You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2053 lines
67KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG Audio decoder
  24. */
  25. #include "libavutil/avassert.h"
  26. #include "libavutil/channel_layout.h"
  27. #include "libavutil/float_dsp.h"
  28. #include "avcodec.h"
  29. #include "get_bits.h"
  30. #include "internal.h"
  31. #include "mathops.h"
  32. #include "mpegaudiodsp.h"
  33. /*
  34. * TODO:
  35. * - test lsf / mpeg25 extensively.
  36. */
  37. #include "mpegaudio.h"
  38. #include "mpegaudiodecheader.h"
  39. #define BACKSTEP_SIZE 512
  40. #define EXTRABYTES 24
  41. #define LAST_BUF_SIZE 2 * BACKSTEP_SIZE + EXTRABYTES
  42. /* layer 3 "granule" */
  43. typedef struct GranuleDef {
  44. uint8_t scfsi;
  45. int part2_3_length;
  46. int big_values;
  47. int global_gain;
  48. int scalefac_compress;
  49. uint8_t block_type;
  50. uint8_t switch_point;
  51. int table_select[3];
  52. int subblock_gain[3];
  53. uint8_t scalefac_scale;
  54. uint8_t count1table_select;
  55. int region_size[3]; /* number of huffman codes in each region */
  56. int preflag;
  57. int short_start, long_end; /* long/short band indexes */
  58. uint8_t scale_factors[40];
  59. DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18]; /* 576 samples */
  60. } GranuleDef;
  61. typedef struct MPADecodeContext {
  62. MPA_DECODE_HEADER
  63. uint8_t last_buf[LAST_BUF_SIZE];
  64. int last_buf_size;
  65. /* next header (used in free format parsing) */
  66. uint32_t free_format_next_header;
  67. GetBitContext gb;
  68. GetBitContext in_gb;
  69. DECLARE_ALIGNED(32, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2];
  70. int synth_buf_offset[MPA_MAX_CHANNELS];
  71. DECLARE_ALIGNED(32, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
  72. INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  73. GranuleDef granules[2][2]; /* Used in Layer 3 */
  74. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  75. int dither_state;
  76. int err_recognition;
  77. AVCodecContext* avctx;
  78. MPADSPContext mpadsp;
  79. AVFloatDSPContext fdsp;
  80. AVFrame *frame;
  81. } MPADecodeContext;
  82. #if CONFIG_FLOAT
  83. # define SHR(a,b) ((a)*(1.0f/(1<<(b))))
  84. # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
  85. # define FIXR(x) ((float)(x))
  86. # define FIXHR(x) ((float)(x))
  87. # define MULH3(x, y, s) ((s)*(y)*(x))
  88. # define MULLx(x, y, s) ((y)*(x))
  89. # define RENAME(a) a ## _float
  90. # define OUT_FMT AV_SAMPLE_FMT_FLT
  91. # define OUT_FMT_P AV_SAMPLE_FMT_FLTP
  92. #else
  93. # define SHR(a,b) ((a)>>(b))
  94. /* WARNING: only correct for positive numbers */
  95. # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
  96. # define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  97. # define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  98. # define MULH3(x, y, s) MULH((s)*(x), y)
  99. # define MULLx(x, y, s) MULL(x,y,s)
  100. # define RENAME(a) a ## _fixed
  101. # define OUT_FMT AV_SAMPLE_FMT_S16
  102. # define OUT_FMT_P AV_SAMPLE_FMT_S16P
  103. #endif
  104. /****************/
  105. #define HEADER_SIZE 4
  106. #include "mpegaudiodata.h"
  107. #include "mpegaudiodectab.h"
  108. /* vlc structure for decoding layer 3 huffman tables */
  109. static VLC huff_vlc[16];
  110. static VLC_TYPE huff_vlc_tables[
  111. 0 + 128 + 128 + 128 + 130 + 128 + 154 + 166 +
  112. 142 + 204 + 190 + 170 + 542 + 460 + 662 + 414
  113. ][2];
  114. static const int huff_vlc_tables_sizes[16] = {
  115. 0, 128, 128, 128, 130, 128, 154, 166,
  116. 142, 204, 190, 170, 542, 460, 662, 414
  117. };
  118. static VLC huff_quad_vlc[2];
  119. static VLC_TYPE huff_quad_vlc_tables[128+16][2];
  120. static const int huff_quad_vlc_tables_sizes[2] = { 128, 16 };
  121. /* computed from band_size_long */
  122. static uint16_t band_index_long[9][23];
  123. #include "mpegaudio_tablegen.h"
  124. /* intensity stereo coef table */
  125. static INTFLOAT is_table[2][16];
  126. static INTFLOAT is_table_lsf[2][2][16];
  127. static INTFLOAT csa_table[8][4];
  128. static int16_t division_tab3[1<<6 ];
  129. static int16_t division_tab5[1<<8 ];
  130. static int16_t division_tab9[1<<11];
  131. static int16_t * const division_tabs[4] = {
  132. division_tab3, division_tab5, NULL, division_tab9
  133. };
  134. /* lower 2 bits: modulo 3, higher bits: shift */
  135. static uint16_t scale_factor_modshift[64];
  136. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  137. static int32_t scale_factor_mult[15][3];
  138. /* mult table for layer 2 group quantization */
  139. #define SCALE_GEN(v) \
  140. { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
  141. static const int32_t scale_factor_mult2[3][3] = {
  142. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  143. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  144. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  145. };
  146. /**
  147. * Convert region offsets to region sizes and truncate
  148. * size to big_values.
  149. */
  150. static void ff_region_offset2size(GranuleDef *g)
  151. {
  152. int i, k, j = 0;
  153. g->region_size[2] = 576 / 2;
  154. for (i = 0; i < 3; i++) {
  155. k = FFMIN(g->region_size[i], g->big_values);
  156. g->region_size[i] = k - j;
  157. j = k;
  158. }
  159. }
  160. static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g)
  161. {
  162. if (g->block_type == 2) {
  163. if (s->sample_rate_index != 8)
  164. g->region_size[0] = (36 / 2);
  165. else
  166. g->region_size[0] = (72 / 2);
  167. } else {
  168. if (s->sample_rate_index <= 2)
  169. g->region_size[0] = (36 / 2);
  170. else if (s->sample_rate_index != 8)
  171. g->region_size[0] = (54 / 2);
  172. else
  173. g->region_size[0] = (108 / 2);
  174. }
  175. g->region_size[1] = (576 / 2);
  176. }
  177. static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2)
  178. {
  179. int l;
  180. g->region_size[0] = band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
  181. /* should not overflow */
  182. l = FFMIN(ra1 + ra2 + 2, 22);
  183. g->region_size[1] = band_index_long[s->sample_rate_index][ l] >> 1;
  184. }
  185. static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g)
  186. {
  187. if (g->block_type == 2) {
  188. if (g->switch_point) {
  189. /* if switched mode, we handle the 36 first samples as
  190. long blocks. For 8000Hz, we handle the 72 first
  191. exponents as long blocks */
  192. if (s->sample_rate_index <= 2)
  193. g->long_end = 8;
  194. else
  195. g->long_end = 6;
  196. g->short_start = 3;
  197. } else {
  198. g->long_end = 0;
  199. g->short_start = 0;
  200. }
  201. } else {
  202. g->short_start = 13;
  203. g->long_end = 22;
  204. }
  205. }
  206. /* layer 1 unscaling */
  207. /* n = number of bits of the mantissa minus 1 */
  208. static inline int l1_unscale(int n, int mant, int scale_factor)
  209. {
  210. int shift, mod;
  211. int64_t val;
  212. shift = scale_factor_modshift[scale_factor];
  213. mod = shift & 3;
  214. shift >>= 2;
  215. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  216. shift += n;
  217. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  218. return (int)((val + (1LL << (shift - 1))) >> shift);
  219. }
  220. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  221. {
  222. int shift, mod, val;
  223. shift = scale_factor_modshift[scale_factor];
  224. mod = shift & 3;
  225. shift >>= 2;
  226. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  227. /* NOTE: at this point, 0 <= shift <= 21 */
  228. if (shift > 0)
  229. val = (val + (1 << (shift - 1))) >> shift;
  230. return val;
  231. }
  232. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  233. static inline int l3_unscale(int value, int exponent)
  234. {
  235. unsigned int m;
  236. int e;
  237. e = table_4_3_exp [4 * value + (exponent & 3)];
  238. m = table_4_3_value[4 * value + (exponent & 3)];
  239. e -= exponent >> 2;
