You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1514 lines
48KB

  1. /*
  2. * WebP (.webp) image decoder
  3. * Copyright (c) 2013 Aneesh Dogra <aneesh@sugarlabs.org>
  4. * Copyright (c) 2013 Justin Ruggles <justin.ruggles@gmail.com>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * WebP image decoder
  25. *
  26. * @author Aneesh Dogra <aneesh@sugarlabs.org>
  27. * Container and Lossy decoding
  28. *
  29. * @author Justin Ruggles <justin.ruggles@gmail.com>
  30. * Lossless decoder
  31. * Compressed alpha for lossy
  32. *
  33. * @author James Almer <jamrial@gmail.com>
  34. * Exif metadata
  35. *
  36. * Unimplemented:
  37. * - Animation
  38. * - ICC profile
  39. * - XMP metadata
  40. */
  41. #define BITSTREAM_READER_LE
  42. #include "libavutil/imgutils.h"
  43. #include "avcodec.h"
  44. #include "bytestream.h"
  45. #include "exif.h"
  46. #include "internal.h"
  47. #include "get_bits.h"
  48. #include "thread.h"
  49. #include "vp8.h"
  50. #define VP8X_FLAG_ANIMATION 0x02
  51. #define VP8X_FLAG_XMP_METADATA 0x04
  52. #define VP8X_FLAG_EXIF_METADATA 0x08
  53. #define VP8X_FLAG_ALPHA 0x10
  54. #define VP8X_FLAG_ICC 0x20
  55. #define MAX_PALETTE_SIZE 256
  56. #define MAX_CACHE_BITS 11
  57. #define NUM_CODE_LENGTH_CODES 19
  58. #define HUFFMAN_CODES_PER_META_CODE 5
  59. #define NUM_LITERAL_CODES 256
  60. #define NUM_LENGTH_CODES 24
  61. #define NUM_DISTANCE_CODES 40
  62. #define NUM_SHORT_DISTANCES 120
  63. #define MAX_HUFFMAN_CODE_LENGTH 15
  64. static const uint16_t alphabet_sizes[HUFFMAN_CODES_PER_META_CODE] = {
  65. NUM_LITERAL_CODES + NUM_LENGTH_CODES,
  66. NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
  67. NUM_DISTANCE_CODES
  68. };
  69. static const uint8_t code_length_code_order[NUM_CODE_LENGTH_CODES] = {
  70. 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
  71. };
  72. static const int8_t lz77_distance_offsets[NUM_SHORT_DISTANCES][2] = {
  73. { 0, 1 }, { 1, 0 }, { 1, 1 }, { -1, 1 }, { 0, 2 }, { 2, 0 }, { 1, 2 }, { -1, 2 },
  74. { 2, 1 }, { -2, 1 }, { 2, 2 }, { -2, 2 }, { 0, 3 }, { 3, 0 }, { 1, 3 }, { -1, 3 },
  75. { 3, 1 }, { -3, 1 }, { 2, 3 }, { -2, 3 }, { 3, 2 }, { -3, 2 }, { 0, 4 }, { 4, 0 },
  76. { 1, 4 }, { -1, 4 }, { 4, 1 }, { -4, 1 }, { 3, 3 }, { -3, 3 }, { 2, 4 }, { -2, 4 },
  77. { 4, 2 }, { -4, 2 }, { 0, 5 }, { 3, 4 }, { -3, 4 }, { 4, 3 }, { -4, 3 }, { 5, 0 },
  78. { 1, 5 }, { -1, 5 }, { 5, 1 }, { -5, 1 }, { 2, 5 }, { -2, 5 }, { 5, 2 }, { -5, 2 },
  79. { 4, 4 }, { -4, 4 }, { 3, 5 }, { -3, 5 }, { 5, 3 }, { -5, 3 }, { 0, 6 }, { 6, 0 },
  80. { 1, 6 }, { -1, 6 }, { 6, 1 }, { -6, 1 }, { 2, 6 }, { -2, 6 }, { 6, 2 }, { -6, 2 },
  81. { 4, 5 }, { -4, 5 }, { 5, 4 }, { -5, 4 }, { 3, 6 }, { -3, 6 }, { 6, 3 }, { -6, 3 },
  82. { 0, 7 }, { 7, 0 }, { 1, 7 }, { -1, 7 }, { 5, 5 }, { -5, 5 }, { 7, 1 }, { -7, 1 },
  83. { 4, 6 }, { -4, 6 }, { 6, 4 }, { -6, 4 }, { 2, 7 }, { -2, 7 }, { 7, 2 }, { -7, 2 },
  84. { 3, 7 }, { -3, 7 }, { 7, 3 }, { -7, 3 }, { 5, 6 }, { -5, 6 }, { 6, 5 }, { -6, 5 },
  85. { 8, 0 }, { 4, 7 }, { -4, 7 }, { 7, 4 }, { -7, 4 }, { 8, 1 }, { 8, 2 }, { 6, 6 },
  86. { -6, 6 }, { 8, 3 }, { 5, 7 }, { -5, 7 }, { 7, 5 }, { -7, 5 }, { 8, 4 }, { 6, 7 },
  87. { -6, 7 }, { 7, 6 }, { -7, 6 }, { 8, 5 }, { 7, 7 }, { -7, 7 }, { 8, 6 }, { 8, 7 }
  88. };
  89. enum AlphaCompression {
  90. ALPHA_COMPRESSION_NONE,
  91. ALPHA_COMPRESSION_VP8L,
  92. };
  93. enum AlphaFilter {
  94. ALPHA_FILTER_NONE,
  95. ALPHA_FILTER_HORIZONTAL,
  96. ALPHA_FILTER_VERTICAL,
  97. ALPHA_FILTER_GRADIENT,
  98. };
  99. enum TransformType {
  100. PREDICTOR_TRANSFORM = 0,
  101. COLOR_TRANSFORM = 1,
  102. SUBTRACT_GREEN = 2,
  103. COLOR_INDEXING_TRANSFORM = 3,
  104. };
  105. enum PredictionMode {
  106. PRED_MODE_BLACK,
  107. PRED_MODE_L,
  108. PRED_MODE_T,
  109. PRED_MODE_TR,
  110. PRED_MODE_TL,
  111. PRED_MODE_AVG_T_AVG_L_TR,
  112. PRED_MODE_AVG_L_TL,
  113. PRED_MODE_AVG_L_T,
  114. PRED_MODE_AVG_TL_T,
  115. PRED_MODE_AVG_T_TR,
  116. PRED_MODE_AVG_AVG_L_TL_AVG_T_TR,
  117. PRED_MODE_SELECT,
  118. PRED_MODE_ADD_SUBTRACT_FULL,
  119. PRED_MODE_ADD_SUBTRACT_HALF,
  120. };
  121. enum HuffmanIndex {
  122. HUFF_IDX_GREEN = 0,
  123. HUFF_IDX_RED = 1,
  124. HUFF_IDX_BLUE = 2,
  125. HUFF_IDX_ALPHA = 3,
  126. HUFF_IDX_DIST = 4
  127. };
  128. /* The structure of WebP lossless is an optional series of transformation data,
  129. * followed by the primary image. The primary image also optionally contains
  130. * an entropy group mapping if there are multiple entropy groups. There is a
  131. * basic image type called an "entropy coded image" that is used for all of
  132. * these. The type of each entropy coded image is referred to by the
  133. * specification as its role. */
  134. enum ImageRole {
  135. /* Primary Image: Stores the actual pixels of the image. */
  136. IMAGE_ROLE_ARGB,
  137. /* Entropy Image: Defines which Huffman group to use for different areas of
  138. * the primary image. */
  139. IMAGE_ROLE_ENTROPY,
  140. /* Predictors: Defines which predictor type to use for different areas of
  141. * the primary image. */
  142. IMAGE_ROLE_PREDICTOR,
  143. /* Color Transform Data: Defines the color transformation for different
  144. * areas of the primary image. */
  145. IMAGE_ROLE_COLOR_TRANSFORM,
  146. /* Color Index: Stored as an image of height == 1. */
  147. IMAGE_ROLE_COLOR_INDEXING,
  148. IMAGE_ROLE_NB,
  149. };
  150. typedef struct HuffReader {
  151. VLC vlc; /* Huffman decoder context */
  152. int simple; /* whether to use simple mode */
  153. int nb_symbols; /* number of coded symbols */
  154. uint16_t simple_symbols[2]; /* symbols for simple mode */
  155. } HuffReader;
  156. typedef struct ImageContext {
  157. enum ImageRole role; /* role of this image */
  158. AVFrame *frame; /* AVFrame for data */
