You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1164 lines
37KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  21. * the algorithm used
  22. */
  23. /**
  24. * @file huffyuv.c
  25. * huffyuv codec for libavcodec.
  26. */
  27. #include "common.h"
  28. #include "avcodec.h"
  29. #include "dsputil.h"
  30. #ifndef INT64_MAX
  31. #define INT64_MAX 9223372036854775807LL
  32. #endif
  33. #define VLC_BITS 11
  34. typedef enum Predictor{
  35. LEFT= 0,
  36. PLANE,
  37. MEDIAN,
  38. } Predictor;
  39. typedef struct HYuvContext{
  40. AVCodecContext *avctx;
  41. Predictor predictor;
  42. GetBitContext gb;
  43. PutBitContext pb;
  44. int interlaced;
  45. int decorrelate;
  46. int bitstream_bpp;
  47. int version;
  48. int yuy2; //use yuy2 instead of 422P
  49. int bgr32; //use bgr32 instead of bgr24
  50. int width, height;
  51. int flags;
  52. int picture_number;
  53. int last_slice_end;
  54. uint8_t __align8 temp[3][2500];
  55. uint64_t stats[3][256];
  56. uint8_t len[3][256];
  57. uint32_t bits[3][256];
  58. VLC vlc[3];
  59. AVFrame picture;
  60. uint8_t __align8 bitstream_buffer[1024*1024*3]; //FIXME dynamic alloc or some other solution
  61. DSPContext dsp;
  62. }HYuvContext;
  63. static const unsigned char classic_shift_luma[] = {
  64. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  65. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  66. 69,68, 0
  67. };
  68. static const unsigned char classic_shift_chroma[] = {
  69. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  70. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  71. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  72. };
  73. static const unsigned char classic_add_luma[256] = {
  74. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  75. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  76. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  77. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  78. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  79. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  80. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  81. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  82. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  83. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  84. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  85. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  86. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  87. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  88. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  89. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  90. };
  91. static const unsigned char classic_add_chroma[256] = {
  92. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  93. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  94. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  95. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  96. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  97. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  98. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  99. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  100. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  101. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  102. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  103. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  104. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  105. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  106. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  107. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  108. };
  109. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  110. int i;
  111. for(i=0; i<w-1; i++){
  112. acc+= src[i];
  113. dst[i]= acc;
  114. i++;
  115. acc+= src[i];
  116. dst[i]= acc;
  117. }
  118. for(; i<w; i++){
  119. acc+= src[i];
  120. dst[i]= acc;
  121. }
  122. return acc;
  123. }
  124. static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
  125. int i;
  126. uint8_t l, lt;
  127. l= *left;
  128. lt= *left_top;
  129. for(i=0; i<w; i++){
  130. l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
  131. lt= src1[i];
  132. dst[i]= l;
  133. }
  134. *left= l;
  135. *left_top= lt;
  136. }
  137. #ifdef CONFIG_ENCODERS
  138. //FIXME optimize
  139. static inline void sub_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *src2, int w, int *left, int *left_top){
  140. int i;
  141. uint8_t l, lt;
  142. l= *left;
  143. lt= *left_top;
  144. for(i=0; i<w; i++){
  145. const int pred= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF);
  146. lt= src1[i];
  147. l= src2[i];
  148. dst[i]= l - pred;
  149. }
  150. *left= l;
  151. *left_top= lt;
  152. }
  153. #endif //CONFIG_ENCODERS
  154. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  155. int i;
