mx, my;
  4399. const int index= 4*i + block_width*j;
  4400. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  4401. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
  4402. mx += get_se_golomb(&s->gb);
  4403. my += get_se_golomb(&s->gb);
  4404. tprintf("final mv:%d %d\n", mx, my);
  4405. if(IS_SUB_8X8(sub_mb_type)){
  4406. mv_cache[ 0 ][0]= mv_cache[ 1 ][0]=
  4407. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  4408. mv_cache[ 0 ][1]= mv_cache[ 1 ][1]=
  4409. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  4410. }else if(IS_SUB_8X4(sub_mb_type)){
  4411. mv_cache[ 0 ][0]= mv_cache[ 1 ][0]= mx;
  4412. mv_cache[ 0 ][1]= mv_cache[ 1 ][1]= my;
  4413. }else if(IS_SUB_4X8(sub_mb_type)){
  4414. mv_cache[ 0 ][0]= mv_cache[ 8 ][0]= mx;
  4415. mv_cache[ 0 ][1]= mv_cache[ 8 ][1]= my;
  4416. }else{
  4417. assert(IS_SUB_4X4(sub_mb_type));
  4418. mv_cache[ 0 ][0]= mx;
  4419. mv_cache[ 0 ][1]= my;
  4420. }
  4421. }
  4422. }else{
  4423. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  4424. p[0] = p[1]=
  4425. p[8] = p[9]= 0;
  4426. }
  4427. }
  4428. }
  4429. }else if(IS_DIRECT(mb_type)){
  4430. pred_direct_motion(h, &mb_type);
  4431. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  4432. }else{
  4433. int list, mx, my, i;
  4434. //FIXME we should set ref_idx_l? to 0 if we use that later ...
  4435. if(IS_16X16(mb_type)){
  4436. for(list=0; list<2; list++){
  4437. if(h->ref_count[list]>0){
  4438. if(IS_DIR(mb_type, 0, list)){
  4439. const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4440. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
  4441. }else
  4442. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, (LIST_NOT_USED&0xFF), 1);
  4443. }
  4444. }
  4445. for(list=0; list<2; list++){
  4446. if(IS_DIR(mb_type, 0, list)){
  4447. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
  4448. mx += get_se_golomb(&s->gb);
  4449. my += get_se_golomb(&s->gb);
  4450. tprintf("final mv:%d %d\n", mx, my);
  4451. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
  4452. }else
  4453. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, 0, 4);
  4454. }
  4455. }
  4456. else if(IS_16X8(mb_type)){
  4457. for(list=0; list<2; list++){
  4458. if(h->ref_count[list]>0){
  4459. for(i=0; i<2; i++){
  4460. if(IS_DIR(mb_type, i, list)){
  4461. const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4462. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
  4463. }else
  4464. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (LIST_NOT_USED&0xFF), 1);
  4465. }
  4466. }
  4467. }
  4468. for(list=0; list<2; list++){
  4469. for(i=0; i<2; i++){
  4470. if(IS_DIR(mb_type, i, list)){
  4471. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
  4472. mx += get_se_golomb(&s->gb);
  4473. my += get_se_golomb(&s->gb);
  4474. tprintf("final mv:%d %d\n", mx, my);
  4475. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
  4476. }else
  4477. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  4478. }
  4479. }
  4480. }else{
  4481. assert(IS_8X16(mb_type));
  4482. for(list=0; list<2; list++){
  4483. if(h->ref_count[list]>0){
  4484. for(i=0; i<2; i++){
  4485. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  4486. const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4487. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
  4488. }else
  4489. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (LIST_NOT_USED&0xFF), 1);
  4490. }
  4491. }
  4492. }
  4493. for(list=0; list<2; list++){
  4494. for(i=0; i<2; i++){
  4495. if(IS_DIR(mb_type, i, list)){
  4496. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
  4497. mx += get_se_golomb(&s->gb);
  4498. my += get_se_golomb(&s->gb);
  4499. tprintf("final mv:%d %d\n", mx, my);
  4500. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
  4501. }else
  4502. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  4503. }
  4504. }
  4505. }
  4506. }
  4507. if(IS_INTER(mb_type))
  4508. write_back_motion(h, mb_type);
  4509. if(!IS_INTRA16x16(mb_type)){
  4510. cbp= get_ue_golomb(&s->gb);
  4511. if(cbp > 47){
  4512. av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%d) at %d %d\n", cbp, s->mb_x, s->mb_y);
  4513. return -1;
  4514. }
  4515. if(IS_INTRA4x4(mb_type))
  4516. cbp= golomb_to_intra4x4_cbp[cbp];
  4517. else
  4518. cbp= golomb_to_inter_cbp[cbp];
  4519. }
  4520. if(dct8x8_allowed && (cbp&15) && !IS_INTRA(mb_type)){
  4521. if(get_bits1(&s->gb))
  4522. mb_type |= MB_TYPE_8x8DCT;
  4523. }
  4524. s->current_picture.mb_type[mb_xy]= mb_type;
  4525. if(cbp || IS_INTRA16x16(mb_type)){
  4526. int i8x8, i4x4, chroma_idx;
  4527. int chroma_qp, dquant;
  4528. GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
  4529. const uint8_t *scan, *scan8x8, *dc_scan;
  4530. // fill_non_zero_count_cache(h);
  4531. if(IS_INTERLACED(mb_type)){
  4532. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  4533. dc_scan= luma_dc_field_scan;
  4534. }else{
  4535. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  4536. dc_scan= luma_dc_zigzag_scan;
  4537. }
  4538. scan8x8= s->qscale ? h->zigzag_scan8x8_cavlc : h->zigzag_scan8x8_cavlc_q0;
  4539. dquant= get_se_golomb(&s->gb);
  4540. if( dquant > 25 || dquant < -26 ){
  4541. av_log(h->s.avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
  4542. return -1;
  4543. }
  4544. s->qscale += dquant;
  4545. if(((unsigned)s->qscale) > 51){
  4546. if(s->qscale<0) s->qscale+= 52;
  4547. else s->qscale-= 52;
  4548. }
  4549. h->chroma_qp= chroma_qp= get_chroma_qp(h->pps.chroma_qp_index_offset, s->qscale);
  4550. if(IS_INTRA16x16(mb_type)){
  4551. if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, h->dequant4_coeff[0][s->qscale], 16) < 0){
  4552. return -1; //FIXME continue if partitioned and other return -1 too
  4553. }
  4554. assert((cbp&15) == 0 || (cbp&15) == 15);
  4555. if(cbp&15){
  4556. for(i8x8=0; i8x8<4; i8x8++){
  4557. for(i4x4=0; i4x4<4; i4x4++){
  4558. const int index= i4x4 + 4*i8x8;
  4559. if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, h->dequant4_coeff[0][s->qscale], 15) < 0 ){
  4560. return -1;
  4561. }
  4562. }
  4563. }
  4564. }else{
  4565. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  4566. }
  4567. }else{
  4568. for(i8x8=0; i8x8<4; i8x8++){
  4569. if(cbp & (1<<i8x8)){
  4570. if(IS_8x8DCT(mb_type)){
  4571. DCTELEM *buf = &h->mb[64*i8x8];
  4572. uint8_t *nnz;
  4573. for(i4x4=0; i4x4<4; i4x4++){
  4574. if( decode_residual(h, gb, buf, i4x4+4*i8x8, scan8x8+16*i4x4,
  4575. h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 16) <0 )
  4576. return -1;
  4577. }
  4578. nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  4579. nnz[0] += nnz[1] + nnz[8] + nnz[9];
  4580. }else{
  4581. for(i4x4=0; i4x4<4; i4x4++){
  4582. const int index= i4x4 + 4*i8x8;
  4583. if( decode_residual(h, gb, h->mb + 16*index, index, scan, h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale], 16) <0 ){
  4584. return -1;
  4585. }
  4586. }
  4587. }
  4588. }else{
  4589. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  4590. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  4591. }
  4592. }
  4593. }
  4594. if(cbp&0x30){
  4595. for(chroma_idx=0; chroma_idx<2; chroma_idx++)
  4596. if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, NULL, 4) < 0){
  4597. return -1;
  4598. }
  4599. }
  4600. if(cbp&0x20){
  4601. for(chroma_idx=0; chroma_idx<2; chroma_idx++){
  4602. for(i4x4=0; i4x4<4; i4x4++){
  4603. const int index= 16 + 4*chroma_idx + i4x4;
  4604. if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, h->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][chroma_qp], 15) < 0){
  4605. return -1;
  4606. }
  4607. }
  4608. }
  4609. }else{
  4610. uint8_t * const nnz= &h->non_zero_count_cache[0];
  4611. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  4612. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  4613. }
  4614. }else{
  4615. uint8_t * const nnz= &h->non_zero_count_cache[0];
  4616. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  4617. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  4618. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  4619. }
  4620. s->current_picture.qscale_table[mb_xy]= s->qscale;
  4621. write_back_non_zero_count(h);
  4622. return 0;
  4623. }
  4624. static int decode_cabac_field_decoding_flag(H264Context *h) {
  4625. MpegEncContext * const s = &h->s;
  4626. const int mb_x = s->mb_x;
  4627. const int mb_y = s->mb_y & ~1;
  4628. const int mba_xy = mb_x - 1 + mb_y *s->mb_stride;
  4629. const int mbb_xy = mb_x + (mb_y-2)*s->mb_stride;
  4630. unsigned int ctx = 0;
  4631. if( h->slice_table[mba_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) ) {
  4632. ctx += 1;
  4633. }
  4634. if( h->slice_table[mbb_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) ) {
  4635. ctx += 1;
  4636. }
  4637. return get_cabac( &h->cabac, &h->cabac_state[70 + ctx] );
  4638. }
  4639. static int decode_cabac_intra_mb_type(H264Context *h, int ctx_base, int intra_slice) {
  4640. uint8_t *state= &h->cabac_state[ctx_base];
  4641. int mb_type;
  4642. if(intra_slice){
  4643. MpegEncContext * const s = &h->s;
  4644. const int mba_xy = h->left_mb_xy[0];
  4645. const int mbb_xy = h->top_mb_xy;
  4646. int ctx=0;
  4647. if( h->slice_table[mba_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mba_xy] ) )
  4648. ctx++;
  4649. if( h->slice_table[mbb_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mbb_xy] ) )
  4650. ctx++;
  4651. if( get_cabac( &h->cabac, &state[ctx] ) == 0 )
  4652. return 0; /* I4x4 */
  4653. state += 2;
  4654. }else{
  4655. if( get_cabac( &h->cabac, &state[0] ) == 0 )
  4656. return 0; /* I4x4 */
  4657. }
  4658. if( get_cabac_terminate( &h->cabac ) )
  4659. return 25; /* PCM */
  4660. mb_type = 1; /* I16x16 */
  4661. mb_type += 12 * get_cabac( &h->cabac, &state[1] ); /* cbp_luma != 0 */
  4662. if( get_cabac( &h->cabac, &state[2] ) ) /* cbp_chroma */
  4663. mb_type += 4 + 4 * get_cabac( &h->cabac, &state[2+intra_slice] );
  4664. mb_type += 2 * get_cabac( &h->cabac, &state[3+intra_slice] );
  4665. mb_type += 1 * get_cabac( &h->cabac, &state[3+2*intra_slice] );
  4666. return mb_type;
  4667. }
  4668. static int decode_cabac_mb_type( H264Context *h ) {
  4669. MpegEncContext * const s = &h->s;
  4670. if( h->slice_type == I_TYPE ) {
  4671. return decode_cabac_intra_mb_type(h, 3, 1);
  4672. } else if( h->slice_type == P_TYPE ) {
  4673. if( get_cabac( &h->cabac, &h->cabac_state[14] ) == 0 ) {
  4674. /* P-type */
  4675. if( get_cabac( &h->cabac, &h->cabac_state[15] ) == 0 ) {
  4676. /* P_L0_D16x16, P_8x8 */
  4677. return 3 * get_cabac( &h->cabac, &h->cabac_state[16] );
  4678. } else {
  4679. /* P_L0_D8x16, P_L0_D16x8 */
  4680. return 2 - get_cabac( &h->cabac, &h->cabac_state[17] );
  4681. }
  4682. } else {
  4683. return decode_cabac_intra_mb_type(h, 17, 0) + 5;
  4684. }
  4685. } else if( h->slice_type == B_TYPE ) {
  4686. const int mba_xy = h->left_mb_xy[0];
  4687. const int mbb_xy = h->top_mb_xy;
  4688. int ctx = 0;
  4689. int bits;
  4690. if( h->slice_table[mba_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mba_xy] ) )
  4691. ctx++;
  4692. if( h->slice_table[mbb_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mbb_xy] ) )
  4693. ctx++;
  4694. if( !get_cabac( &h->cabac, &h->cabac_state[27+ctx] ) )
  4695. return 0; /* B_Direct_16x16 */
  4696. if( !get_cabac( &h->cabac, &h->cabac_state[27+3] ) ) {
  4697. return 1 + get_cabac( &h->cabac, &h->cabac_state[27+5] ); /* B_L[01]_16x16 */
  4698. }
  4699. bits = get_cabac( &h->cabac, &h->cabac_state[27+4] ) << 3;
  4700. bits|= get_cabac( &h->cabac, &h->cabac_state[27+5] ) << 2;
  4701. bits|= get_cabac( &h->cabac, &h->cabac_state[27+5] ) << 1;
  4702. bits|= get_cabac( &h->cabac, &h->cabac_state[27+5] );
  4703. if( bits < 8 )
  4704. return bits + 3; /* B_Bi_16x16 through B_L1_L0_16x8 */
  4705. else if( bits == 13 ) {
  4706. return decode_cabac_intra_mb_type(h, 32, 0) + 23;
  4707. } else if( bits == 14 )
  4708. return 11; /* B_L1_L0_8x16 */
  4709. else if( bits == 15 )
  4710. return 22; /* B_8x8 */
  4711. bits= ( bits<<1 ) | get_cabac( &h->cabac, &h->cabac_state[27+5] );
  4712. return bits - 4; /* B_L0_Bi_* through B_Bi_Bi_* */
  4713. } else {
  4714. /* TODO SI/SP frames? */
  4715. return -1;
  4716. }
  4717. }
  4718. static int decode_cabac_mb_skip( H264Context *h) {
  4719. MpegEncContext * const s = &h->s;
  4720. const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  4721. const int mba_xy = mb_xy - 1;
  4722. const int mbb_xy = mb_xy - s->mb_stride;
  4723. int ctx = 0;
  4724. if( h->slice_table[mba_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mba_xy] ))
  4725. ctx++;
  4726. if( h->slice_table[mbb_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mbb_xy] ))
  4727. ctx++;
  4728. if( h->slice_type == B_TYPE )
  4729. ctx += 13;
  4730. return get_cabac( &h->cabac, &h->cabac_state[11+ctx] );
  4731. }
  4732. static int decode_cabac_mb_intra4x4_pred_mode( H264Context *h, int pred_mode ) {
  4733. int mode = 0;
  4734. if( get_cabac( &h->cabac, &h->cabac_state[68] ) )
  4735. return pred_mode;
  4736. mode += 1 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4737. mode += 2 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4738. mode += 4 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4739. if( mode >= pred_mode )
  4740. return mode + 1;
  4741. else
  4742. return mode;
  4743. }
  4744. static int decode_cabac_mb_chroma_pre_mode( H264Context *h) {
  4745. const int mba_xy = h->left_mb_xy[0];
  4746. const int mbb_xy = h->top_mb_xy;
  4747. int ctx = 0;
  4748. /* No need to test for IS_INTRA4x4 and IS_INTRA16x16, as we set chroma_pred_mode_table to 0 */
