You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2082 lines
75KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avassert.h"
  39. #include "libavutil/avutil.h"
  40. #include "libavutil/bswap.h"
  41. #include "libavutil/cpu.h"
  42. #include "libavutil/intreadwrite.h"
  43. #include "libavutil/mathematics.h"
  44. #include "libavutil/opt.h"
  45. #include "libavutil/pixdesc.h"
  46. #include "libavutil/x86/asm.h"
  47. #include "libavutil/x86/cpu.h"
  48. #include "rgb2rgb.h"
  49. #include "swscale.h"
  50. #include "swscale_internal.h"
  51. static void handle_formats(SwsContext *c);
  52. unsigned swscale_version(void)
  53. {
  54. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  55. return LIBSWSCALE_VERSION_INT;
  56. }
  57. const char *swscale_configuration(void)
  58. {
  59. return FFMPEG_CONFIGURATION;
  60. }
  61. const char *swscale_license(void)
  62. {
  63. #define LICENSE_PREFIX "libswscale license: "
  64. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  65. }
  66. #define RET 0xC3 // near return opcode for x86
  67. typedef struct FormatEntry {
  68. uint8_t is_supported_in :1;
  69. uint8_t is_supported_out :1;
  70. uint8_t is_supported_endianness :1;
  71. } FormatEntry;
  72. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  73. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  74. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  75. [AV_PIX_FMT_RGB24] = { 1, 1 },
  76. [AV_PIX_FMT_BGR24] = { 1, 1 },
  77. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  78. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  79. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  80. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  81. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  82. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  83. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  84. [AV_PIX_FMT_PAL8] = { 1, 0 },
  85. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  86. [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
  87. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  88. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  89. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  90. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  91. [AV_PIX_FMT_BGR8] = { 1, 1 },
  92. [AV_PIX_FMT_BGR4] = { 0, 1 },
  93. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  94. [AV_PIX_FMT_RGB8] = { 1, 1 },
  95. [AV_PIX_FMT_RGB4] = { 0, 1 },
  96. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  97. [AV_PIX_FMT_NV12] = { 1, 1 },
  98. [AV_PIX_FMT_NV21] = { 1, 1 },
  99. [AV_PIX_FMT_ARGB] = { 1, 1 },
  100. [AV_PIX_FMT_RGBA] = { 1, 1 },
  101. [AV_PIX_FMT_ABGR] = { 1, 1 },
  102. [AV_PIX_FMT_BGRA] = { 1, 1 },
  103. [AV_PIX_FMT_0RGB] = { 1, 1 },
  104. [AV_PIX_FMT_RGB0] = { 1, 1 },
  105. [AV_PIX_FMT_0BGR] = { 1, 1 },
  106. [AV_PIX_FMT_BGR0] = { 1, 1 },
  107. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  108. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  109. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  110. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  111. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  112. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  113. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  114. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  115. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  116. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  117. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  118. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  119. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  120. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  121. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  122. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  123. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  124. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  125. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  126. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  127. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  128. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  129. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  130. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  131. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  132. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  133. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  134. [AV_PIX_FMT_RGBA64BE] = { 1, 1 },
  135. [AV_PIX_FMT_RGBA64LE] = { 1, 1 },
  136. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  137. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  138. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  139. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  140. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  141. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  142. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  143. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  144. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  145. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  146. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  147. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  148. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  149. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  150. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  151. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  152. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  153. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  154. [AV_PIX_FMT_Y400A] = { 1, 0 },
  155. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  156. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  157. [AV_PIX_FMT_BGRA64BE] = { 0, 0 },
  158. [AV_PIX_FMT_BGRA64LE] = { 0, 0 },
  159. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  160. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  161. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  162. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  163. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  164. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  165. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  166. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  167. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  168. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  169. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  170. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  175. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  176. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  177. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  178. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  179. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  180. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  181. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  182. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  183. [AV_PIX_FMT_GBRP] = { 1, 1 },
  184. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  185. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  186. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  187. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  188. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  189. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  190. [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
  191. [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
  192. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  193. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  194. [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
  195. [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
  196. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  197. [AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
  198. [AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
  199. };
  200. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  201. {
  202. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  203. format_entries[pix_fmt].is_supported_in : 0;
  204. }
  205. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  206. {
  207. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  208. format_entries[pix_fmt].is_supported_out : 0;
  209. }
  210. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  211. {
  212. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  213. format_entries[pix_fmt].is_supported_endianness : 0;
  214. }
  215. #if FF_API_SWS_FORMAT_NAME
  216. const char *sws_format_name(enum AVPixelFormat format)
  217. {
  218. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  219. if (desc)
  220. return desc->name;
  221. else
  222. return "Unknown format";
  223. }
  224. #endif
  225. static double getSplineCoeff(double a, double b, double c, double d,
  226. double dist)
  227. {
  228. if (dist <= 1.0)
  229. return ((d * dist + c) * dist + b) * dist + a;
  230. else