  156. int r,g,b;
  157. r= *red;
  158. g= *green;
  159. b= *blue;
  160. for(i=0; i<w; i++){
  161. b+= src[4*i+0];
  162. g+= src[4*i+1];
  163. r+= src[4*i+2];
  164. dst[4*i+0]= b;
  165. dst[4*i+1]= g;
  166. dst[4*i+2]= r;
  167. }
  168. *red= r;
  169. *green= g;
  170. *blue= b;
  171. }
  172. #ifdef CONFIG_ENCODERS
  173. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  174. int i;
  175. if(w<32){
  176. for(i=0; i<w; i++){
  177. const int temp= src[i];
  178. dst[i]= temp - left;
  179. left= temp;
  180. }
  181. return left;
  182. }else{
  183. for(i=0; i<16; i++){
  184. const int temp= src[i];
  185. dst[i]= temp - left;
  186. left= temp;
  187. }
  188. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  189. return src[w-1];
  190. }
  191. }
  192. #endif //CONFIG_ENCODERS
  193. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  194. int i, val, repeat;
  195. for(i=0; i<256;){
  196. repeat= get_bits(gb, 3);
  197. val = get_bits(gb, 5);
  198. if(repeat==0)
  199. repeat= get_bits(gb, 8);
  200. //printf("%d %d\n", val, repeat);
  201. while (repeat--)
  202. dst[i++] = val;
  203. }
  204. }
  205. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  206. int len, index;
  207. uint32_t bits=0;
  208. for(len=32; len>0; len--){
  209. int bit= 1<<(32-len);
  210. for(index=0; index<256; index++){
  211. if(len_table[index]==len){
  212. if(bits & (bit-1)){
  213. fprintf(stderr, "Error generating huffman table\n");
  214. return -1;
  215. }
  216. dst[index]= bits>>(32-len);
  217. bits+= bit;
  218. }
  219. }
  220. }
  221. return 0;
  222. }
  223. #ifdef CONFIG_ENCODERS
  224. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  225. uint64_t counts[2*size];
  226. int up[2*size];
  227. int offset, i, next;
  228. for(offset=1; ; offset<<=1){
  229. for(i=0; i<size; i++){
  230. counts[i]= stats[i] + offset - 1;
  231. }
  232. for(next=size; next<size*2; next++){
  233. uint64_t min1, min2;
  234. int min1_i, min2_i;
  235. min1=min2= INT64_MAX;
  236. min1_i= min2_i=-1;
  237. for(i=0; i<next; i++){
  238. if(min2 > counts[i]){
  239. if(min1 > counts[i]){
  240. min2= min1;
  241. min2_i= min1_i;
  242. min1= counts[i];
  243. min1_i= i;
  244. }else{
  245. min2= counts[i];
  246. min2_i= i;
  247. }
  248. }
  249. }
  250. if(min2==INT64_MAX) break;
  251. counts[next]= min1 + min2;
  252. counts[min1_i]=
  253. counts[min2_i]= INT64_MAX;
  254. up[min1_i]=
  255. up[min2_i]= next;
  256. up[next]= -1;
  257. }
  258. for(i=0; i<size; i++){
  259. int len;
  260. int index=i;
  261. for(len=0; up[index] != -1; len++)
  262. index= up[index];
  263. if(len > 32) break;
  264. dst[i]= len;
  265. }
  266. if(i==size) break;
  267. }
  268. }
  269. #endif //CONFIG_ENCODERS
  270. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  271. GetBitContext gb;
  272. int i;
  273. init_get_bits(&gb, src, length*8);
  274. for(i=0; i<3; i++){
  275. read_len_table(s->len[i], &gb);
  276. if(generate_bits_table(s->bits[i], s->len[i])<0){
  277. return -1;
  278. }
  279. #if 0
  280. for(j=0; j<256; j++){
  281. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  282. }
  283. #endif
  284. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4);
  285. }
  286. return 0;
  287. }
  288. static int read_old_huffman_tables(HYuvContext *s){
  289. #if 1
  290. GetBitContext gb;
  291. int i;
  292. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  293. read_len_table(s->len[0], &gb);
  294. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  295. read_len_table(s->len[1], &gb);
  296. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  297. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  298. if(s->bitstream_bpp >= 24){
  299. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  300. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  301. }
  302. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  303. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  304. for(i=0; i<3; i++)
  305. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4);
  306. return 0;
  307. #else
  308. fprintf(stderr, "v1 huffyuv is not supported \n");
  309. return -1;
  310. #endif
  311. }
  312. static int decode_init(AVCodecContext *avctx)
  313. {
  314. HYuvContext *s = avctx->priv_data;
  315. int width, height;
  316. s->avctx= avctx;
  317. s->flags= avctx->flags;
  318. dsputil_init(&s->dsp, avctx);
  319. width= s->width= avctx->width;
  320. height= s->height= avctx->height;
  321. avctx->coded_frame= &s->picture;
  322. s->bgr32=1;
  323. assert(width && height);
  324. //if(avctx->extradata)
  325. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  326. if(avctx->extradata_size){
  327. if((avctx->bits_per_sample&7) && avctx->bits_per_sample != 12)
  328. s->version=1; // do such files exist at all?