  240. assert(e >= 1);
  241. if (e > 31)
  242. return 0;
  243. m = (m + (1 << (e - 1))) >> e;
  244. return m;
  245. }
  246. static av_cold void decode_init_static(void)
  247. {
  248. int i, j, k;
  249. int offset;
  250. /* scale factors table for layer 1/2 */
  251. for (i = 0; i < 64; i++) {
  252. int shift, mod;
  253. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  254. shift = i / 3;
  255. mod = i % 3;
  256. scale_factor_modshift[i] = mod | (shift << 2);
  257. }
  258. /* scale factor multiply for layer 1 */
  259. for (i = 0; i < 15; i++) {
  260. int n, norm;
  261. n = i + 2;
  262. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  263. scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
  264. scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
  265. scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
  266. av_dlog(NULL, "%d: norm=%x s=%x %x %x\n", i, norm,
  267. scale_factor_mult[i][0],
  268. scale_factor_mult[i][1],
  269. scale_factor_mult[i][2]);
  270. }
  271. RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
  272. /* huffman decode tables */
  273. offset = 0;
  274. for (i = 1; i < 16; i++) {
  275. const HuffTable *h = &mpa_huff_tables[i];
  276. int xsize, x, y;
  277. uint8_t tmp_bits [512] = { 0 };
  278. uint16_t tmp_codes[512] = { 0 };
  279. xsize = h->xsize;
  280. j = 0;
  281. for (x = 0; x < xsize; x++) {
  282. for (y = 0; y < xsize; y++) {
  283. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  284. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  285. }
  286. }
  287. /* XXX: fail test */
  288. huff_vlc[i].table = huff_vlc_tables+offset;
  289. huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
  290. init_vlc(&huff_vlc[i], 7, 512,
  291. tmp_bits, 1, 1, tmp_codes, 2, 2,
  292. INIT_VLC_USE_NEW_STATIC);
  293. offset += huff_vlc_tables_sizes[i];
  294. }
  295. assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
  296. offset = 0;
  297. for (i = 0; i < 2; i++) {
  298. huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
  299. huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
  300. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  301. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
  302. INIT_VLC_USE_NEW_STATIC);
  303. offset += huff_quad_vlc_tables_sizes[i];
  304. }
  305. assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
  306. for (i = 0; i < 9; i++) {
  307. k = 0;
  308. for (j = 0; j < 22; j++) {
  309. band_index_long[i][j] = k;
  310. k += band_size_long[i][j];
  311. }
  312. band_index_long[i][22] = k;
  313. }
  314. /* compute n ^ (4/3) and store it in mantissa/exp format */
  315. mpegaudio_tableinit();
  316. for (i = 0; i < 4; i++) {
  317. if (ff_mpa_quant_bits[i] < 0) {
  318. for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) {
  319. int val1, val2, val3, steps;
  320. int val = j;
  321. steps = ff_mpa_quant_steps[i];
  322. val1 = val % steps;
  323. val /= steps;
  324. val2 = val % steps;
  325. val3 = val / steps;
  326. division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
  327. }
  328. }
  329. }
  330. for (i = 0; i < 7; i++) {
  331. float f;
  332. INTFLOAT v;
  333. if (i != 6) {
  334. f = tan((double)i * M_PI / 12.0);
  335. v = FIXR(f / (1.0 + f));
  336. } else {
  337. v = FIXR(1.0);
  338. }
  339. is_table[0][ i] = v;
  340. is_table[1][6 - i] = v;
  341. }
  342. /* invalid values */
  343. for (i = 7; i < 16; i++)
  344. is_table[0][i] = is_table[1][i] = 0.0;
  345. for (i = 0; i < 16; i++) {
  346. double f;
  347. int e, k;
  348. for (j = 0; j < 2; j++) {
  349. e = -(j + 1) * ((i + 1) >> 1);
  350. f = pow(2.0, e / 4.0);
  351. k = i & 1;
  352. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  353. is_table_lsf[j][k ][i] = FIXR(1.0);
  354. av_dlog(NULL, "is_table_lsf %d %d: %f %f\n",
  355. i, j, (float) is_table_lsf[j][0][i],
  356. (float) is_table_lsf[j][1][i]);
  357. }
  358. }
  359. for (i = 0; i < 8; i++) {
  360. float ci, cs, ca;
  361. ci = ci_table[i];
  362. cs = 1.0 / sqrt(1.0 + ci * ci);
  363. ca = cs * ci;
  364. #if !CONFIG_FLOAT
  365. csa_table[i][0] = FIXHR(cs/4);
  366. csa_table[i][1] = FIXHR(ca/4);
  367. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  368. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  369. #else
  370. csa_table[i][0] = cs;
  371. csa_table[i][1] = ca;
  372. csa_table[i][2] = ca + cs;
  373. csa_table[i][3] = ca - cs;
  374. #endif
  375. }
  376. }
  377. static av_cold int decode_init(AVCodecContext * avctx)
  378. {
  379. static int initialized_tables = 0;
  380. MPADecodeContext *s = avctx->priv_data;
  381. if (!initialized_tables) {
  382. decode_init_static();
  383. initialized_tables = 1;
  384. }
  385. s->avctx = avctx;
  386. avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  387. ff_mpadsp_init(&s->mpadsp);
  388. if (avctx->request_sample_fmt == OUT_FMT &&
  389. avctx->codec_id != AV_CODEC_ID_MP3ON4)
  390. avctx->sample_fmt = OUT_FMT;
  391. else
  392. avctx->sample_fmt = OUT_FMT_P;
  393. s->err_recognition = avctx->err_recognition;
  394. if (avctx->codec_id == AV_CODEC_ID_MP3ADU)
  395. s->adu_mode = 1;
  396. return 0;
  397. }
  398. #define C3 FIXHR(0.86602540378443864676/2)
  399. #define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
  400. #define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
  401. #define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
  402. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  403. cases. */
  404. static void imdct12(INTFLOAT *out, INTFLOAT *in)
  405. {
  406. INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
  407. in0 = in[0*3];
  408. in1 = in[1*3] + in[0*3];
  409. in2 = in[2*3] + in[1*3];
  410. in3 = in[3*3] + in[2*3];
  411. in4 = in[4*3] + in[3*3];
  412. in5 = in[5*3] + in[4*3];
  413. in5 += in3;
  414. in3 += in1;
  415. in2 = MULH3(in2, C3, 2);
  416. in3 = MULH3(in3, C3, 4);
  417. t1 = in0 - in4;
  418. t2 = MULH3(in1 - in5, C4, 2);
  419. out[ 7] =
  420. out[10] = t1 + t2;
  421. out[ 1] =
  422. out[ 4] = t1 - t2;
  423. in0 += SHR(in4, 1);
  424. in4 = in0 + in2;
  425. in5 += 2*in1;
  426. in1 = MULH3(in5 + in3, C5, 1);
  427. out[ 8] =
  428. out[ 9] = in4 + in1;
  429. out[ 2] =
  430. out[ 3] = in4 - in1;
  431. in0 -= in2;
  432. in5 = MULH3(in5 - in3, C6, 2);
  433. out[ 0] =
  434. out[ 5] = in0 - in5;
  435. out[ 6] =
  436. out[11] = in0 + in5;
  437. }
  438. /* return the number of decoded frames */
  439. static int mp_decode_layer1(MPADecodeContext *s)
  440. {
  441. int bound, i, v, n, ch, j, mant;
  442. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  443. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  444. if (s->mode == MPA_JSTEREO)
  445. bound = (s->mode_ext + 1) * 4;
  446. else
  447. bound = SBLIMIT;
  448. /* allocation bits */
  449. for (i = 0; i < bound; i++) {
  450. for (ch = 0; ch < s->nb_channels; ch++) {
  451. allocation[ch][i] = get_bits(&s->gb, 4);
  452. }
  453. }
  454. for (i = bound; i < SBLIMIT; i++)
  455. allocation[0][i] = get_bits(&s->gb, 4);
  456. /* scale factors */
  457. for (i = 0; i < bound; i++) {
  458. for (ch = 0; ch < s->nb_channels; ch++) {
  459. if (allocation[ch][i])
  460. scale_factors[ch][i] = get_bits(&s->gb, 6);
  461. }
  462. }
  463. for (i = bound; i < SBLIMIT; i++) {
  464. if (allocation[0][i]) {
  465. scale_factors[0][i] = get_bits(&s->gb, 6);
  466. scale_factors[1][i] = get_bits(&s->gb, 6);
  467. }
  468. }
  469. /* compute samples */
  470. for (j = 0; j < 12; j++) {
  471. for (i = 0; i < bound; i++) {
  472. for (ch = 0; ch < s->nb_channels; ch++) {
  473. n = allocation[ch][i];
  474. if (n) {
  475. mant = get_bits(&s->gb, n + 1);
  476. v = l1_unscale(n, mant, scale_factors[ch][i]);
  477. } else {
  478. v = 0;
  479. }
  480. s->sb_samples[ch][j][i] = v;
  481. }
  482. }
  483. for (i = bound; i < SBLIMIT; i++) {
  484. n = allocation[0][i];
  485. if (n) {