  159. int color_cache_bits; /* color cache size, log2 */
  160. uint32_t *color_cache; /* color cache data */
  161. int nb_huffman_groups; /* number of huffman groups */
  162. HuffReader *huffman_groups; /* reader for each huffman group */
  163. int size_reduction; /* relative size compared to primary image, log2 */
  164. int is_alpha_primary;
  165. } ImageContext;
  166. typedef struct WebPContext {
  167. VP8Context v; /* VP8 Context used for lossy decoding */
  168. GetBitContext gb; /* bitstream reader for main image chunk */
  169. AVFrame *alpha_frame; /* AVFrame for alpha data decompressed from VP8L */
  170. AVCodecContext *avctx; /* parent AVCodecContext */
  171. int initialized; /* set once the VP8 context is initialized */
  172. int has_alpha; /* has a separate alpha chunk */
  173. enum AlphaCompression alpha_compression; /* compression type for alpha chunk */
  174. enum AlphaFilter alpha_filter; /* filtering method for alpha chunk */
  175. uint8_t *alpha_data; /* alpha chunk data */
  176. int alpha_data_size; /* alpha chunk data size */
  177. int has_exif; /* set after an EXIF chunk has been processed */
  178. AVDictionary *exif_metadata; /* EXIF chunk data */
  179. int width; /* image width */
  180. int height; /* image height */
  181. int lossless; /* indicates lossless or lossy */
  182. int nb_transforms; /* number of transforms */
  183. enum TransformType transforms[4]; /* transformations used in the image, in order */
  184. int reduced_width; /* reduced width for index image, if applicable */
  185. int nb_huffman_groups; /* number of huffman groups in the primary image */
  186. ImageContext image[IMAGE_ROLE_NB]; /* image context for each role */
  187. } WebPContext;
  188. #define GET_PIXEL(frame, x, y) \
  189. ((frame)->data[0] + (y) * frame->linesize[0] + 4 * (x))
  190. #define GET_PIXEL_COMP(frame, x, y, c) \
  191. (*((frame)->data[0] + (y) * frame->linesize[0] + 4 * (x) + c))
  192. static void image_ctx_free(ImageContext *img)
  193. {
  194. int i, j;
  195. av_free(img->color_cache);
  196. if (img->role != IMAGE_ROLE_ARGB && !img->is_alpha_primary)
  197. av_frame_free(&img->frame);
  198. if (img->huffman_groups) {
  199. for (i = 0; i < img->nb_huffman_groups; i++) {
  200. for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; j++)
  201. ff_free_vlc(&img->huffman_groups[i * HUFFMAN_CODES_PER_META_CODE + j].vlc);
  202. }
  203. av_free(img->huffman_groups);
  204. }
  205. memset(img, 0, sizeof(*img));
  206. }
  207. /* Differs from get_vlc2() in the following ways:
  208. * - codes are bit-reversed
  209. * - assumes 8-bit table to make reversal simpler
  210. * - assumes max depth of 2 since the max code length for WebP is 15
  211. */
  212. static av_always_inline int webp_get_vlc(GetBitContext *gb, VLC_TYPE (*table)[2])
  213. {
  214. int n, nb_bits;
  215. unsigned int index;
  216. int code;
  217. OPEN_READER(re, gb);
  218. UPDATE_CACHE(re, gb);
  219. index = SHOW_UBITS(re, gb, 8);
  220. index = ff_reverse[index];
  221. code = table[index][0];
  222. n = table[index][1];
  223. if (n < 0) {
  224. LAST_SKIP_BITS(re, gb, 8);
  225. UPDATE_CACHE(re, gb);
  226. nb_bits = -n;
  227. index = SHOW_UBITS(re, gb, nb_bits);
  228. index = (ff_reverse[index] >> (8 - nb_bits)) + code;
  229. code = table[index][0];
  230. n = table[index][1];
  231. }
  232. SKIP_BITS(re, gb, n);
  233. CLOSE_READER(re, gb);
  234. return code;
  235. }
  236. static int huff_reader_get_symbol(HuffReader *r, GetBitContext *gb)
  237. {
  238. if (r->simple) {
  239. if (r->nb_symbols == 1)
  240. return r->simple_symbols[0];
  241. else
  242. return r->simple_symbols[get_bits1(gb)];
  243. } else
  244. return webp_get_vlc(gb, r->vlc.table);
  245. }
  246. static int huff_reader_build_canonical(HuffReader *r, int *code_lengths,
  247. int alphabet_size)
  248. {
  249. int len = 0, sym, code = 0, ret;
  250. int max_code_length = 0;
  251. uint16_t *codes;
  252. /* special-case 1 symbol since the vlc reader cannot handle it */
  253. for (sym = 0; sym < alphabet_size; sym++) {
  254. if (code_lengths[sym] > 0) {
  255. len++;
  256. code = sym;
  257. if (len > 1)
  258. break;
  259. }
  260. }
  261. if (len == 1) {
  262. r->nb_symbols = 1;
  263. r->simple_symbols[0] = code;
  264. r->simple = 1;
  265. return 0;
  266. }
  267. for (sym = 0; sym < alphabet_size; sym++)
  268. max_code_length = FFMAX(max_code_length, code_lengths[sym]);
  269. if (max_code_length == 0 || max_code_length > MAX_HUFFMAN_CODE_LENGTH)
  270. return AVERROR(EINVAL);
  271. codes = av_malloc_array(alphabet_size, sizeof(*codes));
  272. if (!codes)
  273. return AVERROR(ENOMEM);
  274. code = 0;
  275. r->nb_symbols = 0;
  276. for (len = 1; len <= max_code_length; len++) {
  277. for (sym = 0; sym < alphabet_size; sym++) {
  278. if (code_lengths[sym] != len)
  279. continue;
  280. codes[sym] = code++;
  281. r->nb_symbols++;
  282. }
  283. code <<= 1;
  284. }
  285. if (!r->nb_symbols) {
  286. av_free(codes);
  287. return AVERROR_INVALIDDATA;
  288. }
  289. ret = init_vlc(&r->vlc, 8, alphabet_size,
  290. code_lengths, sizeof(*code_lengths), sizeof(*code_lengths),
  291. codes, sizeof(*codes), sizeof(*codes), 0);
  292. if (ret < 0) {
  293. av_free(codes);
  294. return ret;
  295. }
  296. r->simple = 0;
  297. av_free(codes);
  298. return 0;
  299. }
  300. static void read_huffman_code_simple(WebPContext *s, HuffReader *hc)
  301. {
  302. hc->nb_symbols = get_bits1(&s->gb) + 1;
  303. if (get_bits1(&s->gb))
  304. hc->simple_symbols[0] = get_bits(&s->gb, 8);
  305. else
  306. hc->simple_symbols[0] = get_bits1(&s->gb);
  307. if (hc->nb_symbols == 2)
  308. hc->simple_symbols[1] = get_bits(&s->gb, 8);
  309. hc->simple = 1;
  310. }
  311. static int read_huffman_code_normal(WebPContext *s, HuffReader *hc,