  329. else
  330. s->version=2;
  331. }else
  332. s->version=0;
  333. if(s->version==2){
  334. int method;
  335. method= ((uint8_t*)avctx->extradata)[0];
  336. s->decorrelate= method&64 ? 1 : 0;
  337. s->predictor= method&63;
  338. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  339. if(s->bitstream_bpp==0)
  340. s->bitstream_bpp= avctx->bits_per_sample&~7;
  341. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  342. return -1;
  343. }else{
  344. switch(avctx->bits_per_sample&7){
  345. case 1:
  346. s->predictor= LEFT;
  347. s->decorrelate= 0;
  348. break;
  349. case 2:
  350. s->predictor= LEFT;
  351. s->decorrelate= 1;
  352. break;
  353. case 3:
  354. s->predictor= PLANE;
  355. s->decorrelate= avctx->bits_per_sample >= 24;
  356. break;
  357. case 4:
  358. s->predictor= MEDIAN;
  359. s->decorrelate= 0;
  360. break;
  361. default:
  362. s->predictor= LEFT; //OLD
  363. s->decorrelate= 0;
  364. break;
  365. }
  366. s->bitstream_bpp= avctx->bits_per_sample & ~7;
  367. if(read_old_huffman_tables(s) < 0)
  368. return -1;
  369. }
  370. s->interlaced= height > 288;
  371. switch(s->bitstream_bpp){
  372. case 12:
  373. avctx->pix_fmt = PIX_FMT_YUV420P;
  374. break;
  375. case 16:
  376. if(s->yuy2){
  377. avctx->pix_fmt = PIX_FMT_YUV422;
  378. }else{
  379. avctx->pix_fmt = PIX_FMT_YUV422P;
  380. }
  381. break;
  382. case 24:
  383. case 32:
  384. if(s->bgr32){
  385. avctx->pix_fmt = PIX_FMT_RGBA32;
  386. }else{
  387. avctx->pix_fmt = PIX_FMT_BGR24;
  388. }
  389. break;
  390. default:
  391. assert(0);
  392. }
  393. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  394. return 0;
  395. }
  396. #ifdef CONFIG_ENCODERS
  397. static void store_table(HYuvContext *s, uint8_t *len){
  398. int i;
  399. int index= s->avctx->extradata_size;
  400. for(i=0; i<256;){
  401. int cur=i;
  402. int val= len[i];
  403. int repeat;
  404. for(; i<256 && len[i]==val; i++);
  405. repeat= i - cur;
  406. if(repeat>7){
  407. ((uint8_t*)s->avctx->extradata)[index++]= val;
  408. ((uint8_t*)s->avctx->extradata)[index++]= repeat;
  409. }else{
  410. ((uint8_t*)s->avctx->extradata)[index++]= val | (repeat<<5);
  411. }
  412. }
  413. s->avctx->extradata_size= index;
  414. }
  415. static int encode_init(AVCodecContext *avctx)
  416. {
  417. HYuvContext *s = avctx->priv_data;
  418. int i, j, width, height;
  419. s->avctx= avctx;
  420. s->flags= avctx->flags;
  421. dsputil_init(&s->dsp, avctx);
  422. width= s->width= avctx->width;
  423. height= s->height= avctx->height;
  424. assert(width && height);
  425. avctx->extradata= av_mallocz(1024*10);
  426. avctx->stats_out= av_mallocz(1024*10);
  427. s->version=2;
  428. avctx->coded_frame= &s->picture;
  429. switch(avctx->pix_fmt){
  430. case PIX_FMT_YUV420P:
  431. if(avctx->strict_std_compliance>=0){
  432. fprintf(stderr, "YV12-huffyuv is experimental, there WILL be no compatbility! (use (v)strict=-1)\n");
  433. return -1;
  434. }
  435. s->bitstream_bpp= 12;
  436. break;
  437. case PIX_FMT_YUV422P:
  438. s->bitstream_bpp= 16;
  439. break;
  440. default:
  441. fprintf(stderr, "format not supported\n");
  442. return -1;
  443. }
  444. avctx->bits_per_sample= s->bitstream_bpp;
  445. s->decorrelate= s->bitstream_bpp >= 24;
  446. s->predictor= avctx->prediction_method;
  447. ((uint8_t*)avctx->extradata)[0]= s->predictor;
  448. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  449. ((uint8_t*)avctx->extradata)[2]=
  450. ((uint8_t*)avctx->extradata)[3]= 0;
  451. s->avctx->extradata_size= 4;
  452. if(avctx->stats_in){
  453. char *p= avctx->stats_in;
  454. for(i=0; i<3; i++)
  455. for(j=0; j<256; j++)
  456. s->stats[i][j]= 1;
  457. for(;;){
  458. for(i=0; i<3; i++){
  459. char *next;
  460. for(j=0; j<256; j++){
  461. s->stats[i][j]+= strtol(p, &next, 0);
  462. if(next==p) return -1;
  463. p=next;
  464. }
  465. }
  466. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  467. }
  468. }else{
  469. for(i=0; i<3; i++)
  470. for(j=0; j<256; j++){
  471. int d= FFMIN(j, 256-j);
  472. s->stats[i][j]= 100000000/(d+1);
  473. }
  474. }
  475. for(i=0; i<3; i++){
  476. generate_len_table(s->len[i], s->stats[i], 256);
  477. if(generate_bits_table(s->bits[i], s->len[i])<0){
  478. return -1;
  479. }