  486. mant = get_bits(&s->gb, n + 1);
  487. v = l1_unscale(n, mant, scale_factors[0][i]);
  488. s->sb_samples[0][j][i] = v;
  489. v = l1_unscale(n, mant, scale_factors[1][i]);
  490. s->sb_samples[1][j][i] = v;
  491. } else {
  492. s->sb_samples[0][j][i] = 0;
  493. s->sb_samples[1][j][i] = 0;
  494. }
  495. }
  496. }
  497. return 12;
  498. }
  499. static int mp_decode_layer2(MPADecodeContext *s)
  500. {
  501. int sblimit; /* number of used subbands */
  502. const unsigned char *alloc_table;
  503. int table, bit_alloc_bits, i, j, ch, bound, v;
  504. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  505. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  506. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  507. int scale, qindex, bits, steps, k, l, m, b;
  508. /* select decoding table */
  509. table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
  510. s->sample_rate, s->lsf);
  511. sblimit = ff_mpa_sblimit_table[table];
  512. alloc_table = ff_mpa_alloc_tables[table];
  513. if (s->mode == MPA_JSTEREO)
  514. bound = (s->mode_ext + 1) * 4;
  515. else
  516. bound = sblimit;
  517. av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  518. /* sanity check */
  519. if (bound > sblimit)
  520. bound = sblimit;
  521. /* parse bit allocation */
  522. j = 0;
  523. for (i = 0; i < bound; i++) {
  524. bit_alloc_bits = alloc_table[j];
  525. for (ch = 0; ch < s->nb_channels; ch++)
  526. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  527. j += 1 << bit_alloc_bits;
  528. }
  529. for (i = bound; i < sblimit; i++) {
  530. bit_alloc_bits = alloc_table[j];
  531. v = get_bits(&s->gb, bit_alloc_bits);
  532. bit_alloc[0][i] = v;
  533. bit_alloc[1][i] = v;
  534. j += 1 << bit_alloc_bits;
  535. }
  536. /* scale codes */
  537. for (i = 0; i < sblimit; i++) {
  538. for (ch = 0; ch < s->nb_channels; ch++) {
  539. if (bit_alloc[ch][i])
  540. scale_code[ch][i] = get_bits(&s->gb, 2);
  541. }
  542. }
  543. /* scale factors */
  544. for (i = 0; i < sblimit; i++) {
  545. for (ch = 0; ch < s->nb_channels; ch++) {
  546. if (bit_alloc[ch][i]) {
  547. sf = scale_factors[ch][i];
  548. switch (scale_code[ch][i]) {
  549. default:
  550. case 0:
  551. sf[0] = get_bits(&s->gb, 6);
  552. sf[1] = get_bits(&s->gb, 6);
  553. sf[2] = get_bits(&s->gb, 6);
  554. break;
  555. case 2:
  556. sf[0] = get_bits(&s->gb, 6);
  557. sf[1] = sf[0];
  558. sf[2] = sf[0];
  559. break;
  560. case 1:
  561. sf[0] = get_bits(&s->gb, 6);
  562. sf[2] = get_bits(&s->gb, 6);
  563. sf[1] = sf[0];
  564. break;
  565. case 3:
  566. sf[0] = get_bits(&s->gb, 6);
  567. sf[2] = get_bits(&s->gb, 6);
  568. sf[1] = sf[2];
  569. break;
  570. }
  571. }
  572. }
  573. }
  574. /* samples */
  575. for (k = 0; k < 3; k++) {
  576. for (l = 0; l < 12; l += 3) {
  577. j = 0;
  578. for (i = 0; i < bound; i++) {
  579. bit_alloc_bits = alloc_table[j];
  580. for (ch = 0; ch < s->nb_channels; ch++) {
  581. b = bit_alloc[ch][i];
  582. if (b) {
  583. scale = scale_factors[ch][i][k];
  584. qindex = alloc_table[j+b];
  585. bits = ff_mpa_quant_bits[qindex];
  586. if (bits < 0) {
  587. int v2;
  588. /* 3 values at the same time */
  589. v = get_bits(&s->gb, -bits);
  590. v2 = division_tabs[qindex][v];
  591. steps = ff_mpa_quant_steps[qindex];
  592. s->sb_samples[ch][k * 12 + l + 0][i] =
  593. l2_unscale_group(steps, v2 & 15, scale);
  594. s->sb_samples[ch][k * 12 + l + 1][i] =
  595. l2_unscale_group(steps, (v2 >> 4) & 15, scale);
  596. s->sb_samples[ch][k * 12 + l + 2][i] =
  597. l2_unscale_group(steps, v2 >> 8 , scale);
  598. } else {
  599. for (m = 0; m < 3; m++) {
  600. v = get_bits(&s->gb, bits);
  601. v = l1_unscale(bits - 1, v, scale);
  602. s->sb_samples[ch][k * 12 + l + m][i] = v;
  603. }
  604. }
  605. } else {
  606. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  607. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  608. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  609. }
  610. }
  611. /* next subband in alloc table */
  612. j += 1 << bit_alloc_bits;
  613. }
  614. /* XXX: find a way to avoid this duplication of code */
  615. for (i = bound; i < sblimit; i++) {
  616. bit_alloc_bits = alloc_table[j];
  617. b = bit_alloc[0][i];
  618. if (b) {
  619. int mant, scale0, scale1;
  620. scale0 = scale_factors[0][i][k];
  621. scale1 = scale_factors[1][i][k];
  622. qindex = alloc_table[j+b];
  623. bits = ff_mpa_quant_bits[qindex];
  624. if (bits < 0) {
  625. /* 3 values at the same time */
  626. v = get_bits(&s->gb, -bits);
  627. steps = ff_mpa_quant_steps[qindex];
  628. mant = v % steps;
  629. v = v / steps;
  630. s->sb_samples[0][k * 12 + l + 0][i] =
  631. l2_unscale_group(steps, mant, scale0);
  632. s->sb_samples[1][k * 12 + l + 0][i] =
  633. l2_unscale_group(steps, mant, scale1);
  634. mant = v % steps;
  635. v = v / steps;
  636. s->sb_samples[0][k * 12 + l + 1][i] =
  637. l2_unscale_group(steps, mant, scale0);
  638. s->sb_samples[1][k * 12 + l + 1][i] =
  639. l2_unscale_group(steps, mant, scale1);
  640. s->sb_samples[0][k * 12 + l + 2][i] =
  641. l2_unscale_group(steps, v, scale0);
  642. s->sb_samples[1][k * 12 + l + 2][i] =
  643. l2_unscale_group(steps, v, scale1);
  644. } else {
  645. for (m = 0; m < 3; m++) {
  646. mant = get_bits(&s->gb, bits);
  647. s->sb_samples[0][k * 12 + l + m][i] =
  648. l1_unscale(bits - 1, mant, scale0);
  649. s->sb_samples[1][k * 12 + l + m][i] =
  650. l1_unscale(bits - 1, mant, scale1);
  651. }
  652. }
  653. } else {
  654. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  655. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  656. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  657. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  658. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  659. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  660. }
  661. /* next subband in alloc table */
  662. j += 1 << bit_alloc_bits;
  663. }
  664. /* fill remaining samples to zero */
  665. for (i = sblimit; i < SBLIMIT; i++) {
  666. for (ch = 0; ch < s->nb_channels; ch++) {
  667. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  668. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  669. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  670. }
  671. }
  672. }
  673. }
  674. return 3 * 12;
  675. }
  676. #define SPLIT(dst,sf,n) \
  677. if (n == 3) { \
  678. int m = (sf * 171) >> 9; \
  679. dst = sf - 3 * m; \
  680. sf = m; \
  681. } else if (n == 4) { \
  682. dst = sf & 3; \
  683. sf >>= 2; \
  684. } else if (n == 5) { \
  685. int m = (sf * 205) >> 10; \
  686. dst = sf - 5 * m; \
  687. sf = m; \
  688. } else if (n == 6) { \
  689. int m = (sf * 171) >> 10; \
  690. dst = sf - 6 * m; \
  691. sf = m; \
  692. } else { \
  693. dst = 0; \
  694. }
  695. static av_always_inline void lsf_sf_expand(int *slen, int sf, int n1, int n2,
  696. int n3)
  697. {
  698. SPLIT(slen[3], sf, n3)
  699. SPLIT(slen[2], sf, n2)
  700. SPLIT(slen[1], sf, n1)
  701. slen[0] = sf;
  702. }
  703. static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g,
  704. int16_t *exponents)
  705. {
  706. const uint8_t *bstab, *pretab;
  707. int len, i, j, k, l, v0, shift, gain, gains[3];
  708. int16_t *exp_ptr;
  709. exp_ptr = exponents;
  710. gain = g->global_gain - 210;
  711. shift = g->scalefac_scale + 1;
  712. bstab = band_size_long[s->sample_rate_index];
  713. pretab = mpa_pretab[g->preflag];
  714. for (i = 0; i < g->long_end; i++) {
  715. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  716. len = bstab[i];
  717. for (j = len; j > 0; j--)
  718. *exp_ptr++ = v0;
  719. }
  720. if (g->short_start < 13) {
  721. bstab = band_size_short[s->sample_rate_index];
  722. gains[0] = gain - (g->subblock_gain[0] << 3);
  723. gains[1] = gain - (g->subblock_gain[1] << 3);
  724. gains[2] = gain - (g->subblock_gain[2] << 3);
  725. k = g->long_end;
