You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1883 lines
67KB

  1. /*
  2. * MPEG-4 ALS decoder
  3. * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG-4 ALS decoder
  24. * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
  25. */
  26. #include <inttypes.h>
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "unary.h"
  30. #include "mpeg4audio.h"
  31. #include "bytestream.h"
  32. #include "bgmc.h"
  33. #include "bswapdsp.h"
  34. #include "internal.h"
  35. #include "libavutil/samplefmt.h"
  36. #include "libavutil/crc.h"
  37. #include <stdint.h>
  38. /** Rice parameters and corresponding index offsets for decoding the
  39. * indices of scaled PARCOR values. The table chosen is set globally
  40. * by the encoder and stored in ALSSpecificConfig.
  41. */
  42. static const int8_t parcor_rice_table[3][20][2] = {
  43. { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
  44. { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
  45. { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
  46. { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
  47. { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
  48. { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
  49. {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
  50. { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
  51. { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
  52. { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
  53. {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
  54. { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
  55. };
  56. /** Scaled PARCOR values used for the first two PARCOR coefficients.
  57. * To be indexed by the Rice coded indices.
  58. * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
  59. * Actual values are divided by 32 in order to be stored in 16 bits.
  60. */
  61. static const int16_t parcor_scaled_values[] = {
  62. -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
  63. -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
  64. -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
  65. -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
  66. -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
  67. -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
  68. -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
  69. -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
  70. -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
  71. -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
  72. -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
  73. -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
  74. -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
  75. -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
  76. -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
  77. -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
  78. -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
  79. -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
  80. -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
  81. -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
  82. -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
  83. -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
  84. -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
  85. 46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
  86. 143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
  87. 244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
  88. 349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
  89. 458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
  90. 571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
  91. 688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
  92. 810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
  93. 935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
  94. };
  95. /** Gain values of p(0) for long-term prediction.
  96. * To be indexed by the Rice coded indices.
  97. */
  98. static const uint8_t ltp_gain_values [4][4] = {
  99. { 0, 8, 16, 24},
  100. {32, 40, 48, 56},
  101. {64, 70, 76, 82},
  102. {88, 92, 96, 100}
  103. };
  104. /** Inter-channel weighting factors for multi-channel correlation.
  105. * To be indexed by the Rice coded indices.
  106. */
  107. static const int16_t mcc_weightings[] = {
  108. 204, 192, 179, 166, 153, 140, 128, 115,
  109. 102, 89, 76, 64, 51, 38, 25, 12,
  110. 0, -12, -25, -38, -51, -64, -76, -89,
  111. -102, -115, -128, -140, -153, -166, -179, -192
  112. };
  113. /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
  114. */
  115. static const uint8_t tail_code[16][6] = {
  116. { 74, 44, 25, 13, 7, 3},
  117. { 68, 42, 24, 13, 7, 3},
  118. { 58, 39, 23, 13, 7, 3},
  119. {126, 70, 37, 19, 10, 5},
  120. {132, 70, 37, 20, 10, 5},
  121. {124, 70, 38, 20, 10, 5},
  122. {120, 69, 37, 20, 11, 5},
  123. {116, 67, 37, 20, 11, 5},
  124. {108, 66, 36, 20, 10, 5},
  125. {102, 62, 36, 20, 10, 5},
  126. { 88, 58, 34, 19, 10, 5},
  127. {162, 89, 49, 25, 13, 7},
  128. {156, 87, 49, 26, 14, 7},
  129. {150, 86, 47, 26, 14, 7},
  130. {142, 84, 47, 26, 14, 7},
  131. {131, 79, 46, 26, 14, 7}
  132. };
  133. enum RA_Flag {
  134. RA_FLAG_NONE,
  135. RA_FLAG_FRAMES,
  136. RA_FLAG_HEADER
  137. };
  138. typedef struct ALSSpecificConfig {
  139. uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
  140. int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
  141. int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
  142. int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
  143. int frame_length; ///< frame length for each frame (last frame may differ)
  144. int ra_distance; ///< distance between RA frames (in frames, 0...255)
  145. enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
  146. int adapt_order; ///< adaptive order: 1 = on, 0 = off
  147. int coef_table; ///< table index of Rice code parameters
  148. int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
  149. int max_order; ///< maximum prediction order (0..1023)
  150. int block_switching; ///< number of block switching levels
  151. int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
  152. int sb_part; ///< sub-block partition
  153. int joint_stereo; ///< joint stereo: 1 = on, 0 = off
  154. int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
  155. int chan_config; ///< indicates that a chan_config_info field is present
  156. int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
  157. int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
  158. int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
  159. int *chan_pos; ///< original channel positions
  160. int crc_enabled; ///< enable Cyclic Redundancy Checksum
  161. } ALSSpecificConfig;
  162. typedef struct ALSChannelData {
  163. int stop_flag;
  164. int master_channel;
  165. int time_diff_flag;
  166. int time_diff_sign;
  167. int time_diff_index;
  168. int weighting[6];
  169. } ALSChannelData;
  170. typedef struct ALSDecContext {
  171. AVCodecContext *avctx;
  172. ALSSpecificConfig sconf;
  173. GetBitContext gb;
  174. BswapDSPContext bdsp;
  175. const AVCRC *crc_table;
  176. uint32_t crc_org; ///< CRC value of the original input data
  177. uint32_t crc; ///< CRC value calculated from decoded data
  178. unsigned int cur_frame_length; ///< length of the current frame to decode
  179. unsigned int frame_id; ///< the frame ID / number of the current frame
  180. unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
  181. unsigned int cs_switch; ///< if true, channel rearrangement is done
  182. unsigned int num_blocks; ///< number of blocks used in the current frame
  183. unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
  184. uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
  185. int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
  186. int ltp_lag_length; ///< number of bits used for ltp lag value
  187. int *const_block; ///< contains const_block flags for all channels
  188. unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
  189. unsigned int *opt_order; ///< contains opt_order flags for all channels
  190. int *store_prev_samples; ///< contains store_prev_samples flags for all channels
  191. int *use_ltp; ///< contains use_ltp flags for all channels
  192. int *ltp_lag; ///< contains ltp lag values for all channels
  193. int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
  194. int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
  195. int32_t **quant_cof; ///< quantized parcor coefficients for a channel
  196. int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
  197. int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
  198. int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
  199. int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
  200. ALSChannelData **chan_data; ///< channel data for multi-channel correlation
  201. ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
  202. int *reverted_channels; ///< stores a flag for each reverted channel
  203. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  204. int32_t **raw_samples; ///< decoded raw samples for each channel
  205. int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
  206. uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
  207. } ALSDecContext;
  208. typedef struct ALSBlockData {
  209. unsigned int block_length; ///< number of samples within the block
  210. unsigned int ra_block; ///< if true, this is a random access block
  211. int *const_block; ///< if true, this is a constant value block
  212. int js_blocks; ///< true if this block contains a difference signal
  213. unsigned int *shift_lsbs; ///< shift of values for this block
  214. unsigned int *opt_order; ///< prediction order of this block
  215. int *store_prev_samples;///< if true, carryover samples have to be stored
  216. int *use_ltp; ///< if true, long-term prediction is used
  217. int *ltp_lag; ///< lag value for long-term prediction
  218. int *ltp_gain; ///< gain values for ltp 5-tap filter
  219. int32_t *quant_cof; ///< quantized parcor coefficients
  220. int32_t *lpc_cof; ///< coefficients of the direct form prediction
  221. int32_t *raw_samples; ///< decoded raw samples / residuals for this block
  222. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  223. int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
  224. } ALSBlockData;
  225. static av_cold void dprint_specific_config(ALSDecContext *ctx)
  226. {
  227. #ifdef DEBUG
  228. AVCodecContext *avctx = ctx->avctx;
  229. ALSSpecificConfig *sconf = &ctx->sconf;
  230. ff_dlog(avctx, "resolution = %i\n", sconf->resolution);
  231. ff_dlog(avctx, "floating = %i\n", sconf->floating);
  232. ff_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
  233. ff_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
  234. ff_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
  235. ff_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
  236. ff_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
  237. ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
  238. ff_dlog(avctx, "max_order = %i\n", sconf->max_order);
  239. ff_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
  240. ff_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
  241. ff_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
  242. ff_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
  243. ff_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
  244. ff_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
  245. ff_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
  246. ff_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
  247. ff_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
  248. #endif
  249. }
  250. /** Read an ALSSpecificConfig from a buffer into the output struct.