  312. int alphabet_size)
  313. {
  314. HuffReader code_len_hc = { { 0 }, 0, 0, { 0 } };
  315. int *code_lengths = NULL;
  316. int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
  317. int i, symbol, max_symbol, prev_code_len, ret;
  318. int num_codes = 4 + get_bits(&s->gb, 4);
  319. if (num_codes > NUM_CODE_LENGTH_CODES)
  320. return AVERROR_INVALIDDATA;
  321. for (i = 0; i < num_codes; i++)
  322. code_length_code_lengths[code_length_code_order[i]] = get_bits(&s->gb, 3);
  323. ret = huff_reader_build_canonical(&code_len_hc, code_length_code_lengths,
  324. NUM_CODE_LENGTH_CODES);
  325. if (ret < 0)
  326. goto finish;
  327. code_lengths = av_mallocz_array(alphabet_size, sizeof(*code_lengths));
  328. if (!code_lengths) {
  329. ret = AVERROR(ENOMEM);
  330. goto finish;
  331. }
  332. if (get_bits1(&s->gb)) {
  333. int bits = 2 + 2 * get_bits(&s->gb, 3);
  334. max_symbol = 2 + get_bits(&s->gb, bits);
  335. if (max_symbol > alphabet_size) {
  336. av_log(s->avctx, AV_LOG_ERROR, "max symbol %d > alphabet size %d\n",
  337. max_symbol, alphabet_size);
  338. ret = AVERROR_INVALIDDATA;
  339. goto finish;
  340. }
  341. } else {
  342. max_symbol = alphabet_size;
  343. }
  344. prev_code_len = 8;
  345. symbol = 0;
  346. while (symbol < alphabet_size) {
  347. int code_len;
  348. if (!max_symbol--)
  349. break;
  350. code_len = huff_reader_get_symbol(&code_len_hc, &s->gb);
  351. if (code_len < 16) {
  352. /* Code length code [0..15] indicates literal code lengths. */
  353. code_lengths[symbol++] = code_len;
  354. if (code_len)
  355. prev_code_len = code_len;
  356. } else {
  357. int repeat = 0, length = 0;
  358. switch (code_len) {
  359. case 16:
  360. /* Code 16 repeats the previous non-zero value [3..6] times,
  361. * i.e., 3 + ReadBits(2) times. If code 16 is used before a
  362. * non-zero value has been emitted, a value of 8 is repeated. */
  363. repeat = 3 + get_bits(&s->gb, 2);
  364. length = prev_code_len;
  365. break;
  366. case 17:
  367. /* Code 17 emits a streak of zeros [3..10], i.e.,
  368. * 3 + ReadBits(3) times. */
  369. repeat = 3 + get_bits(&s->gb, 3);
  370. break;
  371. case 18:
  372. /* Code 18 emits a streak of zeros of length [11..138], i.e.,
  373. * 11 + ReadBits(7) times. */
  374. repeat = 11 + get_bits(&s->gb, 7);
  375. break;
  376. }
  377. if (symbol + repeat > alphabet_size) {
  378. av_log(s->avctx, AV_LOG_ERROR,
  379. "invalid symbol %d + repeat %d > alphabet size %d\n",
  380. symbol, repeat, alphabet_size);
  381. ret = AVERROR_INVALIDDATA;
  382. goto finish;
  383. }
  384. while (repeat-- > 0)
  385. code_lengths[symbol++] = length;
  386. }
  387. }
  388. ret = huff_reader_build_canonical(hc, code_lengths, alphabet_size);
  389. finish:
  390. ff_free_vlc(&code_len_hc.vlc);
  391. av_free(code_lengths);
  392. return ret;
  393. }
  394. static int decode_entropy_coded_image(WebPContext *s, enum ImageRole role,
  395. int w, int h);
  396. #define PARSE_BLOCK_SIZE(w, h) do { \
  397. block_bits = get_bits(&s->gb, 3) + 2; \
  398. blocks_w = FFALIGN((w), 1 << block_bits) >> block_bits; \
  399. blocks_h = FFALIGN((h), 1 << block_bits) >> block_bits; \
  400. } while (0)
  401. static int decode_entropy_image(WebPContext *s)
  402. {
  403. ImageContext *img;
  404. int ret, block_bits, width, blocks_w, blocks_h, x, y, max;
  405. width = s->width;
  406. if (s->reduced_width > 0)
  407. width = s->reduced_width;
  408. PARSE_BLOCK_SIZE(width, s->height);
  409. ret = decode_entropy_coded_image(s, IMAGE_ROLE_ENTROPY, blocks_w, blocks_h);
  410. if (ret < 0)
  411. return ret;
  412. img = &s->image[IMAGE_ROLE_ENTROPY];
  413. img->size_reduction = block_bits;
  414. /* the number of huffman groups is determined by the maximum group number
  415. * coded in the entropy image */
  416. max = 0;
  417. for (y = 0; y < img->frame->height; y++) {
  418. for (x = 0; x < img->frame->width; x++) {
  419. int p0 = GET_PIXEL_COMP(img->frame, x, y, 1);
  420. int p1 = GET_PIXEL_COMP(img->frame, x, y, 2);
  421. int p = p0 << 8 | p1;
  422. max = FFMAX(max, p);
  423. }
  424. }
  425. s->nb_huffman_groups = max + 1;
  426. return 0;
  427. }
  428. static int parse_transform_predictor(WebPContext *s)
  429. {
  430. int block_bits, blocks_w, blocks_h, ret;
  431. PARSE_BLOCK_SIZE(s->width, s->height);
  432. ret = decode_entropy_coded_image(s, IMAGE_ROLE_PREDICTOR, blocks_w,
  433. blocks_h);
  434. if (ret < 0)
  435. return ret;
  436. s->image[IMAGE_ROLE_PREDICTOR].size_reduction = block_bits;
  437. return 0;
  438. }
  439. static int parse_transform_color(WebPContext *s)
  440. {
  441. int block_bits, blocks_w, blocks_h, ret;
  442. PARSE_BLOCK_SIZE(s->width, s->height);
  443. ret = decode_entropy_coded_image(s, IMAGE_ROLE_COLOR_TRANSFORM, blocks_w,
  444. blocks_h);
  445. if (ret < 0)
  446. return ret;
  447. s->image[IMAGE_ROLE_COLOR_TRANSFORM].size_reduction = block_bits;
  448. return 0;
  449. }
  450. static int parse_transform_color_indexing(WebPContext *s)
  451. {
  452. ImageContext *img;
  453. int width_bits, index_size, ret, x;
  454. uint8_t *ct;
  455. index_size = get_bits(&s->gb, 8) + 1;
  456. if (index_size <= 2)
  457. width_bits = 3;
  458. else if (index_size <= 4)
  459. width_bits = 2;
  460. else if (index_size <= 16)
  461. width_bits = 1;
  462. else
  463. width_bits = 0;
  464. ret = decode_entropy_coded_image(s, IMAGE_ROLE_COLOR_INDEXING,
  465. index_size, 1);
  466. if (ret < 0)
  467. return ret;
  468. img = &s->image[IMAGE_ROLE_COLOR_INDEXING];
  469. img->size_reduction = width_bits;
  470. if (width_bits > 0)
  471. s->reduced_width = (s->width + ((1 << width_bits) - 1)) >> width_bits;
  472. /* color index values are delta-coded */
  473. ct = img->frame->data[0] + 4;
  474. for (x = 4; x < img->frame->width * 4; x++, ct++)