  726. for (i = g->short_start; i < 13; i++) {
  727. len = bstab[i];
  728. for (l = 0; l < 3; l++) {
  729. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  730. for (j = len; j > 0; j--)
  731. *exp_ptr++ = v0;
  732. }
  733. }
  734. }
  735. }
  736. /* handle n = 0 too */
  737. static inline int get_bitsz(GetBitContext *s, int n)
  738. {
  739. return n ? get_bits(s, n) : 0;
  740. }
  741. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos,
  742. int *end_pos2)
  743. {
  744. if (s->in_gb.buffer && *pos >= s->gb.size_in_bits) {
  745. s->gb = s->in_gb;
  746. s->in_gb.buffer = NULL;
  747. assert((get_bits_count(&s->gb) & 7) == 0);
  748. skip_bits_long(&s->gb, *pos - *end_pos);
  749. *end_pos2 =
  750. *end_pos = *end_pos2 + get_bits_count(&s->gb) - *pos;
  751. *pos = get_bits_count(&s->gb);
  752. }
  753. }
  754. /* Following is a optimized code for
  755. INTFLOAT v = *src
  756. if(get_bits1(&s->gb))
  757. v = -v;
  758. *dst = v;
  759. */
  760. #if CONFIG_FLOAT
  761. #define READ_FLIP_SIGN(dst,src) \
  762. v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31); \
  763. AV_WN32A(dst, v);
  764. #else
  765. #define READ_FLIP_SIGN(dst,src) \
  766. v = -get_bits1(&s->gb); \
  767. *(dst) = (*(src) ^ v) - v;
  768. #endif
  769. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  770. int16_t *exponents, int end_pos2)
  771. {
  772. int s_index;
  773. int i;
  774. int last_pos, bits_left;
  775. VLC *vlc;
  776. int end_pos = FFMIN(end_pos2, s->gb.size_in_bits);
  777. /* low frequencies (called big values) */
  778. s_index = 0;
  779. for (i = 0; i < 3; i++) {
  780. int j, k, l, linbits;
  781. j = g->region_size[i];
  782. if (j == 0)
  783. continue;
  784. /* select vlc table */
  785. k = g->table_select[i];
  786. l = mpa_huff_data[k][0];
  787. linbits = mpa_huff_data[k][1];
  788. vlc = &huff_vlc[l];
  789. if (!l) {
  790. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * 2 * j);
  791. s_index += 2 * j;
  792. continue;
  793. }
  794. /* read huffcode and compute each couple */
  795. for (; j > 0; j--) {
  796. int exponent, x, y;
  797. int v;
  798. int pos = get_bits_count(&s->gb);
  799. if (pos >= end_pos){
  800. switch_buffer(s, &pos, &end_pos, &end_pos2);
  801. if (pos >= end_pos)
  802. break;
  803. }
  804. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  805. if (!y) {
  806. g->sb_hybrid[s_index ] =
  807. g->sb_hybrid[s_index+1] = 0;
  808. s_index += 2;
  809. continue;
  810. }
  811. exponent= exponents[s_index];
  812. av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  813. i, g->region_size[i] - j, x, y, exponent);
  814. if (y & 16) {
  815. x = y >> 5;
  816. y = y & 0x0f;
  817. if (x < 15) {
  818. READ_FLIP_SIGN(g->sb_hybrid + s_index, RENAME(expval_table)[exponent] + x)
  819. } else {
  820. x += get_bitsz(&s->gb, linbits);
  821. v = l3_unscale(x, exponent);
  822. if (get_bits1(&s->gb))
  823. v = -v;
  824. g->sb_hybrid[s_index] = v;
  825. }
  826. if (y < 15) {
  827. READ_FLIP_SIGN(g->sb_hybrid + s_index + 1, RENAME(expval_table)[exponent] + y)
  828. } else {
  829. y += get_bitsz(&s->gb, linbits);
  830. v = l3_unscale(y, exponent);
  831. if (get_bits1(&s->gb))
  832. v = -v;
  833. g->sb_hybrid[s_index+1] = v;
  834. }
  835. } else {
  836. x = y >> 5;
  837. y = y & 0x0f;
  838. x += y;
  839. if (x < 15) {
  840. READ_FLIP_SIGN(g->sb_hybrid + s_index + !!y, RENAME(expval_table)[exponent] + x)
  841. } else {
  842. x += get_bitsz(&s->gb, linbits);
  843. v = l3_unscale(x, exponent);
  844. if (get_bits1(&s->gb))
  845. v = -v;
  846. g->sb_hybrid[s_index+!!y] = v;
  847. }
  848. g->sb_hybrid[s_index + !y] = 0;
  849. }
  850. s_index += 2;
  851. }
  852. }
  853. /* high frequencies */
  854. vlc = &huff_quad_vlc[g->count1table_select];
  855. last_pos = 0;
  856. while (s_index <= 572) {
  857. int pos, code;
  858. pos = get_bits_count(&s->gb);
  859. if (pos >= end_pos) {
  860. if (pos > end_pos2 && last_pos) {
  861. /* some encoders generate an incorrect size for this
  862. part. We must go back into the data */
  863. s_index -= 4;
  864. skip_bits_long(&s->gb, last_pos - pos);
  865. av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  866. if(s->err_recognition & AV_EF_BITSTREAM)
  867. s_index=0;
  868. break;
  869. }
  870. switch_buffer(s, &pos, &end_pos, &end_pos2);
  871. if (pos >= end_pos)
  872. break;
  873. }
  874. last_pos = pos;
  875. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  876. av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  877. g->sb_hybrid[s_index+0] =
  878. g->sb_hybrid[s_index+1] =
  879. g->sb_hybrid[s_index+2] =
  880. g->sb_hybrid[s_index+3] = 0;
  881. while (code) {
  882. static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
  883. int v;
  884. int pos = s_index + idxtab[code];
  885. code ^= 8 >> idxtab[code];
  886. READ_FLIP_SIGN(g->sb_hybrid + pos, RENAME(exp_table)+exponents[pos])
  887. }
  888. s_index += 4;
  889. }
  890. /* skip extension bits */
  891. bits_left = end_pos2 - get_bits_count(&s->gb);
  892. if (bits_left < 0 && (s->err_recognition & AV_EF_BUFFER)) {
  893. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  894. s_index=0;
  895. } else if (bits_left > 0 && (s->err_recognition & AV_EF_BUFFER)) {
  896. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  897. s_index = 0;
  898. }
  899. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * (576 - s_index));
  900. skip_bits_long(&s->gb, bits_left);
  901. i = get_bits_count(&s->gb);
  902. switch_buffer(s, &i, &end_pos, &end_pos2);
  903. return 0;
  904. }
  905. /* Reorder short blocks from bitstream order to interleaved order. It
  906. would be faster to do it in parsing, but the code would be far more
  907. complicated */
  908. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  909. {
  910. int i, j, len;
  911. INTFLOAT *ptr, *dst, *ptr1;
  912. INTFLOAT tmp[576];
  913. if (g->block_type != 2)
  914. return;
  915. if (g->switch_point) {
  916. if (s->sample_rate_index != 8)
  917. ptr = g->sb_hybrid + 36;
  918. else
  919. ptr = g->sb_hybrid + 72;
  920. } else {
  921. ptr = g->sb_hybrid;
  922. }
  923. for (i = g->short_start; i < 13; i++) {
  924. len = band_size_short[s->sample_rate_index][i];
  925. ptr1 = ptr;
  926. dst = tmp;
  927. for (j = len; j > 0; j--) {
  928. *dst++ = ptr[0*len];
  929. *dst++ = ptr[1*len];
  930. *dst++ = ptr[2*len];
  931. ptr++;
  932. }
  933. ptr += 2 * len;
  934. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  935. }
  936. }
  937. #define ISQRT2 FIXR(0.70710678118654752440)
  938. static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1)
  939. {
  940. int i, j, k, l;
  941. int sf_max, sf, len, non_zero_found;
  942. INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
  943. int non_zero_found_short[3];
  944. /* intensity stereo */
  945. if (s->mode_ext & MODE_EXT_I_STEREO) {
  946. if (!s->lsf) {
  947. is_tab = is_table;
  948. sf_max = 7;
  949. } else {
  950. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  951. sf_max = 16;
  952. }
  953. tab0 = g0->sb_hybrid + 576;
  954. tab1 = g1->sb_hybrid + 576;
  955. non_zero_found_short[0] = 0;
  956. non_zero_found_short[1] = 0;
  957. non_zero_found_short[2] = 0;
  958. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  959. for (i = 12; i >= g1->short_start; i--) {
  960. /* for last band, use previous scale factor */
  961. if (i != 11)
  962. k -= 3;
  963. len = band_size_short[s->sample_rate_index][i];
  964. for (l = 2; l >= 0; l--) {
  965. tab0 -= len;
  966. tab1 -= len;
  967. if (!non_zero_found_short[l]) {
  968. /* test if non zero band. if so, stop doing i-stereo */
  969. for (j = 0; j < len; j++) {
  970. if (tab1[j] != 0) {
  971. non_zero_found_short[l] = 1;
  972. goto found1;
  973. }
  974. }
  975. sf = g1->scale_factors[k + l];
  976. if (sf >= sf_max)
  977. goto found1;
  978. v1 = is_tab[0][sf];
