You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2697 lines
80KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file mpegaudiodec.c
  23. * MPEG Audio decoder.
  24. */
  25. //#define DEBUG
  26. #include "avcodec.h"
  27. #include "bitstream.h"
  28. #include "dsputil.h"
  29. /*
  30. * TODO:
  31. * - in low precision mode, use more 16 bit multiplies in synth filter
  32. * - test lsf / mpeg25 extensively.
  33. */
  34. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  35. audio decoder */
  36. #ifdef CONFIG_MPEGAUDIO_HP
  37. # define USE_HIGHPRECISION
  38. #endif
  39. #include "mpegaudio.h"
  40. #include "mpegaudiodecheader.h"
  41. #include "mathops.h"
  42. /* WARNING: only correct for posititive numbers */
  43. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  44. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  45. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  46. /****************/
  47. #define HEADER_SIZE 4
  48. /**
  49. * Context for MP3On4 decoder
  50. */
  51. typedef struct MP3On4DecodeContext {
  52. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  53. int chan_cfg; ///< channel config number
  54. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  55. } MP3On4DecodeContext;
  56. /* layer 3 "granule" */
  57. typedef struct GranuleDef {
  58. uint8_t scfsi;
  59. int part2_3_length;
  60. int big_values;
  61. int global_gain;
  62. int scalefac_compress;
  63. uint8_t block_type;
  64. uint8_t switch_point;
  65. int table_select[3];
  66. int subblock_gain[3];
  67. uint8_t scalefac_scale;
  68. uint8_t count1table_select;
  69. int region_size[3]; /* number of huffman codes in each region */
  70. int preflag;
  71. int short_start, long_end; /* long/short band indexes */
  72. uint8_t scale_factors[40];
  73. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  74. } GranuleDef;
  75. #define MODE_EXT_MS_STEREO 2
  76. #define MODE_EXT_I_STEREO 1
  77. #include "mpegaudiodata.h"
  78. #include "mpegaudiodectab.h"
  79. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  80. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  81. /* vlc structure for decoding layer 3 huffman tables */
  82. static VLC huff_vlc[16];
  83. static VLC huff_quad_vlc[2];
  84. /* computed from band_size_long */
  85. static uint16_t band_index_long[9][23];
  86. /* XXX: free when all decoders are closed */
  87. #define TABLE_4_3_SIZE (8191 + 16)*4
  88. static int8_t table_4_3_exp[TABLE_4_3_SIZE];
  89. static uint32_t table_4_3_value[TABLE_4_3_SIZE];
  90. static uint32_t exp_table[512];
  91. static uint32_t expval_table[512][16];
  92. /* intensity stereo coef table */
  93. static int32_t is_table[2][16];
  94. static int32_t is_table_lsf[2][2][16];
  95. static int32_t csa_table[8][4];
  96. static float csa_table_float[8][4];
  97. static int32_t mdct_win[8][36];
  98. /* lower 2 bits: modulo 3, higher bits: shift */
  99. static uint16_t scale_factor_modshift[64];
  100. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  101. static int32_t scale_factor_mult[15][3];
  102. /* mult table for layer 2 group quantization */
  103. #define SCALE_GEN(v) \
  104. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  105. static const int32_t scale_factor_mult2[3][3] = {
  106. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  107. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  108. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  109. };
  110. static DECLARE_ALIGNED_16(MPA_INT, window[512]);
  111. /* layer 1 unscaling */
  112. /* n = number of bits of the mantissa minus 1 */
  113. static inline int l1_unscale(int n, int mant, int scale_factor)
  114. {
  115. int shift, mod;
  116. int64_t val;
  117. shift = scale_factor_modshift[scale_factor];
  118. mod = shift & 3;
  119. shift >>= 2;
  120. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  121. shift += n;
  122. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  123. return (int)((val + (1LL << (shift - 1))) >> shift);
  124. }
  125. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  126. {
  127. int shift, mod, val;
  128. shift = scale_factor_modshift[scale_factor];
  129. mod = shift & 3;
  130. shift >>= 2;
  131. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  132. /* NOTE: at this point, 0 <= shift <= 21 */
  133. if (shift > 0)
  134. val = (val + (1 << (shift - 1))) >> shift;
  135. return val;
  136. }
  137. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  138. static inline int l3_unscale(int value, int exponent)
  139. {
  140. unsigned int m;
  141. int e;
  142. e = table_4_3_exp [4*value + (exponent&3)];
  143. m = table_4_3_value[4*value + (exponent&3)];
  144. e -= (exponent >> 2);
  145. assert(e>=1);
  146. if (e > 31)
  147. return 0;
  148. m = (m + (1 << (e-1))) >> e;
  149. return m;
  150. }
  151. /* all integer n^(4/3) computation code */
  152. #define DEV_ORDER 13
  153. #define POW_FRAC_BITS 24
  154. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  155. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  156. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  157. static int dev_4_3_coefs[DEV_ORDER];
  158. #if 0 /* unused */
  159. static int pow_mult3[3] = {
  160. POW_FIX(1.0),
  161. POW_FIX(1.25992104989487316476),
  162. POW_FIX(1.58740105196819947474),
  163. };
  164. #endif
  165. static void int_pow_init(void)
  166. {
  167. int i, a;
  168. a = POW_FIX(1.0);
  169. for(i=0;i<DEV_ORDER;i++) {
  170. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  171. dev_4_3_coefs[i] = a;
  172. }
  173. }
  174. #if 0 /* unused, remove? */
  175. /* return the mantissa and the binary exponent */
  176. static int int_pow(int i, int *exp_ptr)
  177. {
  178. int e, er, eq, j;
  179. int a, a1;
  180. /* renormalize */
  181. a = i;
  182. e = POW_FRAC_BITS;
  183. while (a < (1 << (POW_FRAC_BITS - 1))) {
  184. a = a << 1;
  185. e--;
  186. }
  187. a -= (1 << POW_FRAC_BITS);
  188. a1 = 0;
  189. for(j = DEV_ORDER - 1; j >= 0; j--)
  190. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  191. a = (1 << POW_FRAC_BITS) + a1;
  192. /* exponent compute (exact) */
  193. e = e * 4;
  194. er = e % 3;
  195. eq = e / 3;
  196. a = POW_MULL(a, pow_mult3[er]);
  197. while (a >= 2 * POW_FRAC_ONE) {
  198. a = a >> 1;
  199. eq++;
  200. }
  201. /* convert to float */
  202. while (a < POW_FRAC_ONE) {
  203. a = a << 1;
  204. eq--;
  205. }
  206. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  207. #if POW_FRAC_BITS > FRAC_BITS
  208. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  209. /* correct overflow */
  210. if (a >= 2 * (1 << FRAC_BITS)) {
  211. a = a >> 1;
  212. eq++;
  213. }
  214. #endif
  215. *exp_ptr = eq;
  216. return a;
  217. }
  218. #endif
  219. static int decode_init(AVCodecContext * avctx)
  220. {
  221. MPADecodeContext *s = avctx->priv_data;
  222. static int init=0;
  223. int i, j, k;
  224. s->avctx = avctx;
  225. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  226. avctx->sample_fmt= SAMPLE_FMT_S32;
  227. #else
  228. avctx->sample_fmt= SAMPLE_FMT_S16;
  229. #endif
  230. s->error_resilience= avctx->error_resilience;
  231. if(avctx->antialias_algo != FF_AA_FLOAT)
  232. s->compute_antialias= compute_antialias_integer;
  233. else
  234. s->compute_antialias= compute_antialias_float;
  235. if (!init && !avctx->parse_only) {
  236. /* scale factors table for layer 1/2 */
  237. for(i=0;i<64;i++) {
  238. int shift, mod;
  239. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  240. shift = (i / 3);
  241. mod = i % 3;
  242. scale_factor_modshift[i] = mod | (shift << 2);
  243. }
  244. /* scale factor multiply for layer 1 */
  245. for(i=0;i<15;i++) {
  246. int n, norm;
  247. n = i + 2;
  248. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  249. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  250. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  251. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  252. dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
  253. i, norm,