  480. store_table(s, s->len[i]);
  481. }
  482. for(i=0; i<3; i++)
  483. for(j=0; j<256; j++)
  484. s->stats[i][j]= 0;
  485. s->interlaced= height > 288;
  486. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  487. s->picture_number=0;
  488. return 0;
  489. }
  490. #endif //CONFIG_ENCODERS
  491. static void decode_422_bitstream(HYuvContext *s, int count){
  492. int i;
  493. count/=2;
  494. for(i=0; i<count; i++){
  495. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  496. s->temp[1][ i ]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  497. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  498. s->temp[2][ i ]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  499. }
  500. }
  501. static void decode_gray_bitstream(HYuvContext *s, int count){
  502. int i;
  503. count/=2;
  504. for(i=0; i<count; i++){
  505. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  506. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  507. }
  508. }
  509. #ifdef CONFIG_ENCODERS
  510. static void encode_422_bitstream(HYuvContext *s, int count){
  511. int i;
  512. count/=2;
  513. if(s->flags&CODEC_FLAG_PASS1){
  514. for(i=0; i<count; i++){
  515. s->stats[0][ s->temp[0][2*i ] ]++;
  516. s->stats[1][ s->temp[1][ i ] ]++;
  517. s->stats[0][ s->temp[0][2*i+1] ]++;
  518. s->stats[2][ s->temp[2][ i ] ]++;
  519. }
  520. }else{
  521. for(i=0; i<count; i++){
  522. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  523. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  524. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  525. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  526. }
  527. }
  528. }
  529. static void encode_gray_bitstream(HYuvContext *s, int count){
  530. int i;
  531. count/=2;
  532. if(s->flags&CODEC_FLAG_PASS1){
  533. for(i=0; i<count; i++){
  534. s->stats[0][ s->temp[0][2*i ] ]++;
  535. s->stats[0][ s->temp[0][2*i+1] ]++;
  536. }
  537. }else{
  538. for(i=0; i<count; i++){
  539. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  540. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  541. }
  542. }
  543. }
  544. #endif //CONFIG_ENCODERS
  545. static void decode_bgr_bitstream(HYuvContext *s, int count){
  546. int i;
  547. if(s->decorrelate){
  548. if(s->bitstream_bpp==24){
  549. for(i=0; i<count; i++){
  550. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  551. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  552. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  553. }
  554. }else{
  555. for(i=0; i<count; i++){
  556. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  557. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  558. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  559. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  560. }
  561. }
  562. }else{
  563. if(s->bitstream_bpp==24){
  564. for(i=0; i<count; i++){
  565. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  566. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  567. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  568. }
  569. }else{
  570. for(i=0; i<count; i++){
  571. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  572. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  573. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  574. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  575. }
  576. }
  577. }
  578. }
  579. static void draw_slice(HYuvContext *s, int y){
  580. int h, cy;
  581. uint8_t *src_ptr[3];
  582. if(s->avctx->draw_horiz_band==NULL)
  583. return;
  584. h= y - s->last_slice_end;
  585. y -= h;
  586. if(s->bitstream_bpp==12){
  587. cy= y>>1;
  588. }else{
  589. cy= y;
  590. }
  591. src_ptr[0] = s->picture.data[0] + s->picture.linesize[0]*y;
  592. src_ptr[1] = s->picture.data[1] + s->picture.linesize[1]*cy;
  593. src_ptr[2] = s->picture.data[2] + s->picture.linesize[2]*cy;
  594. emms_c();
  595. s->avctx->draw_horiz_band(s->avctx, src_ptr, s->picture.linesize[0], y, s->width, h);
  596. s->last_slice_end= y + h;
  597. }
  598. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
  599. HYuvContext *s = avctx->priv_data;
  600. const int width= s->width;
  601. const int width2= s->width>>1;
  602. const int height= s->height;
  603. int fake_ystride, fake_ustride, fake_vstride;
