You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

716 lines
21KB

  1. /*
  2. * Copyright (c) 2003 The FFmpeg Project.
  3. *
  4. * This library is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU Lesser General Public
  6. * License as published by the Free Software Foundation; either
  7. * version 2 of the License, or (at your option) any later version.
  8. *
  9. * This library is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * Lesser General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU Lesser General Public
  15. * License along with this library; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17. *
  18. *
  19. * How to use this decoder:
  20. * SVQ3 data is transported within Apple Quicktime files. Quicktime files
  21. * have stsd atoms to describe media trak properties. A stsd atom for a
  22. * video trak contains 1 or more ImageDescription atoms. These atoms begin
  23. * with the 4-byte length of the atom followed by the codec fourcc. Some
  24. * decoders need information in this atom to operate correctly. Such
  25. * is the case with SVQ3. In order to get the best use out of this decoder,
  26. * the calling app must make the SVQ3 ImageDescription atom available
  27. * via the AVCodecContext's extradata[_size] field:
  28. *
  29. * AVCodecContext.extradata = pointer to ImageDescription, first characters
  30. * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
  31. * AVCodecContext.extradata_size = size of ImageDescription atom memory
  32. * buffer (which will be the same as the ImageDescription atom size field
  33. * from the QT file, minus 4 bytes since the length is missing)
  34. *
  35. * You will know you have these parameters passed correctly when the decoder
  36. * correctly decodes this file:
  37. * ftp://ftp.mplayerhq.hu/MPlayer/samples/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
  38. *
  39. */
  40. /**
  41. * @file svq3.c
  42. * svq3 decoder.
  43. */
  44. #define FULLPEL_MODE 1
  45. #define HALFPEL_MODE 2
  46. #define THIRDPEL_MODE 3
  47. /* dual scan (from some older h264 draft)
  48. o-->o-->o o
  49. | /|
  50. o o o / o
  51. | / | |/ |
  52. o o o o
  53. /
  54. o-->o-->o-->o
  55. */
  56. static const uint8_t svq3_scan[16]={
  57. 0+0*4, 1+0*4, 2+0*4, 2+1*4,
  58. 2+2*4, 3+0*4, 3+1*4, 3+2*4,
  59. 0+1*4, 0+2*4, 1+1*4, 1+2*4,
  60. 0+3*4, 1+3*4, 2+3*4, 3+3*4,
  61. };
  62. static const uint8_t svq3_pred_0[25][2] = {
  63. { 0, 0 },
  64. { 1, 0 }, { 0, 1 },
  65. { 0, 2 }, { 1, 1 }, { 2, 0 },
  66. { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
  67. { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
  68. { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
  69. { 2, 4 }, { 3, 3 }, { 4, 2 },
  70. { 4, 3 }, { 3, 4 },
  71. { 4, 4 }
  72. };
  73. static const int8_t svq3_pred_1[6][6][5] = {
  74. { { 2,-1,-1,-1,-1 }, { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 },
  75. { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 }, { 1, 2,-1,-1,-1 } },
  76. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
  77. { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
  78. { { 2, 0,-1,-1,-1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
  79. { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