  254. scale_factor_mult[i][0],
  255. scale_factor_mult[i][1],
  256. scale_factor_mult[i][2]);
  257. }
  258. ff_mpa_synth_init(window);
  259. /* huffman decode tables */
  260. for(i=1;i<16;i++) {
  261. const HuffTable *h = &mpa_huff_tables[i];
  262. int xsize, x, y;
  263. unsigned int n;
  264. uint8_t tmp_bits [512];
  265. uint16_t tmp_codes[512];
  266. memset(tmp_bits , 0, sizeof(tmp_bits ));
  267. memset(tmp_codes, 0, sizeof(tmp_codes));
  268. xsize = h->xsize;
  269. n = xsize * xsize;
  270. j = 0;
  271. for(x=0;x<xsize;x++) {
  272. for(y=0;y<xsize;y++){
  273. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  274. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  275. }
  276. }
  277. /* XXX: fail test */
  278. init_vlc(&huff_vlc[i], 7, 512,
  279. tmp_bits, 1, 1, tmp_codes, 2, 2, 1);
  280. }
  281. for(i=0;i<2;i++) {
  282. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  283. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  284. }
  285. for(i=0;i<9;i++) {
  286. k = 0;
  287. for(j=0;j<22;j++) {
  288. band_index_long[i][j] = k;
  289. k += band_size_long[i][j];
  290. }
  291. band_index_long[i][22] = k;
  292. }
  293. /* compute n ^ (4/3) and store it in mantissa/exp format */
  294. int_pow_init();
  295. for(i=1;i<TABLE_4_3_SIZE;i++) {
  296. double f, fm;
  297. int e, m;
  298. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  299. fm = frexp(f, &e);
  300. m = (uint32_t)(fm*(1LL<<31) + 0.5);
  301. e+= FRAC_BITS - 31 + 5 - 100;
  302. /* normalized to FRAC_BITS */
  303. table_4_3_value[i] = m;
  304. // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
  305. table_4_3_exp[i] = -e;
  306. }
  307. for(i=0; i<512*16; i++){
  308. int exponent= (i>>4);
  309. double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
  310. expval_table[exponent][i&15]= llrint(f);
  311. if((i&15)==1)
  312. exp_table[exponent]= llrint(f);
  313. }
  314. for(i=0;i<7;i++) {
  315. float f;
  316. int v;
  317. if (i != 6) {
  318. f = tan((double)i * M_PI / 12.0);
  319. v = FIXR(f / (1.0 + f));
  320. } else {
  321. v = FIXR(1.0);
  322. }
  323. is_table[0][i] = v;
  324. is_table[1][6 - i] = v;
  325. }
  326. /* invalid values */
  327. for(i=7;i<16;i++)
  328. is_table[0][i] = is_table[1][i] = 0.0;
  329. for(i=0;i<16;i++) {
  330. double f;
  331. int e, k;
  332. for(j=0;j<2;j++) {
  333. e = -(j + 1) * ((i + 1) >> 1);
  334. f = pow(2.0, e / 4.0);
  335. k = i & 1;
  336. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  337. is_table_lsf[j][k][i] = FIXR(1.0);
  338. dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
  339. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  340. }
  341. }
  342. for(i=0;i<8;i++) {
  343. float ci, cs, ca;
  344. ci = ci_table[i];
  345. cs = 1.0 / sqrt(1.0 + ci * ci);
  346. ca = cs * ci;
  347. csa_table[i][0] = FIXHR(cs/4);
  348. csa_table[i][1] = FIXHR(ca/4);
  349. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  350. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  351. csa_table_float[i][0] = cs;
  352. csa_table_float[i][1] = ca;
  353. csa_table_float[i][2] = ca + cs;
  354. csa_table_float[i][3] = ca - cs;
  355. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  356. // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
  357. }
  358. /* compute mdct windows */
  359. for(i=0;i<36;i++) {
  360. for(j=0; j<4; j++){
  361. double d;
  362. if(j==2 && i%3 != 1)
  363. continue;
  364. d= sin(M_PI * (i + 0.5) / 36.0);
  365. if(j==1){
  366. if (i>=30) d= 0;
  367. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  368. else if(i>=18) d= 1;
  369. }else if(j==3){
  370. if (i< 6) d= 0;
  371. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  372. else if(i< 18) d= 1;
  373. }
  374. //merge last stage of imdct into the window coefficients
  375. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  376. if(j==2)
  377. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  378. else
  379. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  380. // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
  381. }
  382. }
  383. /* NOTE: we do frequency inversion adter the MDCT by changing
  384. the sign of the right window coefs */
  385. for(j=0;j<4;j++) {
  386. for(i=0;i<36;i+=2) {
  387. mdct_win[j + 4][i] = mdct_win[j][i];
  388. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  389. }
  390. }
  391. #if defined(DEBUG)
  392. for(j=0;j<8;j++) {
  393. av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
  394. for(i=0;i<36;i++)
  395. av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  396. av_log(avctx, AV_LOG_DEBUG, "\n");
  397. }
  398. #endif
  399. init = 1;
  400. }
  401. #ifdef DEBUG
  402. s->frame_count = 0;
  403. #endif
  404. if (avctx->codec_id == CODEC_ID_MP3ADU)
  405. s->adu_mode = 1;
  406. return 0;
  407. }
  408. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  409. /* cos(i*pi/64) */
  410. #define COS0_0 FIXHR(0.50060299823519630134/2)
  411. #define COS0_1 FIXHR(0.50547095989754365998/2)
  412. #define COS0_2 FIXHR(0.51544730992262454697/2)
  413. #define COS0_3 FIXHR(0.53104259108978417447/2)
  414. #define COS0_4 FIXHR(0.55310389603444452782/2)
  415. #define COS0_5 FIXHR(0.58293496820613387367/2)
  416. #define COS0_6 FIXHR(0.62250412303566481615/2)
  417. #define COS0_7 FIXHR(0.67480834145500574602/2)
  418. #define COS0_8 FIXHR(0.74453627100229844977/2)
  419. #define COS0_9 FIXHR(0.83934964541552703873/2)
  420. #define COS0_10 FIXHR(0.97256823786196069369/2)
  421. #define COS0_11 FIXHR(1.16943993343288495515/4)
  422. #define COS0_12 FIXHR(1.48416461631416627724/4)
  423. #define COS0_13 FIXHR(2.05778100995341155085/8)
  424. #define COS0_14 FIXHR(3.40760841846871878570/8)
  425. #define COS0_15 FIXHR(10.19000812354805681150/32)
  426. #define COS1_0 FIXHR(0.50241928618815570551/2)
  427. #define COS1_1 FIXHR(0.52249861493968888062/2)
  428. #define COS1_2 FIXHR(0.56694403481635770368/2)
  429. #define COS1_3 FIXHR(0.64682178335999012954/2)
  430. #define COS1_4 FIXHR(0.78815462345125022473/2)
  431. #define COS1_5 FIXHR(1.06067768599034747134/4)
  432. #define COS1_6 FIXHR(1.72244709823833392782/4)
  433. #define COS1_7 FIXHR(5.10114861868916385802/16)
  434. #define COS2_0 FIXHR(0.50979557910415916894/2)
  435. #define COS2_1 FIXHR(0.60134488693504528054/2)
  436. #define COS2_2 FIXHR(0.89997622313641570463/2)
  437. #define COS2_3 FIXHR(2.56291544774150617881/8)
  438. #define COS3_0 FIXHR(0.54119610014619698439/2)
  439. #define COS3_1 FIXHR(1.30656296487637652785/4)
  440. #define COS4_0 FIXHR(0.70710678118654752439/2)
  441. /* butterfly operator */
  442. #define BF(a, b, c, s)\
  443. {\
  444. tmp0 = tab[a] + tab[b];\
  445. tmp1 = tab[a] - tab[b];\
  446. tab[a] = tmp0;\
  447. tab[b] = MULH(tmp1<<(s), c);\
  448. }
  449. #define BF1(a, b, c, d)\
  450. {\
  451. BF(a, b, COS4_0, 1);\
  452. BF(c, d,-COS4_0, 1);\
  453. tab[c] += tab[d];\
  454. }
  455. #define BF2(a, b, c, d)\
  456. {\
  457. BF(a, b, COS4_0, 1);\
  458. BF(c, d,-COS4_0, 1);\
  459. tab[c] += tab[d];\
  460. tab[a] += tab[c];\
  461. tab[c] += tab[b];\
  462. tab[b] += tab[d];\
  463. }
  464. #define ADD(a, b) tab[a] += tab[b]
  465. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  466. static void dct32(int32_t *out, int32_t *tab)
  467. {
  468. int tmp0, tmp1;
  469. /* pass 1 */
  470. BF( 0, 31, COS0_0 , 1);
  471. BF(15, 16, COS0_15, 5);
  472. /* pass 2 */
  473. BF( 0, 15, COS1_0 , 1);
  474. BF(16, 31,-COS1_0 , 1);
  475. /* pass 1 */
  476. BF( 7, 24, COS0_7 , 1);
  477. BF( 8, 23, COS0_8 , 1);
  478. /* pass 2 */
  479. BF( 7, 8, COS1_7 , 4);
  480. BF(23, 24,-COS1_7 , 4);
  481. /* pass 3 */
  482. BF( 0, 7, COS2_0 , 1);
  483. BF( 8, 15,-COS2_0 , 1);
  484. BF(16, 23, COS2_0 , 1);
  485. BF(24, 31,-COS2_0 , 1);
  486. /* pass 1 */
  487. BF( 3, 28, COS0_3 , 1);
  488. BF(12, 19, COS0_12, 2);
  489. /* pass 2 */
  490. BF( 3, 12, COS1_3 , 1);
  491. BF(19, 28,-COS1_3 , 1);
  492. /* pass 1 */
  493. BF( 4, 27, COS0_4 , 1);
  494. BF(11, 20, COS0_11, 2);
  495. /* pass 2 */
  496. BF( 4, 11, COS1_4 , 1);
