You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2029 lines
73KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avassert.h"
  39. #include "libavutil/avutil.h"
  40. #include "libavutil/bswap.h"
  41. #include "libavutil/cpu.h"
  42. #include "libavutil/intreadwrite.h"
  43. #include "libavutil/mathematics.h"
  44. #include "libavutil/opt.h"
  45. #include "libavutil/pixdesc.h"
  46. #include "libavutil/x86/asm.h"
  47. #include "libavutil/x86/cpu.h"
  48. #include "rgb2rgb.h"
  49. #include "swscale.h"
  50. #include "swscale_internal.h"
  51. unsigned swscale_version(void)
  52. {
  53. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  54. return LIBSWSCALE_VERSION_INT;
  55. }
  56. const char *swscale_configuration(void)
  57. {
  58. return FFMPEG_CONFIGURATION;
  59. }
  60. const char *swscale_license(void)
  61. {
  62. #define LICENSE_PREFIX "libswscale license: "
  63. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  64. }
  65. #define RET 0xC3 // near return opcode for x86
  66. typedef struct FormatEntry {
  67. int is_supported_in, is_supported_out;
  68. } FormatEntry;
  69. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  70. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  71. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  72. [AV_PIX_FMT_RGB24] = { 1, 1 },
  73. [AV_PIX_FMT_BGR24] = { 1, 1 },
  74. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  75. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  76. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  77. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  78. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  79. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  80. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  81. [AV_PIX_FMT_PAL8] = { 1, 0 },
  82. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  83. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  84. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  85. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  86. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  87. [AV_PIX_FMT_BGR8] = { 1, 1 },
  88. [AV_PIX_FMT_BGR4] = { 0, 1 },
  89. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  90. [AV_PIX_FMT_RGB8] = { 1, 1 },
  91. [AV_PIX_FMT_RGB4] = { 0, 1 },
  92. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  93. [AV_PIX_FMT_NV12] = { 1, 1 },
  94. [AV_PIX_FMT_NV21] = { 1, 1 },
  95. [AV_PIX_FMT_ARGB] = { 1, 1 },
  96. [AV_PIX_FMT_RGBA] = { 1, 1 },
  97. [AV_PIX_FMT_ABGR] = { 1, 1 },
  98. [AV_PIX_FMT_BGRA] = { 1, 1 },
  99. [AV_PIX_FMT_0RGB] = { 1, 1 },
  100. [AV_PIX_FMT_RGB0] = { 1, 1 },
  101. [AV_PIX_FMT_0BGR] = { 1, 1 },
  102. [AV_PIX_FMT_BGR0] = { 1, 1 },
  103. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  104. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  105. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  106. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  107. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  108. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  109. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  110. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  111. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  112. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  113. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  114. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  115. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  116. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  117. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  118. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  119. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  120. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  121. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  122. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  123. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  124. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  125. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  126. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  127. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  128. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  129. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  130. [AV_PIX_FMT_RGBA64BE] = { 1, 0 },
  131. [AV_PIX_FMT_RGBA64LE] = { 1, 0 },
  132. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  133. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  134. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  135. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  136. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  137. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  138. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  139. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  140. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  141. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  142. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  143. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  144. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  145. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  146. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  147. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  148. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  149. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  150. [AV_PIX_FMT_Y400A] = { 1, 0 },
  151. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  152. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  153. [AV_PIX_FMT_BGRA64BE] = { 0, 0 },
  154. [AV_PIX_FMT_BGRA64LE] = { 0, 0 },
  155. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  156. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  157. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  158. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  159. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  160. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  161. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  162. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  163. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  164. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  165. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  166. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  167. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  168. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  169. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  170. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  175. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  176. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  177. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  178. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  179. [AV_PIX_FMT_GBRP] = { 1, 1 },
  180. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  181. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  182. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  183. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  184. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  185. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  186. [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
  187. [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
  188. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  189. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  190. [AV_PIX_FMT_XYZ12BE] = { 1, 0 },
  191. [AV_PIX_FMT_XYZ12LE] = { 1, 0 },
  192. [AV_PIX_FMT_GBRAP] = { 0, 0 },
  193. [AV_PIX_FMT_GBRAP16LE] = { 0, 0 },
  194. [AV_PIX_FMT_GBRAP16BE] = { 0, 0 },
  195. };
  196. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  197. {
  198. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  199. format_entries[pix_fmt].is_supported_in : 0;
  200. }
  201. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  202. {
  203. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  204. format_entries[pix_fmt].is_supported_out : 0;
  205. }
  206. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  207. #if FF_API_SWS_FORMAT_NAME
  208. const char *sws_format_name(enum AVPixelFormat format)
  209. {
  210. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  211. if (desc)
  212. return desc->name;
  213. else
  214. return "Unknown format";
  215. }
  216. #endif
  217. static double getSplineCoeff(double a, double b, double c, double d,
  218. double dist)
  219. {
  220. if (dist <= 1.0)
  221. return ((d * dist + c) * dist + b) * dist + a;
  222. else
  223. return getSplineCoeff(0.0,