  231. return getSplineCoeff(0.0,
  232. b + 2.0 * c + 3.0 * d,
  233. c + 3.0 * d,
  234. -b - 3.0 * c - 6.0 * d,
  235. dist - 1.0);
  236. }
  237. static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
  238. {
  239. if (pos < 0) {
  240. pos = (128 << chr_subsample) - 128;
  241. }
  242. pos += 128; // relative to ideal left edge
  243. return pos >> chr_subsample;
  244. }
  245. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  246. int *outFilterSize, int xInc, int srcW,
  247. int dstW, int filterAlign, int one,
  248. int flags, int cpu_flags,
  249. SwsVector *srcFilter, SwsVector *dstFilter,
  250. double param[2], int srcPos, int dstPos)
  251. {
  252. int i;
  253. int filterSize;
  254. int filter2Size;
  255. int minFilterSize;
  256. int64_t *filter = NULL;
  257. int64_t *filter2 = NULL;
  258. const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
  259. int ret = -1;
  260. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  261. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  262. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  263. if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
  264. int i;
  265. filterSize = 1;
  266. FF_ALLOCZ_OR_GOTO(NULL, filter,
  267. dstW * sizeof(*filter) * filterSize, fail);
  268. for (i = 0; i < dstW; i++) {
  269. filter[i * filterSize] = fone;
  270. (*filterPos)[i] = i;
  271. }
  272. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  273. int i;
  274. int64_t xDstInSrc;
  275. filterSize = 1;
  276. FF_ALLOC_OR_GOTO(NULL, filter,
  277. dstW * sizeof(*filter) * filterSize, fail);
  278. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  279. for (i = 0; i < dstW; i++) {
  280. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  281. (*filterPos)[i] = xx;
  282. filter[i] = fone;
  283. xDstInSrc += xInc;
  284. }
  285. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  286. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  287. int i;
  288. int64_t xDstInSrc;
  289. filterSize = 2;
  290. FF_ALLOC_OR_GOTO(NULL, filter,
  291. dstW * sizeof(*filter) * filterSize, fail);
  292. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  293. for (i = 0; i < dstW; i++) {
  294. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  295. int j;
  296. (*filterPos)[i] = xx;
  297. // bilinear upscale / linear interpolate / area averaging
  298. for (j = 0; j < filterSize; j++) {
  299. int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
  300. if (coeff < 0)
  301. coeff = 0;
  302. filter[i * filterSize + j] = coeff;
  303. xx++;
  304. }
  305. xDstInSrc += xInc;
  306. }
  307. } else {
  308. int64_t xDstInSrc;
  309. int sizeFactor;
  310. if (flags & SWS_BICUBIC)
  311. sizeFactor = 4;
  312. else if (flags & SWS_X)
  313. sizeFactor = 8;
  314. else if (flags & SWS_AREA)
  315. sizeFactor = 1; // downscale only, for upscale it is bilinear
  316. else if (flags & SWS_GAUSS)
  317. sizeFactor = 8; // infinite ;)
  318. else if (flags & SWS_LANCZOS)
  319. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  320. else if (flags & SWS_SINC)
  321. sizeFactor = 20; // infinite ;)
  322. else if (flags & SWS_SPLINE)
  323. sizeFactor = 20; // infinite ;)
  324. else if (flags & SWS_BILINEAR)
  325. sizeFactor = 2;
  326. else {
  327. av_assert0(0);
  328. }
  329. if (xInc <= 1 << 16)
  330. filterSize = 1 + sizeFactor; // upscale
  331. else
  332. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  333. filterSize = FFMIN(filterSize, srcW - 2);
  334. filterSize = FFMAX(filterSize, 1);
  335. FF_ALLOC_OR_GOTO(NULL, filter,
  336. dstW * sizeof(*filter) * filterSize, fail);
  337. xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
  338. for (i = 0; i < dstW; i++) {
  339. int xx = (xDstInSrc - ((filterSize - 2) << 16)) / (1 << 17);
  340. int j;
  341. (*filterPos)[i] = xx;
  342. for (j = 0; j < filterSize; j++) {
  343. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  344. double floatd;
  345. int64_t coeff;
  346. if (xInc > 1 << 16)
  347. d = d * dstW / srcW;
  348. floatd = d * (1.0 / (1 << 30));
  349. if (flags & SWS_BICUBIC) {
  350. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  351. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  352. if (d >= 1LL << 31) {
  353. coeff = 0.0;
  354. } else {
  355. int64_t dd = (d * d) >> 30;
  356. int64_t ddd = (dd * d) >> 30;
  357. if (d < 1LL << 30)
  358. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  359. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  360. (6 * (1 << 24) - 2 * B) * (1 << 30);
  361. else
  362. coeff = (-B - 6 * C) * ddd +
  363. (6 * B + 30 * C) * dd +
  364. (-12 * B - 48 * C) * d +
  365. (8 * B + 24 * C) * (1 << 30);
  366. }
  367. coeff /= (1LL<<54)/fone;
  368. }
  369. #if 0
  370. else if (flags & SWS_X) {
  371. double p = param ? param * 0.01 : 0.3;
  372. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  373. coeff *= pow(2.0, -p * d * d);
  374. }
  375. #endif
  376. else if (flags & SWS_X) {
  377. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  378. double c;
  379. if (floatd < 1.0)
  380. c = cos(floatd * M_PI);
  381. else
  382. c = -1.0;
  383. if (c < 0.0)
  384. c = -pow(-c, A);
  385. else
  386. c = pow(c, A);
  387. coeff = (c * 0.5 + 0.5) * fone;
  388. } else if (flags & SWS_AREA) {
  389. int64_t d2 = d - (1 << 29);
  390. if (d2 * xInc < -(1LL << (29 + 16)))
  391. coeff = 1.0 * (1LL << (30 + 16));
  392. else if (d2 * xInc < (1LL << (29 + 16)))
  393. coeff = -d2 * xInc + (1LL << (29 + 16));
  394. else
  395. coeff = 0.0;
  396. coeff *= fone >> (30 + 16);
  397. } else if (flags & SWS_GAUSS) {
  398. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  399. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  400. } else if (flags & SWS_SINC) {
  401. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  402. } else if (flags & SWS_LANCZOS) {
  403. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  404. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  405. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  406. if (floatd > p)
  407. coeff = 0;
  408. } else if (flags & SWS_BILINEAR) {
  409. coeff = (1 << 30) - d;
  410. if (coeff < 0)
  411. coeff = 0;
  412. coeff *= fone >> 30;
  413. } else if (flags & SWS_SPLINE) {
  414. double p = -2.196152422706632;
  415. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  416. } else {
  417. av_assert0(0);
  418. }
  419. filter[i * filterSize + j] = coeff;
  420. xx++;
  421. }
  422. xDstInSrc += 2 * xInc;
  423. }
  424. }
  425. /* apply src & dst Filter to filter -> filter2
  426. * av_free(filter);
  427. */
  428. av_assert0(filterSize > 0);
  429. filter2Size = filterSize;
  430. if (srcFilter)
  431. filter2Size += srcFilter->length - 1;
  432. if (dstFilter)
  433. filter2Size += dstFilter->length - 1;
  434. av_assert0(filter2Size > 0);
  435. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  436. for (i = 0; i < dstW; i++) {
  437. int j, k;
  438. if (srcFilter) {
  439. for (k = 0; k < srcFilter->length; k++) {
  440. for (j = 0; j < filterSize; j++)
  441. filter2[i * filter2Size + k + j] +=
  442. srcFilter->coeff[k] * filter[i * filterSize + j];
  443. }
  444. } else {
  445. for (j = 0; j < filterSize; j++)
  446. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  447. }
  448. // FIXME dstFilter
  449. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  450. }
  451. av_freep(&filter);
  452. /* try to reduce the filter-size (step1 find size and shift left) */
  453. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  454. minFilterSize = 0;
  455. for (i = dstW - 1; i >= 0; i--) {
  456. int min = filter2Size;
  457. int j;
  458. int64_t cutOff = 0.0;
  459. /* get rid of near zero elements on the left by shifting left */
  460. for (j = 0; j < filter2Size; j++) {
  461. int k;
  462. cutOff += FFABS(filter2[i * filter2Size]);
  463. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  464. break;
  465. /* preserve monotonicity because the core can't handle the
  466. * filter otherwise */
  467. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  468. break;
  469. // move filter coefficients left
  470. for (k = 1; k < filter2Size; k++)
  471. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  472. filter2[i * filter2Size + k - 1] = 0;
  473. (*filterPos)[i]++;
  474. }
  475. cutOff = 0;
  476. /* count near zeros on the right */
  477. for (j = filter2Size - 1; j > 0; j--) {
  478. cutOff += FFABS(filter2[i * filter2Size + j]);
  479. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  480. break;
  481. min--;
  482. }
  483. if (min > minFilterSize)
  484. minFilterSize = min;
  485. }
  486. if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) {
  487. // we can handle the special case 4, so we don't want to go the full 8
  488. if (minFilterSize < 5)
  489. filterAlign = 4;
  490. /* We really don't want to waste our time doing useless computation, so
  491. * fall back on the scalar C code for very small filters.