  497. BF(20, 27,-COS1_4 , 1);
  498. /* pass 3 */
  499. BF( 3, 4, COS2_3 , 3);
  500. BF(11, 12,-COS2_3 , 3);
  501. BF(19, 20, COS2_3 , 3);
  502. BF(27, 28,-COS2_3 , 3);
  503. /* pass 4 */
  504. BF( 0, 3, COS3_0 , 1);
  505. BF( 4, 7,-COS3_0 , 1);
  506. BF( 8, 11, COS3_0 , 1);
  507. BF(12, 15,-COS3_0 , 1);
  508. BF(16, 19, COS3_0 , 1);
  509. BF(20, 23,-COS3_0 , 1);
  510. BF(24, 27, COS3_0 , 1);
  511. BF(28, 31,-COS3_0 , 1);
  512. /* pass 1 */
  513. BF( 1, 30, COS0_1 , 1);
  514. BF(14, 17, COS0_14, 3);
  515. /* pass 2 */
  516. BF( 1, 14, COS1_1 , 1);
  517. BF(17, 30,-COS1_1 , 1);
  518. /* pass 1 */
  519. BF( 6, 25, COS0_6 , 1);
  520. BF( 9, 22, COS0_9 , 1);
  521. /* pass 2 */
  522. BF( 6, 9, COS1_6 , 2);
  523. BF(22, 25,-COS1_6 , 2);
  524. /* pass 3 */
  525. BF( 1, 6, COS2_1 , 1);
  526. BF( 9, 14,-COS2_1 , 1);
  527. BF(17, 22, COS2_1 , 1);
  528. BF(25, 30,-COS2_1 , 1);
  529. /* pass 1 */
  530. BF( 2, 29, COS0_2 , 1);
  531. BF(13, 18, COS0_13, 3);
  532. /* pass 2 */
  533. BF( 2, 13, COS1_2 , 1);
  534. BF(18, 29,-COS1_2 , 1);
  535. /* pass 1 */
  536. BF( 5, 26, COS0_5 , 1);
  537. BF(10, 21, COS0_10, 1);
  538. /* pass 2 */
  539. BF( 5, 10, COS1_5 , 2);
  540. BF(21, 26,-COS1_5 , 2);
  541. /* pass 3 */
  542. BF( 2, 5, COS2_2 , 1);
  543. BF(10, 13,-COS2_2 , 1);
  544. BF(18, 21, COS2_2 , 1);
  545. BF(26, 29,-COS2_2 , 1);
  546. /* pass 4 */
  547. BF( 1, 2, COS3_1 , 2);
  548. BF( 5, 6,-COS3_1 , 2);
  549. BF( 9, 10, COS3_1 , 2);
  550. BF(13, 14,-COS3_1 , 2);
  551. BF(17, 18, COS3_1 , 2);
  552. BF(21, 22,-COS3_1 , 2);
  553. BF(25, 26, COS3_1 , 2);
  554. BF(29, 30,-COS3_1 , 2);
  555. /* pass 5 */
  556. BF1( 0, 1, 2, 3);
  557. BF2( 4, 5, 6, 7);
  558. BF1( 8, 9, 10, 11);
  559. BF2(12, 13, 14, 15);
  560. BF1(16, 17, 18, 19);
  561. BF2(20, 21, 22, 23);
  562. BF1(24, 25, 26, 27);
  563. BF2(28, 29, 30, 31);
  564. /* pass 6 */
  565. ADD( 8, 12);
  566. ADD(12, 10);
  567. ADD(10, 14);
  568. ADD(14, 9);
  569. ADD( 9, 13);
  570. ADD(13, 11);
  571. ADD(11, 15);
  572. out[ 0] = tab[0];
  573. out[16] = tab[1];
  574. out[ 8] = tab[2];
  575. out[24] = tab[3];
  576. out[ 4] = tab[4];
  577. out[20] = tab[5];
  578. out[12] = tab[6];
  579. out[28] = tab[7];
  580. out[ 2] = tab[8];
  581. out[18] = tab[9];
  582. out[10] = tab[10];
  583. out[26] = tab[11];
  584. out[ 6] = tab[12];
  585. out[22] = tab[13];
  586. out[14] = tab[14];
  587. out[30] = tab[15];
  588. ADD(24, 28);
  589. ADD(28, 26);
  590. ADD(26, 30);
  591. ADD(30, 25);
  592. ADD(25, 29);
  593. ADD(29, 27);
  594. ADD(27, 31);
  595. out[ 1] = tab[16] + tab[24];
  596. out[17] = tab[17] + tab[25];
  597. out[ 9] = tab[18] + tab[26];
  598. out[25] = tab[19] + tab[27];
  599. out[ 5] = tab[20] + tab[28];
  600. out[21] = tab[21] + tab[29];
  601. out[13] = tab[22] + tab[30];
  602. out[29] = tab[23] + tab[31];
  603. out[ 3] = tab[24] + tab[20];
  604. out[19] = tab[25] + tab[21];
  605. out[11] = tab[26] + tab[22];
  606. out[27] = tab[27] + tab[23];
  607. out[ 7] = tab[28] + tab[18];
  608. out[23] = tab[29] + tab[19];
  609. out[15] = tab[30] + tab[17];
  610. out[31] = tab[31];
  611. }
  612. #if FRAC_BITS <= 15
  613. static inline int round_sample(int *sum)
  614. {
  615. int sum1;
  616. sum1 = (*sum) >> OUT_SHIFT;
  617. *sum &= (1<<OUT_SHIFT)-1;
  618. if (sum1 < OUT_MIN)
  619. sum1 = OUT_MIN;
  620. else if (sum1 > OUT_MAX)
  621. sum1 = OUT_MAX;
  622. return sum1;
  623. }
  624. /* signed 16x16 -> 32 multiply add accumulate */
  625. #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
  626. /* signed 16x16 -> 32 multiply */
  627. #define MULS(ra, rb) MUL16(ra, rb)
  628. #else
  629. static inline int round_sample(int64_t *sum)
  630. {
  631. int sum1;
  632. sum1 = (int)((*sum) >> OUT_SHIFT);
  633. *sum &= (1<<OUT_SHIFT)-1;
  634. if (sum1 < OUT_MIN)
  635. sum1 = OUT_MIN;
  636. else if (sum1 > OUT_MAX)
  637. sum1 = OUT_MAX;
  638. return sum1;
  639. }
  640. # define MULS(ra, rb) MUL64(ra, rb)
  641. #endif
  642. #define SUM8(sum, op, w, p) \
  643. { \
  644. sum op MULS((w)[0 * 64], p[0 * 64]);\
  645. sum op MULS((w)[1 * 64], p[1 * 64]);\
  646. sum op MULS((w)[2 * 64], p[2 * 64]);\
  647. sum op MULS((w)[3 * 64], p[3 * 64]);\
  648. sum op MULS((w)[4 * 64], p[4 * 64]);\
  649. sum op MULS((w)[5 * 64], p[5 * 64]);\
  650. sum op MULS((w)[6 * 64], p[6 * 64]);\
  651. sum op MULS((w)[7 * 64], p[7 * 64]);\
  652. }
  653. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  654. { \
  655. int tmp;\
  656. tmp = p[0 * 64];\
  657. sum1 op1 MULS((w1)[0 * 64], tmp);\
  658. sum2 op2 MULS((w2)[0 * 64], tmp);\
  659. tmp = p[1 * 64];\
  660. sum1 op1 MULS((w1)[1 * 64], tmp);\
  661. sum2 op2 MULS((w2)[1 * 64], tmp);\
  662. tmp = p[2 * 64];\
  663. sum1 op1 MULS((w1)[2 * 64], tmp);\
  664. sum2 op2 MULS((w2)[2 * 64], tmp);\
  665. tmp = p[3 * 64];\
  666. sum1 op1 MULS((w1)[3 * 64], tmp);\
  667. sum2 op2 MULS((w2)[3 * 64], tmp);\
  668. tmp = p[4 * 64];\
  669. sum1 op1 MULS((w1)[4 * 64], tmp);\
  670. sum2 op2 MULS((w2)[4 * 64], tmp);\
  671. tmp = p[5 * 64];\
  672. sum1 op1 MULS((w1)[5 * 64], tmp);\
  673. sum2 op2 MULS((w2)[5 * 64], tmp);\
  674. tmp = p[6 * 64];\
  675. sum1 op1 MULS((w1)[6 * 64], tmp);\
  676. sum2 op2 MULS((w2)[6 * 64], tmp);\
  677. tmp = p[7 * 64];\
  678. sum1 op1 MULS((w1)[7 * 64], tmp);\
  679. sum2 op2 MULS((w2)[7 * 64], tmp);\
  680. }
  681. void ff_mpa_synth_init(MPA_INT *window)
  682. {
  683. int i;
  684. /* max = 18760, max sum over all 16 coefs : 44736 */
  685. for(i=0;i<257;i++) {
  686. int v;
  687. v = ff_mpa_enwindow[i];
  688. #if WFRAC_BITS < 16
  689. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  690. #endif
  691. window[i] = v;
  692. if ((i & 63) != 0)
  693. v = -v;
  694. if (i != 0)
  695. window[512 - i] = v;
  696. }
  697. }
  698. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  699. 32 samples. */
  700. /* XXX: optimize by avoiding ring buffer usage */
  701. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  702. MPA_INT *window, int *dither_state,
  703. OUT_INT *samples, int incr,
  704. int32_t sb_samples[SBLIMIT])
  705. {
  706. int32_t tmp[32];
  707. register MPA_INT *synth_buf;
  708. register const MPA_INT *w, *w2, *p;
  709. int j, offset, v;
  710. OUT_INT *samples2;
  711. #if FRAC_BITS <= 15
  712. int sum, sum2;
  713. #else
  714. int64_t sum, sum2;
  715. #endif
  716. dct32(tmp, sb_samples);
  717. offset = *synth_buf_offset;
  718. synth_buf = synth_buf_ptr + offset;
  719. for(j=0;j<32;j++) {
  720. v = tmp[j];
  721. #if FRAC_BITS <= 15
  722. /* NOTE: can cause a loss in precision if very high amplitude
  723. sound */
  724. if (v > 32767)
  725. v = 32767;
  726. else if (v < -32768)
  727. v = -32768;
  728. #endif
  729. synth_buf[j] = v;
  730. }
  731. /* copy to avoid wrap */
  732. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  733. samples2 = samples + 31 * incr;
  734. w = window;
  735. w2 = window + 31;
  736. sum = *dither_state;
  737. p = synth_buf + 16;
  738. SUM8(sum, +=, w, p);
  739. p = synth_buf + 48;
  740. SUM8(sum, -=, w + 32, p);
  741. *samples = round_sample(&sum);
  742. samples += incr;
  743. w++;
  744. /* we calculate two samples at the same time to avoid one memory
  745. access per two sample */
  746. for(j=1;j<16;j++) {
  747. sum2 = 0;
  748. p = synth_buf + 16 + j;
  749. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  750. p = synth_buf + 48 - j;
  751. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  752. *samples = round_sample(&sum);
  753. samples += incr;
  754. sum += sum2;
  755. *samples2 = round_sample(&sum);
  756. samples2 -= incr;
  757. w++;
  758. w2--;
  759. }
  760. p = synth_buf + 32;
  761. SUM8(sum, -=, w + 32, p);
  762. *samples = round_sample(&sum);
  763. *dither_state= sum;
  764. offset = (offset - 32) & 511;
  765. *synth_buf_offset = offset;
  766. }
  767. #define C3 FIXHR(0.86602540378443864676/2)
  768. /* 0.5 / cos(pi*(2*i+1)/36) */
  769. static const int icos36[9] = {
  770. FIXR(0.50190991877167369479),