  979. v2 = is_tab[1][sf];
  980. for (j = 0; j < len; j++) {
  981. tmp0 = tab0[j];
  982. tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
  983. tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
  984. }
  985. } else {
  986. found1:
  987. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  988. /* lower part of the spectrum : do ms stereo
  989. if enabled */
  990. for (j = 0; j < len; j++) {
  991. tmp0 = tab0[j];
  992. tmp1 = tab1[j];
  993. tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  994. tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  995. }
  996. }
  997. }
  998. }
  999. }
  1000. non_zero_found = non_zero_found_short[0] |
  1001. non_zero_found_short[1] |
  1002. non_zero_found_short[2];
  1003. for (i = g1->long_end - 1;i >= 0;i--) {
  1004. len = band_size_long[s->sample_rate_index][i];
  1005. tab0 -= len;
  1006. tab1 -= len;
  1007. /* test if non zero band. if so, stop doing i-stereo */
  1008. if (!non_zero_found) {
  1009. for (j = 0; j < len; j++) {
  1010. if (tab1[j] != 0) {
  1011. non_zero_found = 1;
  1012. goto found2;
  1013. }
  1014. }
  1015. /* for last band, use previous scale factor */
  1016. k = (i == 21) ? 20 : i;
  1017. sf = g1->scale_factors[k];
  1018. if (sf >= sf_max)
  1019. goto found2;
  1020. v1 = is_tab[0][sf];
  1021. v2 = is_tab[1][sf];
  1022. for (j = 0; j < len; j++) {
  1023. tmp0 = tab0[j];
  1024. tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
  1025. tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
  1026. }
  1027. } else {
  1028. found2:
  1029. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1030. /* lower part of the spectrum : do ms stereo
  1031. if enabled */
  1032. for (j = 0; j < len; j++) {
  1033. tmp0 = tab0[j];
  1034. tmp1 = tab1[j];
  1035. tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1036. tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1037. }
  1038. }
  1039. }
  1040. }
  1041. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1042. /* ms stereo ONLY */
  1043. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1044. global gain */
  1045. #if CONFIG_FLOAT
  1046. s->fdsp.butterflies_float(g0->sb_hybrid, g1->sb_hybrid, 576);
  1047. #else
  1048. tab0 = g0->sb_hybrid;
  1049. tab1 = g1->sb_hybrid;
  1050. for (i = 0; i < 576; i++) {
  1051. tmp0 = tab0[i];
  1052. tmp1 = tab1[i];
  1053. tab0[i] = tmp0 + tmp1;
  1054. tab1[i] = tmp0 - tmp1;
  1055. }
  1056. #endif
  1057. }
  1058. }
  1059. #if CONFIG_FLOAT
  1060. #define AA(j) do { \
  1061. float tmp0 = ptr[-1-j]; \
  1062. float tmp1 = ptr[ j]; \
  1063. ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1]; \
  1064. ptr[ j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0]; \
  1065. } while (0)
  1066. #else
  1067. #define AA(j) do { \
  1068. int tmp0 = ptr[-1-j]; \
  1069. int tmp1 = ptr[ j]; \
  1070. int tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]); \
  1071. ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2])); \
  1072. ptr[ j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3])); \
  1073. } while (0)
  1074. #endif
  1075. static void compute_antialias(MPADecodeContext *s, GranuleDef *g)
  1076. {
  1077. INTFLOAT *ptr;
  1078. int n, i;
  1079. /* we antialias only "long" bands */
  1080. if (g->block_type == 2) {
  1081. if (!g->switch_point)
  1082. return;
  1083. /* XXX: check this for 8000Hz case */
  1084. n = 1;
  1085. } else {
  1086. n = SBLIMIT - 1;
  1087. }
  1088. ptr = g->sb_hybrid + 18;
  1089. for (i = n; i > 0; i--) {
  1090. AA(0);
  1091. AA(1);
  1092. AA(2);
  1093. AA(3);
  1094. AA(4);
  1095. AA(5);
  1096. AA(6);
  1097. AA(7);
  1098. ptr += 18;
  1099. }
  1100. }
  1101. static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
  1102. INTFLOAT *sb_samples, INTFLOAT *mdct_buf)
  1103. {
  1104. INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
  1105. INTFLOAT out2[12];
  1106. int i, j, mdct_long_end, sblimit;
  1107. /* find last non zero block */
  1108. ptr = g->sb_hybrid + 576;
  1109. ptr1 = g->sb_hybrid + 2 * 18;
  1110. while (ptr >= ptr1) {
  1111. int32_t *p;
  1112. ptr -= 6;
  1113. p = (int32_t*)ptr;
  1114. if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
  1115. break;
  1116. }
  1117. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1118. if (g->block_type == 2) {
  1119. /* XXX: check for 8000 Hz */
  1120. if (g->switch_point)
  1121. mdct_long_end = 2;
  1122. else
  1123. mdct_long_end = 0;
  1124. } else {
  1125. mdct_long_end = sblimit;
  1126. }
  1127. s->mpadsp.RENAME(imdct36_blocks)(sb_samples, mdct_buf, g->sb_hybrid,
  1128. mdct_long_end, g->switch_point,
  1129. g->block_type);
  1130. buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3);
  1131. ptr = g->sb_hybrid + 18 * mdct_long_end;
  1132. for (j = mdct_long_end; j < sblimit; j++) {
  1133. /* select frequency inversion */
  1134. win = RENAME(ff_mdct_win)[2 + (4 & -(j & 1))];
  1135. out_ptr = sb_samples + j;
  1136. for (i = 0; i < 6; i++) {
  1137. *out_ptr = buf[4*i];
  1138. out_ptr += SBLIMIT;
  1139. }
  1140. imdct12(out2, ptr + 0);
  1141. for (i = 0; i < 6; i++) {
  1142. *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*1)];
  1143. buf[4*(i + 6*2)] = MULH3(out2[i + 6], win[i + 6], 1);
  1144. out_ptr += SBLIMIT;
  1145. }
  1146. imdct12(out2, ptr + 1);
  1147. for (i = 0; i < 6; i++) {
  1148. *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*2)];
  1149. buf[4*(i + 6*0)] = MULH3(out2[i + 6], win[i + 6], 1);
  1150. out_ptr += SBLIMIT;
  1151. }
  1152. imdct12(out2, ptr + 2);
  1153. for (i = 0; i < 6; i++) {
  1154. buf[4*(i + 6*0)] = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*0)];
  1155. buf[4*(i + 6*1)] = MULH3(out2[i + 6], win[i + 6], 1);
  1156. buf[4*(i + 6*2)] = 0;
  1157. }
  1158. ptr += 18;
  1159. buf += (j&3) != 3 ? 1 : (4*18-3);
  1160. }
  1161. /* zero bands */
  1162. for (j = sblimit; j < SBLIMIT; j++) {
  1163. /* overlap */
  1164. out_ptr = sb_samples + j;
  1165. for (i = 0; i < 18; i++) {
  1166. *out_ptr = buf[4*i];
  1167. buf[4*i] = 0;
  1168. out_ptr += SBLIMIT;
  1169. }
  1170. buf += (j&3) != 3 ? 1 : (4*18-3);
  1171. }
  1172. }
  1173. /* main layer3 decoding function */
  1174. static int mp_decode_layer3(MPADecodeContext *s)
  1175. {
  1176. int nb_granules, main_data_begin;
  1177. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1178. GranuleDef *g;
  1179. int16_t exponents[576]; //FIXME try INTFLOAT
  1180. /* read side info */
  1181. if (s->lsf) {
  1182. main_data_begin = get_bits(&s->gb, 8);
  1183. skip_bits(&s->gb, s->nb_channels);
  1184. nb_granules = 1;
  1185. } else {
  1186. main_data_begin = get_bits(&s->gb, 9);
  1187. if (s->nb_channels == 2)
  1188. skip_bits(&s->gb, 3);
  1189. else
  1190. skip_bits(&s->gb, 5);
  1191. nb_granules = 2;
  1192. for (ch = 0; ch < s->nb_channels; ch++) {
  1193. s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
  1194. s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1195. }
  1196. }
  1197. for (gr = 0; gr < nb_granules; gr++) {
  1198. for (ch = 0; ch < s->nb_channels; ch++) {
  1199. av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1200. g = &s->granules[ch][gr];
  1201. g->part2_3_length = get_bits(&s->gb, 12);
  1202. g->big_values = get_bits(&s->gb, 9);
  1203. if (g->big_values > 288) {
  1204. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1205. return AVERROR_INVALIDDATA;
  1206. }
  1207. g->global_gain = get_bits(&s->gb, 8);
  1208. /* if MS stereo only is selected, we precompute the
  1209. 1/sqrt(2) renormalization factor */
  1210. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1211. MODE_EXT_MS_STEREO)
  1212. g->global_gain -= 2;
  1213. if (s->lsf)
  1214. g->scalefac_compress = get_bits(&s->gb, 9);
  1215. else
  1216. g->scalefac_compress = get_bits(&s->gb, 4);
  1217. blocksplit_flag = get_bits1(&s->gb);
  1218. if (blocksplit_flag) {
  1219. g->block_type = get_bits(&s->gb, 2);