  492. * Vectorizing is worth it only if you have a decent-sized vector. */
  493. if (minFilterSize < 3)
  494. filterAlign = 1;
  495. }
  496. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  497. // special case for unscaled vertical filtering
  498. if (minFilterSize == 1 && filterAlign == 2)
  499. filterAlign = 1;
  500. }
  501. av_assert0(minFilterSize > 0);
  502. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  503. av_assert0(filterSize > 0);
  504. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  505. if (filterSize >= MAX_FILTER_SIZE * 16 /
  506. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter) {
  507. av_log(NULL, AV_LOG_ERROR, "sws: filterSize %d is too large, try less extreem scaling or increase MAX_FILTER_SIZE and recompile\n", filterSize);
  508. goto fail;
  509. }
  510. *outFilterSize = filterSize;
  511. if (flags & SWS_PRINT_INFO)
  512. av_log(NULL, AV_LOG_VERBOSE,
  513. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  514. filter2Size, filterSize);
  515. /* try to reduce the filter-size (step2 reduce it) */
  516. for (i = 0; i < dstW; i++) {
  517. int j;
  518. for (j = 0; j < filterSize; j++) {
  519. if (j >= filter2Size)
  520. filter[i * filterSize + j] = 0;
  521. else
  522. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  523. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  524. filter[i * filterSize + j] = 0;
  525. }
  526. }
  527. // FIXME try to align filterPos if possible
  528. // fix borders
  529. for (i = 0; i < dstW; i++) {
  530. int j;
  531. if ((*filterPos)[i] < 0) {
  532. // move filter coefficients left to compensate for filterPos
  533. for (j = 1; j < filterSize; j++) {
  534. int left = FFMAX(j + (*filterPos)[i], 0);
  535. filter[i * filterSize + left] += filter[i * filterSize + j];
  536. filter[i * filterSize + j] = 0;
  537. }
  538. (*filterPos)[i]= 0;
  539. }
  540. if ((*filterPos)[i] + filterSize > srcW) {
  541. int shift = (*filterPos)[i] + filterSize - srcW;
  542. // move filter coefficients right to compensate for filterPos
  543. for (j = filterSize - 2; j >= 0; j--) {
  544. int right = FFMIN(j + shift, filterSize - 1);
  545. filter[i * filterSize + right] += filter[i * filterSize + j];
  546. filter[i * filterSize + j] = 0;
  547. }
  548. (*filterPos)[i]= srcW - filterSize;
  549. }
  550. }
  551. // Note the +1 is for the MMX scaler which reads over the end
  552. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  553. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  554. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  555. /* normalize & store in outFilter */
  556. for (i = 0; i < dstW; i++) {
  557. int j;
  558. int64_t error = 0;
  559. int64_t sum = 0;
  560. for (j = 0; j < filterSize; j++) {
  561. sum += filter[i * filterSize + j];
  562. }
  563. sum = (sum + one / 2) / one;
  564. for (j = 0; j < *outFilterSize; j++) {
  565. int64_t v = filter[i * filterSize + j] + error;
  566. int intV = ROUNDED_DIV(v, sum);
  567. (*outFilter)[i * (*outFilterSize) + j] = intV;
  568. error = v - intV * sum;
  569. }
  570. }
  571. (*filterPos)[dstW + 0] =
  572. (*filterPos)[dstW + 1] =
  573. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  574. * read over the end */
  575. for (i = 0; i < *outFilterSize; i++) {
  576. int k = (dstW - 1) * (*outFilterSize) + i;
  577. (*outFilter)[k + 1 * (*outFilterSize)] =
  578. (*outFilter)[k + 2 * (*outFilterSize)] =
  579. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  580. }
  581. ret = 0;
  582. fail:
  583. if(ret < 0)
  584. av_log(NULL, AV_LOG_ERROR, "sws: initFilter failed\n");
  585. av_free(filter);
  586. av_free(filter2);
  587. return ret;
  588. }
  589. #if HAVE_MMXEXT_INLINE
  590. static av_cold int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
  591. int16_t *filter, int32_t *filterPos,
  592. int numSplits)
  593. {
  594. uint8_t *fragmentA;
  595. x86_reg imm8OfPShufW1A;
  596. x86_reg imm8OfPShufW2A;
  597. x86_reg fragmentLengthA;
  598. uint8_t *fragmentB;
  599. x86_reg imm8OfPShufW1B;
  600. x86_reg imm8OfPShufW2B;
  601. x86_reg fragmentLengthB;
  602. int fragmentPos;
  603. int xpos, i;
  604. // create an optimized horizontal scaling routine
  605. /* This scaler is made of runtime-generated MMXEXT code using specially tuned
  606. * pshufw instructions. For every four output pixels, if four input pixels
  607. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  608. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  609. */
  610. // code fragment
  611. __asm__ volatile (
  612. "jmp 9f \n\t"
  613. // Begin
  614. "0: \n\t"
  615. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  616. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  617. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  618. "punpcklbw %%mm7, %%mm1 \n\t"
  619. "punpcklbw %%mm7, %%mm0 \n\t"
  620. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  621. "1: \n\t"
  622. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  623. "2: \n\t"
  624. "psubw %%mm1, %%mm0 \n\t"
  625. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  626. "pmullw %%mm3, %%mm0 \n\t"
  627. "psllw $7, %%mm1 \n\t"
  628. "paddw %%mm1, %%mm0 \n\t"
  629. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  630. "add $8, %%"REG_a" \n\t"
  631. // End
  632. "9: \n\t"
  633. // "int $3 \n\t"
  634. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  635. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  636. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  637. "dec %1 \n\t"
  638. "dec %2 \n\t"
  639. "sub %0, %1 \n\t"
  640. "sub %0, %2 \n\t"
  641. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  642. "sub %0, %3 \n\t"
  643. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  644. "=r" (fragmentLengthA)
  645. );
  646. __asm__ volatile (
  647. "jmp 9f \n\t"
  648. // Begin
  649. "0: \n\t"
  650. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  651. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  652. "punpcklbw %%mm7, %%mm0 \n\t"
  653. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  654. "1: \n\t"
  655. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  656. "2: \n\t"
  657. "psubw %%mm1, %%mm0 \n\t"
  658. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  659. "pmullw %%mm3, %%mm0 \n\t"
  660. "psllw $7, %%mm1 \n\t"
  661. "paddw %%mm1, %%mm0 \n\t"
  662. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  663. "add $8, %%"REG_a" \n\t"
  664. // End
  665. "9: \n\t"
  666. // "int $3 \n\t"
  667. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  668. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  669. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  670. "dec %1 \n\t"
  671. "dec %2 \n\t"
  672. "sub %0, %1 \n\t"
  673. "sub %0, %2 \n\t"
  674. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  675. "sub %0, %3 \n\t"
  676. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  677. "=r" (fragmentLengthB)
  678. );
  679. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  680. fragmentPos = 0;
  681. for (i = 0; i < dstW / numSplits; i++) {
  682. int xx = xpos >> 16;
  683. if ((i & 3) == 0) {
  684. int a = 0;
  685. int b = ((xpos + xInc) >> 16) - xx;
  686. int c = ((xpos + xInc * 2) >> 16) - xx;
  687. int d = ((xpos + xInc * 3) >> 16) - xx;
  688. int inc = (d + 1 < 4);
  689. uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
  690. x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  691. x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  692. x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
  693. int maxShift = 3 - (d + inc);
  694. int shift = 0;
  695. if (filterCode) {
  696. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  697. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  698. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  699. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  700. filterPos[i / 2] = xx;
  701. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  702. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  703. ((b + inc) << 2) |
  704. ((c + inc) << 4) |
  705. ((d + inc) << 6);
  706. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  707. (c << 4) |
  708. (d << 6);
  709. if (i + 4 - inc >= dstW)
  710. shift = maxShift; // avoid overread
  711. else if ((filterPos[i / 2] & 3) <= maxShift)
  712. shift = filterPos[i / 2] & 3; // align
  713. if (shift && i >= shift) {
  714. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  715. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  716. filterPos[i / 2] -= shift;
  717. }
  718. }
  719. fragmentPos += fragmentLength;
  720. if (filterCode)
  721. filterCode[fragmentPos] = RET;
  722. }
  723. xpos += xInc;
  724. }
  725. if (filterCode)
  726. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  727. return fragmentPos + 1;
  728. }
  729. #endif /* HAVE_MMXEXT_INLINE */
  730. static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
  731. {
  732. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  733. *h = desc->log2_chroma_w;
  734. *v = desc->log2_chroma_h;
  735. }
  736. static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
  737. {
  738. int64_t W, V, Z, Cy, Cu, Cv;