  771. FIXR(0.51763809020504152469), //0
  772. FIXR(0.55168895948124587824),
  773. FIXR(0.61038729438072803416),
  774. FIXR(0.70710678118654752439), //1
  775. FIXR(0.87172339781054900991),
  776. FIXR(1.18310079157624925896),
  777. FIXR(1.93185165257813657349), //2
  778. FIXR(5.73685662283492756461),
  779. };
  780. /* 0.5 / cos(pi*(2*i+1)/36) */
  781. static const int icos36h[9] = {
  782. FIXHR(0.50190991877167369479/2),
  783. FIXHR(0.51763809020504152469/2), //0
  784. FIXHR(0.55168895948124587824/2),
  785. FIXHR(0.61038729438072803416/2),
  786. FIXHR(0.70710678118654752439/2), //1
  787. FIXHR(0.87172339781054900991/2),
  788. FIXHR(1.18310079157624925896/4),
  789. FIXHR(1.93185165257813657349/4), //2
  790. // FIXHR(5.73685662283492756461),
  791. };
  792. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  793. cases. */
  794. static void imdct12(int *out, int *in)
  795. {
  796. int in0, in1, in2, in3, in4, in5, t1, t2;
  797. in0= in[0*3];
  798. in1= in[1*3] + in[0*3];
  799. in2= in[2*3] + in[1*3];
  800. in3= in[3*3] + in[2*3];
  801. in4= in[4*3] + in[3*3];
  802. in5= in[5*3] + in[4*3];
  803. in5 += in3;
  804. in3 += in1;
  805. in2= MULH(2*in2, C3);
  806. in3= MULH(4*in3, C3);
  807. t1 = in0 - in4;
  808. t2 = MULH(2*(in1 - in5), icos36h[4]);
  809. out[ 7]=
  810. out[10]= t1 + t2;
  811. out[ 1]=
  812. out[ 4]= t1 - t2;
  813. in0 += in4>>1;
  814. in4 = in0 + in2;
  815. in5 += 2*in1;
  816. in1 = MULH(in5 + in3, icos36h[1]);
  817. out[ 8]=
  818. out[ 9]= in4 + in1;
  819. out[ 2]=
  820. out[ 3]= in4 - in1;
  821. in0 -= in2;
  822. in5 = MULH(2*(in5 - in3), icos36h[7]);
  823. out[ 0]=
  824. out[ 5]= in0 - in5;
  825. out[ 6]=
  826. out[11]= in0 + in5;
  827. }
  828. /* cos(pi*i/18) */
  829. #define C1 FIXHR(0.98480775301220805936/2)
  830. #define C2 FIXHR(0.93969262078590838405/2)
  831. #define C3 FIXHR(0.86602540378443864676/2)
  832. #define C4 FIXHR(0.76604444311897803520/2)
  833. #define C5 FIXHR(0.64278760968653932632/2)
  834. #define C6 FIXHR(0.5/2)
  835. #define C7 FIXHR(0.34202014332566873304/2)
  836. #define C8 FIXHR(0.17364817766693034885/2)
  837. /* using Lee like decomposition followed by hand coded 9 points DCT */
  838. static void imdct36(int *out, int *buf, int *in, int *win)
  839. {
  840. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  841. int tmp[18], *tmp1, *in1;
  842. for(i=17;i>=1;i--)
  843. in[i] += in[i-1];
  844. for(i=17;i>=3;i-=2)
  845. in[i] += in[i-2];
  846. for(j=0;j<2;j++) {
  847. tmp1 = tmp + j;
  848. in1 = in + j;
  849. #if 0
  850. //more accurate but slower
  851. int64_t t0, t1, t2, t3;
  852. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  853. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  854. t1 = in1[2*0] - in1[2*6];
  855. tmp1[ 6] = t1 - (t2>>1);
  856. tmp1[16] = t1 + t2;
  857. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  858. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  859. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  860. tmp1[10] = (t3 - t0 - t2) >> 32;
  861. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  862. tmp1[14] = (t3 + t2 - t1) >> 32;
  863. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  864. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  865. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  866. t0 = MUL64(2*in1[2*3], C3);
  867. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  868. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  869. tmp1[12] = (t2 + t1 - t0) >> 32;
  870. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  871. #else
  872. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  873. t3 = in1[2*0] + (in1[2*6]>>1);
  874. t1 = in1[2*0] - in1[2*6];
  875. tmp1[ 6] = t1 - (t2>>1);
  876. tmp1[16] = t1 + t2;
  877. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  878. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  879. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  880. tmp1[10] = t3 - t0 - t2;
  881. tmp1[ 2] = t3 + t0 + t1;
  882. tmp1[14] = t3 + t2 - t1;
  883. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  884. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  885. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  886. t0 = MULH(2*in1[2*3], C3);
  887. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  888. tmp1[ 0] = t2 + t3 + t0;
  889. tmp1[12] = t2 + t1 - t0;
  890. tmp1[ 8] = t3 - t1 - t0;
  891. #endif
  892. }
  893. i = 0;
  894. for(j=0;j<4;j++) {
  895. t0 = tmp[i];
  896. t1 = tmp[i + 2];
  897. s0 = t1 + t0;
  898. s2 = t1 - t0;
  899. t2 = tmp[i + 1];
  900. t3 = tmp[i + 3];
  901. s1 = MULH(2*(t3 + t2), icos36h[j]);
  902. s3 = MULL(t3 - t2, icos36[8 - j]);
  903. t0 = s0 + s1;
  904. t1 = s0 - s1;
  905. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  906. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  907. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  908. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  909. t0 = s2 + s3;
  910. t1 = s2 - s3;
  911. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  912. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  913. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  914. buf[ + j] = MULH(t0, win[18 + j]);
  915. i += 4;
  916. }
  917. s0 = tmp[16];
  918. s1 = MULH(2*tmp[17], icos36h[4]);
  919. t0 = s0 + s1;
  920. t1 = s0 - s1;
  921. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  922. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  923. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  924. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  925. }
  926. /* return the number of decoded frames */
  927. static int mp_decode_layer1(MPADecodeContext *s)
  928. {
  929. int bound, i, v, n, ch, j, mant;
  930. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  931. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  932. if (s->mode == MPA_JSTEREO)
  933. bound = (s->mode_ext + 1) * 4;
  934. else
  935. bound = SBLIMIT;
  936. /* allocation bits */
  937. for(i=0;i<bound;i++) {
  938. for(ch=0;ch<s->nb_channels;ch++) {
  939. allocation[ch][i] = get_bits(&s->gb, 4);
  940. }
  941. }
  942. for(i=bound;i<SBLIMIT;i++) {
  943. allocation[0][i] = get_bits(&s->gb, 4);
  944. }
  945. /* scale factors */
  946. for(i=0;i<bound;i++) {
  947. for(ch=0;ch<s->nb_channels;ch++) {
  948. if (allocation[ch][i])
  949. scale_factors[ch][i] = get_bits(&s->gb, 6);
  950. }
  951. }
  952. for(i=bound;i<SBLIMIT;i++) {
  953. if (allocation[0][i]) {
  954. scale_factors[0][i] = get_bits(&s->gb, 6);
  955. scale_factors[1][i] = get_bits(&s->gb, 6);
  956. }
  957. }
  958. /* compute samples */
  959. for(j=0;j<12;j++) {
  960. for(i=0;i<bound;i++) {
  961. for(ch=0;ch<s->nb_channels;ch++) {
  962. n = allocation[ch][i];
  963. if (n) {
  964. mant = get_bits(&s->gb, n + 1);
  965. v = l1_unscale(n, mant, scale_factors[ch][i]);
  966. } else {
  967. v = 0;
  968. }
  969. s->sb_samples[ch][j][i] = v;
  970. }
  971. }
  972. for(i=bound;i<SBLIMIT;i++) {
  973. n = allocation[0][i];
  974. if (n) {
  975. mant = get_bits(&s->gb, n + 1);
  976. v = l1_unscale(n, mant, scale_factors[0][i]);
  977. s->sb_samples[0][j][i] = v;
  978. v = l1_unscale(n, mant, scale_factors[1][i]);
  979. s->sb_samples[1][j][i] = v;
  980. } else {
  981. s->sb_samples[0][j][i] = 0;
  982. s->sb_samples[1][j][i] = 0;
  983. }
  984. }
  985. }
  986. return 12;
  987. }
  988. static int mp_decode_layer2(MPADecodeContext *s)
  989. {
  990. int sblimit; /* number of used subbands */
  991. const unsigned char *alloc_table;
  992. int table, bit_alloc_bits, i, j, ch, bound, v;
  993. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  994. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  995. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  996. int scale, qindex, bits, steps, k, l, m, b;
  997. /* select decoding table */
  998. table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
  999. s->sample_rate, s->lsf);
  1000. sblimit = ff_mpa_sblimit_table[table];
  1001. alloc_table = ff_mpa_alloc_tables[table];