  604. AVFrame * const p= &s->picture;
  605. AVFrame *picture = data;
  606. *data_size = 0;
  607. /* no supplementary picture */
  608. if (buf_size == 0)
  609. return 0;
  610. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  611. init_get_bits(&s->gb, s->bitstream_buffer, buf_size*8);
  612. if(p->data[0])
  613. avctx->release_buffer(avctx, p);
  614. p->reference= 0;
  615. if(avctx->get_buffer(avctx, p) < 0){
  616. fprintf(stderr, "get_buffer() failed\n");
  617. return -1;
  618. }
  619. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  620. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  621. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  622. s->last_slice_end= 0;
  623. if(s->bitstream_bpp<24){
  624. int y, cy;
  625. int lefty, leftu, leftv;
  626. int lefttopy, lefttopu, lefttopv;
  627. if(s->yuy2){
  628. p->data[0][3]= get_bits(&s->gb, 8);
  629. p->data[0][2]= get_bits(&s->gb, 8);
  630. p->data[0][1]= get_bits(&s->gb, 8);
  631. p->data[0][0]= get_bits(&s->gb, 8);
  632. fprintf(stderr, "YUY2 output isnt implemenetd yet\n");
  633. return -1;
  634. }else{
  635. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  636. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  637. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  638. p->data[0][0]= get_bits(&s->gb, 8);
  639. switch(s->predictor){
  640. case LEFT:
  641. case PLANE:
  642. decode_422_bitstream(s, width-2);
  643. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  644. if(!(s->flags&CODEC_FLAG_GRAY)){
  645. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  646. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  647. }
  648. for(cy=y=1; y<s->height; y++,cy++){
  649. uint8_t *ydst, *udst, *vdst;
  650. if(s->bitstream_bpp==12){
  651. decode_gray_bitstream(s, width);
  652. ydst= p->data[0] + p->linesize[0]*y;
  653. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  654. if(s->predictor == PLANE){
  655. if(y>s->interlaced)
  656. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  657. }
  658. y++;
  659. if(y>=s->height) break;
  660. }
  661. draw_slice(s, y);
  662. ydst= p->data[0] + p->linesize[0]*y;
  663. udst= p->data[1] + p->linesize[1]*cy;
  664. vdst= p->data[2] + p->linesize[2]*cy;
  665. decode_422_bitstream(s, width);
  666. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  667. if(!(s->flags&CODEC_FLAG_GRAY)){
  668. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  669. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  670. }
  671. if(s->predictor == PLANE){
  672. if(cy>s->interlaced){
  673. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  674. if(!(s->flags&CODEC_FLAG_GRAY)){
  675. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  676. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  677. }
  678. }
  679. }
  680. }
  681. draw_slice(s, height);
  682. break;
  683. case MEDIAN:
  684. /* first line except first 2 pixels is left predicted */
  685. decode_422_bitstream(s, width-2);
  686. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  687. if(!(s->flags&CODEC_FLAG_GRAY)){
  688. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  689. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  690. }
  691. cy=y=1;
  692. /* second line is left predicted for interlaced case */
  693. if(s->interlaced){
  694. decode_422_bitstream(s, width);
  695. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  696. if(!(s->flags&CODEC_FLAG_GRAY)){
  697. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  698. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  699. }
  700. y++; cy++;
  701. }
  702. /* next 4 pixels are left predicted too */
  703. decode_422_bitstream(s, 4);
  704. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  705. if(!(s->flags&CODEC_FLAG_GRAY)){
  706. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  707. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  708. }
  709. /* next line except the first 4 pixels is median predicted */
  710. lefttopy= p->data[0][3];
  711. decode_422_bitstream(s, width-4);
  712. add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  713. if(!(s->flags&CODEC_FLAG_GRAY)){
  714. lefttopu= p->data[1][1];
  715. lefttopv= p->data[2][1];
  716. add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  717. add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  718. }