  224. b + 2.0 * c + 3.0 * d,
  225. c + 3.0 * d,
  226. -b - 3.0 * c - 6.0 * d,
  227. dist - 1.0);
  228. }
  229. static int initFilter(int16_t **outFilter, int32_t **filterPos,
  230. int *outFilterSize, int xInc, int srcW, int dstW,
  231. int filterAlign, int one, int flags, int cpu_flags,
  232. SwsVector *srcFilter, SwsVector *dstFilter,
  233. double param[2])
  234. {
  235. int i;
  236. int filterSize;
  237. int filter2Size;
  238. int minFilterSize;
  239. int64_t *filter = NULL;
  240. int64_t *filter2 = NULL;
  241. const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
  242. int ret = -1;
  243. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  244. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  245. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  246. if (FFABS(xInc - 0x10000) < 10) { // unscaled
  247. int i;
  248. filterSize = 1;
  249. FF_ALLOCZ_OR_GOTO(NULL, filter,
  250. dstW * sizeof(*filter) * filterSize, fail);
  251. for (i = 0; i < dstW; i++) {
  252. filter[i * filterSize] = fone;
  253. (*filterPos)[i] = i;
  254. }
  255. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  256. int i;
  257. int64_t xDstInSrc;
  258. filterSize = 1;
  259. FF_ALLOC_OR_GOTO(NULL, filter,
  260. dstW * sizeof(*filter) * filterSize, fail);
  261. xDstInSrc = xInc / 2 - 0x8000;
  262. for (i = 0; i < dstW; i++) {
  263. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  264. (*filterPos)[i] = xx;
  265. filter[i] = fone;
  266. xDstInSrc += xInc;
  267. }
  268. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  269. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  270. int i;
  271. int64_t xDstInSrc;
  272. filterSize = 2;
  273. FF_ALLOC_OR_GOTO(NULL, filter,
  274. dstW * sizeof(*filter) * filterSize, fail);
  275. xDstInSrc = xInc / 2 - 0x8000;
  276. for (i = 0; i < dstW; i++) {
  277. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  278. int j;
  279. (*filterPos)[i] = xx;
  280. // bilinear upscale / linear interpolate / area averaging
  281. for (j = 0; j < filterSize; j++) {
  282. int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
  283. if (coeff < 0)
  284. coeff = 0;
  285. filter[i * filterSize + j] = coeff;
  286. xx++;
  287. }
  288. xDstInSrc += xInc;
  289. }
  290. } else {
  291. int64_t xDstInSrc;
  292. int sizeFactor;
  293. if (flags & SWS_BICUBIC)
  294. sizeFactor = 4;
  295. else if (flags & SWS_X)
  296. sizeFactor = 8;
  297. else if (flags & SWS_AREA)
  298. sizeFactor = 1; // downscale only, for upscale it is bilinear
  299. else if (flags & SWS_GAUSS)
  300. sizeFactor = 8; // infinite ;)
  301. else if (flags & SWS_LANCZOS)
  302. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  303. else if (flags & SWS_SINC)
  304. sizeFactor = 20; // infinite ;)
  305. else if (flags & SWS_SPLINE)
  306. sizeFactor = 20; // infinite ;)
  307. else if (flags & SWS_BILINEAR)
  308. sizeFactor = 2;
  309. else {
  310. av_assert0(0);
  311. }
  312. if (xInc <= 1 << 16)
  313. filterSize = 1 + sizeFactor; // upscale
  314. else
  315. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  316. filterSize = FFMIN(filterSize, srcW - 2);
  317. filterSize = FFMAX(filterSize, 1);
  318. FF_ALLOC_OR_GOTO(NULL, filter,
  319. dstW * sizeof(*filter) * filterSize, fail);
  320. xDstInSrc = xInc - 0x10000;
  321. for (i = 0; i < dstW; i++) {
  322. int xx = (xDstInSrc - ((filterSize - 2) << 16)) / (1 << 17);
  323. int j;
  324. (*filterPos)[i] = xx;
  325. for (j = 0; j < filterSize; j++) {
  326. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  327. double floatd;
  328. int64_t coeff;
  329. if (xInc > 1 << 16)
  330. d = d * dstW / srcW;
  331. floatd = d * (1.0 / (1 << 30));
  332. if (flags & SWS_BICUBIC) {
  333. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  334. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  335. if (d >= 1LL << 31) {
  336. coeff = 0.0;
  337. } else {
  338. int64_t dd = (d * d) >> 30;
  339. int64_t ddd = (dd * d) >> 30;
  340. if (d < 1LL << 30)
  341. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  342. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  343. (6 * (1 << 24) - 2 * B) * (1 << 30);
  344. else
  345. coeff = (-B - 6 * C) * ddd +
  346. (6 * B + 30 * C) * dd +
  347. (-12 * B - 48 * C) * d +
  348. (8 * B + 24 * C) * (1 << 30);
  349. }
  350. coeff /= (1LL<<54)/fone;
  351. }
  352. #if 0
  353. else if (flags & SWS_X) {
  354. double p = param ? param * 0.01 : 0.3;
  355. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  356. coeff *= pow(2.0, -p * d * d);
  357. }
  358. #endif
  359. else if (flags & SWS_X) {
  360. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  361. double c;
  362. if (floatd < 1.0)
  363. c = cos(floatd * M_PI);
  364. else
  365. c = -1.0;
  366. if (c < 0.0)
  367. c = -pow(-c, A);
  368. else
  369. c = pow(c, A);
  370. coeff = (c * 0.5 + 0.5) * fone;
  371. } else if (flags & SWS_AREA) {
  372. int64_t d2 = d - (1 << 29);
  373. if (d2 * xInc < -(1LL << (29 + 16)))
  374. coeff = 1.0 * (1LL << (30 + 16));
  375. else if (d2 * xInc < (1LL << (29 + 16)))
  376. coeff = -d2 * xInc + (1LL << (29 + 16));
  377. else
  378. coeff = 0.0;
  379. coeff *= fone >> (30 + 16);
  380. } else if (flags & SWS_GAUSS) {
  381. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  382. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  383. } else if (flags & SWS_SINC) {
  384. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  385. } else if (flags & SWS_LANCZOS) {
  386. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  387. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  388. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  389. if (floatd > p)
  390. coeff = 0;
  391. } else if (flags & SWS_BILINEAR) {
  392. coeff = (1 << 30) - d;
  393. if (coeff < 0)
  394. coeff = 0;
  395. coeff *= fone >> 30;
  396. } else if (flags & SWS_SPLINE) {
  397. double p = -2.196152422706632;
  398. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  399. } else {
  400. av_assert0(0);
  401. }
  402. filter[i * filterSize + j] = coeff;
  403. xx++;
  404. }
  405. xDstInSrc += 2 * xInc;
  406. }
  407. }
  408. /* apply src & dst Filter to filter -> filter2
  409. * av_free(filter);
  410. */
  411. av_assert0(filterSize > 0);
  412. filter2Size = filterSize;
  413. if (srcFilter)
  414. filter2Size += srcFilter->length - 1;
  415. if (dstFilter)
  416. filter2Size += dstFilter->length - 1;
  417. av_assert0(filter2Size > 0);
  418. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  419. for (i = 0; i < dstW; i++) {
  420. int j, k;
  421. if (srcFilter) {
  422. for (k = 0; k < srcFilter->length; k++) {
  423. for (j = 0; j < filterSize; j++)
  424. filter2[i * filter2Size + k + j] +=
  425. srcFilter->coeff[k] * filter[i * filterSize + j];
  426. }
  427. } else {
  428. for (j = 0; j < filterSize; j++)
  429. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  430. }
  431. // FIXME dstFilter
  432. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  433. }
  434. av_freep(&filter);
  435. /* try to reduce the filter-size (step1 find size and shift left) */
  436. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  437. minFilterSize = 0;
  438. for (i = dstW - 1; i >= 0; i--) {
  439. int min = filter2Size;
  440. int j;
  441. int64_t cutOff = 0.0;
  442. /* get rid of near zero elements on the left by shifting left */
  443. for (j = 0; j < filter2Size; j++) {
  444. int k;
  445. cutOff += FFABS(filter2[i * filter2Size]);
  446. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  447. break;
  448. /* preserve monotonicity because the core can't handle the
  449. * filter otherwise */
  450. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  451. break;
  452. // move filter coefficients left
  453. for (k = 1; k < filter2Size; k++)
  454. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  455. filter2[i * filter2Size + k - 1] = 0;
  456. (*filterPos)[i]++;
  457. }
  458. cutOff = 0;
  459. /* count near zeros on the right */
  460. for (j = filter2Size - 1; j > 0; j--) {
  461. cutOff += FFABS(filter2[i * filter2Size + j]);
  462. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  463. break;
  464. min--;
  465. }
  466. if (min > minFilterSize)
  467. minFilterSize = min;
  468. }
  469. if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) {
  470. // we can handle the special case 4, so we don't want to go the full 8
  471. if (minFilterSize < 5)
  472. filterAlign = 4;
  473. /* We really don't want to waste our time doing useless computation, so
  474. * fall back on the scalar C code for very small filters.