  80. { { 2, 0,-1,-1,-1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
  81. { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
  82. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
  83. { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
  84. { { 0, 2,-1,-1,-1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
  85. { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
  86. };
  87. static const struct { uint8_t run; uint8_t level; } svq3_dct_tables[2][16] = {
  88. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
  89. { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
  90. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
  91. { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
  92. };
  93. static const uint32_t svq3_dequant_coeff[32] = {
  94. 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
  95. 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
  96. 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
  97. 61694, 68745, 77615, 89113,100253,109366,126635,141533
  98. };
  99. static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp){
  100. const int qmul= svq3_dequant_coeff[qp];
  101. #define stride 16
  102. int i;
  103. int temp[16];
  104. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  105. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  106. for(i=0; i<4; i++){
  107. const int offset= y_offset[i];
  108. const int z0= 13*(block[offset+stride*0] + block[offset+stride*4]);
  109. const int z1= 13*(block[offset+stride*0] - block[offset+stride*4]);
  110. const int z2= 7* block[offset+stride*1] - 17*block[offset+stride*5];
  111. const int z3= 17* block[offset+stride*1] + 7*block[offset+stride*5];
  112. temp[4*i+0]= z0+z3;
  113. temp[4*i+1]= z1+z2;
  114. temp[4*i+2]= z1-z2;
  115. temp[4*i+3]= z0-z3;
  116. }
  117. for(i=0; i<4; i++){
  118. const int offset= x_offset[i];
  119. const int z0= 13*(temp[4*0+i] + temp[4*2+i]);
  120. const int z1= 13*(temp[4*0+i] - temp[4*2+i]);
  121. const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
  122. const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
  123. block[stride*0 +offset]= ((z0 + z3)*qmul + 0x80000)>>20;
  124. block[stride*2 +offset]= ((z1 + z2)*qmul + 0x80000)>>20;
  125. block[stride*8 +offset]= ((z1 - z2)*qmul + 0x80000)>>20;
  126. block[stride*10+offset]= ((z0 - z3)*qmul + 0x80000)>>20;
  127. }
  128. }
  129. #undef stride
  130. static void svq3_add_idct_c (uint8_t *dst, DCTELEM *block, int stride, int qp, int dc){
  131. const int qmul= svq3_dequant_coeff[qp];
  132. int i;
  133. uint8_t *cm = cropTbl + MAX_NEG_CROP;
  134. if (dc) {
  135. dc = 13*13*((dc == 1) ? 1538*block[0] : ((qmul*(block[0] >> 3)) / 2));
  136. block[0] = 0;
  137. }
  138. for (i=0; i < 4; i++) {
  139. const int z0= 13*(block[0 + 4*i] + block[2 + 4*i]);
  140. const int z1= 13*(block[0 + 4*i] - block[2 + 4*i]);
  141. const int z2= 7* block[1 + 4*i] - 17*block[3 + 4*i];
  142. const int z3= 17* block[1 + 4*i] + 7*block[3 + 4*i];
  143. block[0 + 4*i]= z0 + z3;
  144. block[1 + 4*i]= z1 + z2;
  145. block[2 + 4*i]= z1 - z2;
  146. block[3 + 4*i]= z0 - z3;
  147. }
  148. for (i=0; i < 4; i++) {
  149. const int z0= 13*(block[i + 4*0] + block[i + 4*2]);
  150. const int z1= 13*(block[i + 4*0] - block[i + 4*2]);
  151. const int z2= 7* block[i + 4*1] - 17*block[i + 4*3];