  475. ct[0] += ct[-4];
  476. return 0;
  477. }
  478. static HuffReader *get_huffman_group(WebPContext *s, ImageContext *img,
  479. int x, int y)
  480. {
  481. ImageContext *gimg = &s->image[IMAGE_ROLE_ENTROPY];
  482. int group = 0;
  483. if (gimg->size_reduction > 0) {
  484. int group_x = x >> gimg->size_reduction;
  485. int group_y = y >> gimg->size_reduction;
  486. int g0 = GET_PIXEL_COMP(gimg->frame, group_x, group_y, 1);
  487. int g1 = GET_PIXEL_COMP(gimg->frame, group_x, group_y, 2);
  488. group = g0 << 8 | g1;
  489. }
  490. return &img->huffman_groups[group * HUFFMAN_CODES_PER_META_CODE];
  491. }
  492. static av_always_inline void color_cache_put(ImageContext *img, uint32_t c)
  493. {
  494. uint32_t cache_idx = (0x1E35A7BD * c) >> (32 - img->color_cache_bits);
  495. img->color_cache[cache_idx] = c;
  496. }
  497. static int decode_entropy_coded_image(WebPContext *s, enum ImageRole role,
  498. int w, int h)
  499. {
  500. ImageContext *img;
  501. HuffReader *hg;
  502. int i, j, ret, x, y, width;
  503. img = &s->image[role];
  504. img->role = role;
  505. if (!img->frame) {
  506. img->frame = av_frame_alloc();
  507. if (!img->frame)
  508. return AVERROR(ENOMEM);
  509. }
  510. img->frame->format = AV_PIX_FMT_ARGB;
  511. img->frame->width = w;
  512. img->frame->height = h;
  513. if (role == IMAGE_ROLE_ARGB && !img->is_alpha_primary) {
  514. ThreadFrame pt = { .f = img->frame };
  515. ret = ff_thread_get_buffer(s->avctx, &pt, 0);
  516. } else
  517. ret = av_frame_get_buffer(img->frame, 1);
  518. if (ret < 0)
  519. return ret;
  520. if (get_bits1(&s->gb)) {
  521. img->color_cache_bits = get_bits(&s->gb, 4);
  522. if (img->color_cache_bits < 1 || img->color_cache_bits > 11) {
  523. av_log(s->avctx, AV_LOG_ERROR, "invalid color cache bits: %d\n",
  524. img->color_cache_bits);
  525. return AVERROR_INVALIDDATA;
  526. }
  527. img->color_cache = av_mallocz_array(1 << img->color_cache_bits,
  528. sizeof(*img->color_cache));
  529. if (!img->color_cache)
  530. return AVERROR(ENOMEM);
  531. } else {
  532. img->color_cache_bits = 0;
  533. }
  534. img->nb_huffman_groups = 1;
  535. if (role == IMAGE_ROLE_ARGB && get_bits1(&s->gb)) {
  536. ret = decode_entropy_image(s);
  537. if (ret < 0)
  538. return ret;
  539. img->nb_huffman_groups = s->nb_huffman_groups;
  540. }
  541. img->huffman_groups = av_mallocz_array(img->nb_huffman_groups *
  542. HUFFMAN_CODES_PER_META_CODE,
  543. sizeof(*img->huffman_groups));
  544. if (!img->huffman_groups)
  545. return AVERROR(ENOMEM);
  546. for (i = 0; i < img->nb_huffman_groups; i++) {
  547. hg = &img->huffman_groups[i * HUFFMAN_CODES_PER_META_CODE];
  548. for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; j++) {
  549. int alphabet_size = alphabet_sizes[j];
  550. if (!j && img->color_cache_bits > 0)
  551. alphabet_size += 1 << img->color_cache_bits;
  552. if (get_bits1(&s->gb)) {
  553. read_huffman_code_simple(s, &hg[j]);
  554. } else {
  555. ret = read_huffman_code_normal(s, &hg[j], alphabet_size);
  556. if (ret < 0)
  557. return ret;
  558. }
  559. }
  560. }
  561. width = img->frame->width;
  562. if (role == IMAGE_ROLE_ARGB && s->reduced_width > 0)
  563. width = s->reduced_width;
  564. x = 0; y = 0;
  565. while (y < img->frame->height) {
  566. int v;
  567. hg = get_huffman_group(s, img, x, y);
  568. v = huff_reader_get_symbol(&hg[HUFF_IDX_GREEN], &s->gb);
  569. if (v < NUM_LITERAL_CODES) {
  570. /* literal pixel values */
  571. uint8_t *p = GET_PIXEL(img->frame, x, y);
  572. p[2] = v;
  573. p[1] = huff_reader_get_symbol(&hg[HUFF_IDX_RED], &s->gb);
  574. p[3] = huff_reader_get_symbol(&hg[HUFF_IDX_BLUE], &s->gb);
  575. p[0] = huff_reader_get_symbol(&hg[HUFF_IDX_ALPHA], &s->gb);
  576. if (img->color_cache_bits)
  577. color_cache_put(img, AV_RB32(p));
  578. x++;
  579. if (x == width) {
  580. x = 0;
  581. y++;
  582. }
  583. } else if (v < NUM_LITERAL_CODES + NUM_LENGTH_CODES) {
  584. /* LZ77 backwards mapping */
  585. int prefix_code, length, distance, ref_x, ref_y;
  586. /* parse length and distance */
  587. prefix_code = v - NUM_LITERAL_CODES;
  588. if (prefix_code < 4) {
  589. length = prefix_code + 1;
  590. } else {
  591. int extra_bits = (prefix_code - 2) >> 1;
  592. int offset = 2 + (prefix_code & 1) << extra_bits;
  593. length = offset + get_bits(&s->gb, extra_bits) + 1;
  594. }
  595. prefix_code = huff_reader_get_symbol(&hg[HUFF_IDX_DIST], &s->gb);
  596. if (prefix_code < 4) {
  597. distance = prefix_code + 1;
  598. } else {
  599. int extra_bits = prefix_code - 2 >> 1;
  600. int offset = 2 + (prefix_code & 1) << extra_bits;
  601. distance = offset + get_bits(&s->gb, extra_bits) + 1;
  602. }
  603. /* find reference location */
  604. if (distance <= NUM_SHORT_DISTANCES) {
  605. int xi = lz77_distance_offsets[distance - 1][0];
  606. int yi = lz77_distance_offsets[distance - 1][1];
  607. distance = FFMAX(1, xi + yi * width);
  608. } else {
  609. distance -= NUM_SHORT_DISTANCES;
  610. }
  611. ref_x = x;
  612. ref_y = y;
  613. if (distance <= x) {
  614. ref_x -= distance;
  615. distance = 0;
  616. } else {
  617. ref_x = 0;
  618. distance -= x;
  619. }
  620. while (distance >= width) {
  621. ref_y--;
  622. distance -= width;
  623. }
  624. if (distance > 0) {
  625. ref_x = width - distance;
  626. ref_y--;
  627. }
  628. ref_x = FFMAX(0, ref_x);
  629. ref_y = FFMAX(0, ref_y);
  630. /* copy pixels
  631. * source and dest regions can overlap and wrap lines, so just
  632. * copy per-pixel */
  633. for (i = 0; i < length; i++) {
  634. uint8_t *p_ref = GET_PIXEL(img->frame, ref_x, ref_y);
  635. uint8_t *p = GET_PIXEL(img->frame, x, y);
  636. AV_COPY32(p, p_ref);
  637. if (img->color_cache_bits)
  638. color_cache_put(img, AV_RB32(p));
  639. x++;
  640. ref_x++;