  251. */
  252. static av_cold int read_specific_config(ALSDecContext *ctx)
  253. {
  254. GetBitContext gb;
  255. uint64_t ht_size;
  256. int i, config_offset;
  257. MPEG4AudioConfig m4ac = {0};
  258. ALSSpecificConfig *sconf = &ctx->sconf;
  259. AVCodecContext *avctx = ctx->avctx;
  260. uint32_t als_id, header_size, trailer_size;
  261. int ret;
  262. if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
  263. return ret;
  264. config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
  265. avctx->extradata_size * 8, 1);
  266. if (config_offset < 0)
  267. return AVERROR_INVALIDDATA;
  268. skip_bits_long(&gb, config_offset);
  269. if (get_bits_left(&gb) < (30 << 3))
  270. return AVERROR_INVALIDDATA;
  271. // read the fixed items
  272. als_id = get_bits_long(&gb, 32);
  273. avctx->sample_rate = m4ac.sample_rate;
  274. skip_bits_long(&gb, 32); // sample rate already known
  275. sconf->samples = get_bits_long(&gb, 32);
  276. avctx->channels = m4ac.channels;
  277. skip_bits(&gb, 16); // number of channels already known
  278. skip_bits(&gb, 3); // skip file_type
  279. sconf->resolution = get_bits(&gb, 3);
  280. sconf->floating = get_bits1(&gb);
  281. sconf->msb_first = get_bits1(&gb);
  282. sconf->frame_length = get_bits(&gb, 16) + 1;
  283. sconf->ra_distance = get_bits(&gb, 8);
  284. sconf->ra_flag = get_bits(&gb, 2);
  285. sconf->adapt_order = get_bits1(&gb);
  286. sconf->coef_table = get_bits(&gb, 2);
  287. sconf->long_term_prediction = get_bits1(&gb);
  288. sconf->max_order = get_bits(&gb, 10);
  289. sconf->block_switching = get_bits(&gb, 2);
  290. sconf->bgmc = get_bits1(&gb);
  291. sconf->sb_part = get_bits1(&gb);
  292. sconf->joint_stereo = get_bits1(&gb);
  293. sconf->mc_coding = get_bits1(&gb);
  294. sconf->chan_config = get_bits1(&gb);
  295. sconf->chan_sort = get_bits1(&gb);
  296. sconf->crc_enabled = get_bits1(&gb);
  297. sconf->rlslms = get_bits1(&gb);
  298. skip_bits(&gb, 5); // skip 5 reserved bits
  299. skip_bits1(&gb); // skip aux_data_enabled
  300. // check for ALSSpecificConfig struct
  301. if (als_id != MKBETAG('A','L','S','\0'))
  302. return AVERROR_INVALIDDATA;
  303. if (avctx->channels > FF_SANE_NB_CHANNELS) {
  304. avpriv_request_sample(avctx, "Huge number of channels\n");
  305. return AVERROR_PATCHWELCOME;
  306. }
  307. ctx->cur_frame_length = sconf->frame_length;
  308. // read channel config
  309. if (sconf->chan_config)
  310. sconf->chan_config_info = get_bits(&gb, 16);
  311. // TODO: use this to set avctx->channel_layout
  312. // read channel sorting
  313. if (sconf->chan_sort && avctx->channels > 1) {
  314. int chan_pos_bits = av_ceil_log2(avctx->channels);
  315. int bits_needed = avctx->channels * chan_pos_bits + 7;
  316. if (get_bits_left(&gb) < bits_needed)
  317. return AVERROR_INVALIDDATA;
  318. if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
  319. return AVERROR(ENOMEM);
  320. ctx->cs_switch = 1;
  321. for (i = 0; i < avctx->channels; i++) {
  322. sconf->chan_pos[i] = -1;
  323. }
  324. for (i = 0; i < avctx->channels; i++) {
  325. int idx;
  326. idx = get_bits(&gb, chan_pos_bits);
  327. if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
  328. av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
  329. ctx->cs_switch = 0;
  330. break;
  331. }
  332. sconf->chan_pos[idx] = i;
  333. }
  334. align_get_bits(&gb);
  335. }
  336. // read fixed header and trailer sizes,
  337. // if size = 0xFFFFFFFF then there is no data field!
  338. if (get_bits_left(&gb) < 64)
  339. return AVERROR_INVALIDDATA;
  340. header_size = get_bits_long(&gb, 32);
  341. trailer_size = get_bits_long(&gb, 32);
  342. if (header_size == 0xFFFFFFFF)
  343. header_size = 0;
  344. if (trailer_size == 0xFFFFFFFF)
  345. trailer_size = 0;
  346. ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
  347. // skip the header and trailer data
  348. if (get_bits_left(&gb) < ht_size)
  349. return AVERROR_INVALIDDATA;
  350. if (ht_size > INT32_MAX)
  351. return AVERROR_PATCHWELCOME;
  352. skip_bits_long(&gb, ht_size);
  353. // initialize CRC calculation
  354. if (sconf->crc_enabled) {
  355. if (get_bits_left(&gb) < 32)
  356. return AVERROR_INVALIDDATA;
  357. if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
  358. ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
  359. ctx->crc = 0xFFFFFFFF;
  360. ctx->crc_org = ~get_bits_long(&gb, 32);
  361. } else
  362. skip_bits_long(&gb, 32);
  363. }
  364. // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
  365. dprint_specific_config(ctx);
  366. return 0;
  367. }
  368. /** Check the ALSSpecificConfig for unsupported features.
  369. */
  370. static int check_specific_config(ALSDecContext *ctx)
  371. {
  372. ALSSpecificConfig *sconf = &ctx->sconf;
  373. int error = 0;
  374. // report unsupported feature and set error value
  375. #define MISSING_ERR(cond, str, errval) \
  376. { \
  377. if (cond) { \
  378. avpriv_report_missing_feature(ctx->avctx, \
  379. str); \
  380. error = errval; \
  381. } \
  382. }
  383. MISSING_ERR(sconf->floating, "Floating point decoding", AVERROR_PATCHWELCOME);
  384. MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
  385. return error;
  386. }
  387. /** Parse the bs_info field to extract the block partitioning used in
  388. * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
  389. */
  390. static void parse_bs_info(const uint32_t bs_info, unsigned int n,
  391. unsigned int div, unsigned int **div_blocks,
  392. unsigned int *num_blocks)
  393. {
  394. if (n < 31 && ((bs_info << n) & 0x40000000)) {
  395. // if the level is valid and the investigated bit n is set
  396. // then recursively check both children at bits (2n+1) and (2n+2)
  397. n *= 2;
  398. div += 1;
  399. parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
  400. parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
  401. } else {
  402. // else the bit is not set or the last level has been reached
  403. // (bit implicitly not set)
  404. **div_blocks = div;
  405. (*div_blocks)++;
  406. (*num_blocks)++;
  407. }
  408. }
  409. /** Read and decode a Rice codeword.