  152. const int z3= 17* block[i + 4*1] + 7*block[i + 4*3];
  153. const int rr= (dc + 0x80000);
  154. dst[i + stride*0]= cm[ dst[i + stride*0] + (((z0 + z3)*qmul + rr) >> 20) ];
  155. dst[i + stride*1]= cm[ dst[i + stride*1] + (((z1 + z2)*qmul + rr) >> 20) ];
  156. dst[i + stride*2]= cm[ dst[i + stride*2] + (((z1 - z2)*qmul + rr) >> 20) ];
  157. dst[i + stride*3]= cm[ dst[i + stride*3] + (((z0 - z3)*qmul + rr) >> 20) ];
  158. }
  159. }
  160. static void pred4x4_down_left_svq3_c(uint8_t *src, uint8_t *topright, int stride){
  161. LOAD_TOP_EDGE
  162. LOAD_LEFT_EDGE
  163. const __attribute__((unused)) int unu0= t0;
  164. const __attribute__((unused)) int unu1= l0;
  165. src[0+0*stride]=(l1 + t1)>>1;
  166. src[1+0*stride]=
  167. src[0+1*stride]=(l2 + t2)>>1;
  168. src[2+0*stride]=
  169. src[1+1*stride]=
  170. src[0+2*stride]=
  171. src[3+0*stride]=
  172. src[2+1*stride]=
  173. src[1+2*stride]=
  174. src[0+3*stride]=
  175. src[3+1*stride]=
  176. src[2+2*stride]=
  177. src[1+3*stride]=
  178. src[3+2*stride]=
  179. src[2+3*stride]=
  180. src[3+3*stride]=(l3 + t3)>>1;
  181. };
  182. static void pred16x16_plane_svq3_c(uint8_t *src, int stride){
  183. pred16x16_plane_compat_c(src, stride, 1);
  184. }
  185. static inline int svq3_decode_block (GetBitContext *gb, DCTELEM *block,
  186. int index, const int type) {
  187. static const uint8_t *const scan_patterns[4] =
  188. { luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan };
  189. int run, level, sign, vlc, limit;
  190. const int intra = (3 * type) >> 2;
  191. const uint8_t *const scan = scan_patterns[type];
  192. for (limit=(16 >> intra); index < 16; index=limit, limit+=8) {
  193. for (; (vlc = svq3_get_ue_golomb (gb)) != 0; index++) {
  194. if (vlc == INVALID_VLC)
  195. return -1;
  196. sign = (vlc & 0x1) - 1;
  197. vlc = (vlc + 1) >> 1;
  198. if (type == 3) {
  199. if (vlc < 3) {
  200. run = 0;
  201. level = vlc;
  202. } else if (vlc < 4) {
  203. run = 1;
  204. level = 1;
  205. } else {
  206. run = (vlc & 0x3);
  207. level = ((vlc + 9) >> 2) - run;
  208. }
  209. } else {
  210. if (vlc < 16) {
  211. run = svq3_dct_tables[intra][vlc].run;
  212. level = svq3_dct_tables[intra][vlc].level;
  213. } else if (intra) {
  214. run = (vlc & 0x7);
  215. level = (vlc >> 3) + ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
  216. } else {
  217. run = (vlc & 0xF);
  218. level = (vlc >> 4) + ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
  219. }
  220. }
  221. if ((index += run) >= limit)
  222. return -1;
  223. block[scan[index]] = (level ^ sign) - sign;
  224. }
  225. if (type != 2) {
  226. break;
  227. }
  228. }
  229. return 0;
  230. }
  231. static inline void svq3_mc_dir_part (MpegEncContext *s, int x, int y,
  232. int width, int height, int mx, int my, int dxy, int thirdpel) {
  233. uint8_t *src, *dest;
  234. int i, emu = 0;
  235. int blocksize= 2 - (width>>3); //16->0, 8->1, 4->2
  236. mx += x;
  237. my += y;
  238. if (mx < 0 || mx >= (s->h_edge_pos - width - 1) ||
  239. my < 0 || my >= (s->v_edge_pos - height - 1)) {
  240. if ((s->flags & CODEC_FLAG_EMU_EDGE)) {
  241. emu = 1;
  242. }
  243. mx = clip (mx, -16, (s->h_edge_pos - width + 15));
  244. my = clip (my, -16, (s->v_edge_pos - height + 15));
  245. }