  4749. if( h->slice_table[mba_xy] == h->slice_num && h->chroma_pred_mode_table[mba_xy] != 0 )
  4750. ctx++;
  4751. if( h->slice_table[mbb_xy] == h->slice_num && h->chroma_pred_mode_table[mbb_xy] != 0 )
  4752. ctx++;
  4753. if( get_cabac( &h->cabac, &h->cabac_state[64+ctx] ) == 0 )
  4754. return 0;
  4755. if( get_cabac( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  4756. return 1;
  4757. if( get_cabac( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  4758. return 2;
  4759. else
  4760. return 3;
  4761. }
  4762. static const uint8_t block_idx_x[16] = {
  4763. 0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3
  4764. };
  4765. static const uint8_t block_idx_y[16] = {
  4766. 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3
  4767. };
  4768. static const uint8_t block_idx_xy[4][4] = {
  4769. { 0, 2, 8, 10},
  4770. { 1, 3, 9, 11},
  4771. { 4, 6, 12, 14},
  4772. { 5, 7, 13, 15}
  4773. };
  4774. static int decode_cabac_mb_cbp_luma( H264Context *h) {
  4775. int cbp = 0;
  4776. int cbp_b = -1;
  4777. int i8x8;
  4778. if( h->slice_table[h->top_mb_xy] == h->slice_num ) {
  4779. cbp_b = h->top_cbp;
  4780. tprintf("cbp_b = top_cbp = %x\n", cbp_b);
  4781. }
  4782. for( i8x8 = 0; i8x8 < 4; i8x8++ ) {
  4783. int cbp_a = -1;
  4784. int x, y;
  4785. int ctx = 0;
  4786. x = block_idx_x[4*i8x8];
  4787. y = block_idx_y[4*i8x8];
  4788. if( x > 0 )
  4789. cbp_a = cbp;
  4790. else if( h->slice_table[h->left_mb_xy[0]] == h->slice_num ) {
  4791. cbp_a = h->left_cbp;
  4792. tprintf("cbp_a = left_cbp = %x\n", cbp_a);
  4793. }
  4794. if( y > 0 )
  4795. cbp_b = cbp;
  4796. /* No need to test for skip as we put 0 for skip block */
  4797. /* No need to test for IPCM as we put 1 for IPCM block */
  4798. if( cbp_a >= 0 ) {
  4799. int i8x8a = block_idx_xy[(x-1)&0x03][y]/4;
  4800. if( ((cbp_a >> i8x8a)&0x01) == 0 )
  4801. ctx++;
  4802. }
  4803. if( cbp_b >= 0 ) {
  4804. int i8x8b = block_idx_xy[x][(y-1)&0x03]/4;
  4805. if( ((cbp_b >> i8x8b)&0x01) == 0 )
  4806. ctx += 2;
  4807. }
  4808. if( get_cabac( &h->cabac, &h->cabac_state[73 + ctx] ) ) {
  4809. cbp |= 1 << i8x8;
  4810. }
  4811. }
  4812. return cbp;
  4813. }
  4814. static int decode_cabac_mb_cbp_chroma( H264Context *h) {
  4815. int ctx;
  4816. int cbp_a, cbp_b;
  4817. cbp_a = (h->left_cbp>>4)&0x03;
  4818. cbp_b = (h-> top_cbp>>4)&0x03;
  4819. ctx = 0;
  4820. if( cbp_a > 0 ) ctx++;
  4821. if( cbp_b > 0 ) ctx += 2;
  4822. if( get_cabac( &h->cabac, &h->cabac_state[77 + ctx] ) == 0 )
  4823. return 0;
  4824. ctx = 4;
  4825. if( cbp_a == 2 ) ctx++;
  4826. if( cbp_b == 2 ) ctx += 2;
  4827. return 1 + get_cabac( &h->cabac, &h->cabac_state[77 + ctx] );
  4828. }
  4829. static int decode_cabac_mb_dqp( H264Context *h) {
  4830. MpegEncContext * const s = &h->s;
  4831. int mbn_xy;
  4832. int ctx = 0;
  4833. int val = 0;
  4834. if( s->mb_x > 0 )
  4835. mbn_xy = s->mb_x + s->mb_y*s->mb_stride - 1;
  4836. else
  4837. mbn_xy = s->mb_width - 1 + (s->mb_y-1)*s->mb_stride;
  4838. if( h->last_qscale_diff != 0 && ( IS_INTRA16x16(s->current_picture.mb_type[mbn_xy] ) || (h->cbp_table[mbn_xy]&0x3f) ) )
  4839. ctx++;
  4840. while( get_cabac( &h->cabac, &h->cabac_state[60 + ctx] ) ) {
  4841. if( ctx < 2 )
  4842. ctx = 2;
  4843. else
  4844. ctx = 3;
  4845. val++;
  4846. if(val > 102) //prevent infinite loop
  4847. return INT_MIN;
  4848. }
  4849. if( val&0x01 )
  4850. return (val + 1)/2;
  4851. else
  4852. return -(val + 1)/2;
  4853. }
  4854. static int decode_cabac_p_mb_sub_type( H264Context *h ) {
  4855. if( get_cabac( &h->cabac, &h->cabac_state[21] ) )
  4856. return 0; /* 8x8 */
  4857. if( !get_cabac( &h->cabac, &h->cabac_state[22] ) )
  4858. return 1; /* 8x4 */
  4859. if( get_cabac( &h->cabac, &h->cabac_state[23] ) )
  4860. return 2; /* 4x8 */
  4861. return 3; /* 4x4 */
  4862. }
  4863. static int decode_cabac_b_mb_sub_type( H264Context *h ) {
  4864. int type;
  4865. if( !get_cabac( &h->cabac, &h->cabac_state[36] ) )
  4866. return 0; /* B_Direct_8x8 */
  4867. if( !get_cabac( &h->cabac, &h->cabac_state[37] ) )
  4868. return 1 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L0_8x8, B_L1_8x8 */
  4869. type = 3;
  4870. if( get_cabac( &h->cabac, &h->cabac_state[38] ) ) {
  4871. if( get_cabac( &h->cabac, &h->cabac_state[39] ) )
  4872. return 11 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L1_4x4, B_Bi_4x4 */
  4873. type += 4;
  4874. }
  4875. type += 2*get_cabac( &h->cabac, &h->cabac_state[39] );
  4876. type += get_cabac( &h->cabac, &h->cabac_state[39] );
  4877. return type;
  4878. }
  4879. static inline int decode_cabac_mb_transform_size( H264Context *h ) {
  4880. return get_cabac( &h->cabac, &h->cabac_state[399 + h->neighbor_transform_size] );
  4881. }
  4882. static int decode_cabac_mb_ref( H264Context *h, int list, int n ) {
  4883. int refa = h->ref_cache[list][scan8[n] - 1];
  4884. int refb = h->ref_cache[list][scan8[n] - 8];
  4885. int ref = 0;
  4886. int ctx = 0;
  4887. if( h->slice_type == B_TYPE) {
  4888. if( refa > 0 && !h->direct_cache[scan8[n] - 1] )
  4889. ctx++;
  4890. if( refb > 0 && !h->direct_cache[scan8[n] - 8] )
  4891. ctx += 2;
  4892. } else {
  4893. if( refa > 0 )
  4894. ctx++;
  4895. if( refb > 0 )
  4896. ctx += 2;
  4897. }
  4898. while( get_cabac( &h->cabac, &h->cabac_state[54+ctx] ) ) {
  4899. ref++;
  4900. if( ctx < 4 )
  4901. ctx = 4;
  4902. else
  4903. ctx = 5;
  4904. }
  4905. return ref;
  4906. }
  4907. static int decode_cabac_mb_mvd( H264Context *h, int list, int n, int l ) {
  4908. int amvd = abs( h->mvd_cache[list][scan8[n] - 1][l] ) +
  4909. abs( h->mvd_cache[list][scan8[n] - 8][l] );
  4910. int ctxbase = (l == 0) ? 40 : 47;
  4911. int ctx, mvd;
  4912. if( amvd < 3 )
  4913. ctx = 0;
  4914. else if( amvd > 32 )
  4915. ctx = 2;
  4916. else
  4917. ctx = 1;
  4918. if(!get_cabac(&h->cabac, &h->cabac_state[ctxbase+ctx]))
  4919. return 0;
  4920. mvd= 1;
  4921. ctx= 3;
  4922. while( mvd < 9 && get_cabac( &h->cabac, &h->cabac_state[ctxbase+ctx] ) ) {
  4923. mvd++;
  4924. if( ctx < 6 )
  4925. ctx++;
  4926. }
  4927. if( mvd >= 9 ) {
  4928. int k = 3;
  4929. while( get_cabac_bypass( &h->cabac ) ) {
  4930. mvd += 1 << k;
  4931. k++;
  4932. }
  4933. while( k-- ) {
  4934. if( get_cabac_bypass( &h->cabac ) )
  4935. mvd += 1 << k;
  4936. }
  4937. }
  4938. if( get_cabac_bypass( &h->cabac ) ) return -mvd;
  4939. else return mvd;
  4940. }
  4941. static int inline get_cabac_cbf_ctx( H264Context *h, int cat, int idx ) {
  4942. int nza, nzb;
  4943. int ctx = 0;
  4944. if( cat == 0 ) {
  4945. nza = h->left_cbp&0x100;
  4946. nzb = h-> top_cbp&0x100;
  4947. } else if( cat == 1 || cat == 2 ) {
  4948. nza = h->non_zero_count_cache[scan8[idx] - 1];
  4949. nzb = h->non_zero_count_cache[scan8[idx] - 8];
  4950. } else if( cat == 3 ) {
  4951. nza = (h->left_cbp>>(6+idx))&0x01;
  4952. nzb = (h-> top_cbp>>(6+idx))&0x01;
  4953. } else {
  4954. assert(cat == 4);
  4955. nza = h->non_zero_count_cache[scan8[16+idx] - 1];
  4956. nzb = h->non_zero_count_cache[scan8[16+idx] - 8];
  4957. }
  4958. if( nza > 0 )
  4959. ctx++;
  4960. if( nzb > 0 )
  4961. ctx += 2;
  4962. return ctx + 4 * cat;
  4963. }
  4964. static int decode_cabac_residual( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff) {
  4965. const int mb_xy = h->s.mb_x + h->s.mb_y*h->s.mb_stride;
  4966. static const int significant_coeff_flag_field_offset[2] = { 105, 277 };
  4967. static const int last_significant_coeff_flag_field_offset[2] = { 166, 338 };
  4968. static const int significant_coeff_flag_offset[6] = { 0, 15, 29, 44, 47, 297 };
  4969. static const int last_significant_coeff_flag_offset[6] = { 0, 15, 29, 44, 47, 251 };
  4970. static const int coeff_abs_level_m1_offset[6] = { 227+0, 227+10, 227+20, 227+30, 227+39, 426 };
  4971. static const int significant_coeff_flag_offset_8x8[63] = {
  4972. 0, 1, 2, 3, 4, 5, 5, 4, 4, 3, 3, 4, 4, 4, 5, 5,
  4973. 4, 4, 4, 4, 3, 3, 6, 7, 7, 7, 8, 9,10, 9, 8, 7,
  4974. 7, 6,11,12,13,11, 6, 7, 8, 9,14,10, 9, 8, 6,11,
  4975. 12,13,11, 6, 9,14,10, 9,11,12,13,11,14,10,12
  4976. };
  4977. static const int last_coeff_flag_offset_8x8[63] = {
  4978. 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  4979. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  4980. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  4981. 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8
  4982. };
  4983. int index[64];
  4984. int i, last;
  4985. int coeff_count = 0;
  4986. int abslevel1 = 1;
  4987. int abslevelgt1 = 0;
  4988. uint8_t *significant_coeff_ctx_base;
  4989. uint8_t *last_coeff_ctx_base;
  4990. uint8_t *abs_level_m1_ctx_base;
  4991. /* cat: 0-> DC 16x16 n = 0
  4992. * 1-> AC 16x16 n = luma4x4idx
  4993. * 2-> Luma4x4 n = luma4x4idx
  4994. * 3-> DC Chroma n = iCbCr
  4995. * 4-> AC Chroma n = 4 * iCbCr + chroma4x4idx
  4996. * 5-> Luma8x8 n = 4 * luma8x8idx
  4997. */
  4998. /* read coded block flag */
  4999. if( cat != 5 ) {
  5000. if( get_cabac( &h->cabac, &h->cabac_state[85 + get_cabac_cbf_ctx( h, cat, n ) ] ) == 0 ) {
  5001. if( cat == 1 || cat == 2 )
  5002. h->non_zero_count_cache[scan8[n]] = 0;
  5003. else if( cat == 4 )
  5004. h->non_zero_count_cache[scan8[16+n]] = 0;
  5005. return 0;
  5006. }
  5007. }
  5008. significant_coeff_ctx_base = h->cabac_state
  5009. + significant_coeff_flag_offset[cat]
  5010. + significant_coeff_flag_field_offset[h->mb_field_decoding_flag];
  5011. last_coeff_ctx_base = h->cabac_state
  5012. + last_significant_coeff_flag_offset[cat]
  5013. + last_significant_coeff_flag_field_offset[h->mb_field_decoding_flag];
  5014. abs_level_m1_ctx_base = h->cabac_state
  5015. + coeff_abs_level_m1_offset[cat];
  5016. if( cat == 5 ) {
  5017. #define DECODE_SIGNIFICANCE( coefs, sig_off, last_off ) \
  5018. for(last= 0; last < coefs; last++) { \
  5019. uint8_t *sig_ctx = significant_coeff_ctx_base + sig_off; \
  5020. if( get_cabac( &h->cabac, sig_ctx )) { \
  5021. uint8_t *last_ctx = last_coeff_ctx_base + last_off; \
  5022. index[coeff_count++] = last; \
  5023. if( get_cabac( &h->cabac, last_ctx ) ) { \
  5024. last= max_coeff; \
  5025. break; \
  5026. } \
  5027. } \
  5028. }
  5029. DECODE_SIGNIFICANCE( 63, significant_coeff_flag_offset_8x8[last],
  5030. last_coeff_flag_offset_8x8[last] );
  5031. } else {
  5032. DECODE_SIGNIFICANCE( max_coeff - 1, last, last );
  5033. }
  5034. if( last == max_coeff -1 ) {
  5035. index[coeff_count++] = last;
  5036. }
  5037. assert(coeff_count > 0);
  5038. if( cat == 0 )
  5039. h->cbp_table[mb_xy] |= 0x100;
  5040. else if( cat == 1 || cat == 2 )
  5041. h->non_zero_count_cache[scan8[n]] = coeff_count;
  5042. else if( cat == 3 )
  5043. h->cbp_table[mb_xy] |= 0x40 << n;
  5044. else if( cat == 4 )
  5045. h->non_zero_count_cache[scan8[16+n]] = coeff_count;
  5046. else {
  5047. assert( cat == 5 );
  5048. fill_rectangle(&h->non_zero_count_cache[scan8[n]], 2, 2, 8, coeff_count, 1);
  5049. }
  5050. for( i = coeff_count - 1; i >= 0; i-- ) {
  5051. uint8_t *ctx = (abslevelgt1 != 0 ? 0 : FFMIN( 4, abslevel1 )) + abs_level_m1_ctx_base;
  5052. int j= scantable[index[i]];
  5053. if( get_cabac( &h->cabac, ctx ) == 0 ) {
  5054. if( !qmul ) {
  5055. if( get_cabac_bypass( &h->cabac ) ) block[j] = -1;
  5056. else block[j] = 1;
  5057. }else{
  5058. if( get_cabac_bypass( &h->cabac ) ) block[j] = (-qmul[j] + 32) >> 6;
  5059. else block[j] = ( qmul[j] + 32) >> 6;
  5060. }
  5061. abslevel1++;
  5062. } else {
  5063. int coeff_abs = 2;
  5064. ctx = 5 + FFMIN( 4, abslevelgt1 ) + abs_level_m1_ctx_base;
  5065. while( coeff_abs < 15 && get_cabac( &h->cabac, ctx ) ) {
  5066. coeff_abs++;
  5067. }
  5068. if( coeff_abs >= 15 ) {
  5069. int j = 0;
  5070. while( get_cabac_bypass( &h->cabac ) ) {
  5071. coeff_abs += 1 << j;
  5072. j++;
  5073. }
  5074. while( j-- ) {
  5075. if( get_cabac_bypass( &h->cabac ) )
  5076. coeff_abs += 1 << j ;
  5077. }
  5078. }
  5079. if( !qmul ) {
  5080. if( get_cabac_bypass( &h->cabac ) ) block[j] = -coeff_abs;
  5081. else block[j] = coeff_abs;
  5082. }else{
  5083. if( get_cabac_bypass( &h->cabac ) ) block[j] = (-coeff_abs * qmul[j] + 32) >> 6;
  5084. else block[j] = ( coeff_abs * qmul[j] + 32) >> 6;
  5085. }
  5086. abslevelgt1++;
  5087. }
  5088. }
  5089. return 0;
  5090. }
  5091. static void inline compute_mb_neighbors(H264Context *h)
  5092. {
  5093. MpegEncContext * const s = &h->s;
  5094. const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  5095. h->top_mb_xy = mb_xy - s->mb_stride;
  5096. h->left_mb_xy[0] = mb_xy - 1;
  5097. if(h->mb_aff_frame){
  5098. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  5099. const int top_pair_xy = pair_xy - s->mb_stride;
  5100. const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  5101. const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  5102. const int curr_mb_frame_flag = !h->mb_field_decoding_flag;
  5103. const int bottom = (s->mb_y & 1);
  5104. if (bottom
  5105. ? !curr_mb_frame_flag // bottom macroblock
  5106. : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
  5107. ) {
  5108. h->top_mb_xy -= s->mb_stride;
  5109. }
  5110. if (left_mb_frame_flag != curr_mb_frame_flag) {
  5111. h->left_mb_xy[0] = pair_xy - 1;
  5112. }
  5113. }
  5114. return;
  5115. }
  5116. /**
  5117. * decodes a macroblock
  5118. * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  5119. */
  5120. static int decode_mb_cabac(H264Context *h) {
  5121. MpegEncContext * const s = &h->s;
  5122. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  5123. int mb_type, partition_count, cbp = 0;
  5124. int dct8x8_allowed= h->pps.transform_8x8_mode;
  5125. s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?)