  410. */
  411. static int32_t decode_rice(GetBitContext *gb, unsigned int k)
  412. {
  413. int max = get_bits_left(gb) - k;
  414. unsigned q = get_unary(gb, 0, max);
  415. int r = k ? get_bits1(gb) : !(q & 1);
  416. if (k > 1) {
  417. q <<= (k - 1);
  418. q += get_bits_long(gb, k - 1);
  419. } else if (!k) {
  420. q >>= 1;
  421. }
  422. return r ? q : ~q;
  423. }
  424. /** Convert PARCOR coefficient k to direct filter coefficient.
  425. */
  426. static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
  427. {
  428. int i, j;
  429. for (i = 0, j = k - 1; i < j; i++, j--) {
  430. unsigned tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  431. cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
  432. cof[i] += tmp1;
  433. }
  434. if (i == j)
  435. cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  436. cof[k] = par[k];
  437. }
  438. /** Read block switching field if necessary and set actual block sizes.
  439. * Also assure that the block sizes of the last frame correspond to the
  440. * actual number of samples.
  441. */
  442. static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
  443. uint32_t *bs_info)
  444. {
  445. ALSSpecificConfig *sconf = &ctx->sconf;
  446. GetBitContext *gb = &ctx->gb;
  447. unsigned int *ptr_div_blocks = div_blocks;
  448. unsigned int b;
  449. if (sconf->block_switching) {
  450. unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
  451. *bs_info = get_bits_long(gb, bs_info_len);
  452. *bs_info <<= (32 - bs_info_len);
  453. }
  454. ctx->num_blocks = 0;
  455. parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
  456. // The last frame may have an overdetermined block structure given in
  457. // the bitstream. In that case the defined block structure would need
  458. // more samples than available to be consistent.
  459. // The block structure is actually used but the block sizes are adapted
  460. // to fit the actual number of available samples.
  461. // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
  462. // This results in the actual block sizes: 2 2 1 0.
  463. // This is not specified in 14496-3 but actually done by the reference
  464. // codec RM22 revision 2.
  465. // This appears to happen in case of an odd number of samples in the last
  466. // frame which is actually not allowed by the block length switching part
  467. // of 14496-3.
  468. // The ALS conformance files feature an odd number of samples in the last
  469. // frame.
  470. for (b = 0; b < ctx->num_blocks; b++)
  471. div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
  472. if (ctx->cur_frame_length != ctx->sconf.frame_length) {
  473. unsigned int remaining = ctx->cur_frame_length;
  474. for (b = 0; b < ctx->num_blocks; b++) {
  475. if (remaining <= div_blocks[b]) {
  476. div_blocks[b] = remaining;
  477. ctx->num_blocks = b + 1;
  478. break;
  479. }
  480. remaining -= div_blocks[b];
  481. }
  482. }
  483. }
  484. /** Read the block data for a constant block
  485. */
  486. static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  487. {
  488. ALSSpecificConfig *sconf = &ctx->sconf;
  489. AVCodecContext *avctx = ctx->avctx;
  490. GetBitContext *gb = &ctx->gb;
  491. if (bd->block_length <= 0)
  492. return AVERROR_INVALIDDATA;
  493. *bd->raw_samples = 0;
  494. *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
  495. bd->js_blocks = get_bits1(gb);
  496. // skip 5 reserved bits
  497. skip_bits(gb, 5);
  498. if (*bd->const_block) {
  499. unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
  500. *bd->raw_samples = get_sbits_long(gb, const_val_bits);
  501. }
  502. // ensure constant block decoding by reusing this field
  503. *bd->const_block = 1;
  504. return 0;
  505. }
  506. /** Decode the block data for a constant block
  507. */
  508. static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  509. {
  510. int smp = bd->block_length - 1;
  511. int32_t val = *bd->raw_samples;
  512. int32_t *dst = bd->raw_samples + 1;
  513. // write raw samples into buffer
  514. for (; smp; smp--)
  515. *dst++ = val;
  516. }
  517. /** Read the block data for a non-constant block
  518. */
  519. static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  520. {
  521. ALSSpecificConfig *sconf = &ctx->sconf;
  522. AVCodecContext *avctx = ctx->avctx;
  523. GetBitContext *gb = &ctx->gb;
  524. unsigned int k;
  525. unsigned int s[8];
  526. unsigned int sx[8];
  527. unsigned int sub_blocks, log2_sub_blocks, sb_length;
  528. unsigned int start = 0;
  529. unsigned int opt_order;
  530. int sb;
  531. int32_t *quant_cof = bd->quant_cof;
  532. int32_t *current_res;
  533. // ensure variable block decoding by reusing this field
  534. *bd->const_block = 0;
  535. *bd->opt_order = 1;
  536. bd->js_blocks = get_bits1(gb);
  537. opt_order = *bd->opt_order;
  538. // determine the number of subblocks for entropy decoding
  539. if (!sconf->bgmc && !sconf->sb_part) {
  540. log2_sub_blocks = 0;
  541. } else {
  542. if (sconf->bgmc && sconf->sb_part)
  543. log2_sub_blocks = get_bits(gb, 2);
  544. else
  545. log2_sub_blocks = 2 * get_bits1(gb);
  546. }
  547. sub_blocks = 1 << log2_sub_blocks;
  548. // do not continue in case of a damaged stream since
  549. // block_length must be evenly divisible by sub_blocks
  550. if (bd->block_length & (sub_blocks - 1) || bd->block_length <= 0) {
  551. av_log(avctx, AV_LOG_WARNING,
  552. "Block length is not evenly divisible by the number of subblocks.\n");
  553. return AVERROR_INVALIDDATA;
  554. }
  555. sb_length = bd->block_length >> log2_sub_blocks;
  556. if (sconf->bgmc) {
  557. s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
  558. for (k = 1; k < sub_blocks; k++)
  559. s[k] = s[k - 1] + decode_rice(gb, 2);
  560. for (k = 0; k < sub_blocks; k++) {
  561. sx[k] = s[k] & 0x0F;
  562. s [k] >>= 4;
  563. }
  564. } else {
  565. s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
  566. for (k = 1; k < sub_blocks; k++)
  567. s[k] = s[k - 1] + decode_rice(gb, 0);
  568. }
  569. for (k = 1; k < sub_blocks; k++)
  570. if (s[k] > 32) {
  571. av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
  572. return AVERROR_INVALIDDATA;
  573. }
  574. if (get_bits1(gb))
  575. *bd->shift_lsbs = get_bits(gb, 4) + 1;
  576. *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
  577. if (!sconf->rlslms) {
  578. if (sconf->adapt_order && sconf->max_order) {
  579. int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
  580. 2, sconf->max_order + 1));
  581. *bd->opt_order = get_bits(gb, opt_order_length);
  582. if (*bd->opt_order > sconf->max_order) {
  583. *bd->opt_order = sconf->max_order;
  584. av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
  585. return AVERROR_INVALIDDATA;
  586. }
  587. } else {
  588. *bd->opt_order = sconf->max_order;
  589. }
  590. if (*bd->opt_order > bd->block_length) {
  591. *bd->opt_order = bd->block_length;
  592. av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
  593. return AVERROR_INVALIDDATA;
  594. }
  595. opt_order = *bd->opt_order;
  596. if (opt_order) {
  597. int add_base;
  598. if (sconf->coef_table == 3) {
  599. add_base = 0x7F;
  600. // read coefficient 0
  601. quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
  602. // read coefficient 1
  603. if (opt_order > 1)
  604. quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
  605. // read coefficients 2 to opt_order
  606. for (k = 2; k < opt_order; k++)
  607. quant_cof[k] = get_bits(gb, 7);
  608. } else {
  609. int k_max;
  610. add_base = 1;
  611. // read coefficient 0 to 19
  612. k_max = FFMIN(opt_order, 20);
  613. for (k = 0; k < k_max; k++) {
  614. int rice_param = parcor_rice_table[sconf->coef_table][k][1];