  475. * Vectorizing is worth it only if you have a decent-sized vector. */
  476. if (minFilterSize < 3)
  477. filterAlign = 1;
  478. }
  479. if (INLINE_MMX(cpu_flags)) {
  480. // special case for unscaled vertical filtering
  481. if (minFilterSize == 1 && filterAlign == 2)
  482. filterAlign = 1;
  483. }
  484. av_assert0(minFilterSize > 0);
  485. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  486. av_assert0(filterSize > 0);
  487. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  488. if (filterSize >= MAX_FILTER_SIZE * 16 /
  489. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter) {
  490. av_log(NULL, AV_LOG_ERROR, "sws: filterSize %d is too large, try less extreem scaling or increase MAX_FILTER_SIZE and recompile\n", filterSize);
  491. goto fail;
  492. }
  493. *outFilterSize = filterSize;
  494. if (flags & SWS_PRINT_INFO)
  495. av_log(NULL, AV_LOG_VERBOSE,
  496. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  497. filter2Size, filterSize);
  498. /* try to reduce the filter-size (step2 reduce it) */
  499. for (i = 0; i < dstW; i++) {
  500. int j;
  501. for (j = 0; j < filterSize; j++) {
  502. if (j >= filter2Size)
  503. filter[i * filterSize + j] = 0;
  504. else
  505. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  506. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  507. filter[i * filterSize + j] = 0;
  508. }
  509. }
  510. // FIXME try to align filterPos if possible
  511. // fix borders
  512. for (i = 0; i < dstW; i++) {
  513. int j;
  514. if ((*filterPos)[i] < 0) {
  515. // move filter coefficients left to compensate for filterPos
  516. for (j = 1; j < filterSize; j++) {
  517. int left = FFMAX(j + (*filterPos)[i], 0);
  518. filter[i * filterSize + left] += filter[i * filterSize + j];
  519. filter[i * filterSize + j] = 0;
  520. }
  521. (*filterPos)[i]= 0;
  522. }
  523. if ((*filterPos)[i] + filterSize > srcW) {
  524. int shift = (*filterPos)[i] + filterSize - srcW;
  525. // move filter coefficients right to compensate for filterPos
  526. for (j = filterSize - 2; j >= 0; j--) {
  527. int right = FFMIN(j + shift, filterSize - 1);
  528. filter[i * filterSize + right] += filter[i * filterSize + j];
  529. filter[i * filterSize + j] = 0;
  530. }
  531. (*filterPos)[i]= srcW - filterSize;
  532. }
  533. }
  534. // Note the +1 is for the MMX scaler which reads over the end
  535. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  536. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  537. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  538. /* normalize & store in outFilter */
  539. for (i = 0; i < dstW; i++) {
  540. int j;
  541. int64_t error = 0;
  542. int64_t sum = 0;
  543. for (j = 0; j < filterSize; j++) {
  544. sum += filter[i * filterSize + j];
  545. }
  546. sum = (sum + one / 2) / one;
  547. for (j = 0; j < *outFilterSize; j++) {
  548. int64_t v = filter[i * filterSize + j] + error;
  549. int intV = ROUNDED_DIV(v, sum);
  550. (*outFilter)[i * (*outFilterSize) + j] = intV;
  551. error = v - intV * sum;
  552. }
  553. }
  554. (*filterPos)[dstW + 0] =
  555. (*filterPos)[dstW + 1] =
  556. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  557. * read over the end */
  558. for (i = 0; i < *outFilterSize; i++) {
  559. int k = (dstW - 1) * (*outFilterSize) + i;
  560. (*outFilter)[k + 1 * (*outFilterSize)] =
  561. (*outFilter)[k + 2 * (*outFilterSize)] =
  562. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  563. }
  564. ret = 0;
  565. fail:
  566. if(ret < 0)
  567. av_log(NULL, AV_LOG_ERROR, "sws: initFilter failed\n");
  568. av_free(filter);
  569. av_free(filter2);
  570. return ret;
  571. }
  572. #if HAVE_MMXEXT_INLINE
  573. static int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
  574. int16_t *filter, int32_t *filterPos,
  575. int numSplits)
  576. {
  577. uint8_t *fragmentA;
  578. x86_reg imm8OfPShufW1A;
  579. x86_reg imm8OfPShufW2A;
  580. x86_reg fragmentLengthA;
  581. uint8_t *fragmentB;
  582. x86_reg imm8OfPShufW1B;
  583. x86_reg imm8OfPShufW2B;
  584. x86_reg fragmentLengthB;
  585. int fragmentPos;
  586. int xpos, i;
  587. // create an optimized horizontal scaling routine
  588. /* This scaler is made of runtime-generated MMXEXT code using specially tuned
  589. * pshufw instructions. For every four output pixels, if four input pixels
  590. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  591. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  592. */
  593. // code fragment
  594. __asm__ volatile (
  595. "jmp 9f \n\t"
  596. // Begin
  597. "0: \n\t"
  598. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  599. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  600. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  601. "punpcklbw %%mm7, %%mm1 \n\t"
  602. "punpcklbw %%mm7, %%mm0 \n\t"
  603. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  604. "1: \n\t"
  605. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  606. "2: \n\t"
  607. "psubw %%mm1, %%mm0 \n\t"
  608. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  609. "pmullw %%mm3, %%mm0 \n\t"
  610. "psllw $7, %%mm1 \n\t"
  611. "paddw %%mm1, %%mm0 \n\t"
  612. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  613. "add $8, %%"REG_a" \n\t"
  614. // End
  615. "9: \n\t"
  616. // "int $3 \n\t"
  617. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  618. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  619. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  620. "dec %1 \n\t"
  621. "dec %2 \n\t"
  622. "sub %0, %1 \n\t"
  623. "sub %0, %2 \n\t"
  624. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  625. "sub %0, %3 \n\t"
  626. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  627. "=r" (fragmentLengthA)
  628. );
  629. __asm__ volatile (
  630. "jmp 9f \n\t"
  631. // Begin
  632. "0: \n\t"
  633. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  634. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  635. "punpcklbw %%mm7, %%mm0 \n\t"
  636. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  637. "1: \n\t"
  638. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  639. "2: \n\t"
  640. "psubw %%mm1, %%mm0 \n\t"
  641. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  642. "pmullw %%mm3, %%mm0 \n\t"
  643. "psllw $7, %%mm1 \n\t"
  644. "paddw %%mm1, %%mm0 \n\t"
  645. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  646. "add $8, %%"REG_a" \n\t"
  647. // End
  648. "9: \n\t"
  649. // "int $3 \n\t"
  650. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  651. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  652. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  653. "dec %1 \n\t"
  654. "dec %2 \n\t"
  655. "sub %0, %1 \n\t"
  656. "sub %0, %2 \n\t"
  657. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  658. "sub %0, %3 \n\t"
  659. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  660. "=r" (fragmentLengthB)
  661. );
  662. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  663. fragmentPos = 0;
  664. for (i = 0; i < dstW / numSplits; i++) {
  665. int xx = xpos >> 16;
  666. if ((i & 3) == 0) {
  667. int a = 0;
  668. int b = ((xpos + xInc) >> 16) - xx;
  669. int c = ((xpos + xInc * 2) >> 16) - xx;
  670. int d = ((xpos + xInc * 3) >> 16) - xx;
  671. int inc = (d + 1 < 4);
  672. uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
  673. x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  674. x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  675. x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
  676. int maxShift = 3 - (d + inc);
  677. int shift = 0;
  678. if (filterCode) {
  679. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  680. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  681. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  682. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  683. filterPos[i / 2] = xx;
  684. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  685. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  686. ((b + inc) << 2) |
  687. ((c + inc) << 4) |
  688. ((d + inc) << 6);
  689. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  690. (c << 4) |
  691. (d << 6);
  692. if (i + 4 - inc >= dstW)
  693. shift = maxShift; // avoid overread
  694. else if ((filterPos[i / 2] & 3) <= maxShift)
  695. shift = filterPos[i / 2] & 3; // align
  696. if (shift && i >= shift) {
  697. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  698. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  699. filterPos[i / 2] -= shift;
  700. }
  701. }
  702. fragmentPos += fragmentLength;
  703. if (filterCode)
  704. filterCode[fragmentPos] = RET;
  705. }
  706. xpos += xInc;
  707. }
  708. if (filterCode)
  709. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  710. return fragmentPos + 1;
  711. }
  712. #endif /* HAVE_MMXEXT_INLINE */
  713. static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
  714. {