  5126. tprintf("pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  5127. if( h->slice_type != I_TYPE && h->slice_type != SI_TYPE ) {
  5128. /* read skip flags */
  5129. if( decode_cabac_mb_skip( h ) ) {
  5130. decode_mb_skip(h);
  5131. h->cbp_table[mb_xy] = 0;
  5132. h->chroma_pred_mode_table[mb_xy] = 0;
  5133. h->last_qscale_diff = 0;
  5134. return 0;
  5135. }
  5136. }
  5137. if(h->mb_aff_frame){
  5138. if ( ((s->mb_y&1) == 0) || h->prev_mb_skipped)
  5139. h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
  5140. }else
  5141. h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
  5142. h->prev_mb_skipped = 0;
  5143. compute_mb_neighbors(h);
  5144. if( ( mb_type = decode_cabac_mb_type( h ) ) < 0 ) {
  5145. av_log( h->s.avctx, AV_LOG_ERROR, "decode_cabac_mb_type failed\n" );
  5146. return -1;
  5147. }
  5148. if( h->slice_type == B_TYPE ) {
  5149. if( mb_type < 23 ){
  5150. partition_count= b_mb_type_info[mb_type].partition_count;
  5151. mb_type= b_mb_type_info[mb_type].type;
  5152. }else{
  5153. mb_type -= 23;
  5154. goto decode_intra_mb;
  5155. }
  5156. } else if( h->slice_type == P_TYPE ) {
  5157. if( mb_type < 5) {
  5158. partition_count= p_mb_type_info[mb_type].partition_count;
  5159. mb_type= p_mb_type_info[mb_type].type;
  5160. } else {
  5161. mb_type -= 5;
  5162. goto decode_intra_mb;
  5163. }
  5164. } else {
  5165. assert(h->slice_type == I_TYPE);
  5166. decode_intra_mb:
  5167. partition_count = 0;
  5168. cbp= i_mb_type_info[mb_type].cbp;
  5169. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  5170. mb_type= i_mb_type_info[mb_type].type;
  5171. }
  5172. if(h->mb_field_decoding_flag)
  5173. mb_type |= MB_TYPE_INTERLACED;
  5174. h->slice_table[ mb_xy ]= h->slice_num;
  5175. if(IS_INTRA_PCM(mb_type)) {
  5176. const uint8_t *ptr;
  5177. unsigned int x, y;
  5178. // We assume these blocks are very rare so we dont optimize it.
  5179. // FIXME The two following lines get the bitstream position in the cabac
  5180. // decode, I think it should be done by a function in cabac.h (or cabac.c).
  5181. ptr= h->cabac.bytestream;
  5182. if (h->cabac.low&0x1) ptr-=CABAC_BITS/8;
  5183. // The pixels are stored in the same order as levels in h->mb array.
  5184. for(y=0; y<16; y++){
  5185. const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
  5186. for(x=0; x<16; x++){
  5187. tprintf("LUMA ICPM LEVEL (%3d)\n", *ptr);
  5188. h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= *ptr++;
  5189. }
  5190. }
  5191. for(y=0; y<8; y++){
  5192. const int index= 256 + 4*(y&3) + 32*(y>>2);
  5193. for(x=0; x<8; x++){
  5194. tprintf("CHROMA U ICPM LEVEL (%3d)\n", *ptr);
  5195. h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
  5196. }
  5197. }
  5198. for(y=0; y<8; y++){
  5199. const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
  5200. for(x=0; x<8; x++){
  5201. tprintf("CHROMA V ICPM LEVEL (%3d)\n", *ptr);
  5202. h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
  5203. }
  5204. }
  5205. ff_init_cabac_decoder(&h->cabac, ptr, h->cabac.bytestream_end - ptr);
  5206. // All blocks are present
  5207. h->cbp_table[mb_xy] = 0x1ef;
  5208. h->chroma_pred_mode_table[mb_xy] = 0;
  5209. // In deblocking, the quantizer is 0
  5210. s->current_picture.qscale_table[mb_xy]= 0;
  5211. h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, 0);
  5212. // All coeffs are present
  5213. memset(h->non_zero_count[mb_xy], 16, 16);
  5214. s->current_picture.mb_type[mb_xy]= mb_type;
  5215. return 0;
  5216. }
  5217. fill_caches(h, mb_type, 0);
  5218. if( IS_INTRA( mb_type ) ) {
  5219. int i;
  5220. if( IS_INTRA4x4( mb_type ) ) {
  5221. if( dct8x8_allowed && decode_cabac_mb_transform_size( h ) ) {
  5222. mb_type |= MB_TYPE_8x8DCT;
  5223. for( i = 0; i < 16; i+=4 ) {
  5224. int pred = pred_intra_mode( h, i );
  5225. int mode = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  5226. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  5227. }
  5228. } else {
  5229. for( i = 0; i < 16; i++ ) {
  5230. int pred = pred_intra_mode( h, i );
  5231. h->intra4x4_pred_mode_cache[ scan8[i] ] = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  5232. //av_log( s->avctx, AV_LOG_ERROR, "i4x4 pred=%d mode=%d\n", pred, h->intra4x4_pred_mode_cache[ scan8[i] ] );
  5233. }
  5234. }
  5235. write_back_intra_pred_mode(h);
  5236. if( check_intra4x4_pred_mode(h) < 0 ) return -1;
  5237. } else {
  5238. h->intra16x16_pred_mode= check_intra_pred_mode( h, h->intra16x16_pred_mode );
  5239. if( h->intra16x16_pred_mode < 0 ) return -1;
  5240. }
  5241. h->chroma_pred_mode_table[mb_xy] =
  5242. h->chroma_pred_mode = decode_cabac_mb_chroma_pre_mode( h );
  5243. h->chroma_pred_mode= check_intra_pred_mode( h, h->chroma_pred_mode );
  5244. if( h->chroma_pred_mode < 0 ) return -1;
  5245. } else if( partition_count == 4 ) {
  5246. int i, j, sub_partition_count[4], list, ref[2][4];
  5247. if( h->slice_type == B_TYPE ) {
  5248. for( i = 0; i < 4; i++ ) {
  5249. h->sub_mb_type[i] = decode_cabac_b_mb_sub_type( h );
  5250. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  5251. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  5252. }
  5253. if( IS_DIRECT(h->sub_mb_type[0]) || IS_DIRECT(h->sub_mb_type[1])
  5254. || IS_DIRECT(h->sub_mb_type[2]) || IS_DIRECT(h->sub_mb_type[3])) {
  5255. pred_direct_motion(h, &mb_type);
  5256. if( h->ref_count[0] > 1 || h->ref_count[1] > 1 ) {
  5257. for( i = 0; i < 4; i++ )
  5258. if( IS_DIRECT(h->sub_mb_type[i]) )
  5259. fill_rectangle( &h->direct_cache[scan8[4*i]], 2, 2, 8, 1, 1 );
  5260. }
  5261. }
  5262. } else {
  5263. for( i = 0; i < 4; i++ ) {
  5264. h->sub_mb_type[i] = decode_cabac_p_mb_sub_type( h );
  5265. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  5266. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  5267. }
  5268. }
  5269. for( list = 0; list < 2; list++ ) {
  5270. if( h->ref_count[list] > 0 ) {
  5271. for( i = 0; i < 4; i++ ) {
  5272. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  5273. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  5274. if( h->ref_count[list] > 1 )
  5275. ref[list][i] = decode_cabac_mb_ref( h, list, 4*i );
  5276. else
  5277. ref[list][i] = 0;
  5278. } else {
  5279. ref[list][i] = -1;
  5280. }
  5281. h->ref_cache[list][ scan8[4*i]+1 ]=
  5282. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  5283. }
  5284. }
  5285. }
  5286. if(dct8x8_allowed)
  5287. dct8x8_allowed = get_dct8x8_allowed(h);
  5288. for(list=0; list<2; list++){
  5289. for(i=0; i<4; i++){
  5290. if(IS_DIRECT(h->sub_mb_type[i])){
  5291. fill_rectangle(h->mvd_cache[list][scan8[4*i]], 2, 2, 8, 0, 4);
  5292. continue;
  5293. }
  5294. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ];
  5295. if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
  5296. const int sub_mb_type= h->sub_mb_type[i];
  5297. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  5298. for(j=0; j<sub_partition_count[i]; j++){
  5299. int mpx, mpy;
  5300. int mx, my;
  5301. const int index= 4*i + block_width*j;
  5302. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  5303. int16_t (* mvd_cache)[2]= &h->mvd_cache[list][ scan8[index] ];
  5304. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mpx, &mpy);
  5305. mx = mpx + decode_cabac_mb_mvd( h, list, index, 0 );
  5306. my = mpy + decode_cabac_mb_mvd( h, list, index, 1 );
  5307. tprintf("final mv:%d %d\n", mx, my);
  5308. if(IS_SUB_8X8(sub_mb_type)){
  5309. mv_cache[ 0 ][0]= mv_cache[ 1 ][0]=
  5310. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  5311. mv_cache[ 0 ][1]= mv_cache[ 1 ][1]=
  5312. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  5313. mvd_cache[ 0 ][0]= mvd_cache[ 1 ][0]=
  5314. mvd_cache[ 8 ][0]= mvd_cache[ 9 ][0]= mx - mpx;
  5315. mvd_cache[ 0 ][1]= mvd_cache[ 1 ][1]=
  5316. mvd_cache[ 8 ][1]= mvd_cache[ 9 ][1]= my - mpy;
  5317. }else if(IS_SUB_8X4(sub_mb_type)){
  5318. mv_cache[ 0 ][0]= mv_cache[ 1 ][0]= mx;
  5319. mv_cache[ 0 ][1]= mv_cache[ 1 ][1]= my;
  5320. mvd_cache[ 0 ][0]= mvd_cache[ 1 ][0]= mx- mpx;
  5321. mvd_cache[ 0 ][1]= mvd_cache[ 1 ][1]= my - mpy;
  5322. }else if(IS_SUB_4X8(sub_mb_type)){
  5323. mv_cache[ 0 ][0]= mv_cache[ 8 ][0]= mx;
  5324. mv_cache[ 0 ][1]= mv_cache[ 8 ][1]= my;
  5325. mvd_cache[ 0 ][0]= mvd_cache[ 8 ][0]= mx - mpx;
  5326. mvd_cache[ 0 ][1]= mvd_cache[ 8 ][1]= my - mpy;
  5327. }else{
  5328. assert(IS_SUB_4X4(sub_mb_type));
  5329. mv_cache[ 0 ][0]= mx;
  5330. mv_cache[ 0 ][1]= my;
  5331. mvd_cache[ 0 ][0]= mx - mpx;
  5332. mvd_cache[ 0 ][1]= my - mpy;
  5333. }
  5334. }
  5335. }else{
  5336. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  5337. uint32_t *pd= (uint32_t *)&h->mvd_cache[list][ scan8[4*i] ][0];
  5338. p[0] = p[1] = p[8] = p[9] = 0;
  5339. pd[0]= pd[1]= pd[8]= pd[9]= 0;
  5340. }
  5341. }
  5342. }
  5343. } else if( IS_DIRECT(mb_type) ) {
  5344. pred_direct_motion(h, &mb_type);
  5345. fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
  5346. fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 4);
  5347. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  5348. } else {
  5349. int list, mx, my, i, mpx, mpy;
  5350. if(IS_16X16(mb_type)){
  5351. for(list=0; list<2; list++){
  5352. if(IS_DIR(mb_type, 0, list)){
  5353. if(h->ref_count[list] > 0 ){
  5354. const int ref = h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 0 ) : 0;
  5355. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, ref, 1);
  5356. }
  5357. }else
  5358. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1);
  5359. }
  5360. for(list=0; list<2; list++){
  5361. if(IS_DIR(mb_type, 0, list)){
  5362. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mpx, &mpy);
  5363. mx = mpx + decode_cabac_mb_mvd( h, list, 0, 0 );
  5364. my = mpy + decode_cabac_mb_mvd( h, list, 0, 1 );
  5365. tprintf("final mv:%d %d\n", mx, my);
  5366. fill_rectangle(h->mvd_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  5367. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
  5368. }else
  5369. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, 0, 4);
  5370. }
  5371. }
  5372. else if(IS_16X8(mb_type)){
  5373. for(list=0; list<2; list++){
  5374. if(h->ref_count[list]>0){
  5375. for(i=0; i<2; i++){
  5376. if(IS_DIR(mb_type, i, list)){
  5377. const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 8*i ) : 0;
  5378. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, ref, 1);
  5379. }else
  5380. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (LIST_NOT_USED&0xFF), 1);
  5381. }
  5382. }
  5383. }
  5384. for(list=0; list<2; list++){
  5385. for(i=0; i<2; i++){
  5386. if(IS_DIR(mb_type, i, list)){
  5387. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mpx, &mpy);
  5388. mx = mpx + decode_cabac_mb_mvd( h, list, 8*i, 0 );
  5389. my = mpy + decode_cabac_mb_mvd( h, list, 8*i, 1 );
  5390. tprintf("final mv:%d %d\n", mx, my);
  5391. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx-mpx,my-mpy), 4);
  5392. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
  5393. }else{
  5394. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  5395. fill_rectangle(h-> mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  5396. }
  5397. }
  5398. }
  5399. }else{
  5400. assert(IS_8X16(mb_type));
  5401. for(list=0; list<2; list++){
  5402. if(h->ref_count[list]>0){
  5403. for(i=0; i<2; i++){
  5404. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  5405. const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 4*i ) : 0;
  5406. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, ref, 1);
  5407. }else
  5408. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (LIST_NOT_USED&0xFF), 1);
  5409. }
  5410. }
  5411. }
  5412. for(list=0; list<2; list++){
  5413. for(i=0; i<2; i++){
  5414. if(IS_DIR(mb_type, i, list)){
  5415. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mpx, &mpy);
  5416. mx = mpx + decode_cabac_mb_mvd( h, list, 4*i, 0 );
  5417. my = mpy + decode_cabac_mb_mvd( h, list, 4*i, 1 );
  5418. tprintf("final mv:%d %d\n", mx, my);
  5419. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  5420. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
  5421. }else{
  5422. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  5423. fill_rectangle(h-> mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  5424. }
  5425. }
  5426. }
  5427. }
  5428. }
  5429. if( IS_INTER( mb_type ) ) {
  5430. h->chroma_pred_mode_table[mb_xy] = 0;
  5431. write_back_motion( h, mb_type );
  5432. }
  5433. if( !IS_INTRA16x16( mb_type ) ) {
  5434. cbp = decode_cabac_mb_cbp_luma( h );
  5435. cbp |= decode_cabac_mb_cbp_chroma( h ) << 4;
  5436. }
  5437. h->cbp_table[mb_xy] = cbp;
  5438. if( dct8x8_allowed && (cbp&15) && !IS_INTRA( mb_type ) ) {
  5439. if( decode_cabac_mb_transform_size( h ) )
  5440. mb_type |= MB_TYPE_8x8DCT;
  5441. }
  5442. s->current_picture.mb_type[mb_xy]= mb_type;
  5443. if( cbp || IS_INTRA16x16( mb_type ) ) {
  5444. const uint8_t *scan, *scan8x8, *dc_scan;
  5445. int dqp;
  5446. if(IS_INTERLACED(mb_type)){
  5447. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  5448. dc_scan= luma_dc_field_scan;
  5449. }else{
  5450. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  5451. dc_scan= luma_dc_zigzag_scan;
  5452. }
  5453. scan8x8= s->qscale ? h->zigzag_scan8x8 : h->zigzag_scan8x8_q0;
  5454. h->last_qscale_diff = dqp = decode_cabac_mb_dqp( h );
  5455. if( dqp == INT_MIN ){
  5456. av_log(h->s.avctx, AV_LOG_ERROR, "cabac decode of qscale diff failed at %d %d\n", s->mb_x, s->mb_y);
  5457. return -1;
  5458. }
  5459. s->qscale += dqp;
  5460. if(((unsigned)s->qscale) > 51){
  5461. if(s->qscale<0) s->qscale+= 52;
  5462. else s->qscale-= 52;
  5463. }
  5464. h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, s->qscale);
  5465. if( IS_INTRA16x16( mb_type ) ) {
  5466. int i;
  5467. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 DC\n" );
  5468. if( decode_cabac_residual( h, h->mb, 0, 0, dc_scan, NULL, 16) < 0)
  5469. return -1;
  5470. if( cbp&15 ) {
  5471. for( i = 0; i < 16; i++ ) {
  5472. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 AC:%d\n", i );
  5473. if( decode_cabac_residual(h, h->mb + 16*i, 1, i, scan + 1, h->dequant4_coeff[0][s->qscale], 15) < 0 )
  5474. return -1;
  5475. }
  5476. } else {
  5477. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  5478. }
  5479. } else {
  5480. int i8x8, i4x4;
  5481. for( i8x8 = 0; i8x8 < 4; i8x8++ ) {
  5482. if( cbp & (1<<i8x8) ) {
  5483. if( IS_8x8DCT(mb_type) ) {
  5484. if( decode_cabac_residual(h, h->mb + 64*i8x8, 5, 4*i8x8,
  5485. scan8x8, h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 64) < 0 )
  5486. return -1;
  5487. } else
  5488. for( i4x4 = 0; i4x4 < 4; i4x4++ ) {
  5489. const int index = 4*i8x8 + i4x4;
  5490. //av_log( s->avctx, AV_LOG_ERROR, "Luma4x4: %d\n", index );
  5491. if( decode_cabac_residual(h, h->mb + 16*index, 2, index, scan, h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale], 16) < 0 )
  5492. return -1;
  5493. }
  5494. } else {
  5495. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  5496. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  5497. }
  5498. }
  5499. }
  5500. if( cbp&0x30 ){
  5501. int c;