  615. int offset = parcor_rice_table[sconf->coef_table][k][0];
  616. quant_cof[k] = decode_rice(gb, rice_param) + offset;
  617. if (quant_cof[k] < -64 || quant_cof[k] > 63) {
  618. av_log(avctx, AV_LOG_ERROR,
  619. "quant_cof %"PRIu32" is out of range.\n",
  620. quant_cof[k]);
  621. return AVERROR_INVALIDDATA;
  622. }
  623. }
  624. // read coefficients 20 to 126
  625. k_max = FFMIN(opt_order, 127);
  626. for (; k < k_max; k++)
  627. quant_cof[k] = decode_rice(gb, 2) + (k & 1);
  628. // read coefficients 127 to opt_order
  629. for (; k < opt_order; k++)
  630. quant_cof[k] = decode_rice(gb, 1);
  631. quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
  632. if (opt_order > 1)
  633. quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
  634. }
  635. for (k = 2; k < opt_order; k++)
  636. quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
  637. }
  638. }
  639. // read LTP gain and lag values
  640. if (sconf->long_term_prediction) {
  641. *bd->use_ltp = get_bits1(gb);
  642. if (*bd->use_ltp) {
  643. int r, c;
  644. bd->ltp_gain[0] = decode_rice(gb, 1) * 8;
  645. bd->ltp_gain[1] = decode_rice(gb, 2) * 8;
  646. r = get_unary(gb, 0, 4);
  647. c = get_bits(gb, 2);
  648. if (r >= 4) {
  649. av_log(avctx, AV_LOG_ERROR, "r overflow\n");
  650. return AVERROR_INVALIDDATA;
  651. }
  652. bd->ltp_gain[2] = ltp_gain_values[r][c];
  653. bd->ltp_gain[3] = decode_rice(gb, 2) * 8;
  654. bd->ltp_gain[4] = decode_rice(gb, 1) * 8;
  655. *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
  656. *bd->ltp_lag += FFMAX(4, opt_order + 1);
  657. }
  658. }
  659. // read first value and residuals in case of a random access block
  660. if (bd->ra_block) {
  661. start = FFMIN(opt_order, 3);
  662. av_assert0(sb_length <= sconf->frame_length);
  663. if (sb_length <= start) {
  664. // opt_order or sb_length may be corrupted, either way this is unsupported and not well defined in the specification
  665. av_log(avctx, AV_LOG_ERROR, "Sub block length smaller or equal start\n");
  666. return AVERROR_PATCHWELCOME;
  667. }
  668. if (opt_order)
  669. bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
  670. if (opt_order > 1)
  671. bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
  672. if (opt_order > 2)
  673. bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
  674. }
  675. // read all residuals
  676. if (sconf->bgmc) {
  677. int delta[8];
  678. unsigned int k [8];
  679. unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
  680. // read most significant bits
  681. unsigned int high;
  682. unsigned int low;
  683. unsigned int value;
  684. int ret = ff_bgmc_decode_init(gb, &high, &low, &value);
  685. if (ret < 0)
  686. return ret;
  687. current_res = bd->raw_samples + start;
  688. for (sb = 0; sb < sub_blocks; sb++) {
  689. unsigned int sb_len = sb_length - (sb ? 0 : start);
  690. k [sb] = s[sb] > b ? s[sb] - b : 0;
  691. delta[sb] = 5 - s[sb] + k[sb];
  692. if (k[sb] >= 32)
  693. return AVERROR_INVALIDDATA;
  694. ff_bgmc_decode(gb, sb_len, current_res,
  695. delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
  696. current_res += sb_len;
  697. }
  698. ff_bgmc_decode_end(gb);
  699. // read least significant bits and tails
  700. current_res = bd->raw_samples + start;
  701. for (sb = 0; sb < sub_blocks; sb++, start = 0) {
  702. unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
  703. unsigned int cur_k = k[sb];
  704. unsigned int cur_s = s[sb];
  705. for (; start < sb_length; start++) {
  706. int32_t res = *current_res;
  707. if (res == cur_tail_code) {
  708. unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
  709. << (5 - delta[sb]);
  710. res = decode_rice(gb, cur_s);
  711. if (res >= 0) {
  712. res += (max_msb ) << cur_k;
  713. } else {
  714. res -= (max_msb - 1) << cur_k;
  715. }
  716. } else {
  717. if (res > cur_tail_code)
  718. res--;
  719. if (res & 1)
  720. res = -res;
  721. res >>= 1;
  722. if (cur_k) {
  723. res <<= cur_k;
  724. res |= get_bits_long(gb, cur_k);
  725. }
  726. }
  727. *current_res++ = res;
  728. }
  729. }
  730. } else {
  731. current_res = bd->raw_samples + start;
  732. for (sb = 0; sb < sub_blocks; sb++, start = 0)
  733. for (; start < sb_length; start++)
  734. *current_res++ = decode_rice(gb, s[sb]);
  735. }
  736. if (!sconf->mc_coding || ctx->js_switch)
  737. align_get_bits(gb);
  738. return 0;
  739. }
  740. /** Decode the block data for a non-constant block
  741. */
  742. static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  743. {
  744. ALSSpecificConfig *sconf = &ctx->sconf;
  745. unsigned int block_length = bd->block_length;
  746. unsigned int smp = 0;
  747. unsigned int k;
  748. int opt_order = *bd->opt_order;
  749. int sb;
  750. int64_t y;
  751. int32_t *quant_cof = bd->quant_cof;
  752. int32_t *lpc_cof = bd->lpc_cof;
  753. int32_t *raw_samples = bd->raw_samples;
  754. int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
  755. int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
  756. // reverse long-term prediction
  757. if (*bd->use_ltp) {
  758. int ltp_smp;
  759. for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
  760. int center = ltp_smp - *bd->ltp_lag;
  761. int begin = FFMAX(0, center - 2);
  762. int end = center + 3;
  763. int tab = 5 - (end - begin);
  764. int base;
  765. y = 1 << 6;
  766. for (base = begin; base < end; base++, tab++)
  767. y += (uint64_t)MUL64(bd->ltp_gain[tab], raw_samples[base]);
  768. raw_samples[ltp_smp] += y >> 7;
  769. }
  770. }
  771. // reconstruct all samples from residuals
  772. if (bd->ra_block) {
  773. for (smp = 0; smp < opt_order; smp++) {
  774. y = 1 << 19;
  775. for (sb = 0; sb < smp; sb++)
  776. y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
  777. *raw_samples++ -= y >> 20;
  778. parcor_to_lpc(smp, quant_cof, lpc_cof);
  779. }
  780. } else {
  781. for (k = 0; k < opt_order; k++)
  782. parcor_to_lpc(k, quant_cof, lpc_cof);
  783. // store previous samples in case that they have to be altered
  784. if (*bd->store_prev_samples)
  785. memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
  786. sizeof(*bd->prev_raw_samples) * sconf->max_order);
  787. // reconstruct difference signal for prediction (joint-stereo)
  788. if (bd->js_blocks && bd->raw_other) {
  789. uint32_t *left, *right;
  790. if (bd->raw_other > raw_samples) { // D = R - L
  791. left = raw_samples;
  792. right = bd->raw_other;
  793. } else { // D = R - L
  794. left = bd->raw_other;
  795. right = raw_samples;
  796. }
  797. for (sb = -1; sb >= -sconf->max_order; sb--)
  798. raw_samples[sb] = right[sb] - left[sb];
  799. }
  800. // reconstruct shifted signal
  801. if (*bd->shift_lsbs)
  802. for (sb = -1; sb >= -sconf->max_order; sb--)
  803. raw_samples[sb] >>= *bd->shift_lsbs;
  804. }
  805. // reverse linear prediction coefficients for efficiency
  806. lpc_cof = lpc_cof + opt_order;
  807. for (sb = 0; sb < opt_order; sb++)
  808. lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
  809. // reconstruct raw samples
  810. raw_samples = bd->raw_samples + smp;
  811. lpc_cof = lpc_cof_reversed + opt_order;
  812. for (; raw_samples < raw_samples_end; raw_samples++) {
  813. y = 1 << 19;
  814. for (sb = -opt_order; sb < 0; sb++)
  815. y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[sb]);
  816. *raw_samples -= y >> 20;
  817. }
  818. raw_samples = bd->raw_samples;
  819. // restore previous samples in case that they have been altered
  820. if (*bd->store_prev_samples)
  821. memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
  822. sizeof(*raw_samples) * sconf->max_order);
  823. return 0;
  824. }
  825. /** Read the block data.