  739. int64_t vr = table[0];
  740. int64_t ub = table[1];
  741. int64_t ug = -table[2];
  742. int64_t vg = -table[3];
  743. int64_t ONE = 65536;
  744. int64_t cy = ONE;
  745. uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
  746. int i;
  747. static const int8_t map[] = {
  748. BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
  749. RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
  750. RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
  751. BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
  752. BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
  753. RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
  754. RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
  755. BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
  756. BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
  757. RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
  758. RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
  759. BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
  760. RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
  761. BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
  762. GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
  763. -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
  764. RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
  765. BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
  766. GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
  767. -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
  768. RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
  769. BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
  770. GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
  771. -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
  772. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
  773. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
  774. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
  775. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
  776. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
  777. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
  778. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
  779. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
  780. BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
  781. BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
  782. BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
  783. };
  784. dstRange = 0; //FIXME range = 1 is handled elsewhere
  785. if (!dstRange) {
  786. cy = cy * 255 / 219;
  787. } else {
  788. vr = vr * 224 / 255;
  789. ub = ub * 224 / 255;
  790. ug = ug * 224 / 255;
  791. vg = vg * 224 / 255;
  792. }
  793. W = ROUNDED_DIV(ONE*ONE*ug, ub);
  794. V = ROUNDED_DIV(ONE*ONE*vg, vr);
  795. Z = ONE*ONE-W-V;
  796. Cy = ROUNDED_DIV(cy*Z, ONE);
  797. Cu = ROUNDED_DIV(ub*Z, ONE);
  798. Cv = ROUNDED_DIV(vr*Z, ONE);
  799. c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
  800. c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
  801. c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
  802. c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
  803. c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
  804. c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
  805. c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
  806. c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
  807. c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
  808. if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
  809. c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  810. c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  811. c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  812. c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  813. c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  814. c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  815. c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  816. c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  817. c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  818. }
  819. for(i=0; i<FF_ARRAY_ELEMS(map); i++)
  820. AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
  821. }
  822. static void fill_xyztables(struct SwsContext *c)
  823. {
  824. int i;
  825. double xyzgamma = XYZ_GAMMA;
  826. double rgbgamma = 1.0 / RGB_GAMMA;
  827. double xyzgammainv = 1.0 / XYZ_GAMMA;
  828. double rgbgammainv = RGB_GAMMA;
  829. static const int16_t xyz2rgb_matrix[3][4] = {
  830. {13270, -6295, -2041},
  831. {-3969, 7682, 170},
  832. { 228, -835, 4329} };
  833. static const int16_t rgb2xyz_matrix[3][4] = {
  834. {1689, 1464, 739},
  835. { 871, 2929, 296},
  836. { 79, 488, 3891} };
  837. static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
  838. memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
  839. memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
  840. c->xyzgamma = xyzgamma_tab;
  841. c->rgbgamma = rgbgamma_tab;
  842. c->xyzgammainv = xyzgammainv_tab;
  843. c->rgbgammainv = rgbgammainv_tab;
  844. if (rgbgamma_tab[4095])
  845. return;
  846. /* set gamma vectors */
  847. for (i = 0; i < 4096; i++) {
  848. xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
  849. rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
  850. xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
  851. rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
  852. }
  853. }
  854. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  855. int srcRange, const int table[4], int dstRange,
  856. int brightness, int contrast, int saturation)
  857. {
  858. const AVPixFmtDescriptor *desc_dst;
  859. const AVPixFmtDescriptor *desc_src;
  860. memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  861. memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
  862. handle_formats(c);
  863. desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  864. desc_src = av_pix_fmt_desc_get(c->srcFormat);
  865. if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
  866. dstRange = 0;
  867. if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
  868. srcRange = 0;
  869. c->brightness = brightness;
  870. c->contrast = contrast;
  871. c->saturation = saturation;
  872. c->srcRange = srcRange;
  873. c->dstRange = dstRange;
  874. fill_xyztables(c);
  875. if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat)))
  876. return -1;
  877. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  878. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  879. if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
  880. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  881. contrast, saturation);
  882. // FIXME factorize
  883. if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)
  884. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness,
  885. contrast, saturation);
  886. }
  887. fill_rgb2yuv_table(c, table, dstRange);
  888. return 0;
  889. }
  890. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  891. int *srcRange, int **table, int *dstRange,
  892. int *brightness, int *contrast, int *saturation)
  893. {
  894. if (!c )
  895. return -1;
  896. *inv_table = c->srcColorspaceTable;
  897. *table = c->dstColorspaceTable;
  898. *srcRange = c->srcRange;
  899. *dstRange = c->dstRange;
  900. *brightness = c->brightness;
  901. *contrast = c->contrast;
  902. *saturation = c->saturation;
  903. return 0;
  904. }
  905. static int handle_jpeg(enum AVPixelFormat *format)
  906. {
  907. switch (*format) {
  908. case AV_PIX_FMT_YUVJ420P:
  909. *format = AV_PIX_FMT_YUV420P;
  910. return 1;
  911. case AV_PIX_FMT_YUVJ411P:
  912. *format = AV_PIX_FMT_YUV411P;
  913. return 1;
  914. case AV_PIX_FMT_YUVJ422P:
  915. *format = AV_PIX_FMT_YUV422P;
  916. return 1;
  917. case AV_PIX_FMT_YUVJ444P:
  918. *format = AV_PIX_FMT_YUV444P;
  919. return 1;
  920. case AV_PIX_FMT_YUVJ440P:
  921. *format = AV_PIX_FMT_YUV440P;
  922. return 1;
  923. case AV_PIX_FMT_GRAY8:
  924. return 1;
  925. default:
  926. return 0;
  927. }
  928. }
  929. static int handle_0alpha(enum AVPixelFormat *format)
  930. {
  931. switch (*format) {
  932. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  933. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  934. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  935. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  936. default: return 0;
  937. }
  938. }
  939. static int handle_xyz(enum AVPixelFormat *format)
  940. {
  941. switch (*format) {
  942. case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
  943. case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
  944. default: return 0;
  945. }
  946. }
  947. static void handle_formats(SwsContext *c)
  948. {
  949. c->src0Alpha |= handle_0alpha(&c->srcFormat);
  950. c->dst0Alpha |= handle_0alpha(&c->dstFormat);
  951. c->srcXYZ |= handle_xyz(&c->srcFormat);
  952. c->dstXYZ |= handle_xyz(&c->dstFormat);
  953. }
  954. SwsContext *sws_alloc_context(void)
  955. {
  956. SwsContext *c = av_mallocz(sizeof(SwsContext));
  957. if (c) {
  958. c->av_class = &sws_context_class;
  959. av_opt_set_defaults(c);
  960. }
  961. return c;
  962. }
  963. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  964. SwsFilter *dstFilter)