  5502. for( c = 0; c < 2; c++ ) {
  5503. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-DC\n",c );
  5504. if( decode_cabac_residual(h, h->mb + 256 + 16*4*c, 3, c, chroma_dc_scan, NULL, 4) < 0)
  5505. return -1;
  5506. }
  5507. }
  5508. if( cbp&0x20 ) {
  5509. int c, i;
  5510. for( c = 0; c < 2; c++ ) {
  5511. for( i = 0; i < 4; i++ ) {
  5512. const int index = 16 + 4 * c + i;
  5513. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-AC %d\n",c, index - 16 );
  5514. if( decode_cabac_residual(h, h->mb + 16*index, 4, index - 16, scan + 1, h->dequant4_coeff[c+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp], 15) < 0)
  5515. return -1;
  5516. }
  5517. }
  5518. } else {
  5519. uint8_t * const nnz= &h->non_zero_count_cache[0];
  5520. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  5521. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  5522. }
  5523. } else {
  5524. uint8_t * const nnz= &h->non_zero_count_cache[0];
  5525. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  5526. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  5527. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  5528. }
  5529. s->current_picture.qscale_table[mb_xy]= s->qscale;
  5530. write_back_non_zero_count(h);
  5531. return 0;
  5532. }
  5533. static void filter_mb_edgev( H264Context *h, uint8_t *pix, int stride, int bS[4], int qp ) {
  5534. int i, d;
  5535. const int index_a = clip( qp + h->slice_alpha_c0_offset, 0, 51 );
  5536. const int alpha = alpha_table[index_a];
  5537. const int beta = beta_table[clip( qp + h->slice_beta_offset, 0, 51 )];
  5538. if( bS[0] < 4 ) {
  5539. int8_t tc[4];
  5540. for(i=0; i<4; i++)
  5541. tc[i] = bS[i] ? tc0_table[index_a][bS[i] - 1] : -1;
  5542. h->s.dsp.h264_h_loop_filter_luma(pix, stride, alpha, beta, tc);
  5543. } else {
  5544. /* 16px edge length, because bS=4 is triggered by being at
  5545. * the edge of an intra MB, so all 4 bS are the same */
  5546. for( d = 0; d < 16; d++ ) {
  5547. const int p0 = pix[-1];
  5548. const int p1 = pix[-2];
  5549. const int p2 = pix[-3];
  5550. const int q0 = pix[0];
  5551. const int q1 = pix[1];
  5552. const int q2 = pix[2];
  5553. if( ABS( p0 - q0 ) < alpha &&
  5554. ABS( p1 - p0 ) < beta &&
  5555. ABS( q1 - q0 ) < beta ) {
  5556. if(ABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5557. if( ABS( p2 - p0 ) < beta)
  5558. {
  5559. const int p3 = pix[-4];
  5560. /* p0', p1', p2' */
  5561. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5562. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5563. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5564. } else {
  5565. /* p0' */
  5566. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5567. }
  5568. if( ABS( q2 - q0 ) < beta)
  5569. {
  5570. const int q3 = pix[3];
  5571. /* q0', q1', q2' */
  5572. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5573. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5574. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5575. } else {
  5576. /* q0' */
  5577. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5578. }
  5579. }else{
  5580. /* p0', q0' */
  5581. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5582. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5583. }
  5584. tprintf("filter_mb_edgev i:%d d:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, p2, p1, p0, q0, q1, q2, pix[-2], pix[-1], pix[0], pix[1]);
  5585. }
  5586. pix += stride;
  5587. }
  5588. }
  5589. }
  5590. static void filter_mb_edgecv( H264Context *h, uint8_t *pix, int stride, int bS[4], int qp ) {
  5591. int i;
  5592. const int index_a = clip( qp + h->slice_alpha_c0_offset, 0, 51 );
  5593. const int alpha = alpha_table[index_a];
  5594. const int beta = beta_table[clip( qp + h->slice_beta_offset, 0, 51 )];
  5595. if( bS[0] < 4 ) {
  5596. int8_t tc[4];
  5597. for(i=0; i<4; i++)
  5598. tc[i] = bS[i] ? tc0_table[index_a][bS[i] - 1] + 1 : 0;
  5599. h->s.dsp.h264_h_loop_filter_chroma(pix, stride, alpha, beta, tc);
  5600. } else {
  5601. h->s.dsp.h264_h_loop_filter_chroma_intra(pix, stride, alpha, beta);
  5602. }
  5603. }
  5604. static void filter_mb_mbaff_edgev( H264Context *h, uint8_t *pix, int stride, int bS[8], int qp[2] ) {
  5605. int i;
  5606. for( i = 0; i < 16; i++, pix += stride) {
  5607. int index_a;
  5608. int alpha;
  5609. int beta;
  5610. int qp_index;
  5611. int bS_index = (i >> 1);
  5612. if (h->mb_field_decoding_flag) {
  5613. bS_index &= ~1;
  5614. bS_index |= (i & 1);
  5615. }
  5616. if( bS[bS_index] == 0 ) {
  5617. continue;
  5618. }
  5619. qp_index = h->mb_field_decoding_flag ? (i & 1) : (i >> 3);
  5620. index_a = clip( qp[qp_index] + h->slice_alpha_c0_offset, 0, 51 );
  5621. alpha = alpha_table[index_a];
  5622. beta = beta_table[clip( qp[qp_index] + h->slice_beta_offset, 0, 51 )];
  5623. if( bS[bS_index] < 4 ) {
  5624. const int tc0 = tc0_table[index_a][bS[bS_index] - 1];
  5625. /* 4px edge length */
  5626. const int p0 = pix[-1];
  5627. const int p1 = pix[-2];
  5628. const int p2 = pix[-3];
  5629. const int q0 = pix[0];
  5630. const int q1 = pix[1];
  5631. const int q2 = pix[2];
  5632. if( ABS( p0 - q0 ) < alpha &&
  5633. ABS( p1 - p0 ) < beta &&
  5634. ABS( q1 - q0 ) < beta ) {
  5635. int tc = tc0;
  5636. int i_delta;
  5637. if( ABS( p2 - p0 ) < beta ) {
  5638. pix[-2] = p1 + clip( ( p2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( p1 << 1 ) ) >> 1, -tc0, tc0 );
  5639. tc++;
  5640. }
  5641. if( ABS( q2 - q0 ) < beta ) {
  5642. pix[1] = q1 + clip( ( q2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( q1 << 1 ) ) >> 1, -tc0, tc0 );
  5643. tc++;
  5644. }
  5645. i_delta = clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  5646. pix[-1] = clip_uint8( p0 + i_delta ); /* p0' */
  5647. pix[0] = clip_uint8( q0 - i_delta ); /* q0' */
  5648. tprintf("filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  5649. }
  5650. }else{
  5651. /* 4px edge length */
  5652. const int p0 = pix[-1];
  5653. const int p1 = pix[-2];
  5654. const int p2 = pix[-3];
  5655. const int q0 = pix[0];
  5656. const int q1 = pix[1];
  5657. const int q2 = pix[2];
  5658. if( ABS( p0 - q0 ) < alpha &&
  5659. ABS( p1 - p0 ) < beta &&
  5660. ABS( q1 - q0 ) < beta ) {
  5661. if(ABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5662. if( ABS( p2 - p0 ) < beta)
  5663. {
  5664. const int p3 = pix[-4];
  5665. /* p0', p1', p2' */
  5666. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5667. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5668. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5669. } else {
  5670. /* p0' */
  5671. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5672. }
  5673. if( ABS( q2 - q0 ) < beta)
  5674. {
  5675. const int q3 = pix[3];
  5676. /* q0', q1', q2' */
  5677. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5678. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5679. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5680. } else {
  5681. /* q0' */
  5682. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5683. }
  5684. }else{
  5685. /* p0', q0' */
  5686. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5687. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5688. }
  5689. tprintf("filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, p2, p1, p0, q0, q1, q2, pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  5690. }
  5691. }
  5692. }
  5693. }
  5694. static void filter_mb_mbaff_edgecv( H264Context *h, uint8_t *pix, int stride, int bS[4], int qp[2] ) {
  5695. int i;
  5696. for( i = 0; i < 8; i++, pix += stride) {
  5697. int index_a;
  5698. int alpha;
  5699. int beta;
  5700. int qp_index;
  5701. int bS_index = i;
  5702. if( bS[bS_index] == 0 ) {
  5703. continue;
  5704. }
  5705. qp_index = h->mb_field_decoding_flag ? (i & 1) : (i >> 3);
  5706. index_a = clip( qp[qp_index] + h->slice_alpha_c0_offset, 0, 51 );
  5707. alpha = alpha_table[index_a];
  5708. beta = beta_table[clip( qp[qp_index] + h->slice_beta_offset, 0, 51 )];
  5709. if( bS[bS_index] < 4 ) {
  5710. const int tc = tc0_table[index_a][bS[bS_index] - 1] + 1;
  5711. /* 2px edge length (because we use same bS than the one for luma) */
  5712. const int p0 = pix[-1];
  5713. const int p1 = pix[-2];
  5714. const int q0 = pix[0];
  5715. const int q1 = pix[1];
  5716. if( ABS( p0 - q0 ) < alpha &&
  5717. ABS( p1 - p0 ) < beta &&
  5718. ABS( q1 - q0 ) < beta ) {
  5719. const int i_delta = clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  5720. pix[-1] = clip_uint8( p0 + i_delta ); /* p0' */
  5721. pix[0] = clip_uint8( q0 - i_delta ); /* q0' */
  5722. tprintf("filter_mb_mbaff_edgecv i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  5723. }
  5724. }else{
  5725. const int p0 = pix[-1];
  5726. const int p1 = pix[-2];
  5727. const int q0 = pix[0];
  5728. const int q1 = pix[1];
  5729. if( ABS( p0 - q0 ) < alpha &&
  5730. ABS( p1 - p0 ) < beta &&
  5731. ABS( q1 - q0 ) < beta ) {
  5732. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2; /* p0' */
  5733. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; /* q0' */
  5734. tprintf("filter_mb_mbaff_edgecv i:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, pix[-3], p1, p0, q0, q1, pix[2], pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  5735. }
  5736. }
  5737. }
  5738. }
  5739. static void filter_mb_edgeh( H264Context *h, uint8_t *pix, int stride, int bS[4], int qp ) {
  5740. int i, d;
  5741. const int index_a = clip( qp + h->slice_alpha_c0_offset, 0, 51 );
  5742. const int alpha = alpha_table[index_a];
  5743. const int beta = beta_table[clip( qp + h->slice_beta_offset, 0, 51 )];
  5744. const int pix_next = stride;
  5745. if( bS[0] < 4 ) {
  5746. int8_t tc[4];
  5747. for(i=0; i<4; i++)
  5748. tc[i] = bS[i] ? tc0_table[index_a][bS[i] - 1] : -1;
  5749. h->s.dsp.h264_v_loop_filter_luma(pix, stride, alpha, beta, tc);
  5750. } else {
  5751. /* 16px edge length, see filter_mb_edgev */
  5752. for( d = 0; d < 16; d++ ) {
  5753. const int p0 = pix[-1*pix_next];
  5754. const int p1 = pix[-2*pix_next];
  5755. const int p2 = pix[-3*pix_next];
  5756. const int q0 = pix[0];
  5757. const int q1 = pix[1*pix_next];
  5758. const int q2 = pix[2*pix_next];
  5759. if( ABS( p0 - q0 ) < alpha &&
  5760. ABS( p1 - p0 ) < beta &&
  5761. ABS( q1 - q0 ) < beta ) {
  5762. const int p3 = pix[-4*pix_next];
  5763. const int q3 = pix[ 3*pix_next];
  5764. if(ABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5765. if( ABS( p2 - p0 ) < beta) {
  5766. /* p0', p1', p2' */
  5767. pix[-1*pix_next] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5768. pix[-2*pix_next] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5769. pix[-3*pix_next] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5770. } else {
  5771. /* p0' */
  5772. pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5773. }
  5774. if( ABS( q2 - q0 ) < beta) {
  5775. /* q0', q1', q2' */
  5776. pix[0*pix_next] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5777. pix[1*pix_next] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5778. pix[2*pix_next] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5779. } else {
  5780. /* q0' */
  5781. pix[0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5782. }
  5783. }else{
  5784. /* p0', q0' */
  5785. pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5786. pix[ 0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5787. }
  5788. tprintf("filter_mb_edgeh i:%d d:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, qp, index_a, alpha, beta, bS[i], p2, p1, p0, q0, q1, q2, pix[-2*pix_next], pix[-pix_next], pix[0], pix[pix_next]);
  5789. }
  5790. pix++;
  5791. }
  5792. }
  5793. }
  5794. static void filter_mb_edgech( H264Context *h, uint8_t *pix, int stride, int bS[4], int qp ) {
  5795. int i;
  5796. const int index_a = clip( qp + h->slice_alpha_c0_offset, 0, 51 );
  5797. const int alpha = alpha_table[index_a];
  5798. const int beta = beta_table[clip( qp + h->slice_beta_offset, 0, 51 )];
  5799. if( bS[0] < 4 ) {
  5800. int8_t tc[4];
  5801. for(i=0; i<4; i++)
  5802. tc[i] = bS[i] ? tc0_table[index_a][bS[i] - 1] + 1 : 0;
  5803. h->s.dsp.h264_v_loop_filter_chroma(pix, stride, alpha, beta, tc);
  5804. } else {
  5805. h->s.dsp.h264_v_loop_filter_chroma_intra(pix, stride, alpha, beta);
  5806. }
  5807. }
  5808. static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  5809. MpegEncContext * const s = &h->s;
  5810. const int mb_xy= mb_x + mb_y*s->mb_stride;
  5811. int first_vertical_edge_done = 0;
  5812. int dir;
  5813. /* FIXME: A given frame may occupy more than one position in
  5814. * the reference list. So ref2frm should be populated with
  5815. * frame numbers, not indices. */
  5816. static const int ref2frm[18] = {-1,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
  5817. //for sufficiently low qp, filtering wouldn't do anything
  5818. //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
  5819. if(!h->mb_aff_frame){
  5820. int qp_thresh = 15 - h->slice_alpha_c0_offset - FFMAX(0, h->pps.chroma_qp_index_offset);
  5821. int qp = s->current_picture.qscale_table[mb_xy];
  5822. if(qp <= qp_thresh
  5823. && (mb_x == 0 || ((qp + s->current_picture.qscale_table[mb_xy-1] + 1)>>1) <= qp_thresh)
  5824. && (mb_y == 0 || ((qp + s->current_picture.qscale_table[h->top_mb_xy] + 1)>>1) <= qp_thresh)){
  5825. return;
  5826. }
  5827. }
  5828. if (h->mb_aff_frame
  5829. // left mb is in picture
  5830. && h->slice_table[mb_xy-1] != 255
  5831. // and current and left pair do not have the same interlaced type
  5832. && (IS_INTERLACED(s->current_picture.mb_type[mb_xy]) != IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]))
  5833. // and left mb is in the same slice if deblocking_filter == 2
  5834. && (h->deblocking_filter!=2 || h->slice_table[mb_xy-1] == h->slice_table[mb_xy])) {
  5835. /* First vertical edge is different in MBAFF frames
  5836. * There are 8 different bS to compute and 2 different Qp
  5837. */
  5838. int bS[8];
  5839. int qp[2];
  5840. int chroma_qp[2];
  5841. int i;
  5842. first_vertical_edge_done = 1;
  5843. for( i = 0; i < 8; i++ ) {
  5844. int y = i>>1;
  5845. int b_idx= 8 + 4 + 8*y;
  5846. int bn_idx= b_idx - 1;
  5847. int mbn_xy = h->mb_field_decoding_flag ? h->left_mb_xy[i>>2] : h->left_mb_xy[i&1];
  5848. if( IS_INTRA( s->current_picture.mb_type[mb_xy] ) ||
  5849. IS_INTRA( s->current_picture.mb_type[mbn_xy] ) ) {
  5850. bS[i] = 4;
  5851. } else if( h->non_zero_count_cache[b_idx] != 0 ||
  5852. /* FIXME: with 8x8dct + cavlc, should check cbp instead of nnz */
  5853. h->non_zero_count_cache[bn_idx] != 0 ) {
  5854. bS[i] = 2;
  5855. } else {
  5856. int l;
  5857. bS[i] = 0;
  5858. for( l = 0; l < 1 + (h->slice_type == B_TYPE); l++ ) {
  5859. if( ref2frm[h->ref_cache[l][b_idx]+2] != ref2frm[h->ref_cache[l][bn_idx]+2] ||
  5860. ABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  5861. ABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= 4 ) {
  5862. bS[i] = 1;
  5863. break;
  5864. }
  5865. }
  5866. }
  5867. }
  5868. if(bS[0]+bS[1]+bS[2]+bS[3] != 0) {
  5869. // Do not use s->qscale as luma quantizer because it has not the same
  5870. // value in IPCM macroblocks.