  715. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  716. *h = desc->log2_chroma_w;
  717. *v = desc->log2_chroma_h;
  718. }
  719. static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
  720. {
  721. int64_t W, V, Z, Cy, Cu, Cv;
  722. int64_t vr = table[0];
  723. int64_t ub = table[1];
  724. int64_t ug = -table[2];
  725. int64_t vg = -table[3];
  726. int64_t ONE = 65536;
  727. int64_t cy = ONE;
  728. uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
  729. int i;
  730. static const int8_t map[] = {
  731. BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
  732. RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
  733. RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
  734. BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
  735. BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
  736. RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
  737. RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
  738. BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
  739. BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
  740. RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
  741. RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
  742. BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
  743. RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
  744. BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
  745. GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
  746. -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
  747. RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
  748. BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
  749. GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
  750. -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
  751. RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
  752. BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
  753. GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
  754. -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
  755. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
  756. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
  757. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
  758. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
  759. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
  760. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
  761. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
  762. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
  763. BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
  764. BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
  765. BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
  766. };
  767. dstRange = 0; //FIXME range = 1 is handled elsewhere
  768. if (!dstRange) {
  769. cy = cy * 255 / 219;
  770. } else {
  771. vr = vr * 224 / 255;
  772. ub = ub * 224 / 255;
  773. ug = ug * 224 / 255;
  774. vg = vg * 224 / 255;
  775. }
  776. W = ROUNDED_DIV(ONE*ONE*ug, ub);
  777. V = ROUNDED_DIV(ONE*ONE*vg, vr);
  778. Z = ONE*ONE-W-V;
  779. Cy = ROUNDED_DIV(cy*Z, ONE);
  780. Cu = ROUNDED_DIV(ub*Z, ONE);
  781. Cv = ROUNDED_DIV(vr*Z, ONE);
  782. c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
  783. c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
  784. c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
  785. c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
  786. c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
  787. c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
  788. c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
  789. c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
  790. c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
  791. if(/*!dstRange && */table == ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]) {
  792. c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  793. c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  794. c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  795. c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  796. c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  797. c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  798. c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  799. c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  800. c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  801. }
  802. for(i=0; i<FF_ARRAY_ELEMS(map); i++)
  803. AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
  804. }
  805. static void fill_xyztables(struct SwsContext *c)
  806. {
  807. int i;
  808. double xyzgamma = XYZ_GAMMA;
  809. double rgbgamma = 1.0 / RGB_GAMMA;
  810. static const int16_t xyz2rgb_matrix[3][4] = {
  811. {13270, -6295, -2041},
  812. {-3969, 7682, 170},
  813. { 228, -835, 4329} };
  814. static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096];
  815. memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
  816. c->xyzgamma = xyzgamma_tab;
  817. c->rgbgamma = rgbgamma_tab;
  818. if (rgbgamma_tab[4095])
  819. return;
  820. /* set gamma vectors */
  821. for (i = 0; i < 4096; i++) {
  822. xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
  823. rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
  824. }
  825. }
  826. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  827. int srcRange, const int table[4], int dstRange,
  828. int brightness, int contrast, int saturation)
  829. {
  830. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  831. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
  832. memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  833. memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
  834. if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
  835. dstRange = 0;
  836. if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
  837. srcRange = 0;
  838. c->brightness = brightness;
  839. c->contrast = contrast;
  840. c->saturation = saturation;
  841. c->srcRange = srcRange;
  842. c->dstRange = dstRange;
  843. fill_xyztables(c);
  844. if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat)))
  845. return -1;
  846. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  847. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  848. if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
  849. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  850. contrast, saturation);
  851. // FIXME factorize
  852. if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)
  853. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness,
  854. contrast, saturation);
  855. }
  856. fill_rgb2yuv_table(c, table, dstRange);
  857. return 0;
  858. }
  859. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  860. int *srcRange, int **table, int *dstRange,
  861. int *brightness, int *contrast, int *saturation)
  862. {
  863. if (!c || isYUV(c->dstFormat) || isGray(c->dstFormat))
  864. return -1;
  865. *inv_table = c->srcColorspaceTable;
  866. *table = c->dstColorspaceTable;
  867. *srcRange = c->srcRange;
  868. *dstRange = c->dstRange;
  869. *brightness = c->brightness;
  870. *contrast = c->contrast;
  871. *saturation = c->saturation;
  872. return 0;
  873. }
  874. static int handle_jpeg(enum AVPixelFormat *format)
  875. {
  876. switch (*format) {
  877. case AV_PIX_FMT_YUVJ420P:
  878. *format = AV_PIX_FMT_YUV420P;
  879. return 1;
  880. case AV_PIX_FMT_YUVJ422P:
  881. *format = AV_PIX_FMT_YUV422P;
  882. return 1;
  883. case AV_PIX_FMT_YUVJ444P:
  884. *format = AV_PIX_FMT_YUV444P;
  885. return 1;
  886. case AV_PIX_FMT_YUVJ440P:
  887. *format = AV_PIX_FMT_YUV440P;
  888. return 1;
  889. default:
  890. return 0;
  891. }
  892. }
  893. static int handle_0alpha(enum AVPixelFormat *format)
  894. {
  895. switch (*format) {
  896. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  897. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  898. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  899. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  900. default: return 0;
  901. }
  902. }
  903. static int handle_xyz(enum AVPixelFormat *format)
  904. {
  905. switch (*format) {
  906. case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
  907. case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
  908. default: return 0;
  909. }
  910. }
  911. SwsContext *sws_alloc_context(void)
  912. {
  913. SwsContext *c = av_mallocz(sizeof(SwsContext));
  914. if (c) {
  915. c->av_class = &sws_context_class;
  916. av_opt_set_defaults(c);
  917. }
  918. return c;
  919. }
  920. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  921. SwsFilter *dstFilter)
  922. {
  923. int i, j;
  924. int usesVFilter, usesHFilter;
  925. int unscaled;
  926. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  927. int srcW = c->srcW;
  928. int srcH = c->srcH;
  929. int dstW = c->dstW;
  930. int dstH = c->dstH;
  931. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  932. int flags, cpu_flags;
  933. enum AVPixelFormat srcFormat = c->srcFormat;