  246. /* form component predictions */
  247. dest = s->current_picture.data[0] + x + y*s->linesize;
  248. src = s->last_picture.data[0] + mx + my*s->linesize;
  249. if (emu) {
  250. ff_emulated_edge_mc (s, src, s->linesize, (width + 1), (height + 1),
  251. mx, my, s->h_edge_pos, s->v_edge_pos);
  252. src = s->edge_emu_buffer;
  253. }
  254. if(thirdpel)
  255. s->dsp.put_tpel_pixels_tab[dxy](dest, src, s->linesize, width, height);
  256. else
  257. s->dsp.put_pixels_tab[blocksize][dxy](dest, src, s->linesize, height);
  258. if (!(s->flags & CODEC_FLAG_GRAY)) {
  259. mx = (mx + (mx < (int) x)) >> 1;
  260. my = (my + (my < (int) y)) >> 1;
  261. width = (width >> 1);
  262. height = (height >> 1);
  263. blocksize++;
  264. for (i=1; i < 3; i++) {
  265. dest = s->current_picture.data[i] + (x >> 1) + (y >> 1)*s->uvlinesize;
  266. src = s->last_picture.data[i] + mx + my*s->uvlinesize;
  267. if (emu) {
  268. ff_emulated_edge_mc (s, src, s->uvlinesize, (width + 1), (height + 1),
  269. mx, my, (s->h_edge_pos >> 1), (s->v_edge_pos >> 1));
  270. src = s->edge_emu_buffer;
  271. }
  272. if(thirdpel)
  273. s->dsp.put_tpel_pixels_tab[dxy](dest, src, s->uvlinesize, width, height);
  274. else
  275. s->dsp.put_pixels_tab[blocksize][dxy](dest, src, s->uvlinesize, height);
  276. }
  277. }
  278. }
  279. static int svq3_decode_mb (H264Context *h, unsigned int mb_type) {
  280. int cbp, dir, mode, mx, my, dx, dy, x, y, part_width, part_height;
  281. int i, j, k, l, m;
  282. uint32_t vlc;
  283. int8_t *top, *left;
  284. MpegEncContext *const s = (MpegEncContext *) h;
  285. const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  286. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  287. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  288. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  289. h->topright_samples_available = 0xFFFF;
  290. if (mb_type == 0) { /* SKIP */
  291. svq3_mc_dir_part (s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0);
  292. cbp = 0;
  293. mb_type = MB_TYPE_SKIP;
  294. } else if (mb_type < 8) { /* INTER */
  295. if (h->thirdpel_flag && h->halfpel_flag == !get_bits (&s->gb, 1)) {
  296. mode = THIRDPEL_MODE;
  297. } else if (h->halfpel_flag && h->thirdpel_flag == !get_bits (&s->gb, 1)) {
  298. mode = HALFPEL_MODE;
  299. } else {
  300. mode = FULLPEL_MODE;
  301. }
  302. /* fill caches */
  303. /* note ref_cache[0] should contain here:
  304. ????????
  305. ???11111
  306. N??11111
  307. N??11111
  308. N??11111
  309. N
  310. */
  311. if (s->mb_x > 0) {
  312. for (i=0; i < 4; i++) {
  313. *(uint32_t *) h->mv_cache[0][scan8[0] - 1 + i*8] = *(uint32_t *) s->current_picture.motion_val[0][b_xy - 1 + i*h->b_stride];
  314. }
  315. } else {
  316. for (i=0; i < 4; i++) {
  317. *(uint32_t *) h->mv_cache[0][scan8[0] - 1 + i*8] = 0;
  318. }
  319. }
  320. if (s->mb_y > 0) {
  321. memcpy (h->mv_cache[0][scan8[0] - 1*8], s->current_picture.motion_val[0][b_xy - h->b_stride], 4*2*sizeof(int16_t));
  322. memset (&h->ref_cache[0][scan8[0] - 1*8], 1, 4);
  323. if (s->mb_x < (s->mb_width - 1)) {
  324. *(uint32_t *) h->mv_cache[0][scan8[0] + 4 - 1*8] = *(uint32_t *) s->current_picture.motion_val[0][b_xy - h->b_stride + 4];
  325. h->ref_cache[0][scan8[0] + 4 - 1*8] = 1;
  326. }else