  1220. if (g->block_type == 0) {
  1221. av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
  1222. return AVERROR_INVALIDDATA;
  1223. }
  1224. g->switch_point = get_bits1(&s->gb);
  1225. for (i = 0; i < 2; i++)
  1226. g->table_select[i] = get_bits(&s->gb, 5);
  1227. for (i = 0; i < 3; i++)
  1228. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1229. ff_init_short_region(s, g);
  1230. } else {
  1231. int region_address1, region_address2;
  1232. g->block_type = 0;
  1233. g->switch_point = 0;
  1234. for (i = 0; i < 3; i++)
  1235. g->table_select[i] = get_bits(&s->gb, 5);
  1236. /* compute huffman coded region sizes */
  1237. region_address1 = get_bits(&s->gb, 4);
  1238. region_address2 = get_bits(&s->gb, 3);
  1239. av_dlog(s->avctx, "region1=%d region2=%d\n",
  1240. region_address1, region_address2);
  1241. ff_init_long_region(s, g, region_address1, region_address2);
  1242. }
  1243. ff_region_offset2size(g);
  1244. ff_compute_band_indexes(s, g);
  1245. g->preflag = 0;
  1246. if (!s->lsf)
  1247. g->preflag = get_bits1(&s->gb);
  1248. g->scalefac_scale = get_bits1(&s->gb);
  1249. g->count1table_select = get_bits1(&s->gb);
  1250. av_dlog(s->avctx, "block_type=%d switch_point=%d\n",
  1251. g->block_type, g->switch_point);
  1252. }
  1253. }
  1254. if (!s->adu_mode) {
  1255. int skip;
  1256. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1257. int extrasize = av_clip(get_bits_left(&s->gb) >> 3, 0,
  1258. FFMAX(0, LAST_BUF_SIZE - s->last_buf_size));
  1259. assert((get_bits_count(&s->gb) & 7) == 0);
  1260. /* now we get bits from the main_data_begin offset */
  1261. av_dlog(s->avctx, "seekback:%d, lastbuf:%d\n",
  1262. main_data_begin, s->last_buf_size);
  1263. memcpy(s->last_buf + s->last_buf_size, ptr, extrasize);
  1264. s->in_gb = s->gb;
  1265. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  1266. #if !UNCHECKED_BITSTREAM_READER
  1267. s->gb.size_in_bits_plus8 += extrasize * 8;
  1268. #endif
  1269. s->last_buf_size <<= 3;
  1270. for (gr = 0; gr < nb_granules && (s->last_buf_size >> 3) < main_data_begin; gr++) {
  1271. for (ch = 0; ch < s->nb_channels; ch++) {
  1272. g = &s->granules[ch][gr];
  1273. s->last_buf_size += g->part2_3_length;
  1274. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  1275. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1276. }
  1277. }
  1278. skip = s->last_buf_size - 8 * main_data_begin;
  1279. if (skip >= s->gb.size_in_bits && s->in_gb.buffer) {
  1280. skip_bits_long(&s->in_gb, skip - s->gb.size_in_bits);
  1281. s->gb = s->in_gb;
  1282. s->in_gb.buffer = NULL;
  1283. } else {
  1284. skip_bits_long(&s->gb, skip);
  1285. }
  1286. } else {
  1287. gr = 0;
  1288. }
  1289. for (; gr < nb_granules; gr++) {
  1290. for (ch = 0; ch < s->nb_channels; ch++) {
  1291. g = &s->granules[ch][gr];
  1292. bits_pos = get_bits_count(&s->gb);
  1293. if (!s->lsf) {
  1294. uint8_t *sc;
  1295. int slen, slen1, slen2;
  1296. /* MPEG1 scale factors */
  1297. slen1 = slen_table[0][g->scalefac_compress];
  1298. slen2 = slen_table[1][g->scalefac_compress];
  1299. av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  1300. if (g->block_type == 2) {
  1301. n = g->switch_point ? 17 : 18;
  1302. j = 0;
  1303. if (slen1) {
  1304. for (i = 0; i < n; i++)
  1305. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  1306. } else {
  1307. for (i = 0; i < n; i++)
  1308. g->scale_factors[j++] = 0;
  1309. }
  1310. if (slen2) {
  1311. for (i = 0; i < 18; i++)
  1312. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  1313. for (i = 0; i < 3; i++)
  1314. g->scale_factors[j++] = 0;
  1315. } else {
  1316. for (i = 0; i < 21; i++)
  1317. g->scale_factors[j++] = 0;
  1318. }
  1319. } else {
  1320. sc = s->granules[ch][0].scale_factors;
  1321. j = 0;
  1322. for (k = 0; k < 4; k++) {
  1323. n = k == 0 ? 6 : 5;
  1324. if ((g->scfsi & (0x8 >> k)) == 0) {
  1325. slen = (k < 2) ? slen1 : slen2;
  1326. if (slen) {
  1327. for (i = 0; i < n; i++)
  1328. g->scale_factors[j++] = get_bits(&s->gb, slen);
  1329. } else {
  1330. for (i = 0; i < n; i++)
  1331. g->scale_factors[j++] = 0;
  1332. }
  1333. } else {
  1334. /* simply copy from last granule */
  1335. for (i = 0; i < n; i++) {
  1336. g->scale_factors[j] = sc[j];
  1337. j++;
  1338. }
  1339. }
  1340. }
  1341. g->scale_factors[j++] = 0;
  1342. }
  1343. } else {
  1344. int tindex, tindex2, slen[4], sl, sf;
  1345. /* LSF scale factors */
  1346. if (g->block_type == 2)
  1347. tindex = g->switch_point ? 2 : 1;
  1348. else
  1349. tindex = 0;
  1350. sf = g->scalefac_compress;
  1351. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1352. /* intensity stereo case */
  1353. sf >>= 1;
  1354. if (sf < 180) {
  1355. lsf_sf_expand(slen, sf, 6, 6, 0);
  1356. tindex2 = 3;
  1357. } else if (sf < 244) {
  1358. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1359. tindex2 = 4;
  1360. } else {
  1361. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1362. tindex2 = 5;
  1363. }
  1364. } else {
  1365. /* normal case */
  1366. if (sf < 400) {
  1367. lsf_sf_expand(slen, sf, 5, 4, 4);
  1368. tindex2 = 0;
  1369. } else if (sf < 500) {
  1370. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  1371. tindex2 = 1;
  1372. } else {
  1373. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  1374. tindex2 = 2;
  1375. g->preflag = 1;
  1376. }
  1377. }
  1378. j = 0;
  1379. for (k = 0; k < 4; k++) {
  1380. n = lsf_nsf_table[tindex2][tindex][k];
  1381. sl = slen[k];
  1382. if (sl) {
  1383. for (i = 0; i < n; i++)
  1384. g->scale_factors[j++] = get_bits(&s->gb, sl);
  1385. } else {
  1386. for (i = 0; i < n; i++)
  1387. g->scale_factors[j++] = 0;
  1388. }
  1389. }
  1390. /* XXX: should compute exact size */
  1391. for (; j < 40; j++)
  1392. g->scale_factors[j] = 0;
  1393. }
  1394. exponents_from_scale_factors(s, g, exponents);
  1395. /* read Huffman coded residue */
  1396. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  1397. } /* ch */
  1398. if (s->mode == MPA_JSTEREO)
  1399. compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
  1400. for (ch = 0; ch < s->nb_channels; ch++) {
  1401. g = &s->granules[ch][gr];
  1402. reorder_block(s, g);
  1403. compute_antialias(s, g);
  1404. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1405. }
  1406. } /* gr */
  1407. if (get_bits_count(&s->gb) < 0)
  1408. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  1409. return nb_granules * 18;
  1410. }
  1411. static int mp_decode_frame(MPADecodeContext *s, OUT_INT **samples,
  1412. const uint8_t *buf, int buf_size)
  1413. {
  1414. int i, nb_frames, ch, ret;
  1415. OUT_INT *samples_ptr;
  1416. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE) * 8);
  1417. /* skip error protection field */
  1418. if (s->error_protection)
  1419. skip_bits(&s->gb, 16);
  1420. switch(s->layer) {
  1421. case 1:
  1422. s->avctx->frame_size = 384;
  1423. nb_frames = mp_decode_layer1(s);
  1424. break;
  1425. case 2:
  1426. s->avctx->frame_size = 1152;
  1427. nb_frames = mp_decode_layer2(s);
  1428. break;
  1429. case 3:
  1430. s->avctx->frame_size = s->lsf ? 576 : 1152;
  1431. default:
  1432. nb_frames = mp_decode_layer3(s);
  1433. if (nb_frames < 0)
  1434. return nb_frames;
  1435. s->last_buf_size=0;
  1436. if (s->in_gb.buffer) {
  1437. align_get_bits(&s->gb);
  1438. i = get_bits_left(&s->gb)>>3;
  1439. if (i >= 0 && i <= BACKSTEP_SIZE) {
  1440. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  1441. s->last_buf_size=i;
  1442. } else
  1443. av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  1444. s->gb = s->in_gb;
  1445. s->in_gb.buffer = NULL;
  1446. }
  1447. align_get_bits(&s->gb);
  1448. assert((get_bits_count(&s->gb) & 7) == 0);
  1449. i = get_bits_left(&s->gb) >> 3;
  1450. if (i < 0 || i > BACKSTEP_SIZE || nb_frames < 0) {
  1451. if (i < 0)