  641. if (x == width) {
  642. x = 0;
  643. y++;
  644. }
  645. if (ref_x == width) {
  646. ref_x = 0;
  647. ref_y++;
  648. }
  649. if (y == img->frame->height || ref_y == img->frame->height)
  650. break;
  651. }
  652. } else {
  653. /* read from color cache */
  654. uint8_t *p = GET_PIXEL(img->frame, x, y);
  655. int cache_idx = v - (NUM_LITERAL_CODES + NUM_LENGTH_CODES);
  656. if (!img->color_cache_bits) {
  657. av_log(s->avctx, AV_LOG_ERROR, "color cache not found\n");
  658. return AVERROR_INVALIDDATA;
  659. }
  660. if (cache_idx >= 1 << img->color_cache_bits) {
  661. av_log(s->avctx, AV_LOG_ERROR,
  662. "color cache index out-of-bounds\n");
  663. return AVERROR_INVALIDDATA;
  664. }
  665. AV_WB32(p, img->color_cache[cache_idx]);
  666. x++;
  667. if (x == width) {
  668. x = 0;
  669. y++;
  670. }
  671. }
  672. }
  673. return 0;
  674. }
  675. /* PRED_MODE_BLACK */
  676. static void inv_predict_0(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  677. const uint8_t *p_t, const uint8_t *p_tr)
  678. {
  679. AV_WB32(p, 0xFF000000);
  680. }
  681. /* PRED_MODE_L */
  682. static void inv_predict_1(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  683. const uint8_t *p_t, const uint8_t *p_tr)
  684. {
  685. AV_COPY32(p, p_l);
  686. }
  687. /* PRED_MODE_T */
  688. static void inv_predict_2(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  689. const uint8_t *p_t, const uint8_t *p_tr)
  690. {
  691. AV_COPY32(p, p_t);
  692. }
  693. /* PRED_MODE_TR */
  694. static void inv_predict_3(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  695. const uint8_t *p_t, const uint8_t *p_tr)
  696. {
  697. AV_COPY32(p, p_tr);
  698. }
  699. /* PRED_MODE_TL */
  700. static void inv_predict_4(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  701. const uint8_t *p_t, const uint8_t *p_tr)
  702. {
  703. AV_COPY32(p, p_tl);
  704. }
  705. /* PRED_MODE_AVG_T_AVG_L_TR */
  706. static void inv_predict_5(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  707. const uint8_t *p_t, const uint8_t *p_tr)
  708. {
  709. p[0] = p_t[0] + (p_l[0] + p_tr[0] >> 1) >> 1;
  710. p[1] = p_t[1] + (p_l[1] + p_tr[1] >> 1) >> 1;
  711. p[2] = p_t[2] + (p_l[2] + p_tr[2] >> 1) >> 1;
  712. p[3] = p_t[3] + (p_l[3] + p_tr[3] >> 1) >> 1;
  713. }
  714. /* PRED_MODE_AVG_L_TL */
  715. static void inv_predict_6(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  716. const uint8_t *p_t, const uint8_t *p_tr)
  717. {
  718. p[0] = p_l[0] + p_tl[0] >> 1;
  719. p[1] = p_l[1] + p_tl[1] >> 1;
  720. p[2] = p_l[2] + p_tl[2] >> 1;
  721. p[3] = p_l[3] + p_tl[3] >> 1;
  722. }
  723. /* PRED_MODE_AVG_L_T */
  724. static void inv_predict_7(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  725. const uint8_t *p_t, const uint8_t *p_tr)
  726. {
  727. p[0] = p_l[0] + p_t[0] >> 1;
  728. p[1] = p_l[1] + p_t[1] >> 1;
  729. p[2] = p_l[2] + p_t[2] >> 1;
  730. p[3] = p_l[3] + p_t[3] >> 1;
  731. }
  732. /* PRED_MODE_AVG_TL_T */
  733. static void inv_predict_8(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  734. const uint8_t *p_t, const uint8_t *p_tr)
  735. {
  736. p[0] = p_tl[0] + p_t[0] >> 1;
  737. p[1] = p_tl[1] + p_t[1] >> 1;
  738. p[2] = p_tl[2] + p_t[2] >> 1;
  739. p[3] = p_tl[3] + p_t[3] >> 1;
  740. }
  741. /* PRED_MODE_AVG_T_TR */
  742. static void inv_predict_9(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  743. const uint8_t *p_t, const uint8_t *p_tr)
  744. {
  745. p[0] = p_t[0] + p_tr[0] >> 1;
  746. p[1] = p_t[1] + p_tr[1] >> 1;
  747. p[2] = p_t[2] + p_tr[2] >> 1;
  748. p[3] = p_t[3] + p_tr[3] >> 1;
  749. }
  750. /* PRED_MODE_AVG_AVG_L_TL_AVG_T_TR */
  751. static void inv_predict_10(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  752. const uint8_t *p_t, const uint8_t *p_tr)
  753. {
  754. p[0] = (p_l[0] + p_tl[0] >> 1) + (p_t[0] + p_tr[0] >> 1) >> 1;
  755. p[1] = (p_l[1] + p_tl[1] >> 1) + (p_t[1] + p_tr[1] >> 1) >> 1;
  756. p[2] = (p_l[2] + p_tl[2] >> 1) + (p_t[2] + p_tr[2] >> 1) >> 1;
  757. p[3] = (p_l[3] + p_tl[3] >> 1) + (p_t[3] + p_tr[3] >> 1) >> 1;
  758. }
  759. /* PRED_MODE_SELECT */
  760. static void inv_predict_11(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  761. const uint8_t *p_t, const uint8_t *p_tr)
  762. {
  763. int diff = (FFABS(p_l[0] - p_tl[0]) - FFABS(p_t[0] - p_tl[0])) +
  764. (FFABS(p_l[1] - p_tl[1]) - FFABS(p_t[1] - p_tl[1])) +
  765. (FFABS(p_l[2] - p_tl[2]) - FFABS(p_t[2] - p_tl[2])) +
  766. (FFABS(p_l[3] - p_tl[3]) - FFABS(p_t[3] - p_tl[3]));
  767. if (diff <= 0)
  768. AV_COPY32(p, p_t);
  769. else
  770. AV_COPY32(p, p_l);
  771. }
  772. /* PRED_MODE_ADD_SUBTRACT_FULL */
  773. static void inv_predict_12(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  774. const uint8_t *p_t, const uint8_t *p_tr)
  775. {
  776. p[0] = av_clip_uint8(p_l[0] + p_t[0] - p_tl[0]);
  777. p[1] = av_clip_uint8(p_l[1] + p_t[1] - p_tl[1]);
  778. p[2] = av_clip_uint8(p_l[2] + p_t[2] - p_tl[2]);
  779. p[3] = av_clip_uint8(p_l[3] + p_t[3] - p_tl[3]);
  780. }
  781. static av_always_inline uint8_t clamp_add_subtract_half(int a, int b, int c)
  782. {
  783. int d = a + b >> 1;
  784. return av_clip_uint8(d + (d - c) / 2);
  785. }
  786. /* PRED_MODE_ADD_SUBTRACT_HALF */
  787. static void inv_predict_13(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  788. const uint8_t *p_t, const uint8_t *p_tr)
  789. {
  790. p[0] = clamp_add_subtract_half(p_l[0], p_t[0], p_tl[0]);
  791. p[1] = clamp_add_subtract_half(p_l[1], p_t[1], p_tl[1]);
  792. p[2] = clamp_add_subtract_half(p_l[2], p_t[2], p_tl[2]);
  793. p[3] = clamp_add_subtract_half(p_l[3], p_t[3], p_tl[3]);
  794. }
  795. typedef void (*inv_predict_func)(uint8_t *p, const uint8_t *p_l,
  796. const uint8_t *p_tl, const uint8_t *p_t,
  797. const uint8_t *p_tr);