  1002. if (s->mode == MPA_JSTEREO)
  1003. bound = (s->mode_ext + 1) * 4;
  1004. else
  1005. bound = sblimit;
  1006. dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  1007. /* sanity check */
  1008. if( bound > sblimit ) bound = sblimit;
  1009. /* parse bit allocation */
  1010. j = 0;
  1011. for(i=0;i<bound;i++) {
  1012. bit_alloc_bits = alloc_table[j];
  1013. for(ch=0;ch<s->nb_channels;ch++) {
  1014. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1015. }
  1016. j += 1 << bit_alloc_bits;
  1017. }
  1018. for(i=bound;i<sblimit;i++) {
  1019. bit_alloc_bits = alloc_table[j];
  1020. v = get_bits(&s->gb, bit_alloc_bits);
  1021. bit_alloc[0][i] = v;
  1022. bit_alloc[1][i] = v;
  1023. j += 1 << bit_alloc_bits;
  1024. }
  1025. #ifdef DEBUG
  1026. {
  1027. for(ch=0;ch<s->nb_channels;ch++) {
  1028. for(i=0;i<sblimit;i++)
  1029. dprintf(s->avctx, " %d", bit_alloc[ch][i]);
  1030. dprintf(s->avctx, "\n");
  1031. }
  1032. }
  1033. #endif
  1034. /* scale codes */
  1035. for(i=0;i<sblimit;i++) {
  1036. for(ch=0;ch<s->nb_channels;ch++) {
  1037. if (bit_alloc[ch][i])
  1038. scale_code[ch][i] = get_bits(&s->gb, 2);
  1039. }
  1040. }
  1041. /* scale factors */
  1042. for(i=0;i<sblimit;i++) {
  1043. for(ch=0;ch<s->nb_channels;ch++) {
  1044. if (bit_alloc[ch][i]) {
  1045. sf = scale_factors[ch][i];
  1046. switch(scale_code[ch][i]) {
  1047. default:
  1048. case 0:
  1049. sf[0] = get_bits(&s->gb, 6);
  1050. sf[1] = get_bits(&s->gb, 6);
  1051. sf[2] = get_bits(&s->gb, 6);
  1052. break;
  1053. case 2:
  1054. sf[0] = get_bits(&s->gb, 6);
  1055. sf[1] = sf[0];
  1056. sf[2] = sf[0];
  1057. break;
  1058. case 1:
  1059. sf[0] = get_bits(&s->gb, 6);
  1060. sf[2] = get_bits(&s->gb, 6);
  1061. sf[1] = sf[0];
  1062. break;
  1063. case 3:
  1064. sf[0] = get_bits(&s->gb, 6);
  1065. sf[2] = get_bits(&s->gb, 6);
  1066. sf[1] = sf[2];
  1067. break;
  1068. }
  1069. }
  1070. }
  1071. }
  1072. #ifdef DEBUG
  1073. for(ch=0;ch<s->nb_channels;ch++) {
  1074. for(i=0;i<sblimit;i++) {
  1075. if (bit_alloc[ch][i]) {
  1076. sf = scale_factors[ch][i];
  1077. dprintf(s->avctx, " %d %d %d", sf[0], sf[1], sf[2]);
  1078. } else {
  1079. dprintf(s->avctx, " -");
  1080. }
  1081. }
  1082. dprintf(s->avctx, "\n");
  1083. }
  1084. #endif
  1085. /* samples */
  1086. for(k=0;k<3;k++) {
  1087. for(l=0;l<12;l+=3) {
  1088. j = 0;
  1089. for(i=0;i<bound;i++) {
  1090. bit_alloc_bits = alloc_table[j];
  1091. for(ch=0;ch<s->nb_channels;ch++) {
  1092. b = bit_alloc[ch][i];
  1093. if (b) {
  1094. scale = scale_factors[ch][i][k];
  1095. qindex = alloc_table[j+b];
  1096. bits = ff_mpa_quant_bits[qindex];
  1097. if (bits < 0) {
  1098. /* 3 values at the same time */
  1099. v = get_bits(&s->gb, -bits);
  1100. steps = ff_mpa_quant_steps[qindex];
  1101. s->sb_samples[ch][k * 12 + l + 0][i] =
  1102. l2_unscale_group(steps, v % steps, scale);
  1103. v = v / steps;
  1104. s->sb_samples[ch][k * 12 + l + 1][i] =
  1105. l2_unscale_group(steps, v % steps, scale);
  1106. v = v / steps;
  1107. s->sb_samples[ch][k * 12 + l + 2][i] =
  1108. l2_unscale_group(steps, v, scale);
  1109. } else {
  1110. for(m=0;m<3;m++) {
  1111. v = get_bits(&s->gb, bits);
  1112. v = l1_unscale(bits - 1, v, scale);
  1113. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1114. }
  1115. }
  1116. } else {
  1117. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1118. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1119. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1120. }
  1121. }
  1122. /* next subband in alloc table */
  1123. j += 1 << bit_alloc_bits;
  1124. }
  1125. /* XXX: find a way to avoid this duplication of code */
  1126. for(i=bound;i<sblimit;i++) {
  1127. bit_alloc_bits = alloc_table[j];
  1128. b = bit_alloc[0][i];
  1129. if (b) {
  1130. int mant, scale0, scale1;
  1131. scale0 = scale_factors[0][i][k];
  1132. scale1 = scale_factors[1][i][k];
  1133. qindex = alloc_table[j+b];
  1134. bits = ff_mpa_quant_bits[qindex];
  1135. if (bits < 0) {
  1136. /* 3 values at the same time */
  1137. v = get_bits(&s->gb, -bits);
  1138. steps = ff_mpa_quant_steps[qindex];
  1139. mant = v % steps;
  1140. v = v / steps;
  1141. s->sb_samples[0][k * 12 + l + 0][i] =
  1142. l2_unscale_group(steps, mant, scale0);
  1143. s->sb_samples[1][k * 12 + l + 0][i] =
  1144. l2_unscale_group(steps, mant, scale1);
  1145. mant = v % steps;
  1146. v = v / steps;
  1147. s->sb_samples[0][k * 12 + l + 1][i] =
  1148. l2_unscale_group(steps, mant, scale0);
  1149. s->sb_samples[1][k * 12 + l + 1][i] =
  1150. l2_unscale_group(steps, mant, scale1);
  1151. s->sb_samples[0][k * 12 + l + 2][i] =
  1152. l2_unscale_group(steps, v, scale0);
  1153. s->sb_samples[1][k * 12 + l + 2][i] =
  1154. l2_unscale_group(steps, v, scale1);
  1155. } else {
  1156. for(m=0;m<3;m++) {
  1157. mant = get_bits(&s->gb, bits);
  1158. s->sb_samples[0][k * 12 + l + m][i] =
  1159. l1_unscale(bits - 1, mant, scale0);
  1160. s->sb_samples[1][k * 12 + l + m][i] =
  1161. l1_unscale(bits - 1, mant, scale1);
  1162. }
  1163. }
  1164. } else {
  1165. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1166. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1167. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1168. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1169. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1170. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1171. }
  1172. /* next subband in alloc table */
  1173. j += 1 << bit_alloc_bits;
  1174. }
  1175. /* fill remaining samples to zero */
  1176. for(i=sblimit;i<SBLIMIT;i++) {
  1177. for(ch=0;ch<s->nb_channels;ch++) {
  1178. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1179. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1180. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1181. }
  1182. }
  1183. }
  1184. }
  1185. return 3 * 12;
  1186. }
  1187. static inline void lsf_sf_expand(int *slen,
  1188. int sf, int n1, int n2, int n3)
  1189. {
  1190. if (n3) {
  1191. slen[3] = sf % n3;
  1192. sf /= n3;
  1193. } else {
  1194. slen[3] = 0;
  1195. }
  1196. if (n2) {
  1197. slen[2] = sf % n2;
  1198. sf /= n2;
  1199. } else {
  1200. slen[2] = 0;
  1201. }
  1202. slen[1] = sf % n1;
  1203. sf /= n1;
  1204. slen[0] = sf;
  1205. }
  1206. static void exponents_from_scale_factors(MPADecodeContext *s,
  1207. GranuleDef *g,
  1208. int16_t *exponents)
  1209. {
  1210. const uint8_t *bstab, *pretab;
  1211. int len, i, j, k, l, v0, shift, gain, gains[3];
  1212. int16_t *exp_ptr;
  1213. exp_ptr = exponents;
  1214. gain = g->global_gain - 210;
  1215. shift = g->scalefac_scale + 1;
  1216. bstab = band_size_long[s->sample_rate_index];
  1217. pretab = mpa_pretab[g->preflag];
  1218. for(i=0;i<g->long_end;i++) {
  1219. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  1220. len = bstab[i];
  1221. for(j=len;j>0;j--)
  1222. *exp_ptr++ = v0;
  1223. }
  1224. if (g->short_start < 13) {
  1225. bstab = band_size_short[s->sample_rate_index];
  1226. gains[0] = gain - (g->subblock_gain[0] << 3);
  1227. gains[1] = gain - (g->subblock_gain[1] << 3);
  1228. gains[2] = gain - (g->subblock_gain[2] << 3);
  1229. k = g->long_end;
  1230. for(i=g->short_start;i<13;i++) {
  1231. len = bstab[i];
  1232. for(l=0;l<3;l++) {
  1233. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  1234. for(j=len;j>0;j--)
  1235. *exp_ptr++ = v0;
  1236. }
  1237. }
  1238. }
  1239. }
  1240. /* handle n = 0 too */
  1241. static inline int get_bitsz(GetBitContext *s, int n)
  1242. {
  1243. if (n == 0)
  1244. return 0;
  1245. else
  1246. return get_bits(s, n);
  1247. }
  1248. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
  1249. if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
  1250. s->gb= s->in_gb;
  1251. s->in_gb.buffer=NULL;
  1252. assert((get_bits_count(&s->gb) & 7) == 0);
  1253. skip_bits_long(&s->gb, *pos - *end_pos);
  1254. *end_pos2=
  1255. *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
  1256. *pos= get_bits_count(&s->gb);
  1257. }
  1258. }