  1452. av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  1453. i = FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  1454. }
  1455. assert(i <= buf_size - HEADER_SIZE && i >= 0);
  1456. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  1457. s->last_buf_size += i;
  1458. }
  1459. /* get output buffer */
  1460. if (!samples) {
  1461. av_assert0(s->frame != NULL);
  1462. s->frame->nb_samples = s->avctx->frame_size;
  1463. if ((ret = ff_get_buffer(s->avctx, s->frame, 0)) < 0) {
  1464. av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1465. return ret;
  1466. }
  1467. samples = (OUT_INT **)s->frame->extended_data;
  1468. }
  1469. /* apply the synthesis filter */
  1470. for (ch = 0; ch < s->nb_channels; ch++) {
  1471. int sample_stride;
  1472. if (s->avctx->sample_fmt == OUT_FMT_P) {
  1473. samples_ptr = samples[ch];
  1474. sample_stride = 1;
  1475. } else {
  1476. samples_ptr = samples[0] + ch;
  1477. sample_stride = s->nb_channels;
  1478. }
  1479. for (i = 0; i < nb_frames; i++) {
  1480. RENAME(ff_mpa_synth_filter)(&s->mpadsp, s->synth_buf[ch],
  1481. &(s->synth_buf_offset[ch]),
  1482. RENAME(ff_mpa_synth_window),
  1483. &s->dither_state, samples_ptr,
  1484. sample_stride, s->sb_samples[ch][i]);
  1485. samples_ptr += 32 * sample_stride;
  1486. }
  1487. }
  1488. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  1489. }
  1490. static int decode_frame(AVCodecContext * avctx, void *data, int *got_frame_ptr,
  1491. AVPacket *avpkt)
  1492. {
  1493. const uint8_t *buf = avpkt->data;
  1494. int buf_size = avpkt->size;
  1495. MPADecodeContext *s = avctx->priv_data;
  1496. uint32_t header;
  1497. int ret;
  1498. if (buf_size < HEADER_SIZE)
  1499. return AVERROR_INVALIDDATA;
  1500. header = AV_RB32(buf);
  1501. if (ff_mpa_check_header(header) < 0) {
  1502. av_log(avctx, AV_LOG_ERROR, "Header missing\n");
  1503. return AVERROR_INVALIDDATA;
  1504. }
  1505. if (avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
  1506. /* free format: prepare to compute frame size */
  1507. s->frame_size = -1;
  1508. return AVERROR_INVALIDDATA;
  1509. }
  1510. /* update codec info */
  1511. avctx->channels = s->nb_channels;
  1512. avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
  1513. if (!avctx->bit_rate)
  1514. avctx->bit_rate = s->bit_rate;
  1515. if (s->frame_size <= 0 || s->frame_size > buf_size) {
  1516. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  1517. return AVERROR_INVALIDDATA;
  1518. } else if (s->frame_size < buf_size) {
  1519. buf_size= s->frame_size;
  1520. }
  1521. s->frame = data;
  1522. ret = mp_decode_frame(s, NULL, buf, buf_size);
  1523. if (ret >= 0) {
  1524. s->frame->nb_samples = avctx->frame_size;
  1525. *got_frame_ptr = 1;
  1526. avctx->sample_rate = s->sample_rate;
  1527. //FIXME maybe move the other codec info stuff from above here too
  1528. } else {
  1529. av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
  1530. /* Only return an error if the bad frame makes up the whole packet or
  1531. * the error is related to buffer management.
  1532. * If there is more data in the packet, just consume the bad frame
  1533. * instead of returning an error, which would discard the whole
  1534. * packet. */
  1535. *got_frame_ptr = 0;
  1536. if (buf_size == avpkt->size || ret != AVERROR_INVALIDDATA)
  1537. return ret;
  1538. }
  1539. s->frame_size = 0;
  1540. return buf_size;
  1541. }
  1542. static void mp_flush(MPADecodeContext *ctx)
  1543. {
  1544. memset(ctx->synth_buf, 0, sizeof(ctx->synth_buf));
  1545. ctx->last_buf_size = 0;
  1546. }
  1547. static void flush(AVCodecContext *avctx)
  1548. {
  1549. mp_flush(avctx->priv_data);
  1550. }
  1551. #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
  1552. static int decode_frame_adu(AVCodecContext *avctx, void *data,
  1553. int *got_frame_ptr, AVPacket *avpkt)
  1554. {
  1555. const uint8_t *buf = avpkt->data;
  1556. int buf_size = avpkt->size;
  1557. MPADecodeContext *s = avctx->priv_data;
  1558. uint32_t header;
  1559. int len, ret;
  1560. len = buf_size;
  1561. // Discard too short frames
  1562. if (buf_size < HEADER_SIZE) {
  1563. av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
  1564. return AVERROR_INVALIDDATA;
  1565. }
  1566. if (len > MPA_MAX_CODED_FRAME_SIZE)
  1567. len = MPA_MAX_CODED_FRAME_SIZE;
  1568. // Get header and restore sync word
  1569. header = AV_RB32(buf) | 0xffe00000;
  1570. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  1571. av_log(avctx, AV_LOG_ERROR, "Invalid frame header\n");
  1572. return AVERROR_INVALIDDATA;
  1573. }
  1574. avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
  1575. /* update codec info */
  1576. avctx->sample_rate = s->sample_rate;
  1577. avctx->channels = s->nb_channels;
  1578. if (!avctx->bit_rate)
  1579. avctx->bit_rate = s->bit_rate;
  1580. s->frame_size = len;
  1581. s->frame = data;
  1582. ret = mp_decode_frame(s, NULL, buf, buf_size);
  1583. if (ret < 0) {
  1584. av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
  1585. return ret;
  1586. }
  1587. *got_frame_ptr = 1;
  1588. return buf_size;
  1589. }
  1590. #endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */
  1591. #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
  1592. /**
  1593. * Context for MP3On4 decoder
  1594. */
  1595. typedef struct MP3On4DecodeContext {
  1596. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  1597. int syncword; ///< syncword patch
  1598. const uint8_t *coff; ///< channel offsets in output buffer
  1599. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  1600. } MP3On4DecodeContext;
  1601. #include "mpeg4audio.h"
  1602. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  1603. /* number of mp3 decoder instances */
  1604. static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
  1605. /* offsets into output buffer, assume output order is FL FR C LFE BL BR SL SR */
  1606. static const uint8_t chan_offset[8][5] = {
  1607. { 0 },
  1608. { 0 }, // C
  1609. { 0 }, // FLR
  1610. { 2, 0 }, // C FLR
  1611. { 2, 0, 3 }, // C FLR BS
  1612. { 2, 0, 3 }, // C FLR BLRS
  1613. { 2, 0, 4, 3 }, // C FLR BLRS LFE
  1614. { 2, 0, 6, 4, 3 }, // C FLR BLRS BLR LFE
  1615. };
  1616. /* mp3on4 channel layouts */
  1617. static const int16_t chan_layout[8] = {
  1618. 0,
  1619. AV_CH_LAYOUT_MONO,
  1620. AV_CH_LAYOUT_STEREO,
  1621. AV_CH_LAYOUT_SURROUND,
  1622. AV_CH_LAYOUT_4POINT0,
  1623. AV_CH_LAYOUT_5POINT0,
  1624. AV_CH_LAYOUT_5POINT1,
  1625. AV_CH_LAYOUT_7POINT1
  1626. };
  1627. static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
  1628. {
  1629. MP3On4DecodeContext *s = avctx->priv_data;
  1630. int i;
  1631. for (i = 0; i < s->frames; i++)
  1632. av_free(s->mp3decctx[i]);
  1633. return 0;
  1634. }
  1635. static int decode_init_mp3on4(AVCodecContext * avctx)
  1636. {
  1637. MP3On4DecodeContext *s = avctx->priv_data;
  1638. MPEG4AudioConfig cfg;
  1639. int i;
  1640. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  1641. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  1642. return AVERROR_INVALIDDATA;
  1643. }
  1644. avpriv_mpeg4audio_get_config(&cfg, avctx->extradata,
  1645. avctx->extradata_size * 8, 1);
  1646. if (!cfg.chan_config || cfg.chan_config > 7) {
  1647. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  1648. return AVERROR_INVALIDDATA;
  1649. }
  1650. s->frames = mp3Frames[cfg.chan_config];
  1651. s->coff = chan_offset[cfg.chan_config];
  1652. avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
  1653. avctx->channel_layout = chan_layout[cfg.chan_config];
  1654. if (cfg.sample_rate < 16000)
  1655. s->syncword = 0xffe00000;
  1656. else
  1657. s->syncword = 0xfff00000;
  1658. /* Init the first mp3 decoder in standard way, so that all tables get builded
  1659. * We replace avctx->priv_data with the context of the first decoder so that
  1660. * decode_init() does not have to be changed.