  5871. qp[0] = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[h->left_mb_xy[0]] + 1 ) >> 1;
  5872. chroma_qp[0] = ( get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mb_xy] ) +
  5873. get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[h->left_mb_xy[0]] ) + 1 ) >> 1;
  5874. qp[1] = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[h->left_mb_xy[1]] + 1 ) >> 1;
  5875. chroma_qp[1] = ( get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mb_xy] ) +
  5876. get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[h->left_mb_xy[1]] ) + 1 ) >> 1;
  5877. /* Filter edge */
  5878. tprintf("filter mb:%d/%d MBAFF, QPy:%d/%d, QPc:%d/%d ls:%d uvls:%d", mb_x, mb_y, qp[0], qp[1], chroma_qp[0], chroma_qp[1], linesize, uvlinesize);
  5879. { int i; for (i = 0; i < 8; i++) tprintf(" bS[%d]:%d", i, bS[i]); tprintf("\n"); }
  5880. filter_mb_mbaff_edgev ( h, &img_y [0], linesize, bS, qp );
  5881. filter_mb_mbaff_edgecv( h, &img_cb[0], uvlinesize, bS, chroma_qp );
  5882. filter_mb_mbaff_edgecv( h, &img_cr[0], uvlinesize, bS, chroma_qp );
  5883. }
  5884. }
  5885. /* dir : 0 -> vertical edge, 1 -> horizontal edge */
  5886. for( dir = 0; dir < 2; dir++ )
  5887. {
  5888. int edge;
  5889. const int mbm_xy = dir == 0 ? mb_xy -1 : h->top_mb_xy;
  5890. const int mb_type = s->current_picture.mb_type[mb_xy];
  5891. const int mbm_type = s->current_picture.mb_type[mbm_xy];
  5892. int start = h->slice_table[mbm_xy] == 255 ? 1 : 0;
  5893. const int edges = (mb_type & (MB_TYPE_16x16|MB_TYPE_SKIP))
  5894. == (MB_TYPE_16x16|MB_TYPE_SKIP) ? 1 : 4;
  5895. // how often to recheck mv-based bS when iterating between edges
  5896. const int mask_edge = (mb_type & (MB_TYPE_16x16 | (MB_TYPE_16x8 << dir))) ? 3 :
  5897. (mb_type & (MB_TYPE_8x16 >> dir)) ? 1 : 0;
  5898. // how often to recheck mv-based bS when iterating along each edge
  5899. const int mask_par0 = mb_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir));
  5900. if (first_vertical_edge_done) {
  5901. start = 1;
  5902. first_vertical_edge_done = 0;
  5903. }
  5904. if (h->deblocking_filter==2 && h->slice_table[mbm_xy] != h->slice_table[mb_xy])
  5905. start = 1;
  5906. /* Calculate bS */
  5907. for( edge = start; edge < edges; edge++ ) {
  5908. /* mbn_xy: neighbor macroblock */
  5909. const int mbn_xy = edge > 0 ? mb_xy : mbm_xy;
  5910. const int mbn_type = s->current_picture.mb_type[mbn_xy];
  5911. int bS[4];
  5912. int qp;
  5913. if( (edge&1) && IS_8x8DCT(mb_type) )
  5914. continue;
  5915. if (h->mb_aff_frame && (dir == 1) && (edge == 0) && ((mb_y & 1) == 0)
  5916. && !IS_INTERLACED(mb_type)
  5917. && IS_INTERLACED(mbn_type)
  5918. ) {
  5919. // This is a special case in the norm where the filtering must
  5920. // be done twice (one each of the field) even if we are in a
  5921. // frame macroblock.
  5922. //
  5923. unsigned int tmp_linesize = 2 * linesize;
  5924. unsigned int tmp_uvlinesize = 2 * uvlinesize;
  5925. int mbn_xy = mb_xy - 2 * s->mb_stride;
  5926. int qp, chroma_qp;
  5927. // first filtering
  5928. if( IS_INTRA(mb_type) ||
  5929. IS_INTRA(s->current_picture.mb_type[mbn_xy]) ) {
  5930. bS[0] = bS[1] = bS[2] = bS[3] = 3;
  5931. } else {
  5932. // TODO
  5933. av_log(h->s.avctx, AV_LOG_ERROR, "both non intra (TODO)\n");
  5934. }
  5935. /* Filter edge */
  5936. // Do not use s->qscale as luma quantizer because it has not the same
  5937. // value in IPCM macroblocks.
  5938. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  5939. tprintf("filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, tmp_linesize, tmp_uvlinesize);
  5940. { int i; for (i = 0; i < 4; i++) tprintf(" bS[%d]:%d", i, bS[i]); tprintf("\n"); }
  5941. filter_mb_edgeh( h, &img_y[0], tmp_linesize, bS, qp );
  5942. chroma_qp = ( h->chroma_qp +
  5943. get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1;
  5944. filter_mb_edgech( h, &img_cb[0], tmp_uvlinesize, bS, chroma_qp );
  5945. filter_mb_edgech( h, &img_cr[0], tmp_uvlinesize, bS, chroma_qp );
  5946. // second filtering
  5947. mbn_xy += s->mb_stride;
  5948. if( IS_INTRA(mb_type) ||
  5949. IS_INTRA(mbn_type) ) {
  5950. bS[0] = bS[1] = bS[2] = bS[3] = 3;
  5951. } else {
  5952. // TODO
  5953. av_log(h->s.avctx, AV_LOG_ERROR, "both non intra (TODO)\n");
  5954. }
  5955. /* Filter edge */
  5956. // Do not use s->qscale as luma quantizer because it has not the same
  5957. // value in IPCM macroblocks.
  5958. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  5959. tprintf("filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, tmp_linesize, tmp_uvlinesize);
  5960. { int i; for (i = 0; i < 4; i++) tprintf(" bS[%d]:%d", i, bS[i]); tprintf("\n"); }
  5961. filter_mb_edgeh( h, &img_y[linesize], tmp_linesize, bS, qp );
  5962. chroma_qp = ( h->chroma_qp +
  5963. get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1;
  5964. filter_mb_edgech( h, &img_cb[uvlinesize], tmp_uvlinesize, bS, chroma_qp );
  5965. filter_mb_edgech( h, &img_cr[uvlinesize], tmp_uvlinesize, bS, chroma_qp );
  5966. continue;
  5967. }
  5968. if( IS_INTRA(mb_type) ||
  5969. IS_INTRA(mbn_type) ) {
  5970. int value;
  5971. if (edge == 0) {
  5972. if ( (!IS_INTERLACED(mb_type) && !IS_INTERLACED(mbm_type))
  5973. || ((h->mb_aff_frame || (s->picture_structure != PICT_FRAME)) && (dir == 0))
  5974. ) {
  5975. value = 4;
  5976. } else {
  5977. value = 3;
  5978. }
  5979. } else {
  5980. value = 3;
  5981. }
  5982. bS[0] = bS[1] = bS[2] = bS[3] = value;
  5983. } else {
  5984. int i, l;
  5985. int mv_done;
  5986. if( edge & mask_edge ) {
  5987. bS[0] = bS[1] = bS[2] = bS[3] = 0;
  5988. mv_done = 1;
  5989. }
  5990. else if( mask_par0 && (edge || (mbn_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir)))) ) {
  5991. int b_idx= 8 + 4 + edge * (dir ? 8:1);
  5992. int bn_idx= b_idx - (dir ? 8:1);
  5993. int v = 0;
  5994. for( l = 0; !v && l < 1 + (h->slice_type == B_TYPE); l++ ) {
  5995. v |= ref2frm[h->ref_cache[l][b_idx]+2] != ref2frm[h->ref_cache[l][bn_idx]+2] ||
  5996. ABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  5997. ABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= 4;
  5998. }
  5999. bS[0] = bS[1] = bS[2] = bS[3] = v;
  6000. mv_done = 1;
  6001. }
  6002. else
  6003. mv_done = 0;
  6004. for( i = 0; i < 4; i++ ) {
  6005. int x = dir == 0 ? edge : i;
  6006. int y = dir == 0 ? i : edge;
  6007. int b_idx= 8 + 4 + x + 8*y;
  6008. int bn_idx= b_idx - (dir ? 8:1);
  6009. if( h->non_zero_count_cache[b_idx] != 0 ||
  6010. h->non_zero_count_cache[bn_idx] != 0 ) {
  6011. bS[i] = 2;
  6012. }
  6013. else if(!mv_done)
  6014. {
  6015. bS[i] = 0;
  6016. for( l = 0; l < 1 + (h->slice_type == B_TYPE); l++ ) {
  6017. if( ref2frm[h->ref_cache[l][b_idx]+2] != ref2frm[h->ref_cache[l][bn_idx]+2] ||
  6018. ABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  6019. ABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= 4 ) {
  6020. bS[i] = 1;
  6021. break;
  6022. }
  6023. }
  6024. }
  6025. }
  6026. if(bS[0]+bS[1]+bS[2]+bS[3] == 0)
  6027. continue;
  6028. }
  6029. /* Filter edge */
  6030. // Do not use s->qscale as luma quantizer because it has not the same
  6031. // value in IPCM macroblocks.
  6032. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  6033. //tprintf("filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp, s->current_picture.qscale_table[mbn_xy]);
  6034. tprintf("filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize);
  6035. { int i; for (i = 0; i < 4; i++) tprintf(" bS[%d]:%d", i, bS[i]); tprintf("\n"); }
  6036. if( dir == 0 ) {
  6037. filter_mb_edgev( h, &img_y[4*edge], linesize, bS, qp );
  6038. if( (edge&1) == 0 ) {
  6039. int chroma_qp = ( h->chroma_qp +
  6040. get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1;
  6041. filter_mb_edgecv( h, &img_cb[2*edge], uvlinesize, bS, chroma_qp );
  6042. filter_mb_edgecv( h, &img_cr[2*edge], uvlinesize, bS, chroma_qp );
  6043. }
  6044. } else {
  6045. filter_mb_edgeh( h, &img_y[4*edge*linesize], linesize, bS, qp );
  6046. if( (edge&1) == 0 ) {
  6047. int chroma_qp = ( h->chroma_qp +
  6048. get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1;
  6049. filter_mb_edgech( h, &img_cb[2*edge*uvlinesize], uvlinesize, bS, chroma_qp );
  6050. filter_mb_edgech( h, &img_cr[2*edge*uvlinesize], uvlinesize, bS, chroma_qp );
  6051. }
  6052. }
  6053. }
  6054. }
  6055. }
  6056. static int decode_slice(H264Context *h){
  6057. MpegEncContext * const s = &h->s;
  6058. const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
  6059. s->mb_skip_run= -1;
  6060. if( h->pps.cabac ) {
  6061. int i;
  6062. /* realign */
  6063. align_get_bits( &s->gb );
  6064. /* init cabac */
  6065. ff_init_cabac_states( &h->cabac, ff_h264_lps_range, ff_h264_mps_state, ff_h264_lps_state, 64 );
  6066. ff_init_cabac_decoder( &h->cabac,
  6067. s->gb.buffer + get_bits_count(&s->gb)/8,
  6068. ( s->gb.size_in_bits - get_bits_count(&s->gb) + 7)/8);
  6069. /* calculate pre-state */
  6070. for( i= 0; i < 460; i++ ) {
  6071. int pre;
  6072. if( h->slice_type == I_TYPE )
  6073. pre = clip( ((cabac_context_init_I[i][0] * s->qscale) >>4 ) + cabac_context_init_I[i][1], 1, 126 );
  6074. else
  6075. pre = clip( ((cabac_context_init_PB[h->cabac_init_idc][i][0] * s->qscale) >>4 ) + cabac_context_init_PB[h->cabac_init_idc][i][1], 1, 126 );
  6076. if( pre <= 63 )
  6077. h->cabac_state[i] = 2 * ( 63 - pre ) + 0;
  6078. else
  6079. h->cabac_state[i] = 2 * ( pre - 64 ) + 1;
  6080. }
  6081. for(;;){
  6082. int ret = decode_mb_cabac(h);
  6083. int eos;
  6084. if(ret>=0) hl_decode_mb(h);
  6085. /* XXX: useless as decode_mb_cabac it doesn't support that ... */
  6086. if( ret >= 0 && h->mb_aff_frame ) { //FIXME optimal? or let mb_decode decode 16x32 ?