  327. h->ref_cache[0][scan8[0] + 4 - 1*8] = PART_NOT_AVAILABLE;
  328. if (s->mb_x > 0) {
  329. *(uint32_t *) h->mv_cache[0][scan8[0] - 1 - 1*8] = *(uint32_t *) s->current_picture.motion_val[0][b_xy - h->b_stride - 1];
  330. h->ref_cache[0][scan8[0] - 1 - 1*8] = 1;
  331. }else
  332. h->ref_cache[0][scan8[0] - 1 - 1*8] = PART_NOT_AVAILABLE;
  333. }else
  334. memset (&h->ref_cache[0][scan8[0] - 1*8 - 1], PART_NOT_AVAILABLE, 8);
  335. /* decode motion vector(s) and form prediction(s) */
  336. part_width = ((mb_type & 5) == 5) ? 4 : 8 << (mb_type & 1);
  337. part_height = 16 >> ((unsigned) mb_type / 3);
  338. for (i=0; i < 16; i+=part_height) {
  339. for (j=0; j < 16; j+=part_width) {
  340. int dxy;
  341. x = 16*s->mb_x + j;
  342. y = 16*s->mb_y + i;
  343. k = ((j>>2)&1) + ((i>>1)&2) + ((j>>1)&4) + (i&8);
  344. pred_motion (h, k, (part_width >> 2), 0, 1, &mx, &my);
  345. /* clip motion vector prediction to frame border */
  346. mx = clip (mx, -6*x, 6*(s->h_edge_pos - part_width - x));
  347. my = clip (my, -6*y, 6*(s->v_edge_pos - part_height - y));
  348. /* get motion vector differential */
  349. dy = svq3_get_se_golomb (&s->gb);
  350. dx = svq3_get_se_golomb (&s->gb);
  351. if (dx == INVALID_VLC || dy == INVALID_VLC) {
  352. return -1;
  353. }
  354. /* compute motion vector */
  355. if (mode == THIRDPEL_MODE) {
  356. int fx, fy;
  357. mx = ((mx + 1)>>1) + dx;
  358. my = ((my + 1)>>1) + dy;
  359. fx= ((unsigned)(mx + 0x3000))/3 - 0x1000;
  360. fy= ((unsigned)(my + 0x3000))/3 - 0x1000;
  361. dxy= (mx - 3*fx) + 4*(my - 3*fy);
  362. svq3_mc_dir_part (s, x, y, part_width, part_height, fx, fy, dxy, 1);
  363. mx += mx;
  364. my += my;
  365. } else if (mode == HALFPEL_MODE) {
  366. mx = ((unsigned)(mx + 1 + 0x3000))/3 + dx - 0x1000;
  367. my = ((unsigned)(my + 1 + 0x3000))/3 + dy - 0x1000;
  368. dxy= (mx&1) + 2*(my&1);
  369. svq3_mc_dir_part (s, x, y, part_width, part_height, mx>>1, my>>1, dxy, 0);
  370. mx *= 3;
  371. my *= 3;
  372. } else {
  373. assert(mode == FULLPEL_MODE);
  374. mx = ((unsigned)(mx + 3 + 0x6000))/6 + dx - 0x1000;
  375. my = ((unsigned)(my + 3 + 0x6000))/6 + dy - 0x1000;
  376. svq3_mc_dir_part (s, x, y, part_width, part_height, mx, my, 0, 0);
  377. mx *= 6;
  378. my *= 6;
  379. }
  380. /* update mv_cache */
  381. fill_rectangle(h->mv_cache[0][scan8[k]], part_width>>2, part_height>>2, 8, pack16to32(mx,my), 4);
  382. }
  383. }
  384. for (i=0; i < 4; i++) {
  385. memcpy (s->current_picture.motion_val[0][b_xy + i*h->b_stride], h->mv_cache[0][scan8[0] + 8*i], 4*2*sizeof(int16_t));
  386. }
  387. if ((vlc = svq3_get_ue_golomb (&s->gb)) >= 48)
  388. return -1;
  389. cbp = golomb_to_inter_cbp[vlc];
  390. mb_type = MB_TYPE_16x16;
  391. } else if (mb_type == 8) { /* INTRA4x4 */
  392. memset (h->intra4x4_pred_mode_cache, -1, 8*5*sizeof(int8_t));
  393. if (s->mb_x > 0) {
  394. for (i=0; i < 4; i++) {
  395. h->intra4x4_pred_mode_cache[scan8[0] - 1 + i*8] = h->intra4x4_pred_mode[mb_xy - 1][i];
  396. }
  397. }
  398. if (s->mb_y > 0) {
  399. h->intra4x4_pred_mode_cache[4+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][4];
  400. h->intra4x4_pred_mode_cache[5+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][5];
  401. h->intra4x4_pred_mode_cache[6+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][6];