  934. enum AVPixelFormat dstFormat = c->dstFormat;
  935. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
  936. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
  937. cpu_flags = av_get_cpu_flags();
  938. flags = c->flags;
  939. emms_c();
  940. if (!rgb15to16)
  941. sws_rgb2rgb_init();
  942. unscaled = (srcW == dstW && srcH == dstH);
  943. handle_jpeg(&srcFormat);
  944. handle_jpeg(&dstFormat);
  945. handle_0alpha(&srcFormat);
  946. handle_0alpha(&dstFormat);
  947. handle_xyz(&srcFormat);
  948. handle_xyz(&dstFormat);
  949. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat){
  950. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  951. c->srcFormat= srcFormat;
  952. c->dstFormat= dstFormat;
  953. }
  954. if (!sws_isSupportedInput(srcFormat)) {
  955. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  956. av_get_pix_fmt_name(srcFormat));
  957. return AVERROR(EINVAL);
  958. }
  959. if (!sws_isSupportedOutput(dstFormat)) {
  960. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  961. av_get_pix_fmt_name(dstFormat));
  962. return AVERROR(EINVAL);
  963. }
  964. i = flags & (SWS_POINT |
  965. SWS_AREA |
  966. SWS_BILINEAR |
  967. SWS_FAST_BILINEAR |
  968. SWS_BICUBIC |
  969. SWS_X |
  970. SWS_GAUSS |
  971. SWS_LANCZOS |
  972. SWS_SINC |
  973. SWS_SPLINE |
  974. SWS_BICUBLIN);
  975. if (!i || (i & (i - 1))) {
  976. av_log(c, AV_LOG_ERROR, "Exactly one scaler algorithm must be chosen, got %X\n", i);
  977. return AVERROR(EINVAL);
  978. }
  979. /* sanity check */
  980. if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
  981. /* FIXME check if these are enough and try to lower them after
  982. * fixing the relevant parts of the code */
  983. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  984. srcW, srcH, dstW, dstH);
  985. return AVERROR(EINVAL);
  986. }
  987. if (!dstFilter)
  988. dstFilter = &dummyFilter;
  989. if (!srcFilter)
  990. srcFilter = &dummyFilter;
  991. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  992. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  993. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  994. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  995. c->vRounder = 4 * 0x0001000100010001ULL;
  996. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  997. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  998. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  999. (dstFilter->chrV && dstFilter->chrV->length > 1);
  1000. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  1001. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  1002. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  1003. (dstFilter->chrH && dstFilter->chrH->length > 1);
  1004. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  1005. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  1006. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  1007. if (dstW&1) {
  1008. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  1009. flags |= SWS_FULL_CHR_H_INT;
  1010. c->flags = flags;
  1011. }
  1012. }
  1013. if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
  1014. dstFormat == AV_PIX_FMT_RGB4_BYTE ||
  1015. dstFormat == AV_PIX_FMT_BGR8 ||
  1016. dstFormat == AV_PIX_FMT_RGB8) {
  1017. if (flags & SWS_ERROR_DIFFUSION && !(flags & SWS_FULL_CHR_H_INT)) {
  1018. av_log(c, AV_LOG_DEBUG,
  1019. "Error diffusion dither is only supported in full chroma interpolation for destination format '%s'\n",
  1020. av_get_pix_fmt_name(dstFormat));
  1021. flags |= SWS_FULL_CHR_H_INT;
  1022. c->flags = flags;
  1023. }
  1024. if (!(flags & SWS_ERROR_DIFFUSION) && (flags & SWS_FULL_CHR_H_INT)) {
  1025. av_log(c, AV_LOG_DEBUG,
  1026. "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
  1027. av_get_pix_fmt_name(dstFormat));
  1028. flags |= SWS_ERROR_DIFFUSION;
  1029. c->flags = flags;
  1030. }
  1031. }
  1032. if (isPlanarRGB(dstFormat)) {
  1033. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1034. av_log(c, AV_LOG_DEBUG,
  1035. "%s output is not supported with half chroma resolution, switching to full\n",
  1036. av_get_pix_fmt_name(dstFormat));
  1037. flags |= SWS_FULL_CHR_H_INT;
  1038. c->flags = flags;
  1039. }
  1040. }
  1041. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  1042. * chroma interpolation */
  1043. if (flags & SWS_FULL_CHR_H_INT &&
  1044. isAnyRGB(dstFormat) &&
  1045. !isPlanarRGB(dstFormat) &&
  1046. dstFormat != AV_PIX_FMT_RGBA &&
  1047. dstFormat != AV_PIX_FMT_ARGB &&
  1048. dstFormat != AV_PIX_FMT_BGRA &&
  1049. dstFormat != AV_PIX_FMT_ABGR &&
  1050. dstFormat != AV_PIX_FMT_RGB24 &&
  1051. dstFormat != AV_PIX_FMT_BGR24 &&
  1052. dstFormat != AV_PIX_FMT_BGR4_BYTE &&
  1053. dstFormat != AV_PIX_FMT_RGB4_BYTE &&
  1054. dstFormat != AV_PIX_FMT_BGR8 &&
  1055. dstFormat != AV_PIX_FMT_RGB8
  1056. ) {
  1057. av_log(c, AV_LOG_WARNING,
  1058. "full chroma interpolation for destination format '%s' not yet implemented\n",
  1059. av_get_pix_fmt_name(dstFormat));
  1060. flags &= ~SWS_FULL_CHR_H_INT;
  1061. c->flags = flags;
  1062. }
  1063. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  1064. c->chrDstHSubSample = 1;
  1065. // drop some chroma lines if the user wants it
  1066. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  1067. SWS_SRC_V_CHR_DROP_SHIFT;
  1068. c->chrSrcVSubSample += c->vChrDrop;
  1069. /* drop every other pixel for chroma calculation unless user
  1070. * wants full chroma */
  1071. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  1072. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  1073. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  1074. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  1075. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  1076. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  1077. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  1078. srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
  1079. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  1080. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  1081. (flags & SWS_FAST_BILINEAR)))
  1082. c->chrSrcHSubSample = 1;
  1083. // Note the -((-x)>>y) is so that we always round toward +inf.
  1084. c->chrSrcW = -((-srcW) >> c->chrSrcHSubSample);
  1085. c->chrSrcH = -((-srcH) >> c->chrSrcVSubSample);
  1086. c->chrDstW = -((-dstW) >> c->chrDstHSubSample);
  1087. c->chrDstH = -((-dstH) >> c->chrDstVSubSample);
  1088. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  1089. /* unscaled special cases */
  1090. if (unscaled && !usesHFilter && !usesVFilter &&
  1091. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  1092. ff_get_unscaled_swscale(c);
  1093. if (c->swScale) {
  1094. if (flags & SWS_PRINT_INFO)
  1095. av_log(c, AV_LOG_INFO,
  1096. "using unscaled %s -> %s special converter\n",
  1097. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1098. return 0;
  1099. }
  1100. }
  1101. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  1102. if (c->srcBpc < 8)
  1103. c->srcBpc = 8;
  1104. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  1105. if (c->dstBpc < 8)
  1106. c->dstBpc = 8;
  1107. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  1108. c->srcBpc = 16;
  1109. if (c->dstBpc == 16)
  1110. dst_stride <<= 1;
  1111. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  1112. c->canMMXEXTBeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
  1113. (srcW & 15) == 0) ? 1 : 0;
  1114. if (!c->canMMXEXTBeUsed && dstW >= srcW && (srcW & 15) == 0
  1115. && (flags & SWS_FAST_BILINEAR)) {
  1116. if (flags & SWS_PRINT_INFO)
  1117. av_log(c, AV_LOG_INFO,
  1118. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  1119. }
  1120. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  1121. c->canMMXEXTBeUsed = 0;
  1122. } else
  1123. c->canMMXEXTBeUsed = 0;
  1124. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  1125. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  1126. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  1127. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  1128. * correct scaling.
  1129. * n-2 is the last chrominance sample available.
  1130. * This is not perfect, but no one should notice the difference, the more
  1131. * correct variant would be like the vertical one, but that would require
  1132. * some special code for the first and last pixel */
  1133. if (flags & SWS_FAST_BILINEAR) {
  1134. if (c->canMMXEXTBeUsed) {
  1135. c->lumXInc += 20;
  1136. c->chrXInc += 20;
  1137. }
  1138. // we don't use the x86 asm scaler if MMX is available
  1139. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  1140. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  1141. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  1142. }
  1143. }
  1144. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  1145. /* precalculate horizontal scaler filter coefficients */
  1146. {
  1147. #if HAVE_MMXEXT_INLINE
  1148. // can't downscale !!!