  6087. s->mb_y++;
  6088. if(ret>=0) ret = decode_mb_cabac(h);
  6089. if(ret>=0) hl_decode_mb(h);
  6090. s->mb_y--;
  6091. }
  6092. eos = get_cabac_terminate( &h->cabac );
  6093. if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 1) {
  6094. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  6095. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6096. return -1;
  6097. }
  6098. if( ++s->mb_x >= s->mb_width ) {
  6099. s->mb_x = 0;
  6100. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6101. ++s->mb_y;
  6102. if(h->mb_aff_frame) {
  6103. ++s->mb_y;
  6104. }
  6105. }
  6106. if( eos || s->mb_y >= s->mb_height ) {
  6107. tprintf("slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6108. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6109. return 0;
  6110. }
  6111. }
  6112. } else {
  6113. for(;;){
  6114. int ret = decode_mb_cavlc(h);
  6115. if(ret>=0) hl_decode_mb(h);
  6116. if(ret>=0 && h->mb_aff_frame){ //FIXME optimal? or let mb_decode decode 16x32 ?
  6117. s->mb_y++;
  6118. ret = decode_mb_cavlc(h);
  6119. if(ret>=0) hl_decode_mb(h);
  6120. s->mb_y--;
  6121. }
  6122. if(ret<0){
  6123. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  6124. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6125. return -1;
  6126. }
  6127. if(++s->mb_x >= s->mb_width){
  6128. s->mb_x=0;
  6129. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6130. ++s->mb_y;
  6131. if(h->mb_aff_frame) {
  6132. ++s->mb_y;
  6133. }
  6134. if(s->mb_y >= s->mb_height){
  6135. tprintf("slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6136. if(get_bits_count(&s->gb) == s->gb.size_in_bits ) {
  6137. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6138. return 0;
  6139. }else{
  6140. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6141. return -1;
  6142. }
  6143. }
  6144. }
  6145. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
  6146. tprintf("slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6147. if(get_bits_count(&s->gb) == s->gb.size_in_bits ){
  6148. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6149. return 0;
  6150. }else{
  6151. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6152. return -1;
  6153. }
  6154. }
  6155. }
  6156. }
  6157. #if 0
  6158. for(;s->mb_y < s->mb_height; s->mb_y++){
  6159. for(;s->mb_x < s->mb_width; s->mb_x++){
  6160. int ret= decode_mb(h);
  6161. hl_decode_mb(h);
  6162. if(ret<0){
  6163. av_log(s->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  6164. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6165. return -1;
  6166. }
  6167. if(++s->mb_x >= s->mb_width){
  6168. s->mb_x=0;
  6169. if(++s->mb_y >= s->mb_height){
  6170. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  6171. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6172. return 0;
  6173. }else{
  6174. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6175. return -1;
  6176. }
  6177. }
  6178. }
  6179. if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
  6180. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  6181. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6182. return 0;
  6183. }else{
  6184. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6185. return -1;
  6186. }
  6187. }
  6188. }
  6189. s->mb_x=0;
  6190. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6191. }
  6192. #endif
  6193. return -1; //not reached
  6194. }
  6195. static int decode_unregistered_user_data(H264Context *h, int size){
  6196. MpegEncContext * const s = &h->s;
  6197. uint8_t user_data[16+256];
  6198. int e, build, i;
  6199. if(size<16)
  6200. return -1;
  6201. for(i=0; i<sizeof(user_data)-1 && i<size; i++){
  6202. user_data[i]= get_bits(&s->gb, 8);
  6203. }
  6204. user_data[i]= 0;
  6205. e= sscanf(user_data+16, "x264 - core %d"/*%s - H.264/MPEG-4 AVC codec - Copyleft 2005 - http://www.videolan.org/x264.html*/, &build);
  6206. if(e==1 && build>=0)
  6207. h->x264_build= build;
  6208. if(s->avctx->debug & FF_DEBUG_BUGS)
  6209. av_log(s->avctx, AV_LOG_DEBUG, "user data:\"%s\"\n", user_data+16);
  6210. for(; i<size; i++)
  6211. skip_bits(&s->gb, 8);
  6212. return 0;
  6213. }
  6214. static int decode_sei(H264Context *h){
  6215. MpegEncContext * const s = &h->s;
  6216. while(get_bits_count(&s->gb) + 16 < s->gb.size_in_bits){
  6217. int size, type;
  6218. type=0;
  6219. do{
  6220. type+= show_bits(&s->gb, 8);
  6221. }while(get_bits(&s->gb, 8) == 255);
  6222. size=0;
  6223. do{
  6224. size+= show_bits(&s->gb, 8);
  6225. }while(get_bits(&s->gb, 8) == 255);
  6226. switch(type){
  6227. case 5:
  6228. if(decode_unregistered_user_data(h, size) < 0);
  6229. return -1;
  6230. break;
  6231. default:
  6232. skip_bits(&s->gb, 8*size);
  6233. }
  6234. //FIXME check bits here
  6235. align_get_bits(&s->gb);
  6236. }
  6237. return 0;
  6238. }
  6239. static inline void decode_hrd_parameters(H264Context *h, SPS *sps){
  6240. MpegEncContext * const s = &h->s;
  6241. int cpb_count, i;
  6242. cpb_count = get_ue_golomb(&s->gb) + 1;
  6243. get_bits(&s->gb, 4); /* bit_rate_scale */
  6244. get_bits(&s->gb, 4); /* cpb_size_scale */
  6245. for(i=0; i<cpb_count; i++){
  6246. get_ue_golomb(&s->gb); /* bit_rate_value_minus1 */
  6247. get_ue_golomb(&s->gb); /* cpb_size_value_minus1 */
  6248. get_bits1(&s->gb); /* cbr_flag */
  6249. }
  6250. get_bits(&s->gb, 5); /* initial_cpb_removal_delay_length_minus1 */
  6251. get_bits(&s->gb, 5); /* cpb_removal_delay_length_minus1 */
  6252. get_bits(&s->gb, 5); /* dpb_output_delay_length_minus1 */
  6253. get_bits(&s->gb, 5); /* time_offset_length */
  6254. }
  6255. static inline int decode_vui_parameters(H264Context *h, SPS *sps){
  6256. MpegEncContext * const s = &h->s;
  6257. int aspect_ratio_info_present_flag, aspect_ratio_idc;
  6258. int nal_hrd_parameters_present_flag, vcl_hrd_parameters_present_flag;
  6259. aspect_ratio_info_present_flag= get_bits1(&s->gb);
  6260. if( aspect_ratio_info_present_flag ) {
  6261. aspect_ratio_idc= get_bits(&s->gb, 8);
  6262. if( aspect_ratio_idc == EXTENDED_SAR ) {
  6263. sps->sar.num= get_bits(&s->gb, 16);
  6264. sps->sar.den= get_bits(&s->gb, 16);
  6265. }else if(aspect_ratio_idc < 14){
  6266. sps->sar= pixel_aspect[aspect_ratio_idc];
  6267. }else{
  6268. av_log(h->s.avctx, AV_LOG_ERROR, "illegal aspect ratio\n");
  6269. return -1;
  6270. }
  6271. }else{
  6272. sps->sar.num=
  6273. sps->sar.den= 0;
  6274. }
  6275. // s->avctx->aspect_ratio= sar_width*s->width / (float)(s->height*sar_height);
  6276. if(get_bits1(&s->gb)){ /* overscan_info_present_flag */
  6277. get_bits1(&s->gb); /* overscan_appropriate_flag */
  6278. }
  6279. if(get_bits1(&s->gb)){ /* video_signal_type_present_flag */
  6280. get_bits(&s->gb, 3); /* video_format */
  6281. get_bits1(&s->gb); /* video_full_range_flag */
  6282. if(get_bits1(&s->gb)){ /* colour_description_present_flag */
  6283. get_bits(&s->gb, 8); /* colour_primaries */
  6284. get_bits(&s->gb, 8); /* transfer_characteristics */
  6285. get_bits(&s->gb, 8); /* matrix_coefficients */
  6286. }
  6287. }
  6288. if(get_bits1(&s->gb)){ /* chroma_location_info_present_flag */
  6289. get_ue_golomb(&s->gb); /* chroma_sample_location_type_top_field */
  6290. get_ue_golomb(&s->gb); /* chroma_sample_location_type_bottom_field */
  6291. }
  6292. sps->timing_info_present_flag = get_bits1(&s->gb);
  6293. if(sps->timing_info_present_flag){
  6294. sps->num_units_in_tick = get_bits_long(&s->gb, 32);
  6295. sps->time_scale = get_bits_long(&s->gb, 32);
  6296. sps->fixed_frame_rate_flag = get_bits1(&s->gb);
  6297. }
  6298. nal_hrd_parameters_present_flag = get_bits1(&s->gb);
  6299. if(nal_hrd_parameters_present_flag)
  6300. decode_hrd_parameters(h, sps);
  6301. vcl_hrd_parameters_present_flag = get_bits1(&s->gb);
  6302. if(vcl_hrd_parameters_present_flag)
  6303. decode_hrd_parameters(h, sps);
  6304. if(nal_hrd_parameters_present_flag || vcl_hrd_parameters_present_flag)
  6305. get_bits1(&s->gb); /* low_delay_hrd_flag */
  6306. get_bits1(&s->gb); /* pic_struct_present_flag */
  6307. sps->bitstream_restriction_flag = get_bits1(&s->gb);
  6308. if(sps->bitstream_restriction_flag){
  6309. get_bits1(&s->gb); /* motion_vectors_over_pic_boundaries_flag */
  6310. get_ue_golomb(&s->gb); /* max_bytes_per_pic_denom */
  6311. get_ue_golomb(&s->gb); /* max_bits_per_mb_denom */
  6312. get_ue_golomb(&s->gb); /* log2_max_mv_length_horizontal */
  6313. get_ue_golomb(&s->gb); /* log2_max_mv_length_vertical */
  6314. sps->num_reorder_frames = get_ue_golomb(&s->gb);
  6315. get_ue_golomb(&s->gb); /* max_dec_frame_buffering */
  6316. }
  6317. return 0;
  6318. }
  6319. static void decode_scaling_list(H264Context *h, uint8_t *factors, int size,
  6320. const uint8_t *jvt_list, const uint8_t *fallback_list){
  6321. MpegEncContext * const s = &h->s;
  6322. int i, last = 8, next = 8;
  6323. const uint8_t *scan = size == 16 ? zigzag_scan : zigzag_scan8x8;
  6324. if(!get_bits1(&s->gb)) /* matrix not written, we use the predicted one */
  6325. memcpy(factors, fallback_list, size*sizeof(uint8_t));
  6326. else
  6327. for(i=0;i<size;i++){
  6328. if(next)
  6329. next = (last + get_se_golomb(&s->gb)) & 0xff;
  6330. if(!i && !next){ /* matrix not written, we use the preset one */
  6331. memcpy(factors, jvt_list, size*sizeof(uint8_t));
  6332. break;
  6333. }
  6334. last = factors[scan[i]] = next ? next : last;
  6335. }
  6336. }
  6337. static void decode_scaling_matrices(H264Context *h, SPS *sps, PPS *pps, int is_sps,
  6338. uint8_t (*scaling_matrix4)[16], uint8_t (*scaling_matrix8)[64]){
  6339. MpegEncContext * const s = &h->s;
  6340. int fallback_sps = !is_sps && sps->scaling_matrix_present;
  6341. const uint8_t *fallback[4] = {
  6342. fallback_sps ? sps->scaling_matrix4[0] : default_scaling4[0],
  6343. fallback_sps ? sps->scaling_matrix4[3] : default_scaling4[1],
  6344. fallback_sps ? sps->scaling_matrix8[0] : default_scaling8[0],
  6345. fallback_sps ? sps->scaling_matrix8[1] : default_scaling8[1]
  6346. };
  6347. if(get_bits1(&s->gb)){
  6348. sps->scaling_matrix_present |= is_sps;
  6349. decode_scaling_list(h,scaling_matrix4[0],16,default_scaling4[0],fallback[0]); // Intra, Y
  6350. decode_scaling_list(h,scaling_matrix4[1],16,default_scaling4[0],scaling_matrix4[0]); // Intra, Cr
  6351. decode_scaling_list(h,scaling_matrix4[2],16,default_scaling4[0],scaling_matrix4[1]); // Intra, Cb
  6352. decode_scaling_list(h,scaling_matrix4[3],16,default_scaling4[1],fallback[1]); // Inter, Y
  6353. decode_scaling_list(h,scaling_matrix4[4],16,default_scaling4[1],scaling_matrix4[3]); // Inter, Cr
  6354. decode_scaling_list(h,scaling_matrix4[5],16,default_scaling4[1],scaling_matrix4[4]); // Inter, Cb
  6355. if(is_sps || pps->transform_8x8_mode){
  6356. decode_scaling_list(h,scaling_matrix8[0],64,default_scaling8[0],fallback[2]); // Intra, Y
  6357. decode_scaling_list(h,scaling_matrix8[1],64,default_scaling8[1],fallback[3]); // Inter, Y
  6358. }
  6359. } else if(fallback_sps) {
  6360. memcpy(scaling_matrix4, sps->scaling_matrix4, 6*16*sizeof(uint8_t));
  6361. memcpy(scaling_matrix8, sps->scaling_matrix8, 2*64*sizeof(uint8_t));
  6362. }
  6363. }
  6364. static inline int decode_seq_parameter_set(H264Context *h){
  6365. MpegEncContext * const s = &h->s;
  6366. int profile_idc, level_idc;
  6367. int sps_id, i;
  6368. SPS *sps;
  6369. profile_idc= get_bits(&s->gb, 8);
  6370. get_bits1(&s->gb); //constraint_set0_flag
  6371. get_bits1(&s->gb); //constraint_set1_flag
  6372. get_bits1(&s->gb); //constraint_set2_flag
  6373. get_bits1(&s->gb); //constraint_set3_flag
  6374. get_bits(&s->gb, 4); // reserved
  6375. level_idc= get_bits(&s->gb, 8);
  6376. sps_id= get_ue_golomb(&s->gb);
  6377. sps= &h->sps_buffer[ sps_id ];
  6378. sps->profile_idc= profile_idc;
  6379. sps->level_idc= level_idc;
  6380. if(sps->profile_idc >= 100){ //high profile
  6381. if(get_ue_golomb(&s->gb) == 3) //chroma_format_idc
  6382. get_bits1(&s->gb); //residual_color_transform_flag
  6383. get_ue_golomb(&s->gb); //bit_depth_luma_minus8
  6384. get_ue_golomb(&s->gb); //bit_depth_chroma_minus8
  6385. sps->transform_bypass = get_bits1(&s->gb);
  6386. decode_scaling_matrices(h, sps, NULL, 1, sps->scaling_matrix4, sps->scaling_matrix8);
  6387. }else
  6388. sps->scaling_matrix_present = 0;
  6389. sps->log2_max_frame_num= get_ue_golomb(&s->gb) + 4;
  6390. sps->poc_type= get_ue_golomb(&s->gb);
  6391. if(sps->poc_type == 0){ //FIXME #define
  6392. sps->log2_max_poc_lsb= get_ue_golomb(&s->gb) + 4;
  6393. } else if(sps->poc_type == 1){//FIXME #define
  6394. sps->delta_pic_order_always_zero_flag= get_bits1(&s->gb);
  6395. sps->offset_for_non_ref_pic= get_se_golomb(&s->gb);
  6396. sps->offset_for_top_to_bottom_field= get_se_golomb(&s->gb);
  6397. sps->poc_cycle_length= get_ue_golomb(&s->gb);
  6398. for(i=0; i<sps->poc_cycle_length; i++)
  6399. sps->offset_for_ref_frame[i]= get_se_golomb(&s->gb);
  6400. }
  6401. if(sps->poc_type > 2){
  6402. av_log(h->s.avctx, AV_LOG_ERROR, "illegal POC type %d\n", sps->poc_type);
  6403. return -1;
  6404. }
  6405. sps->ref_frame_count= get_ue_golomb(&s->gb);
  6406. if(sps->ref_frame_count > MAX_PICTURE_COUNT-2){
  6407. av_log(h->s.avctx, AV_LOG_ERROR, "too many reference frames\n");
  6408. }
  6409. sps->gaps_in_frame_num_allowed_flag= get_bits1(&s->gb);
  6410. sps->mb_width= get_ue_golomb(&s->gb) + 1;
  6411. sps->mb_height= get_ue_golomb(&s->gb) + 1;
  6412. if((unsigned)sps->mb_width >= INT_MAX/16 || (unsigned)sps->mb_height >= INT_MAX/16 ||