  1259. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1260. int16_t *exponents, int end_pos2)
  1261. {
  1262. int s_index;
  1263. int i;
  1264. int last_pos, bits_left;
  1265. VLC *vlc;
  1266. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1267. /* low frequencies (called big values) */
  1268. s_index = 0;
  1269. for(i=0;i<3;i++) {
  1270. int j, k, l, linbits;
  1271. j = g->region_size[i];
  1272. if (j == 0)
  1273. continue;
  1274. /* select vlc table */
  1275. k = g->table_select[i];
  1276. l = mpa_huff_data[k][0];
  1277. linbits = mpa_huff_data[k][1];
  1278. vlc = &huff_vlc[l];
  1279. if(!l){
  1280. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1281. s_index += 2*j;
  1282. continue;
  1283. }
  1284. /* read huffcode and compute each couple */
  1285. for(;j>0;j--) {
  1286. int exponent, x, y, v;
  1287. int pos= get_bits_count(&s->gb);
  1288. if (pos >= end_pos){
  1289. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1290. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1291. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1292. if(pos >= end_pos)
  1293. break;
  1294. }
  1295. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1296. if(!y){
  1297. g->sb_hybrid[s_index ] =
  1298. g->sb_hybrid[s_index+1] = 0;
  1299. s_index += 2;
  1300. continue;
  1301. }
  1302. exponent= exponents[s_index];
  1303. dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  1304. i, g->region_size[i] - j, x, y, exponent);
  1305. if(y&16){
  1306. x = y >> 5;
  1307. y = y & 0x0f;
  1308. if (x < 15){
  1309. v = expval_table[ exponent ][ x ];
  1310. // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
  1311. }else{
  1312. x += get_bitsz(&s->gb, linbits);
  1313. v = l3_unscale(x, exponent);
  1314. }
  1315. if (get_bits1(&s->gb))
  1316. v = -v;
  1317. g->sb_hybrid[s_index] = v;
  1318. if (y < 15){
  1319. v = expval_table[ exponent ][ y ];
  1320. }else{
  1321. y += get_bitsz(&s->gb, linbits);
  1322. v = l3_unscale(y, exponent);
  1323. }
  1324. if (get_bits1(&s->gb))
  1325. v = -v;
  1326. g->sb_hybrid[s_index+1] = v;
  1327. }else{
  1328. x = y >> 5;
  1329. y = y & 0x0f;
  1330. x += y;
  1331. if (x < 15){
  1332. v = expval_table[ exponent ][ x ];
  1333. }else{
  1334. x += get_bitsz(&s->gb, linbits);
  1335. v = l3_unscale(x, exponent);
  1336. }
  1337. if (get_bits1(&s->gb))
  1338. v = -v;
  1339. g->sb_hybrid[s_index+!!y] = v;
  1340. g->sb_hybrid[s_index+ !y] = 0;
  1341. }
  1342. s_index+=2;
  1343. }
  1344. }
  1345. /* high frequencies */
  1346. vlc = &huff_quad_vlc[g->count1table_select];
  1347. last_pos=0;
  1348. while (s_index <= 572) {
  1349. int pos, code;
  1350. pos = get_bits_count(&s->gb);
  1351. if (pos >= end_pos) {
  1352. if (pos > end_pos2 && last_pos){
  1353. /* some encoders generate an incorrect size for this
  1354. part. We must go back into the data */
  1355. s_index -= 4;
  1356. skip_bits_long(&s->gb, last_pos - pos);
  1357. av_log(NULL, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1358. if(s->error_resilience >= FF_ER_COMPLIANT)
  1359. s_index=0;
  1360. break;
  1361. }
  1362. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1363. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1364. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1365. if(pos >= end_pos)
  1366. break;
  1367. }
  1368. last_pos= pos;
  1369. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1370. dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  1371. g->sb_hybrid[s_index+0]=
  1372. g->sb_hybrid[s_index+1]=
  1373. g->sb_hybrid[s_index+2]=
  1374. g->sb_hybrid[s_index+3]= 0;
  1375. while(code){
  1376. static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1377. int v;
  1378. int pos= s_index+idxtab[code];
  1379. code ^= 8>>idxtab[code];
  1380. v = exp_table[ exponents[pos] ];
  1381. // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
  1382. if(get_bits1(&s->gb))
  1383. v = -v;
  1384. g->sb_hybrid[pos] = v;
  1385. }
  1386. s_index+=4;
  1387. }
  1388. /* skip extension bits */
  1389. bits_left = end_pos2 - get_bits_count(&s->gb);
  1390. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1391. if (bits_left < 0/* || bits_left > 500*/) {
  1392. av_log(NULL, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1393. s_index=0;
  1394. }else if(bits_left > 0 && s->error_resilience >= FF_ER_AGGRESSIVE){
  1395. av_log(NULL, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1396. s_index=0;
  1397. }
  1398. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1399. skip_bits_long(&s->gb, bits_left);
  1400. i= get_bits_count(&s->gb);
  1401. switch_buffer(s, &i, &end_pos, &end_pos2);
  1402. return 0;
  1403. }
  1404. /* Reorder short blocks from bitstream order to interleaved order. It
  1405. would be faster to do it in parsing, but the code would be far more
  1406. complicated */
  1407. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1408. {
  1409. int i, j, len;
  1410. int32_t *ptr, *dst, *ptr1;
  1411. int32_t tmp[576];
  1412. if (g->block_type != 2)
  1413. return;
  1414. if (g->switch_point) {
  1415. if (s->sample_rate_index != 8) {
  1416. ptr = g->sb_hybrid + 36;
  1417. } else {
  1418. ptr = g->sb_hybrid + 48;
  1419. }
  1420. } else {
  1421. ptr = g->sb_hybrid;
  1422. }
  1423. for(i=g->short_start;i<13;i++) {
  1424. len = band_size_short[s->sample_rate_index][i];
  1425. ptr1 = ptr;
  1426. dst = tmp;
  1427. for(j=len;j>0;j--) {
  1428. *dst++ = ptr[0*len];
  1429. *dst++ = ptr[1*len];
  1430. *dst++ = ptr[2*len];
  1431. ptr++;
  1432. }
  1433. ptr+=2*len;
  1434. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1435. }
  1436. }
  1437. #define ISQRT2 FIXR(0.70710678118654752440)
  1438. static void compute_stereo(MPADecodeContext *s,
  1439. GranuleDef *g0, GranuleDef *g1)
  1440. {
  1441. int i, j, k, l;
  1442. int32_t v1, v2;
  1443. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1444. int32_t (*is_tab)[16];
  1445. int32_t *tab0, *tab1;
  1446. int non_zero_found_short[3];
  1447. /* intensity stereo */
  1448. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1449. if (!s->lsf) {
  1450. is_tab = is_table;
  1451. sf_max = 7;
  1452. } else {
  1453. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1454. sf_max = 16;
  1455. }
  1456. tab0 = g0->sb_hybrid + 576;
  1457. tab1 = g1->sb_hybrid + 576;
  1458. non_zero_found_short[0] = 0;
  1459. non_zero_found_short[1] = 0;
  1460. non_zero_found_short[2] = 0;
  1461. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1462. for(i = 12;i >= g1->short_start;i--) {
  1463. /* for last band, use previous scale factor */
  1464. if (i != 11)
  1465. k -= 3;
  1466. len = band_size_short[s->sample_rate_index][i];
  1467. for(l=2;l>=0;l--) {
  1468. tab0 -= len;
  1469. tab1 -= len;
  1470. if (!non_zero_found_short[l]) {
  1471. /* test if non zero band. if so, stop doing i-stereo */
  1472. for(j=0;j<len;j++) {
  1473. if (tab1[j] != 0) {
  1474. non_zero_found_short[l] = 1;
  1475. goto found1;
  1476. }
  1477. }
  1478. sf = g1->scale_factors[k + l];
  1479. if (sf >= sf_max)
  1480. goto found1;
  1481. v1 = is_tab[0][sf];
  1482. v2 = is_tab[1][sf];
  1483. for(j=0;j<len;j++) {
  1484. tmp0 = tab0[j];
  1485. tab0[j] = MULL(tmp0, v1);
  1486. tab1[j] = MULL(tmp0, v2);
  1487. }
  1488. } else {
  1489. found1:
  1490. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1491. /* lower part of the spectrum : do ms stereo
  1492. if enabled */
  1493. for(j=0;j<len;j++) {
  1494. tmp0 = tab0[j];
  1495. tmp1 = tab1[j];
  1496. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1497. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1498. }
  1499. }
  1500. }
  1501. }
  1502. }
  1503. non_zero_found = non_zero_found_short[0] |
  1504. non_zero_found_short[1] |
  1505. non_zero_found_short[2];
  1506. for(i = g1->long_end - 1;i >= 0;i--) {
  1507. len = band_size_long[s->sample_rate_index][i];
  1508. tab0 -= len;
  1509. tab1 -= len;
  1510. /* test if non zero band. if so, stop doing i-stereo */
  1511. if (!non_zero_found) {