  826. */
  827. static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
  828. {
  829. int ret;
  830. GetBitContext *gb = &ctx->gb;
  831. *bd->shift_lsbs = 0;
  832. // read block type flag and read the samples accordingly
  833. if (get_bits1(gb)) {
  834. ret = read_var_block_data(ctx, bd);
  835. } else {
  836. ret = read_const_block_data(ctx, bd);
  837. }
  838. return ret;
  839. }
  840. /** Decode the block data.
  841. */
  842. static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  843. {
  844. unsigned int smp;
  845. int ret = 0;
  846. // read block type flag and read the samples accordingly
  847. if (*bd->const_block)
  848. decode_const_block_data(ctx, bd);
  849. else
  850. ret = decode_var_block_data(ctx, bd); // always return 0
  851. if (ret < 0)
  852. return ret;
  853. // TODO: read RLSLMS extension data
  854. if (*bd->shift_lsbs)
  855. for (smp = 0; smp < bd->block_length; smp++)
  856. bd->raw_samples[smp] = (unsigned)bd->raw_samples[smp] << *bd->shift_lsbs;
  857. return 0;
  858. }
  859. /** Read and decode block data successively.
  860. */
  861. static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  862. {
  863. int ret;
  864. if ((ret = read_block(ctx, bd)) < 0)
  865. return ret;
  866. return decode_block(ctx, bd);
  867. }
  868. /** Compute the number of samples left to decode for the current frame and
  869. * sets these samples to zero.
  870. */
  871. static void zero_remaining(unsigned int b, unsigned int b_max,
  872. const unsigned int *div_blocks, int32_t *buf)
  873. {
  874. unsigned int count = 0;
  875. while (b < b_max)
  876. count += div_blocks[b++];
  877. if (count)
  878. memset(buf, 0, sizeof(*buf) * count);
  879. }
  880. /** Decode blocks independently.
  881. */
  882. static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
  883. unsigned int c, const unsigned int *div_blocks,
  884. unsigned int *js_blocks)
  885. {
  886. int ret;
  887. unsigned int b;
  888. ALSBlockData bd = { 0 };
  889. bd.ra_block = ra_frame;
  890. bd.const_block = ctx->const_block;
  891. bd.shift_lsbs = ctx->shift_lsbs;
  892. bd.opt_order = ctx->opt_order;
  893. bd.store_prev_samples = ctx->store_prev_samples;
  894. bd.use_ltp = ctx->use_ltp;
  895. bd.ltp_lag = ctx->ltp_lag;
  896. bd.ltp_gain = ctx->ltp_gain[0];
  897. bd.quant_cof = ctx->quant_cof[0];
  898. bd.lpc_cof = ctx->lpc_cof[0];
  899. bd.prev_raw_samples = ctx->prev_raw_samples;
  900. bd.raw_samples = ctx->raw_samples[c];
  901. for (b = 0; b < ctx->num_blocks; b++) {
  902. bd.block_length = div_blocks[b];
  903. if ((ret = read_decode_block(ctx, &bd)) < 0) {
  904. // damaged block, write zero for the rest of the frame
  905. zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
  906. return ret;
  907. }
  908. bd.raw_samples += div_blocks[b];
  909. bd.ra_block = 0;
  910. }
  911. return 0;
  912. }
  913. /** Decode blocks dependently.
  914. */
  915. static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
  916. unsigned int c, const unsigned int *div_blocks,
  917. unsigned int *js_blocks)
  918. {
  919. ALSSpecificConfig *sconf = &ctx->sconf;
  920. unsigned int offset = 0;
  921. unsigned int b;
  922. int ret;
  923. ALSBlockData bd[2] = { { 0 } };
  924. bd[0].ra_block = ra_frame;
  925. bd[0].const_block = ctx->const_block;
  926. bd[0].shift_lsbs = ctx->shift_lsbs;
  927. bd[0].opt_order = ctx->opt_order;
  928. bd[0].store_prev_samples = ctx->store_prev_samples;
  929. bd[0].use_ltp = ctx->use_ltp;
  930. bd[0].ltp_lag = ctx->ltp_lag;
  931. bd[0].ltp_gain = ctx->ltp_gain[0];
  932. bd[0].quant_cof = ctx->quant_cof[0];
  933. bd[0].lpc_cof = ctx->lpc_cof[0];
  934. bd[0].prev_raw_samples = ctx->prev_raw_samples;
  935. bd[0].js_blocks = *js_blocks;
  936. bd[1].ra_block = ra_frame;
  937. bd[1].const_block = ctx->const_block;
  938. bd[1].shift_lsbs = ctx->shift_lsbs;
  939. bd[1].opt_order = ctx->opt_order;
  940. bd[1].store_prev_samples = ctx->store_prev_samples;
  941. bd[1].use_ltp = ctx->use_ltp;
  942. bd[1].ltp_lag = ctx->ltp_lag;
  943. bd[1].ltp_gain = ctx->ltp_gain[0];
  944. bd[1].quant_cof = ctx->quant_cof[0];
  945. bd[1].lpc_cof = ctx->lpc_cof[0];
  946. bd[1].prev_raw_samples = ctx->prev_raw_samples;
  947. bd[1].js_blocks = *(js_blocks + 1);
  948. // decode all blocks
  949. for (b = 0; b < ctx->num_blocks; b++) {
  950. unsigned int s;
  951. bd[0].block_length = div_blocks[b];
  952. bd[1].block_length = div_blocks[b];
  953. bd[0].raw_samples = ctx->raw_samples[c ] + offset;
  954. bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
  955. bd[0].raw_other = bd[1].raw_samples;
  956. bd[1].raw_other = bd[0].raw_samples;
  957. if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
  958. (ret = read_decode_block(ctx, &bd[1])) < 0)
  959. goto fail;
  960. // reconstruct joint-stereo blocks
  961. if (bd[0].js_blocks) {
  962. if (bd[1].js_blocks)
  963. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
  964. for (s = 0; s < div_blocks[b]; s++)
  965. bd[0].raw_samples[s] = bd[1].raw_samples[s] - (unsigned)bd[0].raw_samples[s];
  966. } else if (bd[1].js_blocks) {
  967. for (s = 0; s < div_blocks[b]; s++)
  968. bd[1].raw_samples[s] = bd[1].raw_samples[s] + (unsigned)bd[0].raw_samples[s];
  969. }
  970. offset += div_blocks[b];
  971. bd[0].ra_block = 0;
  972. bd[1].ra_block = 0;
  973. }
  974. // store carryover raw samples,
  975. // the others channel raw samples are stored by the calling function.
  976. memmove(ctx->raw_samples[c] - sconf->max_order,
  977. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  978. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  979. return 0;
  980. fail:
  981. // damaged block, write zero for the rest of the frame
  982. zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
  983. zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
  984. return ret;
  985. }
  986. static inline int als_weighting(GetBitContext *gb, int k, int off)
  987. {
  988. int idx = av_clip(decode_rice(gb, k) + off,
  989. 0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
  990. return mcc_weightings[idx];
  991. }
  992. /** Read the channel data.