  1149. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  1150. c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  1151. NULL, NULL, 8);
  1152. c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  1153. NULL, NULL, NULL, 4);
  1154. #if USE_MMAP
  1155. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  1156. PROT_READ | PROT_WRITE,
  1157. MAP_PRIVATE | MAP_ANONYMOUS,
  1158. -1, 0);
  1159. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  1160. PROT_READ | PROT_WRITE,
  1161. MAP_PRIVATE | MAP_ANONYMOUS,
  1162. -1, 0);
  1163. #elif HAVE_VIRTUALALLOC
  1164. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1165. c->lumMmxextFilterCodeSize,
  1166. MEM_COMMIT,
  1167. PAGE_EXECUTE_READWRITE);
  1168. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1169. c->chrMmxextFilterCodeSize,
  1170. MEM_COMMIT,
  1171. PAGE_EXECUTE_READWRITE);
  1172. #else
  1173. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1174. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1175. #endif
  1176. #ifdef MAP_ANONYMOUS
  1177. if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
  1178. #else
  1179. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1180. #endif
  1181. {
  1182. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  1183. return AVERROR(ENOMEM);
  1184. }
  1185. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1186. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1187. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1188. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1189. init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
  1190. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  1191. init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1192. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  1193. #if USE_MMAP
  1194. mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1195. mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1196. #endif
  1197. } else
  1198. #endif /* HAVE_MMXEXT_INLINE */
  1199. {
  1200. const int filterAlign =
  1201. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 4 :
  1202. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  1203. 1;
  1204. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1205. &c->hLumFilterSize, c->lumXInc,
  1206. srcW, dstW, filterAlign, 1 << 14,
  1207. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1208. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1209. c->param) < 0)
  1210. goto fail;
  1211. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1212. &c->hChrFilterSize, c->chrXInc,
  1213. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1214. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1215. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1216. c->param) < 0)
  1217. goto fail;
  1218. }
  1219. } // initialize horizontal stuff
  1220. /* precalculate vertical scaler filter coefficients */
  1221. {
  1222. const int filterAlign =
  1223. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 2 :
  1224. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  1225. 1;
  1226. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1227. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1228. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1229. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1230. c->param) < 0)
  1231. goto fail;
  1232. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1233. c->chrYInc, c->chrSrcH, c->chrDstH,
  1234. filterAlign, (1 << 12),
  1235. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1236. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1237. c->param) < 0)
  1238. goto fail;
  1239. #if HAVE_ALTIVEC
  1240. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1241. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1242. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1243. int j;
  1244. short *p = (short *)&c->vYCoeffsBank[i];
  1245. for (j = 0; j < 8; j++)
  1246. p[j] = c->vLumFilter[i];
  1247. }
  1248. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1249. int j;
  1250. short *p = (short *)&c->vCCoeffsBank[i];
  1251. for (j = 0; j < 8; j++)
  1252. p[j] = c->vChrFilter[i];
  1253. }
  1254. #endif
  1255. }
  1256. // calculate buffer sizes so that they won't run out while handling these damn slices
  1257. c->vLumBufSize = c->vLumFilterSize;
  1258. c->vChrBufSize = c->vChrFilterSize;
  1259. for (i = 0; i < dstH; i++) {
  1260. int chrI = (int64_t)i * c->chrDstH / dstH;
  1261. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1262. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1263. << c->chrSrcVSubSample));
  1264. nextSlice >>= c->chrSrcVSubSample;
  1265. nextSlice <<= c->chrSrcVSubSample;
  1266. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1267. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1268. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1269. (nextSlice >> c->chrSrcVSubSample))
  1270. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1271. c->vChrFilterPos[chrI];
  1272. }
  1273. for (i = 0; i < 4; i++)
  1274. FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
  1275. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1276. * need to allocate several megabytes to handle all possible cases) */
  1277. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1278. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1279. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1280. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1281. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1282. /* Note we need at least one pixel more at the end because of the MMX code
  1283. * (just in case someone wants to replace the 4000/8000). */
  1284. /* align at 16 bytes for AltiVec */
  1285. for (i = 0; i < c->vLumBufSize; i++) {
  1286. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1287. dst_stride + 16, fail);
  1288. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1289. }
  1290. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1291. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1292. c->uv_offx2 = dst_stride + 16;
  1293. for (i = 0; i < c->vChrBufSize; i++) {
  1294. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1295. dst_stride * 2 + 32, fail);
  1296. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1297. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1298. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1299. }
  1300. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1301. for (i = 0; i < c->vLumBufSize; i++) {
  1302. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1303. dst_stride + 16, fail);
  1304. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1305. }
  1306. // try to avoid drawing green stuff between the right end and the stride end
  1307. for (i = 0; i < c->vChrBufSize; i++)
  1308. if(desc_dst->comp[0].depth_minus1 == 15){
  1309. av_assert0(c->dstBpc > 14);
  1310. for(j=0; j<dst_stride/2+1; j++)
  1311. ((int32_t*)(c->chrUPixBuf[i]))[j] = 1<<18;
  1312. } else
  1313. for(j=0; j<dst_stride+1; j++)
  1314. ((int16_t*)(c->chrUPixBuf[i]))[j] = 1<<14;
  1315. av_assert0(c->chrDstH <= dstH);
  1316. if (flags & SWS_PRINT_INFO) {
  1317. if (flags & SWS_FAST_BILINEAR)
  1318. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  1319. else if (flags & SWS_BILINEAR)
  1320. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  1321. else if (flags & SWS_BICUBIC)
  1322. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  1323. else if (flags & SWS_X)
  1324. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  1325. else if (flags & SWS_POINT)