  798. static const inv_predict_func inverse_predict[14] = {
  799. inv_predict_0, inv_predict_1, inv_predict_2, inv_predict_3,
  800. inv_predict_4, inv_predict_5, inv_predict_6, inv_predict_7,
  801. inv_predict_8, inv_predict_9, inv_predict_10, inv_predict_11,
  802. inv_predict_12, inv_predict_13,
  803. };
  804. static void inverse_prediction(AVFrame *frame, enum PredictionMode m, int x, int y)
  805. {
  806. uint8_t *dec, *p_l, *p_tl, *p_t, *p_tr;
  807. uint8_t p[4];
  808. dec = GET_PIXEL(frame, x, y);
  809. p_l = GET_PIXEL(frame, x - 1, y);
  810. p_tl = GET_PIXEL(frame, x - 1, y - 1);
  811. p_t = GET_PIXEL(frame, x, y - 1);
  812. if (x == frame->width - 1)
  813. p_tr = GET_PIXEL(frame, 0, y);
  814. else
  815. p_tr = GET_PIXEL(frame, x + 1, y - 1);
  816. inverse_predict[m](p, p_l, p_tl, p_t, p_tr);
  817. dec[0] += p[0];
  818. dec[1] += p[1];
  819. dec[2] += p[2];
  820. dec[3] += p[3];
  821. }
  822. static int apply_predictor_transform(WebPContext *s)
  823. {
  824. ImageContext *img = &s->image[IMAGE_ROLE_ARGB];
  825. ImageContext *pimg = &s->image[IMAGE_ROLE_PREDICTOR];
  826. int x, y;
  827. for (y = 0; y < img->frame->height; y++) {
  828. for (x = 0; x < img->frame->width; x++) {
  829. int tx = x >> pimg->size_reduction;
  830. int ty = y >> pimg->size_reduction;
  831. enum PredictionMode m = GET_PIXEL_COMP(pimg->frame, tx, ty, 2);
  832. if (x == 0) {
  833. if (y == 0)
  834. m = PRED_MODE_BLACK;
  835. else
  836. m = PRED_MODE_T;
  837. } else if (y == 0)
  838. m = PRED_MODE_L;
  839. if (m > 13) {
  840. av_log(s->avctx, AV_LOG_ERROR,
  841. "invalid predictor mode: %d\n", m);
  842. return AVERROR_INVALIDDATA;
  843. }
  844. inverse_prediction(img->frame, m, x, y);
  845. }
  846. }
  847. return 0;
  848. }
  849. static av_always_inline uint8_t color_transform_delta(uint8_t color_pred,
  850. uint8_t color)
  851. {
  852. return (int)ff_u8_to_s8(color_pred) * ff_u8_to_s8(color) >> 5;
  853. }
  854. static int apply_color_transform(WebPContext *s)
  855. {
  856. ImageContext *img, *cimg;
  857. int x, y, cx, cy;
  858. uint8_t *p, *cp;
  859. img = &s->image[IMAGE_ROLE_ARGB];
  860. cimg = &s->image[IMAGE_ROLE_COLOR_TRANSFORM];
  861. for (y = 0; y < img->frame->height; y++) {
  862. for (x = 0; x < img->frame->width; x++) {
  863. cx = x >> cimg->size_reduction;
  864. cy = y >> cimg->size_reduction;
  865. cp = GET_PIXEL(cimg->frame, cx, cy);
  866. p = GET_PIXEL(img->frame, x, y);
  867. p[1] += color_transform_delta(cp[3], p[2]);
  868. p[3] += color_transform_delta(cp[2], p[2]) +
  869. color_transform_delta(cp[1], p[1]);
  870. }
  871. }
  872. return 0;
  873. }
  874. static int apply_subtract_green_transform(WebPContext *s)
  875. {
  876. int x, y;
  877. ImageContext *img = &s->image[IMAGE_ROLE_ARGB];
  878. for (y = 0; y < img->frame->height; y++) {
  879. for (x = 0; x < img->frame->width; x++) {
  880. uint8_t *p = GET_PIXEL(img->frame, x, y);
  881. p[1] += p[2];
  882. p[3] += p[2];
  883. }
  884. }
  885. return 0;
  886. }
  887. static int apply_color_indexing_transform(WebPContext *s)
  888. {
  889. ImageContext *img;
  890. ImageContext *pal;
  891. int i, x, y;
  892. uint8_t *p;
  893. img = &s->image[IMAGE_ROLE_ARGB];
  894. pal = &s->image[IMAGE_ROLE_COLOR_INDEXING];
  895. if (pal->size_reduction > 0) {
  896. GetBitContext gb_g;
  897. uint8_t *line;
  898. int pixel_bits = 8 >> pal->size_reduction;
  899. line = av_malloc(img->frame->linesize[0]);
  900. if (!line)
  901. return AVERROR(ENOMEM);
  902. for (y = 0; y < img->frame->height; y++) {
  903. p = GET_PIXEL(img->frame, 0, y);
  904. memcpy(line, p, img->frame->linesize[0]);
  905. init_get_bits(&gb_g, line, img->frame->linesize[0] * 8);
  906. skip_bits(&gb_g, 16);
  907. i = 0;
  908. for (x = 0; x < img->frame->width; x++) {
  909. p = GET_PIXEL(img->frame, x, y);
  910. p[2] = get_bits(&gb_g, pixel_bits);
  911. i++;
  912. if (i == 1 << pal->size_reduction) {
  913. skip_bits(&gb_g, 24);
  914. i = 0;
  915. }
  916. }
  917. }
  918. av_free(line);
  919. }
  920. for (y = 0; y < img->frame->height; y++) {
  921. for (x = 0; x < img->frame->width; x++) {
  922. p = GET_PIXEL(img->frame, x, y);
  923. i = p[2];
  924. if (i >= pal->frame->width) {
  925. AV_WB32(p, 0x00000000);
  926. } else {
  927. const uint8_t *pi = GET_PIXEL(pal->frame, i, 0);
  928. AV_COPY32(p, pi);
  929. }
  930. }
  931. }
  932. return 0;
  933. }
  934. static int vp8_lossless_decode_frame(AVCodecContext *avctx, AVFrame *p,
  935. int *got_frame, uint8_t *data_start,
  936. unsigned int data_size, int is_alpha_chunk)
  937. {
  938. WebPContext *s = avctx->priv_data;
  939. int w, h, ret, i;
  940. if (!is_alpha_chunk) {
  941. s->lossless = 1;
  942. avctx->pix_fmt = AV_PIX_FMT_ARGB;
  943. }
  944. ret = init_get_bits(&s->gb, data_start, data_size * 8);
  945. if (ret < 0)
  946. return ret;
  947. if (!is_alpha_chunk) {
  948. if (get_bits(&s->gb, 8) != 0x2F) {
  949. av_log(avctx, AV_LOG_ERROR, "Invalid WebP Lossless signature\n");
  950. return AVERROR_INVALIDDATA;
  951. }
  952. w = get_bits(&s->gb, 14) + 1;
  953. h = get_bits(&s->gb, 14) + 1;
  954. if (s->width && s->width != w) {
  955. av_log(avctx, AV_LOG_WARNING, "Width mismatch. %d != %d\n",
  956. s->width, w);
  957. }
  958. s->width = w;
  959. if (s->height && s->height != h) {
  960. av_log(avctx, AV_LOG_WARNING, "Height mismatch. %d != %d\n",
  961. s->width, w);
  962. }
  963. s->height = h;
  964. ret = ff_set_dimensions(avctx, s->width, s->height);
  965. if (ret < 0)
  966. return ret;
  967. s->has_alpha = get_bits1(&s->gb);
  968. if (get_bits(&s->gb, 3) != 0x0) {
  969. av_log(avctx, AV_LOG_ERROR, "Invalid WebP Lossless version\n");
  970. return AVERROR_INVALIDDATA;
  971. }
  972. } else {
  973. if (!s->width || !s->height)
  974. return AVERROR_BUG;