  719. y++; cy++;
  720. for(; y<height; y++,cy++){
  721. uint8_t *ydst, *udst, *vdst;
  722. if(s->bitstream_bpp==12){
  723. while(2*cy > y){
  724. decode_gray_bitstream(s, width);
  725. ydst= p->data[0] + p->linesize[0]*y;
  726. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  727. y++;
  728. }
  729. if(y>=height) break;
  730. }
  731. draw_slice(s, y);
  732. decode_422_bitstream(s, width);
  733. ydst= p->data[0] + p->linesize[0]*y;
  734. udst= p->data[1] + p->linesize[1]*cy;
  735. vdst= p->data[2] + p->linesize[2]*cy;
  736. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  737. if(!(s->flags&CODEC_FLAG_GRAY)){
  738. add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  739. add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  740. }
  741. }
  742. draw_slice(s, height);
  743. break;
  744. }
  745. }
  746. }else{
  747. int y;
  748. int leftr, leftg, leftb;
  749. const int last_line= (height-1)*p->linesize[0];
  750. if(s->bitstream_bpp==32){
  751. p->data[0][last_line+3]= get_bits(&s->gb, 8);
  752. leftr= p->data[0][last_line+2]= get_bits(&s->gb, 8);
  753. leftg= p->data[0][last_line+1]= get_bits(&s->gb, 8);
  754. leftb= p->data[0][last_line+0]= get_bits(&s->gb, 8);
  755. }else{
  756. leftr= p->data[0][last_line+2]= get_bits(&s->gb, 8);
  757. leftg= p->data[0][last_line+1]= get_bits(&s->gb, 8);
  758. leftb= p->data[0][last_line+0]= get_bits(&s->gb, 8);
  759. skip_bits(&s->gb, 8);
  760. }
  761. if(s->bgr32){
  762. switch(s->predictor){
  763. case LEFT:
  764. case PLANE:
  765. decode_bgr_bitstream(s, width-1);
  766. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  767. for(y=s->height-2; y>=0; y--){ //yes its stored upside down
  768. decode_bgr_bitstream(s, width);
  769. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  770. if(s->predictor == PLANE){
  771. if((y&s->interlaced)==0){
  772. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  773. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  774. }
  775. }
  776. }
  777. draw_slice(s, height); // just 1 large slice as this isnt possible in reverse order
  778. break;
  779. default:
  780. fprintf(stderr, "prediction type not supported!\n");
  781. }
  782. }else{
  783. fprintf(stderr, "BGR24 output isnt implemenetd yet\n");
  784. return -1;
  785. }
  786. }
  787. emms_c();
  788. *picture= *p;
  789. *data_size = sizeof(AVFrame);
  790. return (get_bits_count(&s->gb)+31)/32*4;
  791. }
  792. static int decode_end(AVCodecContext *avctx)
  793. {
  794. HYuvContext *s = avctx->priv_data;
  795. int i;
  796. for(i=0; i<3; i++){
  797. free_vlc(&s->vlc[i]);
  798. }
  799. avcodec_default_free_buffers(avctx);
  800. return 0;
  801. }
  802. #ifdef CONFIG_ENCODERS
  803. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  804. HYuvContext *s = avctx->priv_data;
  805. AVFrame *pict = data;
  806. const int width= s->width;
  807. const int width2= s->width>>1;
  808. const int height= s->height;
  809. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  810. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  811. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  812. AVFrame * const p= &s->picture;
  813. int i, size;
  814. init_put_bits(&s->pb, buf, buf_size, NULL, NULL);
  815. *p = *pict;
  816. p->pict_type= FF_I_TYPE;
  817. p->key_frame= 1;
  818. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  819. int lefty, leftu, leftv, y, cy;
  820. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  821. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  822. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  823. put_bits(&s->pb, 8, p->data[0][0]);
  824. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  825. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  826. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  827. encode_422_bitstream(s, width-2);
  828. if(s->predictor==MEDIAN){
  829. int lefttopy, lefttopu, lefttopv;
  830. cy=y=1;
  831. if(s->interlaced){
  832. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  833. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  834. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  835. encode_422_bitstream(s, width);
  836. y++; cy++;
  837. }