  402. h->intra4x4_pred_mode_cache[7+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][3];
  403. }
  404. /* decode prediction codes for luma blocks */
  405. for (i=0; i < 16; i+=2) {
  406. vlc = svq3_get_ue_golomb (&s->gb);
  407. if (vlc >= 25)
  408. return -1;
  409. left = &h->intra4x4_pred_mode_cache[scan8[i] - 1];
  410. top = &h->intra4x4_pred_mode_cache[scan8[i] - 8];
  411. left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]];
  412. left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]];
  413. if (left[1] == -1 || left[2] == -1)
  414. return -1;
  415. }
  416. write_back_intra_pred_mode (h);
  417. check_intra4x4_pred_mode (h);
  418. if ((vlc = svq3_get_ue_golomb (&s->gb)) >= 48)
  419. return -1;
  420. cbp = golomb_to_intra4x4_cbp[vlc];
  421. mb_type = MB_TYPE_INTRA4x4;
  422. } else { /* INTRA16x16 */
  423. dir = i_mb_type_info[mb_type - 8].pred_mode;
  424. dir = (dir >> 1) ^ 3*(dir & 1) ^ 1;
  425. if ((h->intra16x16_pred_mode = check_intra_pred_mode (h, dir)) == -1)
  426. return -1;
  427. cbp = i_mb_type_info[mb_type - 8].cbp;
  428. mb_type = MB_TYPE_INTRA16x16;
  429. }
  430. if (!IS_INTER(mb_type) && s->pict_type != I_TYPE) {
  431. for (i=0; i < 4; i++) {
  432. memset (s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  433. }
  434. }
  435. if (!IS_INTRA4x4(mb_type)) {
  436. memset (h->intra4x4_pred_mode[mb_xy], DC_PRED, 8);
  437. }
  438. if (!IS_SKIP(mb_type)) {
  439. memset (h->non_zero_count_cache + 8, 0, 4*9*sizeof(uint8_t));
  440. s->dsp.clear_blocks(h->mb);
  441. }
  442. if (IS_INTRA16x16(mb_type) || (s->pict_type != I_TYPE && s->adaptive_quant && cbp)) {
  443. s->qscale += svq3_get_se_golomb (&s->gb);
  444. if (s->qscale > 31)
  445. return -1;
  446. }
  447. if (IS_INTRA16x16(mb_type)) {
  448. if (svq3_decode_block (&s->gb, h->mb, 0, 0))
  449. return -1;
  450. }
  451. if (!IS_SKIP(mb_type) && cbp) {
  452. l = IS_INTRA16x16(mb_type) ? 1 : 0;
  453. m = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1);
  454. for (i=0; i < 4; i++) {
  455. if ((cbp & (1 << i))) {
  456. for (j=0; j < 4; j++) {
  457. k = l ? ((j&1) + 2*(i&1) + 2*(j&2) + 4*(i&2)) : (4*i + j);
  458. h->non_zero_count_cache[ scan8[k] ] = 1;
  459. if (svq3_decode_block (&s->gb, &h->mb[16*k], l, m))
  460. return -1;
  461. }
  462. }
  463. }
  464. if ((cbp & 0x30)) {
  465. for (i=0; i < 2; ++i) {
  466. if (svq3_decode_block (&s->gb, &h->mb[16*(16 + 4*i)], 0, 3))
  467. return -1;
  468. }
  469. if ((cbp & 0x20)) {
  470. for (i=0; i < 8; i++) {
  471. h->non_zero_count_cache[ scan8[16+i] ] = 1;
  472. if (svq3_decode_block (&s->gb, &h->mb[16*(16 + i)], 1, 1))
  473. return -1;
  474. }
  475. }
  476. }
  477. }
  478. s->current_picture.mb_type[mb_xy] = mb_type;
  479. if (IS_INTRA(mb_type)) {
  480. h->chroma_pred_mode = check_intra_pred_mode (h, DC_PRED8x8);
  481. }
  482. return 0;
  483. }
  484. static int svq3_decode_frame (AVCodecContext *avctx,
  485. void *data, int *data_size,
  486. uint8_t *buf, int buf_size) {
  487. MpegEncContext *const s = avctx->priv_data;
  488. H264Context *const h = avctx->priv_data;
  489. int i;
  490. s->flags = avctx->flags;
  491. if (!s->context_initialized) {
  492. s->width = avctx->width;
  493. s->height = avctx->height;