  1326. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  1327. else if (flags & SWS_AREA)
  1328. av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  1329. else if (flags & SWS_BICUBLIN)
  1330. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  1331. else if (flags & SWS_GAUSS)
  1332. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  1333. else if (flags & SWS_SINC)
  1334. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  1335. else if (flags & SWS_LANCZOS)
  1336. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  1337. else if (flags & SWS_SPLINE)
  1338. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  1339. else
  1340. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  1341. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  1342. av_get_pix_fmt_name(srcFormat),
  1343. #ifdef DITHER1XBPP
  1344. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1345. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1346. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1347. "dithered " : "",
  1348. #else
  1349. "",
  1350. #endif
  1351. av_get_pix_fmt_name(dstFormat));
  1352. if (INLINE_MMXEXT(cpu_flags))
  1353. av_log(c, AV_LOG_INFO, "using MMXEXT\n");
  1354. else if (INLINE_AMD3DNOW(cpu_flags))
  1355. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  1356. else if (INLINE_MMX(cpu_flags))
  1357. av_log(c, AV_LOG_INFO, "using MMX\n");
  1358. else if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC)
  1359. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  1360. else
  1361. av_log(c, AV_LOG_INFO, "using C\n");
  1362. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1363. av_log(c, AV_LOG_DEBUG,
  1364. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1365. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1366. av_log(c, AV_LOG_DEBUG,
  1367. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1368. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1369. c->chrXInc, c->chrYInc);
  1370. }
  1371. c->swScale = ff_getSwsFunc(c);
  1372. return 0;
  1373. fail: // FIXME replace things by appropriate error codes
  1374. return -1;
  1375. }
  1376. #if FF_API_SWS_GETCONTEXT
  1377. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1378. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1379. int flags, SwsFilter *srcFilter,
  1380. SwsFilter *dstFilter, const double *param)
  1381. {
  1382. SwsContext *c;
  1383. if (!(c = sws_alloc_context()))
  1384. return NULL;
  1385. c->flags = flags;
  1386. c->srcW = srcW;
  1387. c->srcH = srcH;
  1388. c->dstW = dstW;
  1389. c->dstH = dstH;
  1390. c->srcRange = handle_jpeg(&srcFormat);
  1391. c->dstRange = handle_jpeg(&dstFormat);
  1392. c->src0Alpha = handle_0alpha(&srcFormat);
  1393. c->dst0Alpha = handle_0alpha(&dstFormat);
  1394. c->srcXYZ = handle_xyz(&srcFormat);
  1395. c->dstXYZ = handle_xyz(&dstFormat);
  1396. c->srcFormat = srcFormat;
  1397. c->dstFormat = dstFormat;
  1398. if (param) {
  1399. c->param[0] = param[0];
  1400. c->param[1] = param[1];
  1401. }
  1402. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1403. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1404. c->dstRange, 0, 1 << 16, 1 << 16);
  1405. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1406. sws_freeContext(c);
  1407. return NULL;
  1408. }
  1409. return c;
  1410. }
  1411. #endif
  1412. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1413. float lumaSharpen, float chromaSharpen,
  1414. float chromaHShift, float chromaVShift,
  1415. int verbose)
  1416. {
  1417. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1418. if (!filter)
  1419. return NULL;
  1420. if (lumaGBlur != 0.0) {
  1421. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1422. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1423. } else {
  1424. filter->lumH = sws_getIdentityVec();
  1425. filter->lumV = sws_getIdentityVec();
  1426. }
  1427. if (chromaGBlur != 0.0) {
  1428. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1429. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1430. } else {
  1431. filter->chrH = sws_getIdentityVec();
  1432. filter->chrV = sws_getIdentityVec();
  1433. }
  1434. if (chromaSharpen != 0.0) {
  1435. SwsVector *id = sws_getIdentityVec();
  1436. sws_scaleVec(filter->chrH, -chromaSharpen);
  1437. sws_scaleVec(filter->chrV, -chromaSharpen);
  1438. sws_addVec(filter->chrH, id);
  1439. sws_addVec(filter->chrV, id);
  1440. sws_freeVec(id);
  1441. }
  1442. if (lumaSharpen != 0.0) {
  1443. SwsVector *id = sws_getIdentityVec();
  1444. sws_scaleVec(filter->lumH, -lumaSharpen);
  1445. sws_scaleVec(filter->lumV, -lumaSharpen);
  1446. sws_addVec(filter->lumH, id);
  1447. sws_addVec(filter->lumV, id);
  1448. sws_freeVec(id);
  1449. }
  1450. if (chromaHShift != 0.0)
  1451. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1452. if (chromaVShift != 0.0)
  1453. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1454. sws_normalizeVec(filter->chrH, 1.0);
  1455. sws_normalizeVec(filter->chrV, 1.0);
  1456. sws_normalizeVec(filter->lumH, 1.0);
  1457. sws_normalizeVec(filter->lumV, 1.0);
  1458. if (verbose)
  1459. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1460. if (verbose)
  1461. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1462. return filter;
  1463. }
  1464. SwsVector *sws_allocVec(int length)
  1465. {
  1466. SwsVector *vec;
  1467. if(length <= 0 || length > INT_MAX/ sizeof(double))
  1468. return NULL;
  1469. vec = av_malloc(sizeof(SwsVector));
  1470. if (!vec)
  1471. return NULL;
  1472. vec->length = length;
  1473. vec->coeff = av_malloc(sizeof(double) * length);
  1474. if (!vec->coeff)
  1475. av_freep(&vec);
  1476. return vec;
  1477. }
  1478. SwsVector *sws_getGaussianVec(double variance, double quality)
  1479. {
  1480. const int length = (int)(variance * quality + 0.5) | 1;
  1481. int i;
  1482. double middle = (length - 1) * 0.5;
  1483. SwsVector *vec;
  1484. if(variance < 0 || quality < 0)
  1485. return NULL;
  1486. vec = sws_allocVec(length);
  1487. if (!vec)
  1488. return NULL;
  1489. for (i = 0; i < length; i++) {
  1490. double dist = i - middle;
  1491. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1492. sqrt(2 * variance * M_PI);
  1493. }
  1494. sws_normalizeVec(vec, 1.0);
  1495. return vec;
  1496. }
  1497. SwsVector *sws_getConstVec(double c, int length)
  1498. {
  1499. int i;
  1500. SwsVector *vec = sws_allocVec(length);
  1501. if (!vec)
  1502. return NULL;
  1503. for (i = 0; i < length; i++)
  1504. vec->coeff[i] = c;
  1505. return vec;
  1506. }
  1507. SwsVector *sws_getIdentityVec(void)
  1508. {
  1509. return sws_getConstVec(1.0, 1);
  1510. }
  1511. static double sws_dcVec(SwsVector *a)
  1512. {
  1513. int i;
  1514. double sum = 0;
  1515. for (i = 0; i < a->length; i++)
  1516. sum += a->coeff[i];
  1517. return sum;
  1518. }
  1519. void sws_scaleVec(SwsVector *a, double scalar)
  1520. {
  1521. int i;
  1522. for (i = 0; i < a->length; i++)
  1523. a->coeff[i] *= scalar;
  1524. }
  1525. void sws_normalizeVec(SwsVector *a, double height)
  1526. {
  1527. sws_scaleVec(a, height / sws_dcVec(a));
  1528. }
  1529. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1530. {
  1531. int length = a->length + b->length - 1;
  1532. int i, j;
  1533. SwsVector *vec = sws_getConstVec(0.0, length);
  1534. if (!vec)
  1535. return NULL;
  1536. for (i = 0; i < a->length; i++) {
  1537. for (j = 0; j < b->length; j++) {
  1538. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1539. }
  1540. }
  1541. return vec;