  975. w = s->width;
  976. h = s->height;
  977. }
  978. /* parse transformations */
  979. s->nb_transforms = 0;
  980. s->reduced_width = 0;
  981. while (get_bits1(&s->gb)) {
  982. enum TransformType transform = get_bits(&s->gb, 2);
  983. s->transforms[s->nb_transforms++] = transform;
  984. switch (transform) {
  985. case PREDICTOR_TRANSFORM:
  986. ret = parse_transform_predictor(s);
  987. break;
  988. case COLOR_TRANSFORM:
  989. ret = parse_transform_color(s);
  990. break;
  991. case COLOR_INDEXING_TRANSFORM:
  992. ret = parse_transform_color_indexing(s);
  993. break;
  994. }
  995. if (ret < 0)
  996. goto free_and_return;
  997. }
  998. /* decode primary image */
  999. s->image[IMAGE_ROLE_ARGB].frame = p;
  1000. if (is_alpha_chunk)
  1001. s->image[IMAGE_ROLE_ARGB].is_alpha_primary = 1;
  1002. ret = decode_entropy_coded_image(s, IMAGE_ROLE_ARGB, w, h);
  1003. if (ret < 0)
  1004. goto free_and_return;
  1005. /* apply transformations */
  1006. for (i = s->nb_transforms - 1; i >= 0; i--) {
  1007. switch (s->transforms[i]) {
  1008. case PREDICTOR_TRANSFORM:
  1009. ret = apply_predictor_transform(s);
  1010. break;
  1011. case COLOR_TRANSFORM:
  1012. ret = apply_color_transform(s);
  1013. break;
  1014. case SUBTRACT_GREEN:
  1015. ret = apply_subtract_green_transform(s);
  1016. break;
  1017. case COLOR_INDEXING_TRANSFORM:
  1018. ret = apply_color_indexing_transform(s);
  1019. break;
  1020. }
  1021. if (ret < 0)
  1022. goto free_and_return;
  1023. }
  1024. *got_frame = 1;
  1025. p->pict_type = AV_PICTURE_TYPE_I;
  1026. p->key_frame = 1;
  1027. ret = data_size;
  1028. free_and_return:
  1029. for (i = 0; i < IMAGE_ROLE_NB; i++)
  1030. image_ctx_free(&s->image[i]);
  1031. return ret;
  1032. }
  1033. static void alpha_inverse_prediction(AVFrame *frame, enum AlphaFilter m)
  1034. {
  1035. int x, y, ls;
  1036. uint8_t *dec;
  1037. ls = frame->linesize[3];
  1038. /* filter first row using horizontal filter */
  1039. dec = frame->data[3] + 1;
  1040. for (x = 1; x < frame->width; x++, dec++)
  1041. *dec += *(dec - 1);
  1042. /* filter first column using vertical filter */
  1043. dec = frame->data[3] + ls;
  1044. for (y = 1; y < frame->height; y++, dec += ls)
  1045. *dec += *(dec - ls);
  1046. /* filter the rest using the specified filter */
  1047. switch (m) {
  1048. case ALPHA_FILTER_HORIZONTAL:
  1049. for (y = 1; y < frame->height; y++) {
  1050. dec = frame->data[3] + y * ls + 1;
  1051. for (x = 1; x < frame->width; x++, dec++)
  1052. *dec += *(dec - 1);
  1053. }
  1054. break;
  1055. case ALPHA_FILTER_VERTICAL:
  1056. for (y = 1; y < frame->height; y++) {
  1057. dec = frame->data[3] + y * ls + 1;
  1058. for (x = 1; x < frame->width; x++, dec++)
  1059. *dec += *(dec - ls);
  1060. }
  1061. break;
  1062. case ALPHA_FILTER_GRADIENT:
  1063. for (y = 1; y < frame->height; y++) {
  1064. dec = frame->data[3] + y * ls + 1;
  1065. for (x = 1; x < frame->width; x++, dec++)
  1066. dec[0] += av_clip_uint8(*(dec - 1) + *(dec - ls) - *(dec - ls - 1));
  1067. }
  1068. break;
  1069. }
  1070. }
  1071. static int vp8_lossy_decode_alpha(AVCodecContext *avctx, AVFrame *p,
  1072. uint8_t *data_start,
  1073. unsigned int data_size)
  1074. {
  1075. WebPContext *s = avctx->priv_data;
  1076. int x, y, ret;
  1077. if (s->alpha_compression == ALPHA_COMPRESSION_NONE) {
  1078. GetByteContext gb;
  1079. bytestream2_init(&gb, data_start, data_size);
  1080. for (y = 0; y < s->height; y++)
  1081. bytestream2_get_buffer(&gb, p->data[3] + p->linesize[3] * y,
  1082. s->width);
  1083. } else if (s->alpha_compression == ALPHA_COMPRESSION_VP8L) {
  1084. uint8_t *ap, *pp;
  1085. int alpha_got_frame = 0;
  1086. s->alpha_frame = av_frame_alloc();
  1087. if (!s->alpha_frame)
  1088. return AVERROR(ENOMEM);
  1089. ret = vp8_lossless_decode_frame(avctx, s->alpha_frame, &alpha_got_frame,
  1090. data_start, data_size, 1);
  1091. if (ret < 0) {
  1092. av_frame_free(&s->alpha_frame);
  1093. return ret;
  1094. }
  1095. if (!alpha_got_frame) {
  1096. av_frame_free(&s->alpha_frame);
  1097. return AVERROR_INVALIDDATA;
  1098. }
  1099. /* copy green component of alpha image to alpha plane of primary image */
  1100. for (y = 0; y < s->height; y++) {
  1101. ap = GET_PIXEL(s->alpha_frame, 0, y) + 2;
  1102. pp = p->data[3] + p->linesize[3] * y;
  1103. for (x = 0; x < s->width; x++) {
  1104. *pp = *ap;
  1105. pp++;
  1106. ap += 4;
  1107. }
  1108. }
  1109. av_frame_free(&s->alpha_frame);
  1110. }
  1111. /* apply alpha filtering */
  1112. if (s->alpha_filter)
  1113. alpha_inverse_prediction(p, s->alpha_filter);
  1114. return 0;
  1115. }
  1116. static int vp8_lossy_decode_frame(AVCodecContext *avctx, AVFrame *p,
  1117. int *got_frame, uint8_t *data_start,
  1118. unsigned int data_size)
  1119. {
  1120. WebPContext *s = avctx->priv_data;
  1121. AVPacket pkt;
  1122. int ret;
  1123. if (!s->initialized) {
  1124. ff_vp8_decode_init(avctx);
  1125. s->initialized = 1;
  1126. if (s->has_alpha)
  1127. avctx->pix_fmt = AV_PIX_FMT_YUVA420P;
  1128. }
  1129. s->lossless = 0;
  1130. if (data_size > INT_MAX) {
  1131. av_log(avctx, AV_LOG_ERROR, "unsupported chunk size\n");
  1132. return AVERROR_PATCHWELCOME;
  1133. }
  1134. av_init_packet(&pkt);
  1135. pkt.data = data_start;
  1136. pkt.size = data_size;
  1137. ret = ff_vp8_decode_frame(avctx, p, got_frame, &pkt);
  1138. if (s->has_alpha) {
  1139. ret = vp8_lossy_decode_alpha(avctx, p, s->alpha_data,
  1140. s->alpha_data_size);
  1141. if (ret < 0)
  1142. return ret;
  1143. }
  1144. return ret;
  1145. }
  1146. static int webp_decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
  1147. AVPacket *avpkt)
  1148. {
  1149. AVFrame * const p = data;
  1150. WebPContext *s = avctx->priv_data;
  1151. GetByteContext gb;