  494. h->pred4x4[DIAG_DOWN_LEFT_PRED] = pred4x4_down_left_svq3_c;
  495. h->pred16x16[PLANE_PRED8x8] = pred16x16_plane_svq3_c;
  496. h->halfpel_flag = 1;
  497. h->thirdpel_flag = 1;
  498. h->chroma_qp = 4;
  499. if (MPV_common_init (s) < 0)
  500. return -1;
  501. h->b_stride = 4*s->mb_width;
  502. alloc_tables (h);
  503. }
  504. s->low_delay= 1;
  505. if (avctx->extradata && avctx->extradata_size >= 0x63
  506. && !memcmp (avctx->extradata, "SVQ3", 4)) {
  507. uint8_t *stsd = (uint8_t *) avctx->extradata + 0x62;
  508. if ((*stsd >> 5) != 7 || avctx->extradata_size >= 0x66) {
  509. if ((*stsd >> 5) == 7) {
  510. stsd += 3; /* skip width, height (12 bits each) */
  511. }
  512. h->halfpel_flag = (*stsd >> 4) & 1;
  513. h->thirdpel_flag = (*stsd >> 3) & 1;
  514. }
  515. }
  516. if ((buf[0] & 0x9F) != 1) {
  517. /* TODO: what? */
  518. fprintf (stderr, "unsupported header (%02X)\n", buf[0]);
  519. return -1;
  520. } else {
  521. int length = (buf[0] >> 5) & 3;
  522. int offset = 0;
  523. for (i=0; i < length; i++) {
  524. offset = (offset << 8) | buf[i + 1];
  525. }
  526. if (buf_size < (offset + length + 1) || length == 0)
  527. return -1;
  528. memcpy (&buf[2], &buf[offset + 2], (length - 1));
  529. }
  530. init_get_bits (&s->gb, &buf[2], 8*(buf_size - 2));
  531. if ((i = svq3_get_ue_golomb (&s->gb)) == INVALID_VLC || i >= 3)
  532. return -1;
  533. s->pict_type = golomb_to_pict_type[i];
  534. /* unknown fields */
  535. get_bits (&s->gb, 1);
  536. get_bits (&s->gb, 8);
  537. s->qscale = get_bits (&s->gb, 5);
  538. s->adaptive_quant = get_bits (&s->gb, 1);
  539. /* unknown fields */
  540. get_bits (&s->gb, 1);
  541. get_bits (&s->gb, 1);
  542. get_bits (&s->gb, 2);
  543. while (get_bits (&s->gb, 1)) {
  544. get_bits (&s->gb, 8);
  545. }
  546. if(avctx->debug&FF_DEBUG_PICT_INFO){
  547. printf("%c hpel:%d, tpel:%d aqp:%d qp:%d\n",
  548. av_get_pict_type_char(s->pict_type), h->halfpel_flag, h->thirdpel_flag,
  549. s->adaptive_quant, s->qscale
  550. );
  551. }
  552. /* B-frames are not supported */
  553. if (s->pict_type == B_TYPE/* && avctx->hurry_up*/)
  554. return buf_size;
  555. frame_start (h);
  556. for(i=0; i<4; i++){
  557. int j;
  558. for(j=-1; j<4; j++)
  559. h->ref_cache[0][scan8[0] + 8*i + j]= 1;
  560. h->ref_cache[0][scan8[0] + 8*i + j]= PART_NOT_AVAILABLE;
  561. }
  562. for (s->mb_y=0; s->mb_y < s->mb_height; s->mb_y++) {
  563. for (s->mb_x=0; s->mb_x < s->mb_width; s->mb_x++) {
  564. int mb_type = svq3_get_ue_golomb (&s->gb);
  565. if (s->pict_type == I_TYPE) {
  566. mb_type += 8;
  567. }
  568. if (mb_type > 32 || svq3_decode_mb (h, mb_type)) {
  569. fprintf (stderr, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  570. return -1;
  571. }
  572. if (mb_type != 0) {
  573. hl_decode_mb (h);
  574. }
  575. }
  576. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  577. }
  578. *(AVFrame *) data = *(AVFrame *) &s->current_picture;
  579. *data_size = sizeof(AVFrame);
  580. MPV_frame_end(s);
  581. return buf_size;
  582. }
  583. AVCodec svq3_decoder = {
  584. "svq3",
  585. CODEC_TYPE_VIDEO,
  586. CODEC_ID_SVQ3,
  587. sizeof(H264Context),
  588. decode_init,
  589. NULL,
  590. decode_end,
  591. svq3_decode_frame,
  592. CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_DR1,
  593. };