  1512. for(j=0;j<len;j++) {
  1513. if (tab1[j] != 0) {
  1514. non_zero_found = 1;
  1515. goto found2;
  1516. }
  1517. }
  1518. /* for last band, use previous scale factor */
  1519. k = (i == 21) ? 20 : i;
  1520. sf = g1->scale_factors[k];
  1521. if (sf >= sf_max)
  1522. goto found2;
  1523. v1 = is_tab[0][sf];
  1524. v2 = is_tab[1][sf];
  1525. for(j=0;j<len;j++) {
  1526. tmp0 = tab0[j];
  1527. tab0[j] = MULL(tmp0, v1);
  1528. tab1[j] = MULL(tmp0, v2);
  1529. }
  1530. } else {
  1531. found2:
  1532. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1533. /* lower part of the spectrum : do ms stereo
  1534. if enabled */
  1535. for(j=0;j<len;j++) {
  1536. tmp0 = tab0[j];
  1537. tmp1 = tab1[j];
  1538. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1539. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1540. }
  1541. }
  1542. }
  1543. }
  1544. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1545. /* ms stereo ONLY */
  1546. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1547. global gain */
  1548. tab0 = g0->sb_hybrid;
  1549. tab1 = g1->sb_hybrid;
  1550. for(i=0;i<576;i++) {
  1551. tmp0 = tab0[i];
  1552. tmp1 = tab1[i];
  1553. tab0[i] = tmp0 + tmp1;
  1554. tab1[i] = tmp0 - tmp1;
  1555. }
  1556. }
  1557. }
  1558. static void compute_antialias_integer(MPADecodeContext *s,
  1559. GranuleDef *g)
  1560. {
  1561. int32_t *ptr, *csa;
  1562. int n, i;
  1563. /* we antialias only "long" bands */
  1564. if (g->block_type == 2) {
  1565. if (!g->switch_point)
  1566. return;
  1567. /* XXX: check this for 8000Hz case */
  1568. n = 1;
  1569. } else {
  1570. n = SBLIMIT - 1;
  1571. }
  1572. ptr = g->sb_hybrid + 18;
  1573. for(i = n;i > 0;i--) {
  1574. int tmp0, tmp1, tmp2;
  1575. csa = &csa_table[0][0];
  1576. #define INT_AA(j) \
  1577. tmp0 = ptr[-1-j];\
  1578. tmp1 = ptr[ j];\
  1579. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1580. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1581. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1582. INT_AA(0)
  1583. INT_AA(1)
  1584. INT_AA(2)
  1585. INT_AA(3)
  1586. INT_AA(4)
  1587. INT_AA(5)
  1588. INT_AA(6)
  1589. INT_AA(7)
  1590. ptr += 18;
  1591. }
  1592. }
  1593. static void compute_antialias_float(MPADecodeContext *s,
  1594. GranuleDef *g)
  1595. {
  1596. int32_t *ptr;
  1597. int n, i;
  1598. /* we antialias only "long" bands */
  1599. if (g->block_type == 2) {
  1600. if (!g->switch_point)
  1601. return;
  1602. /* XXX: check this for 8000Hz case */
  1603. n = 1;
  1604. } else {
  1605. n = SBLIMIT - 1;
  1606. }
  1607. ptr = g->sb_hybrid + 18;
  1608. for(i = n;i > 0;i--) {
  1609. float tmp0, tmp1;
  1610. float *csa = &csa_table_float[0][0];
  1611. #define FLOAT_AA(j)\
  1612. tmp0= ptr[-1-j];\
  1613. tmp1= ptr[ j];\
  1614. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1615. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1616. FLOAT_AA(0)
  1617. FLOAT_AA(1)
  1618. FLOAT_AA(2)
  1619. FLOAT_AA(3)
  1620. FLOAT_AA(4)
  1621. FLOAT_AA(5)
  1622. FLOAT_AA(6)
  1623. FLOAT_AA(7)
  1624. ptr += 18;
  1625. }
  1626. }
  1627. static void compute_imdct(MPADecodeContext *s,
  1628. GranuleDef *g,
  1629. int32_t *sb_samples,
  1630. int32_t *mdct_buf)
  1631. {
  1632. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1633. int32_t out2[12];
  1634. int i, j, mdct_long_end, v, sblimit;
  1635. /* find last non zero block */
  1636. ptr = g->sb_hybrid + 576;
  1637. ptr1 = g->sb_hybrid + 2 * 18;
  1638. while (ptr >= ptr1) {
  1639. ptr -= 6;
  1640. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1641. if (v != 0)
  1642. break;
  1643. }
  1644. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1645. if (g->block_type == 2) {
  1646. /* XXX: check for 8000 Hz */
  1647. if (g->switch_point)
  1648. mdct_long_end = 2;
  1649. else
  1650. mdct_long_end = 0;
  1651. } else {
  1652. mdct_long_end = sblimit;
  1653. }
  1654. buf = mdct_buf;
  1655. ptr = g->sb_hybrid;
  1656. for(j=0;j<mdct_long_end;j++) {
  1657. /* apply window & overlap with previous buffer */
  1658. out_ptr = sb_samples + j;
  1659. /* select window */
  1660. if (g->switch_point && j < 2)
  1661. win1 = mdct_win[0];
  1662. else
  1663. win1 = mdct_win[g->block_type];
  1664. /* select frequency inversion */
  1665. win = win1 + ((4 * 36) & -(j & 1));
  1666. imdct36(out_ptr, buf, ptr, win);
  1667. out_ptr += 18*SBLIMIT;
  1668. ptr += 18;
  1669. buf += 18;
  1670. }
  1671. for(j=mdct_long_end;j<sblimit;j++) {
  1672. /* select frequency inversion */
  1673. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1674. out_ptr = sb_samples + j;
  1675. for(i=0; i<6; i++){
  1676. *out_ptr = buf[i];
  1677. out_ptr += SBLIMIT;
  1678. }
  1679. imdct12(out2, ptr + 0);
  1680. for(i=0;i<6;i++) {
  1681. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1682. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1683. out_ptr += SBLIMIT;
  1684. }
  1685. imdct12(out2, ptr + 1);
  1686. for(i=0;i<6;i++) {
  1687. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1688. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1689. out_ptr += SBLIMIT;
  1690. }
  1691. imdct12(out2, ptr + 2);
  1692. for(i=0;i<6;i++) {
  1693. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1694. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1695. buf[i + 6*2] = 0;
  1696. }
  1697. ptr += 18;
  1698. buf += 18;
  1699. }
  1700. /* zero bands */
  1701. for(j=sblimit;j<SBLIMIT;j++) {
  1702. /* overlap */
  1703. out_ptr = sb_samples + j;
  1704. for(i=0;i<18;i++) {
  1705. *out_ptr = buf[i];
  1706. buf[i] = 0;
  1707. out_ptr += SBLIMIT;
  1708. }
  1709. buf += 18;
  1710. }
  1711. }
  1712. #if defined(DEBUG)
  1713. void sample_dump(int fnum, int32_t *tab, int n)
  1714. {
  1715. static FILE *files[16], *f;
  1716. char buf[512];
  1717. int i;
  1718. int32_t v;
  1719. f = files[fnum];
  1720. if (!f) {
  1721. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1722. fnum,
  1723. #ifdef USE_HIGHPRECISION
  1724. "hp"
  1725. #else
  1726. "lp"
  1727. #endif
  1728. );
  1729. f = fopen(buf, "w");
  1730. if (!f)
  1731. return;
  1732. files[fnum] = f;
  1733. }
  1734. if (fnum == 0) {
  1735. static int pos = 0;
  1736. av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
  1737. for(i=0;i<n;i++) {
  1738. av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
  1739. if ((i % 18) == 17)
  1740. av_log(NULL, AV_LOG_DEBUG, "\n");
  1741. }
  1742. pos += n;
  1743. }
  1744. for(i=0;i<n;i++) {
  1745. /* normalize to 23 frac bits */
  1746. v = tab[i] << (23 - FRAC_BITS);
  1747. fwrite(&v, 1, sizeof(int32_t), f);
  1748. }
  1749. }
  1750. #endif
  1751. /* main layer3 decoding function */
  1752. static int mp_decode_layer3(MPADecodeContext *s)
  1753. {
  1754. int nb_granules, main_data_begin, private_bits;
  1755. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1756. GranuleDef granules[2][2], *g;
  1757. int16_t exponents[576];
  1758. /* read side info */
  1759. if (s->lsf) {
  1760. main_data_begin = get_bits(&s->gb, 8);
  1761. private_bits = get_bits(&s->gb, s->nb_channels);
  1762. nb_granules = 1;
  1763. } else {
  1764. main_data_begin = get_bits(&s->gb, 9);
  1765. if (s->nb_channels == 2)
  1766. private_bits = get_bits(&s->gb, 3);
  1767. else
  1768. private_bits = get_bits(&s->gb, 5);
  1769. nb_granules = 2;
  1770. for(ch=0;ch<s->nb_channels;ch++) {
  1771. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1772. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1773. }
  1774. }
  1775. for(gr=0;gr<nb_granules;gr++) {
  1776. for(ch=0;ch<s->nb_channels;ch++) {
  1777. dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1778. g = &granules[ch][gr];
  1779. g->part2_3_length = get_bits(&s->gb, 12);
  1780. g->big_values = get_bits(&s->gb, 9);
  1781. if(g->big_values > 288){
  1782. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1783. return -1;
  1784. }
  1785. g->global_gain = get_bits(&s->gb, 8);
  1786. /* if MS stereo only is selected, we precompute the
  1787. 1/sqrt(2) renormalization factor */