  993. */
  994. static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
  995. {
  996. GetBitContext *gb = &ctx->gb;
  997. ALSChannelData *current = cd;
  998. unsigned int channels = ctx->avctx->channels;
  999. int entries = 0;
  1000. while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
  1001. current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
  1002. if (current->master_channel >= channels) {
  1003. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
  1004. return AVERROR_INVALIDDATA;
  1005. }
  1006. if (current->master_channel != c) {
  1007. current->time_diff_flag = get_bits1(gb);
  1008. current->weighting[0] = als_weighting(gb, 1, 16);
  1009. current->weighting[1] = als_weighting(gb, 2, 14);
  1010. current->weighting[2] = als_weighting(gb, 1, 16);
  1011. if (current->time_diff_flag) {
  1012. current->weighting[3] = als_weighting(gb, 1, 16);
  1013. current->weighting[4] = als_weighting(gb, 1, 16);
  1014. current->weighting[5] = als_weighting(gb, 1, 16);
  1015. current->time_diff_sign = get_bits1(gb);
  1016. current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
  1017. }
  1018. }
  1019. current++;
  1020. entries++;
  1021. }
  1022. if (entries == channels) {
  1023. av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
  1024. return AVERROR_INVALIDDATA;
  1025. }
  1026. align_get_bits(gb);
  1027. return 0;
  1028. }
  1029. /** Recursively reverts the inter-channel correlation for a block.
  1030. */
  1031. static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
  1032. ALSChannelData **cd, int *reverted,
  1033. unsigned int offset, int c)
  1034. {
  1035. ALSChannelData *ch = cd[c];
  1036. unsigned int dep = 0;
  1037. unsigned int channels = ctx->avctx->channels;
  1038. unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
  1039. if (reverted[c])
  1040. return 0;
  1041. reverted[c] = 1;
  1042. while (dep < channels && !ch[dep].stop_flag) {
  1043. revert_channel_correlation(ctx, bd, cd, reverted, offset,
  1044. ch[dep].master_channel);
  1045. dep++;
  1046. }
  1047. if (dep == channels) {
  1048. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
  1049. return AVERROR_INVALIDDATA;
  1050. }
  1051. bd->const_block = ctx->const_block + c;
  1052. bd->shift_lsbs = ctx->shift_lsbs + c;
  1053. bd->opt_order = ctx->opt_order + c;
  1054. bd->store_prev_samples = ctx->store_prev_samples + c;
  1055. bd->use_ltp = ctx->use_ltp + c;
  1056. bd->ltp_lag = ctx->ltp_lag + c;
  1057. bd->ltp_gain = ctx->ltp_gain[c];
  1058. bd->lpc_cof = ctx->lpc_cof[c];
  1059. bd->quant_cof = ctx->quant_cof[c];
  1060. bd->raw_samples = ctx->raw_samples[c] + offset;
  1061. for (dep = 0; !ch[dep].stop_flag; dep++) {
  1062. ptrdiff_t smp;
  1063. ptrdiff_t begin = 1;
  1064. ptrdiff_t end = bd->block_length - 1;
  1065. int64_t y;
  1066. int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
  1067. if (ch[dep].master_channel == c)
  1068. continue;
  1069. if (ch[dep].time_diff_flag) {
  1070. int t = ch[dep].time_diff_index;
  1071. if (ch[dep].time_diff_sign) {
  1072. t = -t;
  1073. if (begin < t) {
  1074. av_log(ctx->avctx, AV_LOG_ERROR, "begin %td smaller than time diff index %d.\n", begin, t);
  1075. return AVERROR_INVALIDDATA;
  1076. }
  1077. begin -= t;
  1078. } else {
  1079. if (end < t) {
  1080. av_log(ctx->avctx, AV_LOG_ERROR, "end %td smaller than time diff index %d.\n", end, t);
  1081. return AVERROR_INVALIDDATA;
  1082. }
  1083. end -= t;
  1084. }
  1085. if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
  1086. FFMAX(end + 1, end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
  1087. av_log(ctx->avctx, AV_LOG_ERROR,
  1088. "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
  1089. master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1, end + 1 + t),
  1090. ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
  1091. return AVERROR_INVALIDDATA;
  1092. }
  1093. for (smp = begin; smp < end; smp++) {
  1094. y = (1 << 6) +
  1095. MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
  1096. MUL64(ch[dep].weighting[1], master[smp ]) +
  1097. MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
  1098. MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
  1099. MUL64(ch[dep].weighting[4], master[smp + t]) +
  1100. MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
  1101. bd->raw_samples[smp] += y >> 7;
  1102. }
  1103. } else {
  1104. if (begin - 1 < ctx->raw_buffer - master ||
  1105. end + 1 > ctx->raw_buffer + channels * channel_size - master) {
  1106. av_log(ctx->avctx, AV_LOG_ERROR,
  1107. "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
  1108. master + begin - 1, master + end + 1,
  1109. ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
  1110. return AVERROR_INVALIDDATA;
  1111. }
  1112. for (smp = begin; smp < end; smp++) {
  1113. y = (1 << 6) +
  1114. MUL64(ch[dep].weighting[0], master[smp - 1]) +
  1115. MUL64(ch[dep].weighting[1], master[smp ]) +
  1116. MUL64(ch[dep].weighting[2], master[smp + 1]);
  1117. bd->raw_samples[smp] += y >> 7;
  1118. }
  1119. }
  1120. }
  1121. return 0;
  1122. }
  1123. /** Read the frame data.
  1124. */
  1125. static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
  1126. {
  1127. ALSSpecificConfig *sconf = &ctx->sconf;
  1128. AVCodecContext *avctx = ctx->avctx;
  1129. GetBitContext *gb = &ctx->gb;
  1130. unsigned int div_blocks[32]; ///< block sizes.