  6413. avcodec_check_dimensions(NULL, 16*sps->mb_width, 16*sps->mb_height))
  6414. return -1;
  6415. sps->frame_mbs_only_flag= get_bits1(&s->gb);
  6416. if(!sps->frame_mbs_only_flag)
  6417. sps->mb_aff= get_bits1(&s->gb);
  6418. else
  6419. sps->mb_aff= 0;
  6420. sps->direct_8x8_inference_flag= get_bits1(&s->gb);
  6421. sps->crop= get_bits1(&s->gb);
  6422. if(sps->crop){
  6423. sps->crop_left = get_ue_golomb(&s->gb);
  6424. sps->crop_right = get_ue_golomb(&s->gb);
  6425. sps->crop_top = get_ue_golomb(&s->gb);
  6426. sps->crop_bottom= get_ue_golomb(&s->gb);
  6427. if(sps->crop_left || sps->crop_top){
  6428. av_log(h->s.avctx, AV_LOG_ERROR, "insane cropping not completely supported, this could look slightly wrong ...\n");
  6429. }
  6430. }else{
  6431. sps->crop_left =
  6432. sps->crop_right =
  6433. sps->crop_top =
  6434. sps->crop_bottom= 0;
  6435. }
  6436. sps->vui_parameters_present_flag= get_bits1(&s->gb);
  6437. if( sps->vui_parameters_present_flag )
  6438. decode_vui_parameters(h, sps);
  6439. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  6440. av_log(h->s.avctx, AV_LOG_DEBUG, "sps:%d profile:%d/%d poc:%d ref:%d %dx%d %s %s crop:%d/%d/%d/%d %s\n",
  6441. sps_id, sps->profile_idc, sps->level_idc,
  6442. sps->poc_type,
  6443. sps->ref_frame_count,
  6444. sps->mb_width, sps->mb_height,
  6445. sps->frame_mbs_only_flag ? "FRM" : (sps->mb_aff ? "MB-AFF" : "PIC-AFF"),
  6446. sps->direct_8x8_inference_flag ? "8B8" : "",
  6447. sps->crop_left, sps->crop_right,
  6448. sps->crop_top, sps->crop_bottom,
  6449. sps->vui_parameters_present_flag ? "VUI" : ""
  6450. );
  6451. }
  6452. return 0;
  6453. }
  6454. static inline int decode_picture_parameter_set(H264Context *h, int bit_length){
  6455. MpegEncContext * const s = &h->s;
  6456. int pps_id= get_ue_golomb(&s->gb);
  6457. PPS *pps= &h->pps_buffer[pps_id];
  6458. pps->sps_id= get_ue_golomb(&s->gb);
  6459. pps->cabac= get_bits1(&s->gb);
  6460. pps->pic_order_present= get_bits1(&s->gb);
  6461. pps->slice_group_count= get_ue_golomb(&s->gb) + 1;
  6462. if(pps->slice_group_count > 1 ){
  6463. pps->mb_slice_group_map_type= get_ue_golomb(&s->gb);
  6464. av_log(h->s.avctx, AV_LOG_ERROR, "FMO not supported\n");
  6465. switch(pps->mb_slice_group_map_type){
  6466. case 0:
  6467. #if 0
  6468. | for( i = 0; i <= num_slice_groups_minus1; i++ ) | | |
  6469. | run_length[ i ] |1 |ue(v) |
  6470. #endif
  6471. break;
  6472. case 2:
  6473. #if 0
  6474. | for( i = 0; i < num_slice_groups_minus1; i++ ) | | |
  6475. |{ | | |
  6476. | top_left_mb[ i ] |1 |ue(v) |
  6477. | bottom_right_mb[ i ] |1 |ue(v) |
  6478. | } | | |
  6479. #endif
  6480. break;
  6481. case 3:
  6482. case 4:
  6483. case 5:
  6484. #if 0
  6485. | slice_group_change_direction_flag |1 |u(1) |
  6486. | slice_group_change_rate_minus1 |1 |ue(v) |
  6487. #endif
  6488. break;
  6489. case 6:
  6490. #if 0
  6491. | slice_group_id_cnt_minus1 |1 |ue(v) |
  6492. | for( i = 0; i <= slice_group_id_cnt_minus1; i++ | | |
  6493. |) | | |
  6494. | slice_group_id[ i ] |1 |u(v) |
  6495. #endif
  6496. break;
  6497. }
  6498. }
  6499. pps->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  6500. pps->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  6501. if(pps->ref_count[0] > 32 || pps->ref_count[1] > 32){
  6502. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow (pps)\n");
  6503. return -1;
  6504. }
  6505. pps->weighted_pred= get_bits1(&s->gb);
  6506. pps->weighted_bipred_idc= get_bits(&s->gb, 2);
  6507. pps->init_qp= get_se_golomb(&s->gb) + 26;
  6508. pps->init_qs= get_se_golomb(&s->gb) + 26;
  6509. pps->chroma_qp_index_offset= get_se_golomb(&s->gb);
  6510. pps->deblocking_filter_parameters_present= get_bits1(&s->gb);
  6511. pps->constrained_intra_pred= get_bits1(&s->gb);
  6512. pps->redundant_pic_cnt_present = get_bits1(&s->gb);
  6513. memset(pps->scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  6514. memset(pps->scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  6515. if(get_bits_count(&s->gb) < bit_length){
  6516. pps->transform_8x8_mode= get_bits1(&s->gb);
  6517. decode_scaling_matrices(h, &h->sps_buffer[pps->sps_id], pps, 0, pps->scaling_matrix4, pps->scaling_matrix8);
  6518. get_se_golomb(&s->gb); //second_chroma_qp_index_offset
  6519. }
  6520. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  6521. av_log(h->s.avctx, AV_LOG_DEBUG, "pps:%d sps:%d %s slice_groups:%d ref:%d/%d %s qp:%d/%d/%d %s %s %s %s\n",
  6522. pps_id, pps->sps_id,
  6523. pps->cabac ? "CABAC" : "CAVLC",
  6524. pps->slice_group_count,
  6525. pps->ref_count[0], pps->ref_count[1],
  6526. pps->weighted_pred ? "weighted" : "",
  6527. pps->init_qp, pps->init_qs, pps->chroma_qp_index_offset,
  6528. pps->deblocking_filter_parameters_present ? "LPAR" : "",
  6529. pps->constrained_intra_pred ? "CONSTR" : "",
  6530. pps->redundant_pic_cnt_present ? "REDU" : "",
  6531. pps->transform_8x8_mode ? "8x8DCT" : ""
  6532. );
  6533. }
  6534. return 0;
  6535. }
  6536. /**
  6537. * finds the end of the current frame in the bitstream.
  6538. * @return the position of the first byte of the next frame, or -1
  6539. */
  6540. static int find_frame_end(H264Context *h, const uint8_t *buf, int buf_size){
  6541. int i;
  6542. uint32_t state;
  6543. ParseContext *pc = &(h->s.parse_context);
  6544. //printf("first %02X%02X%02X%02X\n", buf[0], buf[1],buf[2],buf[3]);
  6545. // mb_addr= pc->mb_addr - 1;
  6546. state= pc->state;
  6547. for(i=0; i<=buf_size; i++){
  6548. if((state&0xFFFFFF1F) == 0x101 || (state&0xFFFFFF1F) == 0x102 || (state&0xFFFFFF1F) == 0x105){
  6549. tprintf("find_frame_end new startcode = %08x, frame_start_found = %d, pos = %d\n", state, pc->frame_start_found, i);
  6550. if(pc->frame_start_found){
  6551. // If there isn't one more byte in the buffer
  6552. // the test on first_mb_in_slice cannot be done yet
  6553. // do it at next call.
  6554. if (i >= buf_size) break;
  6555. if (buf[i] & 0x80) {
  6556. // first_mb_in_slice is 0, probably the first nal of a new
  6557. // slice
  6558. tprintf("find_frame_end frame_end_found, state = %08x, pos = %d\n", state, i);
  6559. pc->state=-1;
  6560. pc->frame_start_found= 0;
  6561. return i-4;
  6562. }
  6563. }
  6564. pc->frame_start_found = 1;
  6565. }
  6566. if((state&0xFFFFFF1F) == 0x107 || (state&0xFFFFFF1F) == 0x108 || (state&0xFFFFFF1F) == 0x109){
  6567. if(pc->frame_start_found){
  6568. pc->state=-1;
  6569. pc->frame_start_found= 0;
  6570. return i-4;
  6571. }
  6572. }
  6573. if (i<buf_size)
  6574. state= (state<<8) | buf[i];
  6575. }
  6576. pc->state= state;
  6577. return END_NOT_FOUND;
  6578. }
  6579. static int h264_parse(AVCodecParserContext *s,
  6580. AVCodecContext *avctx,
  6581. uint8_t **poutbuf, int *poutbuf_size,
  6582. const uint8_t *buf, int buf_size)
  6583. {
  6584. H264Context *h = s->priv_data;
  6585. ParseContext *pc = &h->s.parse_context;
  6586. int next;
  6587. next= find_frame_end(h, buf, buf_size);
  6588. if (ff_combine_frame(pc, next, (uint8_t **)&buf, &buf_size) < 0) {
  6589. *poutbuf = NULL;
  6590. *poutbuf_size = 0;
  6591. return buf_size;
  6592. }
  6593. *poutbuf = (uint8_t *)buf;
  6594. *poutbuf_size = buf_size;
  6595. return next;
  6596. }
  6597. static int h264_split(AVCodecContext *avctx,
  6598. const uint8_t *buf, int buf_size)
  6599. {
  6600. int i;
  6601. uint32_t state = -1;
  6602. int has_sps= 0;
  6603. for(i=0; i<=buf_size; i++){
  6604. if((state&0xFFFFFF1F) == 0x107)
  6605. has_sps=1;
  6606. /* if((state&0xFFFFFF1F) == 0x101 || (state&0xFFFFFF1F) == 0x102 || (state&0xFFFFFF1F) == 0x105){
  6607. }*/
  6608. if((state&0xFFFFFF00) == 0x100 && (state&0xFFFFFF1F) != 0x107 && (state&0xFFFFFF1F) != 0x108 && (state&0xFFFFFF1F) != 0x109){
  6609. if(has_sps){
  6610. while(i>4 && buf[i-5]==0) i--;
  6611. return i-4;
  6612. }
  6613. }
  6614. if (i<buf_size)
  6615. state= (state<<8) | buf[i];
  6616. }
  6617. return 0;
  6618. }
  6619. static int decode_nal_units(H264Context *h, uint8_t *buf, int buf_size){
  6620. MpegEncContext * const s = &h->s;
  6621. AVCodecContext * const avctx= s->avctx;
  6622. int buf_index=0;
  6623. #if 0
  6624. int i;
  6625. for(i=0; i<50; i++){
  6626. av_log(NULL, AV_LOG_ERROR,"%02X ", buf[i]);
  6627. }
  6628. #endif
  6629. h->slice_num = 0;
  6630. s->current_picture_ptr= NULL;
  6631. for(;;){
  6632. int consumed;
  6633. int dst_length;
  6634. int bit_length;
  6635. uint8_t *ptr;
  6636. int i, nalsize = 0;
  6637. if(h->is_avc) {
  6638. if(buf_index >= buf_size) break;
  6639. nalsize = 0;
  6640. for(i = 0; i < h->nal_length_size; i++)
  6641. nalsize = (nalsize << 8) | buf[buf_index++];
  6642. if(nalsize <= 1){
  6643. if(nalsize == 1){
  6644. buf_index++;
  6645. continue;
  6646. }else{
  6647. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize);
  6648. break;
  6649. }
  6650. }
  6651. } else {
  6652. // start code prefix search
  6653. for(; buf_index + 3 < buf_size; buf_index++){
  6654. // this should allways succeed in the first iteration
  6655. if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
  6656. break;
  6657. }
  6658. if(buf_index+3 >= buf_size) break;
  6659. buf_index+=3;
  6660. }
  6661. ptr= decode_nal(h, buf + buf_index, &dst_length, &consumed, h->is_avc ? nalsize : buf_size - buf_index);
  6662. if(ptr[dst_length - 1] == 0) dst_length--;
  6663. bit_length= 8*dst_length - decode_rbsp_trailing(ptr + dst_length - 1);
  6664. if(s->avctx->debug&FF_DEBUG_STARTCODE){
  6665. av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", h->nal_unit_type, buf_index, buf_size, dst_length);
  6666. }
  6667. if (h->is_avc && (nalsize != consumed))
  6668. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize);
  6669. buf_index += consumed;
  6670. if( (s->hurry_up == 1 && h->nal_ref_idc == 0) //FIXME dont discard SEI id
  6671. ||(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  6672. continue;
  6673. switch(h->nal_unit_type){
  6674. case NAL_IDR_SLICE:
  6675. idr(h); //FIXME ensure we don't loose some frames if there is reordering
  6676. case NAL_SLICE:
  6677. init_get_bits(&s->gb, ptr, bit_length);
  6678. h->intra_gb_ptr=
  6679. h->inter_gb_ptr= &s->gb;
  6680. s->data_partitioning = 0;
  6681. if(decode_slice_header(h) < 0){
  6682. av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
  6683. break;
  6684. }
  6685. s->current_picture_ptr->key_frame= (h->nal_unit_type == NAL_IDR_SLICE);
  6686. if(h->redundant_pic_count==0 && s->hurry_up < 5
  6687. && (avctx->skip_frame < AVDISCARD_NONREF || h->nal_ref_idc)
  6688. && (avctx->skip_frame < AVDISCARD_BIDIR || h->slice_type!=B_TYPE)
  6689. && (avctx->skip_frame < AVDISCARD_NONKEY || h->slice_type==I_TYPE)
  6690. && avctx->skip_frame < AVDISCARD_ALL)
  6691. decode_slice(h);
  6692. break;
  6693. case NAL_DPA:
  6694. init_get_bits(&s->gb, ptr, bit_length);
  6695. h->intra_gb_ptr=
  6696. h->inter_gb_ptr= NULL;
  6697. s->data_partitioning = 1;
  6698. if(decode_slice_header(h) < 0){
  6699. av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
  6700. }
  6701. break;
  6702. case NAL_DPB:
  6703. init_get_bits(&h->intra_gb, ptr, bit_length);
  6704. h->intra_gb_ptr= &h->intra_gb;
  6705. break;
  6706. case NAL_DPC:
  6707. init_get_bits(&h->inter_gb, ptr, bit_length);
  6708. h->inter_gb_ptr= &h->inter_gb;
  6709. if(h->redundant_pic_count==0 && h->intra_gb_ptr && s->data_partitioning
  6710. && s->hurry_up < 5
  6711. && (avctx->skip_frame < AVDISCARD_NONREF || h->nal_ref_idc)
  6712. && (avctx->skip_frame < AVDISCARD_BIDIR || h->slice_type!=B_TYPE)
  6713. && (avctx->skip_frame < AVDISCARD_NONKEY || h->slice_type==I_TYPE)
  6714. && avctx->skip_frame < AVDISCARD_ALL)
  6715. decode_slice(h);
  6716. break;
  6717. case NAL_SEI:
  6718. init_get_bits(&s->gb, ptr, bit_length);
  6719. decode_sei(h);
  6720. break;
  6721. case NAL_SPS:
  6722. init_get_bits(&s->gb, ptr, bit_length);
  6723. decode_seq_parameter_set(h);
  6724. if(s->flags& CODEC_FLAG_LOW_DELAY)
  6725. s->low_delay=1;
  6726. if(avctx->has_b_frames < 2)
  6727. avctx->has_b_frames= !s->low_delay;
  6728. break;
  6729. case NAL_PPS:
  6730. init_get_bits(&s->gb, ptr, bit_length);
  6731. decode_picture_parameter_set(h, bit_length);
  6732. break;
  6733. case NAL_AUD:
  6734. case NAL_END_SEQUENCE:
  6735. case NAL_END_STREAM:
  6736. case NAL_FILLER_DATA:
  6737. case NAL_SPS_EXT:
  6738. case NAL_AUXILIARY_SLICE:
  6739. break;
  6740. default:
  6741. av_log(avctx, AV_LOG_ERROR, "Unknown NAL code: %d\n", h->nal_unit_type);
  6742. }
  6743. }
  6744. if(!s->current_picture_ptr) return buf_index; //no frame
  6745. s->current_picture_ptr->qscale_type= FF_QSCALE_TYPE_H264;
  6746. s->current_picture_ptr->pict_type= s->pict_type;
  6747. h->prev_frame_num_offset= h->frame_num_offset;
  6748. h->prev_frame_num= h->frame_num;
  6749. if(s->current_picture_ptr->reference){
  6750. h->prev_poc_msb= h->poc_msb;
  6751. h->prev_poc_lsb= h->poc_lsb;
  6752. }
  6753. if(s->current_picture_ptr->reference)
  6754. execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  6755. ff_er_frame_end(s);
  6756. MPV_frame_end(s);
  6757. return buf_index;
  6758. }
  6759. /**
  6760. * returns the number of bytes consumed for building the current frame
  6761. */
  6762. static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
  6763. if(s->flags&CODEC_FLAG_TRUNCATED){
  6764. pos -= s->parse_context.last_index;
  6765. if(pos<0) pos=0; // FIXME remove (unneeded?)