  838. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  839. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ystride, 2, leftu);
  840. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_ystride, 2, leftv);
  841. encode_422_bitstream(s, 4);
  842. lefttopy= p->data[0][3];
  843. lefttopu= p->data[1][1];
  844. lefttopv= p->data[2][1];
  845. sub_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  846. sub_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  847. sub_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  848. encode_422_bitstream(s, width-4);
  849. y++; cy++;
  850. for(; y<height; y++,cy++){
  851. uint8_t *ydst, *udst, *vdst;
  852. if(s->bitstream_bpp==12){
  853. while(2*cy > y){
  854. ydst= p->data[0] + p->linesize[0]*y;
  855. sub_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  856. encode_gray_bitstream(s, width);
  857. y++;
  858. }
  859. if(y>=height) break;
  860. }
  861. ydst= p->data[0] + p->linesize[0]*y;
  862. udst= p->data[1] + p->linesize[1]*cy;
  863. vdst= p->data[2] + p->linesize[2]*cy;
  864. sub_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  865. sub_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  866. sub_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  867. encode_422_bitstream(s, width);
  868. }
  869. }else{
  870. for(cy=y=1; y<height; y++,cy++){
  871. uint8_t *ydst, *udst, *vdst;
  872. /* encode a luma only line & y++ */
  873. if(s->bitstream_bpp==12){
  874. ydst= p->data[0] + p->linesize[0]*y;
  875. if(s->predictor == PLANE && s->interlaced < y){
  876. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  877. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  878. }else{
  879. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  880. }
  881. encode_gray_bitstream(s, width);
  882. y++;
  883. if(y>=height) break;
  884. }
  885. ydst= p->data[0] + p->linesize[0]*y;
  886. udst= p->data[1] + p->linesize[1]*cy;
  887. vdst= p->data[2] + p->linesize[2]*cy;
  888. if(s->predictor == PLANE && s->interlaced < cy){
  889. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  890. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  891. s->dsp.diff_bytes(s->temp[3], vdst, vdst - fake_vstride, width2);
  892. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  893. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  894. leftv= sub_left_prediction(s, s->temp[2], s->temp[3], width2, leftv);
  895. }else{
  896. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  897. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  898. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  899. }
  900. encode_422_bitstream(s, width);
  901. }
  902. }
  903. }else{
  904. fprintf(stderr, "Format not supported!\n");
  905. }
  906. emms_c();
  907. size= (get_bit_count(&s->pb)+31)/32;
  908. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  909. int j;
  910. char *p= avctx->stats_out;
  911. for(i=0; i<3; i++){
  912. for(j=0; j<256; j++){
  913. sprintf(p, "%Ld ", s->stats[i][j]);
  914. p+= strlen(p);
  915. s->stats[i][j]= 0;
  916. }
  917. sprintf(p, "\n");
  918. p++;
  919. }
  920. }else{
  921. flush_put_bits(&s->pb);
  922. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  923. }
  924. s->picture_number++;
  925. return size*4;
  926. }
  927. static int encode_end(AVCodecContext *avctx)
  928. {
  929. // HYuvContext *s = avctx->priv_data;
  930. av_freep(&avctx->extradata);
  931. av_freep(&avctx->stats_out);
  932. return 0;
  933. }
  934. #endif //CONFIG_ENCODERS
  935. static const AVOption huffyuv_options[] =
  936. {
  937. AVOPTION_CODEC_INT("prediction_method", "prediction_method", prediction_method, 0, 2, 0),
  938. AVOPTION_END()
  939. };
  940. AVCodec huffyuv_decoder = {
  941. "huffyuv",
  942. CODEC_TYPE_VIDEO,
  943. CODEC_ID_HUFFYUV,
  944. sizeof(HYuvContext),
  945. decode_init,
  946. NULL,
  947. decode_end,
  948. decode_frame,
  949. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  950. NULL
  951. };
  952. #ifdef CONFIG_ENCODERS
  953. AVCodec huffyuv_encoder = {
  954. "huffyuv",
  955. CODEC_TYPE_VIDEO,
  956. CODEC_ID_HUFFYUV,
  957. sizeof(HYuvContext),
  958. encode_init,
  959. encode_frame,
  960. encode_end,
  961. .options = huffyuv_options,
  962. };
  963. #endif //CONFIG_ENCODERS