  1131. unsigned int c;
  1132. unsigned int js_blocks[2];
  1133. uint32_t bs_info = 0;
  1134. int ret;
  1135. // skip the size of the ra unit if present in the frame
  1136. if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
  1137. skip_bits_long(gb, 32);
  1138. if (sconf->mc_coding && sconf->joint_stereo) {
  1139. ctx->js_switch = get_bits1(gb);
  1140. align_get_bits(gb);
  1141. }
  1142. if (!sconf->mc_coding || ctx->js_switch) {
  1143. int independent_bs = !sconf->joint_stereo;
  1144. for (c = 0; c < avctx->channels; c++) {
  1145. js_blocks[0] = 0;
  1146. js_blocks[1] = 0;
  1147. get_block_sizes(ctx, div_blocks, &bs_info);
  1148. // if joint_stereo and block_switching is set, independent decoding
  1149. // is signaled via the first bit of bs_info
  1150. if (sconf->joint_stereo && sconf->block_switching)
  1151. if (bs_info >> 31)
  1152. independent_bs = 2;
  1153. // if this is the last channel, it has to be decoded independently
  1154. if (c == avctx->channels - 1)
  1155. independent_bs = 1;
  1156. if (independent_bs) {
  1157. ret = decode_blocks_ind(ctx, ra_frame, c,
  1158. div_blocks, js_blocks);
  1159. if (ret < 0)
  1160. return ret;
  1161. independent_bs--;
  1162. } else {
  1163. ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
  1164. if (ret < 0)
  1165. return ret;
  1166. c++;
  1167. }
  1168. // store carryover raw samples
  1169. memmove(ctx->raw_samples[c] - sconf->max_order,
  1170. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1171. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1172. }
  1173. } else { // multi-channel coding
  1174. ALSBlockData bd = { 0 };
  1175. int b, ret;
  1176. int *reverted_channels = ctx->reverted_channels;
  1177. unsigned int offset = 0;
  1178. for (c = 0; c < avctx->channels; c++)
  1179. if (ctx->chan_data[c] < ctx->chan_data_buffer) {
  1180. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
  1181. return AVERROR_INVALIDDATA;
  1182. }
  1183. memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
  1184. bd.ra_block = ra_frame;
  1185. bd.prev_raw_samples = ctx->prev_raw_samples;
  1186. get_block_sizes(ctx, div_blocks, &bs_info);
  1187. for (b = 0; b < ctx->num_blocks; b++) {
  1188. bd.block_length = div_blocks[b];
  1189. if (bd.block_length <= 0) {
  1190. av_log(ctx->avctx, AV_LOG_WARNING,
  1191. "Invalid block length %u in channel data!\n",
  1192. bd.block_length);
  1193. continue;
  1194. }
  1195. for (c = 0; c < avctx->channels; c++) {
  1196. bd.const_block = ctx->const_block + c;
  1197. bd.shift_lsbs = ctx->shift_lsbs + c;
  1198. bd.opt_order = ctx->opt_order + c;
  1199. bd.store_prev_samples = ctx->store_prev_samples + c;
  1200. bd.use_ltp = ctx->use_ltp + c;
  1201. bd.ltp_lag = ctx->ltp_lag + c;
  1202. bd.ltp_gain = ctx->ltp_gain[c];
  1203. bd.lpc_cof = ctx->lpc_cof[c];
  1204. bd.quant_cof = ctx->quant_cof[c];
  1205. bd.raw_samples = ctx->raw_samples[c] + offset;
  1206. bd.raw_other = NULL;
  1207. if ((ret = read_block(ctx, &bd)) < 0)
  1208. return ret;
  1209. if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
  1210. return ret;
  1211. }
  1212. for (c = 0; c < avctx->channels; c++) {
  1213. ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
  1214. reverted_channels, offset, c);
  1215. if (ret < 0)
  1216. return ret;
  1217. }
  1218. for (c = 0; c < avctx->channels; c++) {
  1219. bd.const_block = ctx->const_block + c;
  1220. bd.shift_lsbs = ctx->shift_lsbs + c;
  1221. bd.opt_order = ctx->opt_order + c;
  1222. bd.store_prev_samples = ctx->store_prev_samples + c;
  1223. bd.use_ltp = ctx->use_ltp + c;
  1224. bd.ltp_lag = ctx->ltp_lag + c;
  1225. bd.ltp_gain = ctx->ltp_gain[c];
  1226. bd.lpc_cof = ctx->lpc_cof[c];
  1227. bd.quant_cof = ctx->quant_cof[c];
  1228. bd.raw_samples = ctx->raw_samples[c] + offset;
  1229. if ((ret = decode_block(ctx, &bd)) < 0)
  1230. return ret;
  1231. }
  1232. memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
  1233. offset += div_blocks[b];
  1234. bd.ra_block = 0;
  1235. }
  1236. // store carryover raw samples
  1237. for (c = 0; c < avctx->channels; c++)
  1238. memmove(ctx->raw_samples[c] - sconf->max_order,
  1239. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1240. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1241. }
  1242. // TODO: read_diff_float_data
  1243. if (get_bits_left(gb) < 0) {
  1244. av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
  1245. return AVERROR_INVALIDDATA;
  1246. }
  1247. return 0;
  1248. }
  1249. /** Decode an ALS frame.
  1250. */
  1251. static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
  1252. AVPacket *avpkt)
  1253. {
  1254. ALSDecContext *ctx = avctx->priv_data;
  1255. AVFrame *frame = data;
  1256. ALSSpecificConfig *sconf = &ctx->sconf;
  1257. const uint8_t *buffer = avpkt->data;
  1258. int buffer_size = avpkt->size;
  1259. int invalid_frame, ret;
  1260. unsigned int c, sample, ra_frame, bytes_read, shift;
  1261. if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
  1262. return ret;
  1263. // In the case that the distance between random access frames is set to zero
  1264. // (sconf->ra_distance == 0) no frame is treated as a random access frame.
  1265. // For the first frame, if prediction is used, all samples used from the
  1266. // previous frame are assumed to be zero.
  1267. ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
  1268. // the last frame to decode might have a different length
  1269. if (sconf->samples != 0xFFFFFFFF)
  1270. ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
  1271. sconf->frame_length);
  1272. else
  1273. ctx->cur_frame_length = sconf->frame_length;
  1274. // decode the frame data
  1275. if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
  1276. av_log(ctx->avctx, AV_LOG_WARNING,
  1277. "Reading frame data failed. Skipping RA unit.\n");
  1278. ctx->frame_id++;
  1279. /* get output buffer */
  1280. frame->nb_samples = ctx->cur_frame_length;
  1281. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  1282. return ret;
  1283. // transform decoded frame into output format
  1284. #define INTERLEAVE_OUTPUT(bps) \
  1285. { \
  1286. int##bps##_t *dest = (int##bps##_t*)frame->data[0]; \
  1287. int channels = avctx->channels; \
  1288. int32_t **raw_samples = ctx->raw_samples; \
  1289. shift = bps - ctx->avctx->bits_per_raw_sample; \
  1290. if (!ctx->cs_switch) { \
  1291. for (sample = 0; sample < ctx->cur_frame_length; sample++) \
  1292. for (c = 0; c < channels; c++) \
  1293. *dest++ = raw_samples[c][sample] * (1U << shift); \
  1294. } else { \
  1295. for (sample = 0; sample < ctx->cur_frame_length; sample++) \
  1296. for (c = 0; c < channels; c++) \
  1297. *dest++ = raw_samples[sconf->chan_pos[c]][sample] * (1U << shift);\
  1298. } \
  1299. }
  1300. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1301. INTERLEAVE_OUTPUT(16)
  1302. } else {
  1303. INTERLEAVE_OUTPUT(32)
  1304. }
  1305. // update CRC
  1306. if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
  1307. int swap = HAVE_BIGENDIAN != sconf->msb_first;
  1308. if (ctx->avctx->bits_per_raw_sample == 24) {
  1309. int32_t *src = (int32_t *)frame->data[0];
  1310. for (sample = 0;
  1311. sample < ctx->cur_frame_length * avctx->channels;
  1312. sample++) {
  1313. int32_t v;
  1314. if (swap)
  1315. v = av_bswap32(src[sample]);
  1316. else
  1317. v = src[sample];
  1318. if (!HAVE_BIGENDIAN)
  1319. v >>= 8;
  1320. ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
  1321. }
  1322. } else {
  1323. uint8_t *crc_source;
  1324. if (swap) {
  1325. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1326. int16_t *src = (int16_t*) frame->data[0];
  1327. int16_t *dest = (int16_t*) ctx->crc_buffer;
  1328. for (sample = 0;
  1329. sample < ctx->cur_frame_length * avctx->channels;
  1330. sample++)
  1331. *dest++ = av_bswap16(src[sample]);
  1332. } else {
  1333. ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
  1334. (uint32_t *) frame->data[0],
  1335. ctx->cur_frame_length * avctx->channels);
  1336. }
  1337. crc_source = ctx->crc_buffer;
  1338. } else {
  1339. crc_source = frame->data[0];
  1340. }
  1341. ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
  1342. ctx->cur_frame_length * avctx->channels *
  1343. av_get_bytes_per_sample(avctx->sample_fmt));
  1344. }
  1345. // check CRC sums if this is the last frame
  1346. if (ctx->cur_frame_length != sconf->frame_length &&
  1347. ctx->crc_org != ctx->crc) {
  1348. av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
  1349. if (avctx->err_recognition & AV_EF_EXPLODE)
  1350. return AVERROR_INVALIDDATA;
  1351. }
  1352. }
  1353. *got_frame_ptr = 1;
  1354. bytes_read = invalid_frame ? buffer_size :
  1355. (get_bits_count(&ctx->gb) + 7) >> 3;
  1356. return bytes_read;
  1357. }
  1358. /** Uninitialize the ALS decoder.