  6766. return pos;
  6767. }else{
  6768. if(pos==0) pos=1; //avoid infinite loops (i doubt thats needed but ...)
  6769. if(pos+10>buf_size) pos=buf_size; // oops ;)
  6770. return pos;
  6771. }
  6772. }
  6773. static int decode_frame(AVCodecContext *avctx,
  6774. void *data, int *data_size,
  6775. uint8_t *buf, int buf_size)
  6776. {
  6777. H264Context *h = avctx->priv_data;
  6778. MpegEncContext *s = &h->s;
  6779. AVFrame *pict = data;
  6780. int buf_index;
  6781. s->flags= avctx->flags;
  6782. s->flags2= avctx->flags2;
  6783. /* no supplementary picture */
  6784. if (buf_size == 0) {
  6785. return 0;
  6786. }
  6787. if(s->flags&CODEC_FLAG_TRUNCATED){
  6788. int next= find_frame_end(h, buf, buf_size);
  6789. if( ff_combine_frame(&s->parse_context, next, &buf, &buf_size) < 0 )
  6790. return buf_size;
  6791. //printf("next:%d buf_size:%d last_index:%d\n", next, buf_size, s->parse_context.last_index);
  6792. }
  6793. if(h->is_avc && !h->got_avcC) {
  6794. int i, cnt, nalsize;
  6795. unsigned char *p = avctx->extradata;
  6796. if(avctx->extradata_size < 7) {
  6797. av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
  6798. return -1;
  6799. }
  6800. if(*p != 1) {
  6801. av_log(avctx, AV_LOG_ERROR, "Unknown avcC version %d\n", *p);
  6802. return -1;
  6803. }
  6804. /* sps and pps in the avcC always have length coded with 2 bytes,
  6805. so put a fake nal_length_size = 2 while parsing them */
  6806. h->nal_length_size = 2;
  6807. // Decode sps from avcC
  6808. cnt = *(p+5) & 0x1f; // Number of sps
  6809. p += 6;
  6810. for (i = 0; i < cnt; i++) {
  6811. nalsize = BE_16(p) + 2;
  6812. if(decode_nal_units(h, p, nalsize) < 0) {
  6813. av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i);
  6814. return -1;
  6815. }
  6816. p += nalsize;
  6817. }
  6818. // Decode pps from avcC
  6819. cnt = *(p++); // Number of pps
  6820. for (i = 0; i < cnt; i++) {
  6821. nalsize = BE_16(p) + 2;
  6822. if(decode_nal_units(h, p, nalsize) != nalsize) {
  6823. av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i);
  6824. return -1;
  6825. }
  6826. p += nalsize;
  6827. }
  6828. // Now store right nal length size, that will be use to parse all other nals
  6829. h->nal_length_size = ((*(((char*)(avctx->extradata))+4))&0x03)+1;
  6830. // Do not reparse avcC
  6831. h->got_avcC = 1;
  6832. }
  6833. if(!h->is_avc && s->avctx->extradata_size && s->picture_number==0){
  6834. if(decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) < 0)
  6835. return -1;
  6836. }
  6837. buf_index=decode_nal_units(h, buf, buf_size);
  6838. if(buf_index < 0)
  6839. return -1;
  6840. //FIXME do something with unavailable reference frames
  6841. // if(ret==FRAME_SKIPPED) return get_consumed_bytes(s, buf_index, buf_size);
  6842. if(!s->current_picture_ptr){
  6843. av_log(h->s.avctx, AV_LOG_DEBUG, "error, NO frame\n");
  6844. return -1;
  6845. }
  6846. {
  6847. Picture *out = s->current_picture_ptr;
  6848. #if 0 //decode order
  6849. *data_size = sizeof(AVFrame);
  6850. #else
  6851. /* Sort B-frames into display order */
  6852. Picture *cur = s->current_picture_ptr;
  6853. Picture *prev = h->delayed_output_pic;
  6854. int out_idx = 0;
  6855. int pics = 0;
  6856. int out_of_order;
  6857. int cross_idr = 0;
  6858. int dropped_frame = 0;
  6859. int i;
  6860. if(h->sps.bitstream_restriction_flag
  6861. && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  6862. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  6863. s->low_delay = 0;
  6864. }
  6865. while(h->delayed_pic[pics]) pics++;
  6866. h->delayed_pic[pics++] = cur;
  6867. if(cur->reference == 0)
  6868. cur->reference = 1;
  6869. for(i=0; h->delayed_pic[i]; i++)
  6870. if(h->delayed_pic[i]->key_frame || h->delayed_pic[i]->poc==0)
  6871. cross_idr = 1;
  6872. out = h->delayed_pic[0];
  6873. for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame; i++)
  6874. if(h->delayed_pic[i]->poc < out->poc){
  6875. out = h->delayed_pic[i];
  6876. out_idx = i;
  6877. }
  6878. out_of_order = !cross_idr && prev && out->poc < prev->poc;
  6879. if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames)
  6880. { }
  6881. else if(prev && pics <= s->avctx->has_b_frames)
  6882. out = prev;
  6883. else if((out_of_order && pics-1 == s->avctx->has_b_frames && pics < 15)
  6884. || (s->low_delay &&
  6885. ((!cross_idr && prev && out->poc > prev->poc + 2)
  6886. || cur->pict_type == B_TYPE)))
  6887. {
  6888. s->low_delay = 0;
  6889. s->avctx->has_b_frames++;
  6890. out = prev;
  6891. }
  6892. else if(out_of_order)
  6893. out = prev;
  6894. if(out_of_order || pics > s->avctx->has_b_frames){
  6895. dropped_frame = (out != h->delayed_pic[out_idx]);
  6896. for(i=out_idx; h->delayed_pic[i]; i++)
  6897. h->delayed_pic[i] = h->delayed_pic[i+1];
  6898. }
  6899. if(prev == out && !dropped_frame)
  6900. *data_size = 0;
  6901. else
  6902. *data_size = sizeof(AVFrame);
  6903. if(prev && prev != out && prev->reference == 1)
  6904. prev->reference = 0;
  6905. h->delayed_output_pic = out;
  6906. #endif
  6907. if(out)
  6908. *pict= *(AVFrame*)out;
  6909. else
  6910. av_log(avctx, AV_LOG_DEBUG, "no picture\n");
  6911. }
  6912. assert(pict->data[0] || !*data_size);
  6913. ff_print_debug_info(s, pict);
  6914. //printf("out %d\n", (int)pict->data[0]);
  6915. #if 0 //?
  6916. /* Return the Picture timestamp as the frame number */
  6917. /* we substract 1 because it is added on utils.c */
  6918. avctx->frame_number = s->picture_number - 1;
  6919. #endif
  6920. return get_consumed_bytes(s, buf_index, buf_size);
  6921. }
  6922. #if 0
  6923. static inline void fill_mb_avail(H264Context *h){
  6924. MpegEncContext * const s = &h->s;
  6925. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  6926. if(s->mb_y){
  6927. h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
  6928. h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
  6929. h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
  6930. }else{
  6931. h->mb_avail[0]=
  6932. h->mb_avail[1]=
  6933. h->mb_avail[2]= 0;
  6934. }
  6935. h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
  6936. h->mb_avail[4]= 1; //FIXME move out
  6937. h->mb_avail[5]= 0; //FIXME move out
  6938. }
  6939. #endif
  6940. #if 0 //selftest
  6941. #define COUNT 8000
  6942. #define SIZE (COUNT*40)
  6943. int main(){
  6944. int i;
  6945. uint8_t temp[SIZE];
  6946. PutBitContext pb;
  6947. GetBitContext gb;
  6948. // int int_temp[10000];
  6949. DSPContext dsp;
  6950. AVCodecContext avctx;
  6951. dsputil_init(&dsp, &avctx);
  6952. init_put_bits(&pb, temp, SIZE);
  6953. printf("testing unsigned exp golomb\n");
  6954. for(i=0; i<COUNT; i++){
  6955. START_TIMER
  6956. set_ue_golomb(&pb, i);
  6957. STOP_TIMER("set_ue_golomb");
  6958. }
  6959. flush_put_bits(&pb);
  6960. init_get_bits(&gb, temp, 8*SIZE);
  6961. for(i=0; i<COUNT; i++){
  6962. int j, s;
  6963. s= show_bits(&gb, 24);
  6964. START_TIMER
  6965. j= get_ue_golomb(&gb);
  6966. if(j != i){
  6967. printf("missmatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  6968. // return -1;
  6969. }
  6970. STOP_TIMER("get_ue_golomb");
  6971. }
  6972. init_put_bits(&pb, temp, SIZE);
  6973. printf("testing signed exp golomb\n");
  6974. for(i=0; i<COUNT; i++){
  6975. START_TIMER
  6976. set_se_golomb(&pb, i - COUNT/2);
  6977. STOP_TIMER("set_se_golomb");
  6978. }
  6979. flush_put_bits(&pb);
  6980. init_get_bits(&gb, temp, 8*SIZE);
  6981. for(i=0; i<COUNT; i++){
  6982. int j, s;
  6983. s= show_bits(&gb, 24);
  6984. START_TIMER
  6985. j= get_se_golomb(&gb);
  6986. if(j != i - COUNT/2){
  6987. printf("missmatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  6988. // return -1;
  6989. }
  6990. STOP_TIMER("get_se_golomb");
  6991. }
  6992. printf("testing 4x4 (I)DCT\n");
  6993. DCTELEM block[16];
  6994. uint8_t src[16], ref[16];
  6995. uint64_t error= 0, max_error=0;
  6996. for(i=0; i<COUNT; i++){
  6997. int j;
  6998. // printf("%d %d %d\n", r1, r2, (r2-r1)*16);
  6999. for(j=0; j<16; j++){
  7000. ref[j]= random()%255;
  7001. src[j]= random()%255;
  7002. }
  7003. h264_diff_dct_c(block, src, ref, 4);
  7004. //normalize
  7005. for(j=0; j<16; j++){
  7006. // printf("%d ", block[j]);
  7007. block[j]= block[j]*4;
  7008. if(j&1) block[j]= (block[j]*4 + 2)/5;
  7009. if(j&4) block[j]= (block[j]*4 + 2)/5;
  7010. }
  7011. // printf("\n");
  7012. s->dsp.h264_idct_add(ref, block, 4);
  7013. /* for(j=0; j<16; j++){
  7014. printf("%d ", ref[j]);
  7015. }
  7016. printf("\n");*/
  7017. for(j=0; j<16; j++){
  7018. int diff= ABS(src[j] - ref[j]);
  7019. error+= diff*diff;
  7020. max_error= FFMAX(max_error, diff);
  7021. }
  7022. }
  7023. printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
  7024. #if 0
  7025. printf("testing quantizer\n");
  7026. for(qp=0; qp<52; qp++){
  7027. for(i=0; i<16; i++)
  7028. src1_block[i]= src2_block[i]= random()%255;
  7029. }
  7030. #endif
  7031. printf("Testing NAL layer\n");
  7032. uint8_t bitstream[COUNT];
  7033. uint8_t nal[COUNT*2];
  7034. H264Context h;
  7035. memset(&h, 0, sizeof(H264Context));
  7036. for(i=0; i<COUNT; i++){
  7037. int zeros= i;
  7038. int nal_length;
  7039. int consumed;
  7040. int out_length;
  7041. uint8_t *out;
  7042. int j;
  7043. for(j=0; j<COUNT; j++){
  7044. bitstream[j]= (random() % 255) + 1;
  7045. }
  7046. for(j=0; j<zeros; j++){
  7047. int pos= random() % COUNT;
  7048. while(bitstream[pos] == 0){
  7049. pos++;
  7050. pos %= COUNT;
  7051. }
  7052. bitstream[pos]=0;
  7053. }
  7054. START_TIMER
  7055. nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
  7056. if(nal_length<0){
  7057. printf("encoding failed\n");
  7058. return -1;
  7059. }
  7060. out= decode_nal(&h, nal, &out_length, &consumed, nal_length);
  7061. STOP_TIMER("NAL")
  7062. if(out_length != COUNT){
  7063. printf("incorrect length %d %d\n", out_length, COUNT);
  7064. return -1;
  7065. }
  7066. if(consumed != nal_length){
  7067. printf("incorrect consumed length %d %d\n", nal_length, consumed);
  7068. return -1;
  7069. }
  7070. if(memcmp(bitstream, out, COUNT)){
  7071. printf("missmatch\n");
  7072. return -1;
  7073. }
  7074. }
  7075. printf("Testing RBSP\n");
  7076. return 0;
  7077. }
  7078. #endif
  7079. static int decode_end(AVCodecContext *avctx)
  7080. {
  7081. H264Context *h = avctx->priv_data;
  7082. MpegEncContext *s = &h->s;
  7083. av_freep(&h->rbsp_buffer);
  7084. free_tables(h); //FIXME cleanup init stuff perhaps
  7085. MPV_common_end(s);
  7086. // memset(h, 0, sizeof(H264Context));
  7087. return 0;
  7088. }
  7089. AVCodec h264_decoder = {
  7090. "h264",
  7091. CODEC_TYPE_VIDEO,
  7092. CODEC_ID_H264,
  7093. sizeof(H264Context),
  7094. decode_init,
  7095. NULL,
  7096. decode_end,
  7097. decode_frame,
  7098. /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_TRUNCATED | CODEC_CAP_DELAY,
  7099. .flush= flush_dpb,
  7100. };
  7101. AVCodecParser h264_parser = {
  7102. { CODEC_ID_H264 },
  7103. sizeof(H264Context),
  7104. NULL,
  7105. h264_parse,
  7106. ff_parse_close,
  7107. h264_split,
  7108. };
  7109. #include "svq3.c"