  965. {
  966. int i, j;
  967. int usesVFilter, usesHFilter;
  968. int unscaled;
  969. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  970. int srcW = c->srcW;
  971. int srcH = c->srcH;
  972. int dstW = c->dstW;
  973. int dstH = c->dstH;
  974. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  975. int flags, cpu_flags;
  976. enum AVPixelFormat srcFormat = c->srcFormat;
  977. enum AVPixelFormat dstFormat = c->dstFormat;
  978. const AVPixFmtDescriptor *desc_src;
  979. const AVPixFmtDescriptor *desc_dst;
  980. cpu_flags = av_get_cpu_flags();
  981. flags = c->flags;
  982. emms_c();
  983. if (!rgb15to16)
  984. sws_rgb2rgb_init();
  985. unscaled = (srcW == dstW && srcH == dstH);
  986. c->srcRange |= handle_jpeg(&c->srcFormat);
  987. c->dstRange |= handle_jpeg(&c->dstFormat);
  988. if (!c->contrast && !c->saturation && !c->dstFormatBpp)
  989. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  990. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  991. c->dstRange, 0, 1 << 16, 1 << 16);
  992. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
  993. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  994. handle_formats(c);
  995. srcFormat = c->srcFormat;
  996. dstFormat = c->dstFormat;
  997. desc_src = av_pix_fmt_desc_get(srcFormat);
  998. desc_dst = av_pix_fmt_desc_get(dstFormat);
  999. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  1000. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  1001. if (!sws_isSupportedInput(srcFormat)) {
  1002. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  1003. av_get_pix_fmt_name(srcFormat));
  1004. return AVERROR(EINVAL);
  1005. }
  1006. if (!sws_isSupportedOutput(dstFormat)) {
  1007. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  1008. av_get_pix_fmt_name(dstFormat));
  1009. return AVERROR(EINVAL);
  1010. }
  1011. }
  1012. i = flags & (SWS_POINT |
  1013. SWS_AREA |
  1014. SWS_BILINEAR |
  1015. SWS_FAST_BILINEAR |
  1016. SWS_BICUBIC |
  1017. SWS_X |
  1018. SWS_GAUSS |
  1019. SWS_LANCZOS |
  1020. SWS_SINC |
  1021. SWS_SPLINE |
  1022. SWS_BICUBLIN);
  1023. if (!i || (i & (i - 1))) {
  1024. av_log(c, AV_LOG_ERROR, "Exactly one scaler algorithm must be chosen, got %X\n", i);
  1025. return AVERROR(EINVAL);
  1026. }
  1027. /* sanity check */
  1028. if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
  1029. /* FIXME check if these are enough and try to lower them after
  1030. * fixing the relevant parts of the code */
  1031. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  1032. srcW, srcH, dstW, dstH);
  1033. return AVERROR(EINVAL);
  1034. }
  1035. if (!dstFilter)
  1036. dstFilter = &dummyFilter;
  1037. if (!srcFilter)
  1038. srcFilter = &dummyFilter;
  1039. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  1040. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  1041. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  1042. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  1043. c->vRounder = 4 * 0x0001000100010001ULL;
  1044. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  1045. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  1046. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  1047. (dstFilter->chrV && dstFilter->chrV->length > 1);
  1048. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  1049. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  1050. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  1051. (dstFilter->chrH && dstFilter->chrH->length > 1);
  1052. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  1053. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  1054. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  1055. if (dstW&1) {
  1056. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  1057. flags |= SWS_FULL_CHR_H_INT;
  1058. c->flags = flags;
  1059. }
  1060. }
  1061. if (c->dither == SWS_DITHER_AUTO) {
  1062. if (flags & SWS_ERROR_DIFFUSION)
  1063. c->dither = SWS_DITHER_ED;
  1064. }
  1065. if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
  1066. dstFormat == AV_PIX_FMT_RGB4_BYTE ||
  1067. dstFormat == AV_PIX_FMT_BGR8 ||
  1068. dstFormat == AV_PIX_FMT_RGB8) {
  1069. if (c->dither == SWS_DITHER_AUTO)
  1070. c->dither = (flags & SWS_FULL_CHR_H_INT) ? SWS_DITHER_ED : SWS_DITHER_BAYER;
  1071. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1072. if (c->dither == SWS_DITHER_ED) {
  1073. av_log(c, AV_LOG_DEBUG,
  1074. "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
  1075. av_get_pix_fmt_name(dstFormat));
  1076. flags |= SWS_FULL_CHR_H_INT;
  1077. c->flags = flags;
  1078. }
  1079. }
  1080. if (flags & SWS_FULL_CHR_H_INT) {
  1081. if (c->dither == SWS_DITHER_BAYER) {
  1082. av_log(c, AV_LOG_DEBUG,
  1083. "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
  1084. av_get_pix_fmt_name(dstFormat));
  1085. c->dither = SWS_DITHER_ED;
  1086. }
  1087. }
  1088. }
  1089. if (isPlanarRGB(dstFormat)) {
  1090. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1091. av_log(c, AV_LOG_DEBUG,
  1092. "%s output is not supported with half chroma resolution, switching to full\n",
  1093. av_get_pix_fmt_name(dstFormat));
  1094. flags |= SWS_FULL_CHR_H_INT;
  1095. c->flags = flags;
  1096. }
  1097. }
  1098. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  1099. * chroma interpolation */
  1100. if (flags & SWS_FULL_CHR_H_INT &&
  1101. isAnyRGB(dstFormat) &&
  1102. !isPlanarRGB(dstFormat) &&
  1103. dstFormat != AV_PIX_FMT_RGBA &&
  1104. dstFormat != AV_PIX_FMT_ARGB &&
  1105. dstFormat != AV_PIX_FMT_BGRA &&
  1106. dstFormat != AV_PIX_FMT_ABGR &&
  1107. dstFormat != AV_PIX_FMT_RGB24 &&
  1108. dstFormat != AV_PIX_FMT_BGR24 &&
  1109. dstFormat != AV_PIX_FMT_BGR4_BYTE &&
  1110. dstFormat != AV_PIX_FMT_RGB4_BYTE &&
  1111. dstFormat != AV_PIX_FMT_BGR8 &&
  1112. dstFormat != AV_PIX_FMT_RGB8
  1113. ) {
  1114. av_log(c, AV_LOG_WARNING,
  1115. "full chroma interpolation for destination format '%s' not yet implemented\n",
  1116. av_get_pix_fmt_name(dstFormat));
  1117. flags &= ~SWS_FULL_CHR_H_INT;
  1118. c->flags = flags;
  1119. }
  1120. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  1121. c->chrDstHSubSample = 1;
  1122. // drop some chroma lines if the user wants it
  1123. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  1124. SWS_SRC_V_CHR_DROP_SHIFT;
  1125. c->chrSrcVSubSample += c->vChrDrop;
  1126. /* drop every other pixel for chroma calculation unless user
  1127. * wants full chroma */
  1128. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  1129. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  1130. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  1131. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  1132. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  1133. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  1134. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  1135. srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
  1136. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  1137. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  1138. (flags & SWS_FAST_BILINEAR)))
  1139. c->chrSrcHSubSample = 1;
  1140. // Note the FF_CEIL_RSHIFT is so that we always round toward +inf.
  1141. c->chrSrcW = FF_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  1142. c->chrSrcH = FF_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  1143. c->chrDstW = FF_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  1144. c->chrDstH = FF_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  1145. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  1146. /* unscaled special cases */
  1147. if (unscaled && !usesHFilter && !usesVFilter &&
  1148. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  1149. ff_get_unscaled_swscale(c);
  1150. if (c->swScale) {
  1151. if (flags & SWS_PRINT_INFO)
  1152. av_log(c, AV_LOG_INFO,
  1153. "using unscaled %s -> %s special converter\n",
  1154. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1155. return 0;
  1156. }
  1157. }
  1158. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  1159. if (c->srcBpc < 8)
  1160. c->srcBpc = 8;
  1161. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  1162. if (c->dstBpc < 8)
  1163. c->dstBpc = 8;
  1164. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  1165. c->srcBpc = 16;
  1166. if (c->dstBpc == 16)
  1167. dst_stride <<= 1;
  1168. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  1169. c->canMMXEXTBeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
  1170. (srcW & 15) == 0) ? 1 : 0;
  1171. if (!c->canMMXEXTBeUsed && dstW >= srcW && (srcW & 15) == 0
  1172. && (flags & SWS_FAST_BILINEAR)) {
  1173. if (flags & SWS_PRINT_INFO)
  1174. av_log(c, AV_LOG_INFO,
  1175. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  1176. }
  1177. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  1178. c->canMMXEXTBeUsed = 0;
  1179. } else
  1180. c->canMMXEXTBeUsed = 0;
  1181. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  1182. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  1183. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  1184. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  1185. * correct scaling.