  1359. */
  1360. static av_cold int decode_end(AVCodecContext *avctx)
  1361. {
  1362. ALSDecContext *ctx = avctx->priv_data;
  1363. av_freep(&ctx->sconf.chan_pos);
  1364. ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1365. av_freep(&ctx->const_block);
  1366. av_freep(&ctx->shift_lsbs);
  1367. av_freep(&ctx->opt_order);
  1368. av_freep(&ctx->store_prev_samples);
  1369. av_freep(&ctx->use_ltp);
  1370. av_freep(&ctx->ltp_lag);
  1371. av_freep(&ctx->ltp_gain);
  1372. av_freep(&ctx->ltp_gain_buffer);
  1373. av_freep(&ctx->quant_cof);
  1374. av_freep(&ctx->lpc_cof);
  1375. av_freep(&ctx->quant_cof_buffer);
  1376. av_freep(&ctx->lpc_cof_buffer);
  1377. av_freep(&ctx->lpc_cof_reversed_buffer);
  1378. av_freep(&ctx->prev_raw_samples);
  1379. av_freep(&ctx->raw_samples);
  1380. av_freep(&ctx->raw_buffer);
  1381. av_freep(&ctx->chan_data);
  1382. av_freep(&ctx->chan_data_buffer);
  1383. av_freep(&ctx->reverted_channels);
  1384. av_freep(&ctx->crc_buffer);
  1385. return 0;
  1386. }
  1387. /** Initialize the ALS decoder.
  1388. */
  1389. static av_cold int decode_init(AVCodecContext *avctx)
  1390. {
  1391. unsigned int c;
  1392. unsigned int channel_size;
  1393. int num_buffers, ret;
  1394. ALSDecContext *ctx = avctx->priv_data;
  1395. ALSSpecificConfig *sconf = &ctx->sconf;
  1396. ctx->avctx = avctx;
  1397. if (!avctx->extradata) {
  1398. av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
  1399. return AVERROR_INVALIDDATA;
  1400. }
  1401. if ((ret = read_specific_config(ctx)) < 0) {
  1402. av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
  1403. goto fail;
  1404. }
  1405. if ((ret = check_specific_config(ctx)) < 0) {
  1406. goto fail;
  1407. }
  1408. if (sconf->bgmc) {
  1409. ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1410. if (ret < 0)
  1411. goto fail;
  1412. }
  1413. if (sconf->floating) {
  1414. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  1415. avctx->bits_per_raw_sample = 32;
  1416. } else {
  1417. avctx->sample_fmt = sconf->resolution > 1
  1418. ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
  1419. avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
  1420. if (avctx->bits_per_raw_sample > 32) {
  1421. av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
  1422. avctx->bits_per_raw_sample);
  1423. ret = AVERROR_INVALIDDATA;
  1424. goto fail;
  1425. }
  1426. }
  1427. // set maximum Rice parameter for progressive decoding based on resolution
  1428. // This is not specified in 14496-3 but actually done by the reference
  1429. // codec RM22 revision 2.
  1430. ctx->s_max = sconf->resolution > 1 ? 31 : 15;
  1431. // set lag value for long-term prediction
  1432. ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
  1433. (avctx->sample_rate >= 192000);
  1434. // allocate quantized parcor coefficient buffer
  1435. num_buffers = sconf->mc_coding ? avctx->channels : 1;
  1436. if (num_buffers * (uint64_t)num_buffers > INT_MAX) // protect chan_data_buffer allocation
  1437. return AVERROR_INVALIDDATA;
  1438. ctx->quant_cof = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
  1439. ctx->lpc_cof = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
  1440. ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
  1441. sizeof(*ctx->quant_cof_buffer));
  1442. ctx->lpc_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
  1443. sizeof(*ctx->lpc_cof_buffer));
  1444. ctx->lpc_cof_reversed_buffer = av_malloc_array(sconf->max_order,
  1445. sizeof(*ctx->lpc_cof_buffer));
  1446. if (!ctx->quant_cof || !ctx->lpc_cof ||
  1447. !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
  1448. !ctx->lpc_cof_reversed_buffer) {
  1449. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1450. ret = AVERROR(ENOMEM);
  1451. goto fail;
  1452. }
  1453. // assign quantized parcor coefficient buffers
  1454. for (c = 0; c < num_buffers; c++) {
  1455. ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
  1456. ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
  1457. }
  1458. // allocate and assign lag and gain data buffer for ltp mode
  1459. ctx->const_block = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
  1460. ctx->shift_lsbs = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
  1461. ctx->opt_order = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
  1462. ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
  1463. ctx->use_ltp = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
  1464. ctx->ltp_lag = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
  1465. ctx->ltp_gain = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
  1466. ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
  1467. if (!ctx->const_block || !ctx->shift_lsbs ||
  1468. !ctx->opt_order || !ctx->store_prev_samples ||
  1469. !ctx->use_ltp || !ctx->ltp_lag ||
  1470. !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
  1471. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1472. ret = AVERROR(ENOMEM);
  1473. goto fail;
  1474. }
  1475. for (c = 0; c < num_buffers; c++)
  1476. ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
  1477. // allocate and assign channel data buffer for mcc mode
  1478. if (sconf->mc_coding) {
  1479. ctx->chan_data_buffer = av_mallocz_array(num_buffers * num_buffers,
  1480. sizeof(*ctx->chan_data_buffer));
  1481. ctx->chan_data = av_mallocz_array(num_buffers,
  1482. sizeof(*ctx->chan_data));
  1483. ctx->reverted_channels = av_malloc_array(num_buffers,
  1484. sizeof(*ctx->reverted_channels));
  1485. if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
  1486. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1487. ret = AVERROR(ENOMEM);
  1488. goto fail;
  1489. }
  1490. for (c = 0; c < num_buffers; c++)
  1491. ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
  1492. } else {
  1493. ctx->chan_data = NULL;
  1494. ctx->chan_data_buffer = NULL;
  1495. ctx->reverted_channels = NULL;
  1496. }
  1497. channel_size = sconf->frame_length + sconf->max_order;
  1498. ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
  1499. ctx->raw_buffer = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
  1500. ctx->raw_samples = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
  1501. // allocate previous raw sample buffer
  1502. if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
  1503. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1504. ret = AVERROR(ENOMEM);
  1505. goto fail;
  1506. }
  1507. // assign raw samples buffers
  1508. ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
  1509. for (c = 1; c < avctx->channels; c++)
  1510. ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
  1511. // allocate crc buffer
  1512. if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
  1513. (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
  1514. ctx->crc_buffer = av_malloc_array(ctx->cur_frame_length *
  1515. avctx->channels *
  1516. av_get_bytes_per_sample(avctx->sample_fmt),
  1517. sizeof(*ctx->crc_buffer));
  1518. if (!ctx->crc_buffer) {
  1519. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1520. ret = AVERROR(ENOMEM);
  1521. goto fail;
  1522. }
  1523. }
  1524. ff_bswapdsp_init(&ctx->bdsp);
  1525. return 0;
  1526. fail:
  1527. return ret;
  1528. }
  1529. /** Flush (reset) the frame ID after seeking.
  1530. */
  1531. static av_cold void flush(AVCodecContext *avctx)
  1532. {
  1533. ALSDecContext *ctx = avctx->priv_data;
  1534. ctx->frame_id = 0;
  1535. }
  1536. AVCodec ff_als_decoder = {
  1537. .name = "als",
  1538. .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
  1539. .type = AVMEDIA_TYPE_AUDIO,
  1540. .id = AV_CODEC_ID_MP4ALS,
  1541. .priv_data_size = sizeof(ALSDecContext),
  1542. .init = decode_init,
  1543. .close = decode_end,
  1544. .decode = decode_frame,
  1545. .flush = flush,
  1546. .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
  1547. .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
  1548. };