  1542. }
  1543. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1544. {
  1545. int length = FFMAX(a->length, b->length);
  1546. int i;
  1547. SwsVector *vec = sws_getConstVec(0.0, length);
  1548. if (!vec)
  1549. return NULL;
  1550. for (i = 0; i < a->length; i++)
  1551. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1552. for (i = 0; i < b->length; i++)
  1553. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1554. return vec;
  1555. }
  1556. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1557. {
  1558. int length = FFMAX(a->length, b->length);
  1559. int i;
  1560. SwsVector *vec = sws_getConstVec(0.0, length);
  1561. if (!vec)
  1562. return NULL;
  1563. for (i = 0; i < a->length; i++)
  1564. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1565. for (i = 0; i < b->length; i++)
  1566. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1567. return vec;
  1568. }
  1569. /* shift left / or right if "shift" is negative */
  1570. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1571. {
  1572. int length = a->length + FFABS(shift) * 2;
  1573. int i;
  1574. SwsVector *vec = sws_getConstVec(0.0, length);
  1575. if (!vec)
  1576. return NULL;
  1577. for (i = 0; i < a->length; i++) {
  1578. vec->coeff[i + (length - 1) / 2 -
  1579. (a->length - 1) / 2 - shift] = a->coeff[i];
  1580. }
  1581. return vec;
  1582. }
  1583. void sws_shiftVec(SwsVector *a, int shift)
  1584. {
  1585. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1586. av_free(a->coeff);
  1587. a->coeff = shifted->coeff;
  1588. a->length = shifted->length;
  1589. av_free(shifted);
  1590. }
  1591. void sws_addVec(SwsVector *a, SwsVector *b)
  1592. {
  1593. SwsVector *sum = sws_sumVec(a, b);
  1594. av_free(a->coeff);
  1595. a->coeff = sum->coeff;
  1596. a->length = sum->length;
  1597. av_free(sum);
  1598. }
  1599. void sws_subVec(SwsVector *a, SwsVector *b)
  1600. {
  1601. SwsVector *diff = sws_diffVec(a, b);
  1602. av_free(a->coeff);
  1603. a->coeff = diff->coeff;
  1604. a->length = diff->length;
  1605. av_free(diff);
  1606. }
  1607. void sws_convVec(SwsVector *a, SwsVector *b)
  1608. {
  1609. SwsVector *conv = sws_getConvVec(a, b);
  1610. av_free(a->coeff);
  1611. a->coeff = conv->coeff;
  1612. a->length = conv->length;
  1613. av_free(conv);
  1614. }
  1615. SwsVector *sws_cloneVec(SwsVector *a)
  1616. {
  1617. int i;
  1618. SwsVector *vec = sws_allocVec(a->length);
  1619. if (!vec)
  1620. return NULL;
  1621. for (i = 0; i < a->length; i++)
  1622. vec->coeff[i] = a->coeff[i];
  1623. return vec;
  1624. }
  1625. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1626. {
  1627. int i;
  1628. double max = 0;
  1629. double min = 0;
  1630. double range;
  1631. for (i = 0; i < a->length; i++)
  1632. if (a->coeff[i] > max)
  1633. max = a->coeff[i];
  1634. for (i = 0; i < a->length; i++)
  1635. if (a->coeff[i] < min)
  1636. min = a->coeff[i];
  1637. range = max - min;
  1638. for (i = 0; i < a->length; i++) {
  1639. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1640. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1641. for (; x > 0; x--)
  1642. av_log(log_ctx, log_level, " ");
  1643. av_log(log_ctx, log_level, "|\n");
  1644. }
  1645. }
  1646. void sws_freeVec(SwsVector *a)
  1647. {
  1648. if (!a)
  1649. return;
  1650. av_freep(&a->coeff);
  1651. a->length = 0;
  1652. av_free(a);
  1653. }
  1654. void sws_freeFilter(SwsFilter *filter)
  1655. {
  1656. if (!filter)
  1657. return;
  1658. if (filter->lumH)
  1659. sws_freeVec(filter->lumH);
  1660. if (filter->lumV)
  1661. sws_freeVec(filter->lumV);
  1662. if (filter->chrH)
  1663. sws_freeVec(filter->chrH);
  1664. if (filter->chrV)
  1665. sws_freeVec(filter->chrV);
  1666. av_free(filter);
  1667. }
  1668. void sws_freeContext(SwsContext *c)
  1669. {
  1670. int i;
  1671. if (!c)
  1672. return;
  1673. if (c->lumPixBuf) {
  1674. for (i = 0; i < c->vLumBufSize; i++)
  1675. av_freep(&c->lumPixBuf[i]);
  1676. av_freep(&c->lumPixBuf);
  1677. }
  1678. if (c->chrUPixBuf) {
  1679. for (i = 0; i < c->vChrBufSize; i++)
  1680. av_freep(&c->chrUPixBuf[i]);
  1681. av_freep(&c->chrUPixBuf);
  1682. av_freep(&c->chrVPixBuf);
  1683. }
  1684. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1685. for (i = 0; i < c->vLumBufSize; i++)
  1686. av_freep(&c->alpPixBuf[i]);
  1687. av_freep(&c->alpPixBuf);
  1688. }
  1689. for (i = 0; i < 4; i++)
  1690. av_freep(&c->dither_error[i]);
  1691. av_freep(&c->vLumFilter);
  1692. av_freep(&c->vChrFilter);
  1693. av_freep(&c->hLumFilter);
  1694. av_freep(&c->hChrFilter);
  1695. #if HAVE_ALTIVEC
  1696. av_freep(&c->vYCoeffsBank);
  1697. av_freep(&c->vCCoeffsBank);
  1698. #endif
  1699. av_freep(&c->vLumFilterPos);
  1700. av_freep(&c->vChrFilterPos);
  1701. av_freep(&c->hLumFilterPos);
  1702. av_freep(&c->hChrFilterPos);
  1703. #if HAVE_MMX_INLINE
  1704. #if USE_MMAP
  1705. if (c->lumMmxextFilterCode)
  1706. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1707. if (c->chrMmxextFilterCode)
  1708. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1709. #elif HAVE_VIRTUALALLOC
  1710. if (c->lumMmxextFilterCode)
  1711. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1712. if (c->chrMmxextFilterCode)
  1713. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1714. #else
  1715. av_free(c->lumMmxextFilterCode);
  1716. av_free(c->chrMmxextFilterCode);
  1717. #endif
  1718. c->lumMmxextFilterCode = NULL;
  1719. c->chrMmxextFilterCode = NULL;
  1720. #endif /* HAVE_MMX_INLINE */
  1721. av_freep(&c->yuvTable);
  1722. av_freep(&c->formatConvBuffer);
  1723. av_free(c);
  1724. }
  1725. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1726. int srcH, enum AVPixelFormat srcFormat,
  1727. int dstW, int dstH,
  1728. enum AVPixelFormat dstFormat, int flags,
  1729. SwsFilter *srcFilter,
  1730. SwsFilter *dstFilter,
  1731. const double *param)
  1732. {
  1733. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1734. SWS_PARAM_DEFAULT };
  1735. if (!param)
  1736. param = default_param;
  1737. if (context &&
  1738. (context->srcW != srcW ||
  1739. context->srcH != srcH ||
  1740. context->srcFormat != srcFormat ||
  1741. context->dstW != dstW ||
  1742. context->dstH != dstH ||
  1743. context->dstFormat != dstFormat ||
  1744. context->flags != flags ||
  1745. context->param[0] != param[0] ||
  1746. context->param[1] != param[1])) {
  1747. sws_freeContext(context);
  1748. context = NULL;
  1749. }
  1750. if (!context) {
  1751. if (!(context = sws_alloc_context()))
  1752. return NULL;
  1753. context->srcW = srcW;
  1754. context->srcH = srcH;
  1755. context->srcRange = handle_jpeg(&srcFormat);
  1756. context->src0Alpha = handle_0alpha(&srcFormat);
  1757. context->srcXYZ = handle_xyz(&srcFormat);
  1758. context->srcFormat = srcFormat;
  1759. context->dstW = dstW;
  1760. context->dstH = dstH;
  1761. context->dstRange = handle_jpeg(&dstFormat);
  1762. context->dst0Alpha = handle_0alpha(&dstFormat);
  1763. context->dstXYZ = handle_xyz(&dstFormat);
  1764. context->dstFormat = dstFormat;
  1765. context->flags = flags;
  1766. context->param[0] = param[0];
  1767. context->param[1] = param[1];
  1768. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1769. context->srcRange,
  1770. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1771. context->dstRange, 0, 1 << 16, 1 << 16);
  1772. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1773. sws_freeContext(context);
  1774. return NULL;
  1775. }
  1776. }
  1777. return context;
  1778. }