  1152. int ret;
  1153. uint32_t chunk_type, chunk_size;
  1154. int vp8x_flags = 0;
  1155. s->avctx = avctx;
  1156. s->width = 0;
  1157. s->height = 0;
  1158. *got_frame = 0;
  1159. s->has_alpha = 0;
  1160. s->has_exif = 0;
  1161. bytestream2_init(&gb, avpkt->data, avpkt->size);
  1162. if (bytestream2_get_bytes_left(&gb) < 12)
  1163. return AVERROR_INVALIDDATA;
  1164. if (bytestream2_get_le32(&gb) != MKTAG('R', 'I', 'F', 'F')) {
  1165. av_log(avctx, AV_LOG_ERROR, "missing RIFF tag\n");
  1166. return AVERROR_INVALIDDATA;
  1167. }
  1168. chunk_size = bytestream2_get_le32(&gb);
  1169. if (bytestream2_get_bytes_left(&gb) < chunk_size)
  1170. return AVERROR_INVALIDDATA;
  1171. if (bytestream2_get_le32(&gb) != MKTAG('W', 'E', 'B', 'P')) {
  1172. av_log(avctx, AV_LOG_ERROR, "missing WEBP tag\n");
  1173. return AVERROR_INVALIDDATA;
  1174. }
  1175. av_dict_free(&s->exif_metadata);
  1176. while (bytestream2_get_bytes_left(&gb) > 0) {
  1177. char chunk_str[5] = { 0 };
  1178. chunk_type = bytestream2_get_le32(&gb);
  1179. chunk_size = bytestream2_get_le32(&gb);
  1180. if (chunk_size == UINT32_MAX)
  1181. return AVERROR_INVALIDDATA;
  1182. chunk_size += chunk_size & 1;
  1183. if (bytestream2_get_bytes_left(&gb) < chunk_size)
  1184. return AVERROR_INVALIDDATA;
  1185. switch (chunk_type) {
  1186. case MKTAG('V', 'P', '8', ' '):
  1187. if (!*got_frame) {
  1188. ret = vp8_lossy_decode_frame(avctx, p, got_frame,
  1189. avpkt->data + bytestream2_tell(&gb),
  1190. chunk_size);
  1191. if (ret < 0)
  1192. return ret;
  1193. }
  1194. bytestream2_skip(&gb, chunk_size);
  1195. break;
  1196. case MKTAG('V', 'P', '8', 'L'):
  1197. if (!*got_frame) {
  1198. ret = vp8_lossless_decode_frame(avctx, p, got_frame,
  1199. avpkt->data + bytestream2_tell(&gb),
  1200. chunk_size, 0);
  1201. if (ret < 0)
  1202. return ret;
  1203. }
  1204. bytestream2_skip(&gb, chunk_size);
  1205. break;
  1206. case MKTAG('V', 'P', '8', 'X'):
  1207. vp8x_flags = bytestream2_get_byte(&gb);
  1208. bytestream2_skip(&gb, 3);
  1209. s->width = bytestream2_get_le24(&gb) + 1;
  1210. s->height = bytestream2_get_le24(&gb) + 1;
  1211. ret = av_image_check_size(s->width, s->height, 0, avctx);
  1212. if (ret < 0)
  1213. return ret;
  1214. break;
  1215. case MKTAG('A', 'L', 'P', 'H'): {
  1216. int alpha_header, filter_m, compression;
  1217. if (!(vp8x_flags & VP8X_FLAG_ALPHA)) {
  1218. av_log(avctx, AV_LOG_WARNING,
  1219. "ALPHA chunk present, but alpha bit not set in the "
  1220. "VP8X header\n");
  1221. }
  1222. if (chunk_size == 0) {
  1223. av_log(avctx, AV_LOG_ERROR, "invalid ALPHA chunk size\n");
  1224. return AVERROR_INVALIDDATA;
  1225. }
  1226. alpha_header = bytestream2_get_byte(&gb);
  1227. s->alpha_data = avpkt->data + bytestream2_tell(&gb);
  1228. s->alpha_data_size = chunk_size - 1;
  1229. bytestream2_skip(&gb, s->alpha_data_size);
  1230. filter_m = (alpha_header >> 2) & 0x03;
  1231. compression = alpha_header & 0x03;
  1232. if (compression > ALPHA_COMPRESSION_VP8L) {
  1233. av_log(avctx, AV_LOG_VERBOSE,
  1234. "skipping unsupported ALPHA chunk\n");
  1235. } else {
  1236. s->has_alpha = 1;
  1237. s->alpha_compression = compression;
  1238. s->alpha_filter = filter_m;
  1239. }
  1240. break;
  1241. }
  1242. case MKTAG('E', 'X', 'I', 'F'): {
  1243. int le, ifd_offset, exif_offset = bytestream2_tell(&gb);
  1244. GetByteContext exif_gb;
  1245. if (s->has_exif) {
  1246. av_log(avctx, AV_LOG_VERBOSE, "Ignoring extra EXIF chunk\n");
  1247. goto exif_end;
  1248. }
  1249. if (!(vp8x_flags & VP8X_FLAG_EXIF_METADATA))
  1250. av_log(avctx, AV_LOG_WARNING,
  1251. "EXIF chunk present, but Exif bit not set in the "
  1252. "VP8X header\n");
  1253. s->has_exif = 1;
  1254. bytestream2_init(&exif_gb, avpkt->data + exif_offset,
  1255. avpkt->size - exif_offset);
  1256. if (ff_tdecode_header(&exif_gb, &le, &ifd_offset) < 0) {
  1257. av_log(avctx, AV_LOG_ERROR, "invalid TIFF header "
  1258. "in Exif data\n");
  1259. goto exif_end;
  1260. }
  1261. bytestream2_seek(&exif_gb, ifd_offset, SEEK_SET);
  1262. if (avpriv_exif_decode_ifd(avctx, &exif_gb, le, 0, &s->exif_metadata) < 0) {
  1263. av_log(avctx, AV_LOG_ERROR, "error decoding Exif data\n");
  1264. goto exif_end;
  1265. }
  1266. av_dict_copy(avpriv_frame_get_metadatap(data), s->exif_metadata, 0);
  1267. exif_end:
  1268. av_dict_free(&s->exif_metadata);
  1269. bytestream2_skip(&gb, chunk_size);
  1270. break;
  1271. }
  1272. case MKTAG('I', 'C', 'C', 'P'):
  1273. case MKTAG('A', 'N', 'I', 'M'):
  1274. case MKTAG('A', 'N', 'M', 'F'):
  1275. case MKTAG('X', 'M', 'P', ' '):
  1276. AV_WL32(chunk_str, chunk_type);
  1277. av_log(avctx, AV_LOG_VERBOSE, "skipping unsupported chunk: %s\n",
  1278. chunk_str);
  1279. bytestream2_skip(&gb, chunk_size);
  1280. break;
  1281. default:
  1282. AV_WL32(chunk_str, chunk_type);
  1283. av_log(avctx, AV_LOG_VERBOSE, "skipping unknown chunk: %s\n",
  1284. chunk_str);
  1285. bytestream2_skip(&gb, chunk_size);
  1286. break;
  1287. }
  1288. }
  1289. if (!*got_frame) {
  1290. av_log(avctx, AV_LOG_ERROR, "image data not found\n");
  1291. return AVERROR_INVALIDDATA;
  1292. }
  1293. return avpkt->size;
  1294. }
  1295. static av_cold int webp_decode_close(AVCodecContext *avctx)
  1296. {
  1297. WebPContext *s = avctx->priv_data;
  1298. if (s->initialized)
  1299. return ff_vp8_decode_free(avctx);
  1300. return 0;
  1301. }
  1302. AVCodec ff_webp_decoder = {
  1303. .name = "webp",
  1304. .long_name = NULL_IF_CONFIG_SMALL("WebP image"),
  1305. .type = AVMEDIA_TYPE_VIDEO,
  1306. .id = AV_CODEC_ID_WEBP,
  1307. .priv_data_size = sizeof(WebPContext),
  1308. .decode = webp_decode_frame,
  1309. .close = webp_decode_close,
  1310. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,
  1311. };