  1186. * n-2 is the last chrominance sample available.
  1187. * This is not perfect, but no one should notice the difference, the more
  1188. * correct variant would be like the vertical one, but that would require
  1189. * some special code for the first and last pixel */
  1190. if (flags & SWS_FAST_BILINEAR) {
  1191. if (c->canMMXEXTBeUsed) {
  1192. c->lumXInc += 20;
  1193. c->chrXInc += 20;
  1194. }
  1195. // we don't use the x86 asm scaler if MMX is available
  1196. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  1197. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  1198. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  1199. }
  1200. }
  1201. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  1202. /* precalculate horizontal scaler filter coefficients */
  1203. {
  1204. #if HAVE_MMXEXT_INLINE
  1205. // can't downscale !!!
  1206. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  1207. c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  1208. NULL, NULL, 8);
  1209. c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  1210. NULL, NULL, NULL, 4);
  1211. #if USE_MMAP
  1212. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  1213. PROT_READ | PROT_WRITE,
  1214. MAP_PRIVATE | MAP_ANONYMOUS,
  1215. -1, 0);
  1216. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  1217. PROT_READ | PROT_WRITE,
  1218. MAP_PRIVATE | MAP_ANONYMOUS,
  1219. -1, 0);
  1220. #elif HAVE_VIRTUALALLOC
  1221. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1222. c->lumMmxextFilterCodeSize,
  1223. MEM_COMMIT,
  1224. PAGE_EXECUTE_READWRITE);
  1225. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1226. c->chrMmxextFilterCodeSize,
  1227. MEM_COMMIT,
  1228. PAGE_EXECUTE_READWRITE);
  1229. #else
  1230. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1231. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1232. #endif
  1233. #ifdef MAP_ANONYMOUS
  1234. if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
  1235. #else
  1236. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1237. #endif
  1238. {
  1239. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  1240. return AVERROR(ENOMEM);
  1241. }
  1242. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1243. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1244. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1245. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1246. init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
  1247. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  1248. init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1249. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  1250. #if USE_MMAP
  1251. mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1252. mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1253. #endif
  1254. } else
  1255. #endif /* HAVE_MMXEXT_INLINE */
  1256. {
  1257. const int filterAlign =
  1258. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 4 :
  1259. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  1260. 1;
  1261. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1262. &c->hLumFilterSize, c->lumXInc,
  1263. srcW, dstW, filterAlign, 1 << 14,
  1264. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1265. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1266. c->param,
  1267. get_local_pos(c, 0, 0, 0),
  1268. get_local_pos(c, 0, 0, 0)) < 0)
  1269. goto fail;
  1270. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1271. &c->hChrFilterSize, c->chrXInc,
  1272. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1273. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1274. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1275. c->param,
  1276. get_local_pos(c, c->chrSrcHSubSample, c->src_h_chr_pos, 0),
  1277. get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0)) < 0)
  1278. goto fail;
  1279. }
  1280. } // initialize horizontal stuff
  1281. /* precalculate vertical scaler filter coefficients */
  1282. {
  1283. const int filterAlign =
  1284. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 2 :
  1285. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  1286. 1;
  1287. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1288. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1289. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1290. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1291. c->param,
  1292. get_local_pos(c, 0, 0, 1),
  1293. get_local_pos(c, 0, 0, 1)) < 0)
  1294. goto fail;
  1295. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1296. c->chrYInc, c->chrSrcH, c->chrDstH,
  1297. filterAlign, (1 << 12),
  1298. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1299. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1300. c->param,
  1301. get_local_pos(c, c->chrSrcVSubSample, c->src_v_chr_pos, 1),
  1302. get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1)) < 0)
  1303. goto fail;
  1304. #if HAVE_ALTIVEC
  1305. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1306. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1307. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1308. int j;
  1309. short *p = (short *)&c->vYCoeffsBank[i];
  1310. for (j = 0; j < 8; j++)
  1311. p[j] = c->vLumFilter[i];
  1312. }
  1313. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1314. int j;
  1315. short *p = (short *)&c->vCCoeffsBank[i];
  1316. for (j = 0; j < 8; j++)
  1317. p[j] = c->vChrFilter[i];
  1318. }
  1319. #endif
  1320. }
  1321. // calculate buffer sizes so that they won't run out while handling these damn slices
  1322. c->vLumBufSize = c->vLumFilterSize;
  1323. c->vChrBufSize = c->vChrFilterSize;
  1324. for (i = 0; i < dstH; i++) {
  1325. int chrI = (int64_t)i * c->chrDstH / dstH;
  1326. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1327. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1328. << c->chrSrcVSubSample));
  1329. nextSlice >>= c->chrSrcVSubSample;
  1330. nextSlice <<= c->chrSrcVSubSample;
  1331. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1332. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1333. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1334. (nextSlice >> c->chrSrcVSubSample))
  1335. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1336. c->vChrFilterPos[chrI];
  1337. }
  1338. for (i = 0; i < 4; i++)
  1339. FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
  1340. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1341. * need to allocate several megabytes to handle all possible cases) */
  1342. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1343. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1344. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1345. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1346. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1347. /* Note we need at least one pixel more at the end because of the MMX code
  1348. * (just in case someone wants to replace the 4000/8000). */
  1349. /* align at 16 bytes for AltiVec */
  1350. for (i = 0; i < c->vLumBufSize; i++) {
  1351. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1352. dst_stride + 16, fail);
  1353. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1354. }
  1355. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1356. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1357. c->uv_offx2 = dst_stride + 16;
  1358. for (i = 0; i < c->vChrBufSize; i++) {
  1359. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1360. dst_stride * 2 + 32, fail);
  1361. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1362. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1363. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1364. }