  1661. * Other decoders will be initialized here copying data from the first context
  1662. */
  1663. // Allocate zeroed memory for the first decoder context
  1664. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  1665. if (!s->mp3decctx[0])
  1666. goto alloc_fail;
  1667. // Put decoder context in place to make init_decode() happy
  1668. avctx->priv_data = s->mp3decctx[0];
  1669. decode_init(avctx);
  1670. // Restore mp3on4 context pointer
  1671. avctx->priv_data = s;
  1672. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  1673. /* Create a separate codec/context for each frame (first is already ok).
  1674. * Each frame is 1 or 2 channels - up to 5 frames allowed
  1675. */
  1676. for (i = 1; i < s->frames; i++) {
  1677. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  1678. if (!s->mp3decctx[i])
  1679. goto alloc_fail;
  1680. s->mp3decctx[i]->adu_mode = 1;
  1681. s->mp3decctx[i]->avctx = avctx;
  1682. s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
  1683. }
  1684. return 0;
  1685. alloc_fail:
  1686. decode_close_mp3on4(avctx);
  1687. return AVERROR(ENOMEM);
  1688. }
  1689. static void flush_mp3on4(AVCodecContext *avctx)
  1690. {
  1691. int i;
  1692. MP3On4DecodeContext *s = avctx->priv_data;
  1693. for (i = 0; i < s->frames; i++)
  1694. mp_flush(s->mp3decctx[i]);
  1695. }
  1696. static int decode_frame_mp3on4(AVCodecContext *avctx, void *data,
  1697. int *got_frame_ptr, AVPacket *avpkt)
  1698. {
  1699. AVFrame *frame = data;
  1700. const uint8_t *buf = avpkt->data;
  1701. int buf_size = avpkt->size;
  1702. MP3On4DecodeContext *s = avctx->priv_data;
  1703. MPADecodeContext *m;
  1704. int fsize, len = buf_size, out_size = 0;
  1705. uint32_t header;
  1706. OUT_INT **out_samples;
  1707. OUT_INT *outptr[2];
  1708. int fr, ch, ret;
  1709. /* get output buffer */
  1710. frame->nb_samples = MPA_FRAME_SIZE;
  1711. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  1712. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1713. return ret;
  1714. }
  1715. out_samples = (OUT_INT **)frame->extended_data;
  1716. // Discard too short frames
  1717. if (buf_size < HEADER_SIZE)
  1718. return AVERROR_INVALIDDATA;
  1719. avctx->bit_rate = 0;
  1720. ch = 0;
  1721. for (fr = 0; fr < s->frames; fr++) {
  1722. fsize = AV_RB16(buf) >> 4;
  1723. fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
  1724. m = s->mp3decctx[fr];
  1725. assert(m != NULL);
  1726. if (fsize < HEADER_SIZE) {
  1727. av_log(avctx, AV_LOG_ERROR, "Frame size smaller than header size\n");
  1728. return AVERROR_INVALIDDATA;
  1729. }
  1730. header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
  1731. if (ff_mpa_check_header(header) < 0) // Bad header, discard block
  1732. break;
  1733. avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header);
  1734. if (ch + m->nb_channels > avctx->channels) {
  1735. av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec "
  1736. "channel count\n");
  1737. return AVERROR_INVALIDDATA;
  1738. }
  1739. ch += m->nb_channels;
  1740. outptr[0] = out_samples[s->coff[fr]];
  1741. if (m->nb_channels > 1)
  1742. outptr[1] = out_samples[s->coff[fr] + 1];
  1743. if ((ret = mp_decode_frame(m, outptr, buf, fsize)) < 0)
  1744. return ret;
  1745. out_size += ret;
  1746. buf += fsize;
  1747. len -= fsize;
  1748. avctx->bit_rate += m->bit_rate;
  1749. }
  1750. /* update codec info */
  1751. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  1752. frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT));
  1753. *got_frame_ptr = 1;
  1754. return buf_size;
  1755. }
  1756. #endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */
  1757. #if !CONFIG_FLOAT
  1758. #if CONFIG_MP1_DECODER
  1759. AVCodec ff_mp1_decoder = {
  1760. .name = "mp1",
  1761. .type = AVMEDIA_TYPE_AUDIO,
  1762. .id = AV_CODEC_ID_MP1,
  1763. .priv_data_size = sizeof(MPADecodeContext),
  1764. .init = decode_init,
  1765. .decode = decode_frame,
  1766. .capabilities = CODEC_CAP_DR1,
  1767. .flush = flush,
  1768. .long_name = NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
  1769. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1770. AV_SAMPLE_FMT_S16,
  1771. AV_SAMPLE_FMT_NONE },
  1772. };
  1773. #endif
  1774. #if CONFIG_MP2_DECODER
  1775. AVCodec ff_mp2_decoder = {
  1776. .name = "mp2",
  1777. .type = AVMEDIA_TYPE_AUDIO,
  1778. .id = AV_CODEC_ID_MP2,
  1779. .priv_data_size = sizeof(MPADecodeContext),
  1780. .init = decode_init,
  1781. .decode = decode_frame,
  1782. .capabilities = CODEC_CAP_DR1,
  1783. .flush = flush,
  1784. .long_name = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  1785. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1786. AV_SAMPLE_FMT_S16,
  1787. AV_SAMPLE_FMT_NONE },
  1788. };
  1789. #endif
  1790. #if CONFIG_MP3_DECODER
  1791. AVCodec ff_mp3_decoder = {
  1792. .name = "mp3",
  1793. .type = AVMEDIA_TYPE_AUDIO,
  1794. .id = AV_CODEC_ID_MP3,
  1795. .priv_data_size = sizeof(MPADecodeContext),
  1796. .init = decode_init,
  1797. .decode = decode_frame,
  1798. .capabilities = CODEC_CAP_DR1,
  1799. .flush = flush,
  1800. .long_name = NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
  1801. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1802. AV_SAMPLE_FMT_S16,
  1803. AV_SAMPLE_FMT_NONE },
  1804. };
  1805. #endif
  1806. #if CONFIG_MP3ADU_DECODER
  1807. AVCodec ff_mp3adu_decoder = {
  1808. .name = "mp3adu",
  1809. .type = AVMEDIA_TYPE_AUDIO,
  1810. .id = AV_CODEC_ID_MP3ADU,
  1811. .priv_data_size = sizeof(MPADecodeContext),
  1812. .init = decode_init,
  1813. .decode = decode_frame_adu,
  1814. .capabilities = CODEC_CAP_DR1,
  1815. .flush = flush,
  1816. .long_name = NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
  1817. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1818. AV_SAMPLE_FMT_S16,
  1819. AV_SAMPLE_FMT_NONE },
  1820. };
  1821. #endif
  1822. #if CONFIG_MP3ON4_DECODER
  1823. AVCodec ff_mp3on4_decoder = {
  1824. .name = "mp3on4",
  1825. .type = AVMEDIA_TYPE_AUDIO,
  1826. .id = AV_CODEC_ID_MP3ON4,
  1827. .priv_data_size = sizeof(MP3On4DecodeContext),
  1828. .init = decode_init_mp3on4,
  1829. .close = decode_close_mp3on4,
  1830. .decode = decode_frame_mp3on4,
  1831. .capabilities = CODEC_CAP_DR1,
  1832. .flush = flush_mp3on4,
  1833. .long_name = NULL_IF_CONFIG_SMALL("MP3onMP4"),
  1834. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1835. AV_SAMPLE_FMT_NONE },
  1836. };
  1837. #endif
  1838. #endif