  1365. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1366. for (i = 0; i < c->vLumBufSize; i++) {
  1367. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1368. dst_stride + 16, fail);
  1369. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1370. }
  1371. // try to avoid drawing green stuff between the right end and the stride end
  1372. for (i = 0; i < c->vChrBufSize; i++)
  1373. if(desc_dst->comp[0].depth_minus1 == 15){
  1374. av_assert0(c->dstBpc > 14);
  1375. for(j=0; j<dst_stride/2+1; j++)
  1376. ((int32_t*)(c->chrUPixBuf[i]))[j] = 1<<18;
  1377. } else
  1378. for(j=0; j<dst_stride+1; j++)
  1379. ((int16_t*)(c->chrUPixBuf[i]))[j] = 1<<14;
  1380. av_assert0(c->chrDstH <= dstH);
  1381. if (flags & SWS_PRINT_INFO) {
  1382. if (flags & SWS_FAST_BILINEAR)
  1383. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  1384. else if (flags & SWS_BILINEAR)
  1385. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  1386. else if (flags & SWS_BICUBIC)
  1387. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  1388. else if (flags & SWS_X)
  1389. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  1390. else if (flags & SWS_POINT)
  1391. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  1392. else if (flags & SWS_AREA)
  1393. av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  1394. else if (flags & SWS_BICUBLIN)
  1395. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  1396. else if (flags & SWS_GAUSS)
  1397. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  1398. else if (flags & SWS_SINC)
  1399. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  1400. else if (flags & SWS_LANCZOS)
  1401. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  1402. else if (flags & SWS_SPLINE)
  1403. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  1404. else
  1405. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  1406. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  1407. av_get_pix_fmt_name(srcFormat),
  1408. #ifdef DITHER1XBPP
  1409. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1410. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1411. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1412. "dithered " : "",
  1413. #else
  1414. "",
  1415. #endif
  1416. av_get_pix_fmt_name(dstFormat));
  1417. if (INLINE_MMXEXT(cpu_flags))
  1418. av_log(c, AV_LOG_INFO, "using MMXEXT\n");
  1419. else if (INLINE_AMD3DNOW(cpu_flags))
  1420. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  1421. else if (INLINE_MMX(cpu_flags))
  1422. av_log(c, AV_LOG_INFO, "using MMX\n");
  1423. else if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC)
  1424. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  1425. else
  1426. av_log(c, AV_LOG_INFO, "using C\n");
  1427. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1428. av_log(c, AV_LOG_DEBUG,
  1429. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1430. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1431. av_log(c, AV_LOG_DEBUG,
  1432. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1433. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1434. c->chrXInc, c->chrYInc);
  1435. }
  1436. c->swScale = ff_getSwsFunc(c);
  1437. return 0;
  1438. fail: // FIXME replace things by appropriate error codes
  1439. return -1;
  1440. }
  1441. #if FF_API_SWS_GETCONTEXT
  1442. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1443. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1444. int flags, SwsFilter *srcFilter,
  1445. SwsFilter *dstFilter, const double *param)
  1446. {
  1447. SwsContext *c;
  1448. if (!(c = sws_alloc_context()))
  1449. return NULL;
  1450. c->flags = flags;
  1451. c->srcW = srcW;
  1452. c->srcH = srcH;
  1453. c->dstW = dstW;
  1454. c->dstH = dstH;
  1455. c->srcFormat = srcFormat;
  1456. c->dstFormat = dstFormat;
  1457. if (param) {
  1458. c->param[0] = param[0];
  1459. c->param[1] = param[1];
  1460. }
  1461. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1462. sws_freeContext(c);
  1463. return NULL;
  1464. }
  1465. return c;
  1466. }
  1467. #endif
  1468. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1469. float lumaSharpen, float chromaSharpen,
  1470. float chromaHShift, float chromaVShift,
  1471. int verbose)
  1472. {
  1473. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1474. if (!filter)
  1475. return NULL;
  1476. if (lumaGBlur != 0.0) {
  1477. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1478. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1479. } else {
  1480. filter->lumH = sws_getIdentityVec();
  1481. filter->lumV = sws_getIdentityVec();
  1482. }
  1483. if (chromaGBlur != 0.0) {
  1484. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1485. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1486. } else {
  1487. filter->chrH = sws_getIdentityVec();
  1488. filter->chrV = sws_getIdentityVec();
  1489. }
  1490. if (chromaSharpen != 0.0) {
  1491. SwsVector *id = sws_getIdentityVec();
  1492. sws_scaleVec(filter->chrH, -chromaSharpen);
  1493. sws_scaleVec(filter->chrV, -chromaSharpen);
  1494. sws_addVec(filter->chrH, id);
  1495. sws_addVec(filter->chrV, id);
  1496. sws_freeVec(id);
  1497. }
  1498. if (lumaSharpen != 0.0) {
  1499. SwsVector *id = sws_getIdentityVec();
  1500. sws_scaleVec(filter->lumH, -lumaSharpen);
  1501. sws_scaleVec(filter->lumV, -lumaSharpen);
  1502. sws_addVec(filter->lumH, id);
  1503. sws_addVec(filter->lumV, id);
  1504. sws_freeVec(id);
  1505. }
  1506. if (chromaHShift != 0.0)
  1507. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1508. if (chromaVShift != 0.0)
  1509. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1510. sws_normalizeVec(filter->chrH, 1.0);
  1511. sws_normalizeVec(filter->chrV, 1.0);
  1512. sws_normalizeVec(filter->lumH, 1.0);
  1513. sws_normalizeVec(filter->lumV, 1.0);
  1514. if (verbose)
  1515. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1516. if (verbose)
  1517. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1518. return filter;
  1519. }
  1520. SwsVector *sws_allocVec(int length)
  1521. {
  1522. SwsVector *vec;
  1523. if(length <= 0 || length > INT_MAX/ sizeof(double))
  1524. return NULL;
  1525. vec = av_malloc(sizeof(SwsVector));
  1526. if (!vec)
  1527. return NULL;
  1528. vec->length = length;
  1529. vec->coeff = av_malloc(sizeof(double) * length);
  1530. if (!vec->coeff)
  1531. av_freep(&vec);
  1532. return vec;
  1533. }
  1534. SwsVector *sws_getGaussianVec(double variance, double quality)
  1535. {
  1536. const int length = (int)(variance * quality + 0.5) | 1;
  1537. int i;
  1538. double middle = (length - 1) * 0.5;
  1539. SwsVector *vec;
  1540. if(variance < 0 || quality < 0)
  1541. return NULL;
  1542. vec = sws_allocVec(length);
  1543. if (!vec)
  1544. return NULL;
  1545. for (i = 0; i < length; i++) {
  1546. double dist = i - middle;
  1547. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1548. sqrt(2 * variance * M_PI);
  1549. }
  1550. sws_normalizeVec(vec, 1.0);
  1551. return vec;
  1552. }
  1553. SwsVector *sws_getConstVec(double c, int length)
  1554. {
  1555. int i;
  1556. SwsVector *vec = sws_allocVec(length);
  1557. if (!vec)
  1558. return NULL;
  1559. for (i = 0; i < length; i++)
  1560. vec->coeff[i] = c;
  1561. return vec;
  1562. }
  1563. SwsVector *sws_getIdentityVec(void)
  1564. {
  1565. return sws_getConstVec(1.0, 1);
  1566. }
  1567. static double sws_dcVec(SwsVector *a)
  1568. {
  1569. int i;
  1570. double sum = 0;
  1571. for (i = 0; i < a->length; i++)
  1572. sum += a->coeff[i];
  1573. return sum;
  1574. }
  1575. void sws_scaleVec(SwsVector *a, double scalar)
  1576. {
  1577. int i;
  1578. for (i = 0; i < a->length; i++)
  1579. a->coeff[i] *= scalar;
  1580. }
  1581. void sws_normalizeVec(SwsVector *a, double height)
  1582. {
  1583. sws_scaleVec(a, height / sws_dcVec(a));
  1584. }
  1585. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1586. {
  1587. int length = a->length + b->length - 1;
  1588. int i, j;
  1589. SwsVector *vec = sws_getConstVec(0.0, length);
  1590. if (!vec)
  1591. return NULL;
  1592. for (i = 0; i < a->length; i++) {
  1593. for (j = 0; j < b->length; j++) {
  1594. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1595. }
  1596. }
  1597. return vec;
  1598. }
  1599. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1600. {
  1601. int length = FFMAX(a->length, b->length);
  1602. int i;
  1603. SwsVector *vec = sws_getConstVec(0.0, length);
  1604. if (!vec)
  1605. return NULL;
  1606. for (i = 0; i < a->length; i++)
  1607. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1608. for (i = 0; i < b->length; i++)
  1609. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1610. return vec;
  1611. }
  1612. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1613. {
  1614. int length = FFMAX(a->length, b->length);
  1615. int i;
  1616. SwsVector *vec = sws_getConstVec(0.0, length);
  1617. if (!vec)
  1618. return NULL;
  1619. for (i = 0; i < a->length; i++)
  1620. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1621. for (i = 0; i < b->length; i++)
  1622. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1623. return vec;
  1624. }
  1625. /* shift left / or right if "shift" is negative */
  1626. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1627. {
  1628. int length = a->length + FFABS(shift) * 2;
  1629. int i;
  1630. SwsVector *vec = sws_getConstVec(0.0, length);
  1631. if (!vec)
  1632. return NULL;
  1633. for (i = 0; i < a->length; i++) {
  1634. vec->coeff[i + (length - 1) / 2 -
  1635. (a->length - 1) / 2 - shift] = a->coeff[i];
  1636. }
  1637. return vec;
  1638. }
  1639. void sws_shiftVec(SwsVector *a, int shift)
  1640. {
  1641. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1642. av_free(a->coeff);
  1643. a->coeff = shifted->coeff;
  1644. a->length = shifted->length;
  1645. av_free(shifted);
  1646. }
  1647. void sws_addVec(SwsVector *a, SwsVector *b)
  1648. {
  1649. SwsVector *sum = sws_sumVec(a, b);
  1650. av_free(a->coeff);
  1651. a->coeff = sum->coeff;
  1652. a->length = sum->length;
  1653. av_free(sum);
  1654. }
  1655. void sws_subVec(SwsVector *a, SwsVector *b)
  1656. {
  1657. SwsVector *diff = sws_diffVec(a, b);
  1658. av_free(a->coeff);
  1659. a->coeff = diff->coeff;
  1660. a->length = diff->length;
  1661. av_free(diff);
  1662. }
  1663. void sws_convVec(SwsVector *a, SwsVector *b)
  1664. {
  1665. SwsVector *conv = sws_getConvVec(a, b);
  1666. av_free(a->coeff);
  1667. a->coeff = conv->coeff;
  1668. a->length = conv->length;
  1669. av_free(conv);
  1670. }
  1671. SwsVector *sws_cloneVec(SwsVector *a)
  1672. {
  1673. int i;
  1674. SwsVector *vec = sws_allocVec(a->length);
  1675. if (!vec)
  1676. return NULL;
  1677. for (i = 0; i < a->length; i++)
  1678. vec->coeff[i] = a->coeff[i];
  1679. return vec;
  1680. }
  1681. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1682. {
  1683. int i;
  1684. double max = 0;
  1685. double min = 0;
  1686. double range;
  1687. for (i = 0; i < a->length; i++)
  1688. if (a->coeff[i] > max)
  1689. max = a->coeff[i];
  1690. for (i = 0; i < a->length; i++)
  1691. if (a->coeff[i] < min)
  1692. min = a->coeff[i];
  1693. range = max - min;
  1694. for (i = 0; i < a->length; i++) {
  1695. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1696. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1697. for (; x > 0; x--)
  1698. av_log(log_ctx, log_level, " ");
  1699. av_log(log_ctx, log_level, "|\n");
  1700. }
  1701. }
  1702. void sws_freeVec(SwsVector *a)
  1703. {
  1704. if (!a)
  1705. return;
  1706. av_freep(&a->coeff);
  1707. a->length = 0;
  1708. av_free(a);
  1709. }
  1710. void sws_freeFilter(SwsFilter *filter)
  1711. {
  1712. if (!filter)
  1713. return;
  1714. if (filter->lumH)
  1715. sws_freeVec(filter->lumH);
  1716. if (filter->lumV)
  1717. sws_freeVec(filter->lumV);
  1718. if (filter->chrH)
  1719. sws_freeVec(filter->chrH);
  1720. if (filter->chrV)
  1721. sws_freeVec(filter->chrV);
  1722. av_free(filter);
  1723. }
  1724. void sws_freeContext(SwsContext *c)
  1725. {
  1726. int i;
  1727. if (!c)
  1728. return;
  1729. if (c->lumPixBuf) {
  1730. for (i = 0; i < c->vLumBufSize; i++)
  1731. av_freep(&c->lumPixBuf[i]);
  1732. av_freep(&c->lumPixBuf);
  1733. }
  1734. if (c->chrUPixBuf) {
  1735. for (i = 0; i < c->vChrBufSize; i++)
  1736. av_freep(&c->chrUPixBuf[i]);
  1737. av_freep(&c->chrUPixBuf);
  1738. av_freep(&c->chrVPixBuf);
  1739. }
  1740. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1741. for (i = 0; i < c->vLumBufSize; i++)
  1742. av_freep(&c->alpPixBuf[i]);
  1743. av_freep(&c->alpPixBuf);
  1744. }
  1745. for (i = 0; i < 4; i++)
  1746. av_freep(&c->dither_error[i]);
  1747. av_freep(&c->vLumFilter);
  1748. av_freep(&c->vChrFilter);
  1749. av_freep(&c->hLumFilter);
  1750. av_freep(&c->hChrFilter);
  1751. #if HAVE_ALTIVEC
  1752. av_freep(&c->vYCoeffsBank);
  1753. av_freep(&c->vCCoeffsBank);
  1754. #endif
  1755. av_freep(&c->vLumFilterPos);
  1756. av_freep(&c->vChrFilterPos);
  1757. av_freep(&c->hLumFilterPos);
  1758. av_freep(&c->hChrFilterPos);
  1759. #if HAVE_MMX_INLINE
  1760. #if USE_MMAP
  1761. if (c->lumMmxextFilterCode)
  1762. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1763. if (c->chrMmxextFilterCode)
  1764. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1765. #elif HAVE_VIRTUALALLOC
  1766. if (c->lumMmxextFilterCode)
  1767. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1768. if (c->chrMmxextFilterCode)
  1769. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1770. #else
  1771. av_free(c->lumMmxextFilterCode);
  1772. av_free(c->chrMmxextFilterCode);
  1773. #endif
  1774. c->lumMmxextFilterCode = NULL;
  1775. c->chrMmxextFilterCode = NULL;
  1776. #endif /* HAVE_MMX_INLINE */
  1777. av_freep(&c->yuvTable);
  1778. av_freep(&c->formatConvBuffer);
  1779. av_free(c);
  1780. }
  1781. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1782. int srcH, enum AVPixelFormat srcFormat,
  1783. int dstW, int dstH,
  1784. enum AVPixelFormat dstFormat, int flags,
  1785. SwsFilter *srcFilter,
  1786. SwsFilter *dstFilter,
  1787. const double *param)
  1788. {
  1789. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1790. SWS_PARAM_DEFAULT };
  1791. if (!param)
  1792. param = default_param;
  1793. if (context &&
  1794. (context->srcW != srcW ||
  1795. context->srcH != srcH ||
  1796. context->srcFormat != srcFormat ||
  1797. context->dstW != dstW ||
  1798. context->dstH != dstH ||
  1799. context->dstFormat != dstFormat ||
  1800. context->flags != flags ||
  1801. context->param[0] != param[0] ||
  1802. context->param[1] != param[1])) {
  1803. sws_freeContext(context);
  1804. context = NULL;
  1805. }
  1806. if (!context) {
  1807. if (!(context = sws_alloc_context()))
  1808. return NULL;
  1809. context->srcW = srcW;
  1810. context->srcH = srcH;
  1811. context->srcFormat = srcFormat;
  1812. context->dstW = dstW;
  1813. context->dstH = dstH;
  1814. context->dstFormat = dstFormat;
  1815. context->flags = flags;
  1816. context->param[0] = param[0];
  1817. context->param[1] = param[1];
  1818. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1819. sws_freeContext(context);
  1820. return NULL;
  1821. }
  1822. }
  1823. return context;
  1824. }