  1788. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1789. MODE_EXT_MS_STEREO)
  1790. g->global_gain -= 2;
  1791. if (s->lsf)
  1792. g->scalefac_compress = get_bits(&s->gb, 9);
  1793. else
  1794. g->scalefac_compress = get_bits(&s->gb, 4);
  1795. blocksplit_flag = get_bits(&s->gb, 1);
  1796. if (blocksplit_flag) {
  1797. g->block_type = get_bits(&s->gb, 2);
  1798. if (g->block_type == 0){
  1799. av_log(NULL, AV_LOG_ERROR, "invalid block type\n");
  1800. return -1;
  1801. }
  1802. g->switch_point = get_bits(&s->gb, 1);
  1803. for(i=0;i<2;i++)
  1804. g->table_select[i] = get_bits(&s->gb, 5);
  1805. for(i=0;i<3;i++)
  1806. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1807. /* compute huffman coded region sizes */
  1808. if (g->block_type == 2)
  1809. g->region_size[0] = (36 / 2);
  1810. else {
  1811. if (s->sample_rate_index <= 2)
  1812. g->region_size[0] = (36 / 2);
  1813. else if (s->sample_rate_index != 8)
  1814. g->region_size[0] = (54 / 2);
  1815. else
  1816. g->region_size[0] = (108 / 2);
  1817. }
  1818. g->region_size[1] = (576 / 2);
  1819. } else {
  1820. int region_address1, region_address2, l;
  1821. g->block_type = 0;
  1822. g->switch_point = 0;
  1823. for(i=0;i<3;i++)
  1824. g->table_select[i] = get_bits(&s->gb, 5);
  1825. /* compute huffman coded region sizes */
  1826. region_address1 = get_bits(&s->gb, 4);
  1827. region_address2 = get_bits(&s->gb, 3);
  1828. dprintf(s->avctx, "region1=%d region2=%d\n",
  1829. region_address1, region_address2);
  1830. g->region_size[0] =
  1831. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  1832. l = region_address1 + region_address2 + 2;
  1833. /* should not overflow */
  1834. if (l > 22)
  1835. l = 22;
  1836. g->region_size[1] =
  1837. band_index_long[s->sample_rate_index][l] >> 1;
  1838. }
  1839. /* convert region offsets to region sizes and truncate
  1840. size to big_values */
  1841. g->region_size[2] = (576 / 2);
  1842. j = 0;
  1843. for(i=0;i<3;i++) {
  1844. k = FFMIN(g->region_size[i], g->big_values);
  1845. g->region_size[i] = k - j;
  1846. j = k;
  1847. }
  1848. /* compute band indexes */
  1849. if (g->block_type == 2) {
  1850. if (g->switch_point) {
  1851. /* if switched mode, we handle the 36 first samples as
  1852. long blocks. For 8000Hz, we handle the 48 first
  1853. exponents as long blocks (XXX: check this!) */
  1854. if (s->sample_rate_index <= 2)
  1855. g->long_end = 8;
  1856. else if (s->sample_rate_index != 8)
  1857. g->long_end = 6;
  1858. else
  1859. g->long_end = 4; /* 8000 Hz */
  1860. g->short_start = 2 + (s->sample_rate_index != 8);
  1861. } else {
  1862. g->long_end = 0;
  1863. g->short_start = 0;
  1864. }
  1865. } else {
  1866. g->short_start = 13;
  1867. g->long_end = 22;
  1868. }
  1869. g->preflag = 0;
  1870. if (!s->lsf)
  1871. g->preflag = get_bits(&s->gb, 1);
  1872. g->scalefac_scale = get_bits(&s->gb, 1);
  1873. g->count1table_select = get_bits(&s->gb, 1);
  1874. dprintf(s->avctx, "block_type=%d switch_point=%d\n",
  1875. g->block_type, g->switch_point);
  1876. }
  1877. }
  1878. if (!s->adu_mode) {
  1879. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1880. assert((get_bits_count(&s->gb) & 7) == 0);
  1881. /* now we get bits from the main_data_begin offset */
  1882. dprintf(s->avctx, "seekback: %d\n", main_data_begin);
  1883. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  1884. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  1885. s->in_gb= s->gb;
  1886. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  1887. skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
  1888. }
  1889. for(gr=0;gr<nb_granules;gr++) {
  1890. for(ch=0;ch<s->nb_channels;ch++) {
  1891. g = &granules[ch][gr];
  1892. if(get_bits_count(&s->gb)<0){
  1893. av_log(NULL, AV_LOG_ERROR, "mdb:%d, lastbuf:%d skipping granule %d\n",
  1894. main_data_begin, s->last_buf_size, gr);
  1895. skip_bits_long(&s->gb, g->part2_3_length);
  1896. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  1897. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
  1898. skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
  1899. s->gb= s->in_gb;
  1900. s->in_gb.buffer=NULL;
  1901. }
  1902. continue;
  1903. }
  1904. bits_pos = get_bits_count(&s->gb);
  1905. if (!s->lsf) {
  1906. uint8_t *sc;
  1907. int slen, slen1, slen2;
  1908. /* MPEG1 scale factors */
  1909. slen1 = slen_table[0][g->scalefac_compress];
  1910. slen2 = slen_table[1][g->scalefac_compress];
  1911. dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  1912. if (g->block_type == 2) {
  1913. n = g->switch_point ? 17 : 18;
  1914. j = 0;
  1915. if(slen1){
  1916. for(i=0;i<n;i++)
  1917. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  1918. }else{
  1919. for(i=0;i<n;i++)
  1920. g->scale_factors[j++] = 0;
  1921. }
  1922. if(slen2){
  1923. for(i=0;i<18;i++)
  1924. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  1925. for(i=0;i<3;i++)
  1926. g->scale_factors[j++] = 0;
  1927. }else{
  1928. for(i=0;i<21;i++)
  1929. g->scale_factors[j++] = 0;
  1930. }
  1931. } else {
  1932. sc = granules[ch][0].scale_factors;
  1933. j = 0;
  1934. for(k=0;k<4;k++) {
  1935. n = (k == 0 ? 6 : 5);
  1936. if ((g->scfsi & (0x8 >> k)) == 0) {
  1937. slen = (k < 2) ? slen1 : slen2;
  1938. if(slen){
  1939. for(i=0;i<n;i++)
  1940. g->scale_factors[j++] = get_bits(&s->gb, slen);
  1941. }else{
  1942. for(i=0;i<n;i++)
  1943. g->scale_factors[j++] = 0;
  1944. }
  1945. } else {
  1946. /* simply copy from last granule */
  1947. for(i=0;i<n;i++) {
  1948. g->scale_factors[j] = sc[j];
  1949. j++;
  1950. }
  1951. }
  1952. }
  1953. g->scale_factors[j++] = 0;
  1954. }
  1955. #if defined(DEBUG)
  1956. {
  1957. dprintf(s->avctx, "scfsi=%x gr=%d ch=%d scale_factors:\n",
  1958. g->scfsi, gr, ch);
  1959. for(i=0;i<j;i++)
  1960. dprintf(s->avctx, " %d", g->scale_factors[i]);
  1961. dprintf(s->avctx, "\n");
  1962. }
  1963. #endif
  1964. } else {
  1965. int tindex, tindex2, slen[4], sl, sf;
  1966. /* LSF scale factors */
  1967. if (g->block_type == 2) {
  1968. tindex = g->switch_point ? 2 : 1;
  1969. } else {
  1970. tindex = 0;
  1971. }
  1972. sf = g->scalefac_compress;
  1973. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1974. /* intensity stereo case */
  1975. sf >>= 1;
  1976. if (sf < 180) {
  1977. lsf_sf_expand(slen, sf, 6, 6, 0);
  1978. tindex2 = 3;
  1979. } else if (sf < 244) {
  1980. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1981. tindex2 = 4;
  1982. } else {
  1983. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1984. tindex2 = 5;
  1985. }
  1986. } else {
  1987. /* normal case */
  1988. if (sf < 400) {
  1989. lsf_sf_expand(slen, sf, 5, 4, 4);
  1990. tindex2 = 0;
  1991. } else if (sf < 500) {
  1992. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  1993. tindex2 = 1;
  1994. } else {
  1995. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  1996. tindex2 = 2;
  1997. g->preflag = 1;
  1998. }
  1999. }
  2000. j = 0;
  2001. for(k=0;k<4;k++) {
  2002. n = lsf_nsf_table[tindex2][tindex][k];
  2003. sl = slen[k];
  2004. if(sl){
  2005. for(i=0;i<n;i++)
  2006. g->scale_factors[j++] = get_bits(&s->gb, sl);
  2007. }else{
  2008. for(i=0;i<n;i++)
  2009. g->scale_factors[j++] = 0;
  2010. }
  2011. }
  2012. /* XXX: should compute exact size */
  2013. for(;j<40;j++)
  2014. g->scale_factors[j] = 0;
  2015. #if defined(DEBUG)
  2016. {
  2017. dprintf(s->avctx, "gr=%d ch=%d scale_factors:\n",
  2018. gr, ch);
  2019. for(i=0;i<40;i++)
  2020. dprintf(s->avctx, " %d", g->scale_factors[i]);
  2021. dprintf(s->avctx, "\n");
  2022. }
  2023. #endif
  2024. }
  2025. exponents_from_scale_factors(s, g, exponents);
  2026. /* read Huffman coded residue */
  2027. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  2028. #if defined(DEBUG)
  2029. sample_dump(0, g->sb_hybrid, 576);
  2030. #endif
  2031. } /* ch */
  2032. if (s->nb_channels == 2)
  2033. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2034. for(ch=0;ch<s->nb_channels;ch++) {
  2035. g = &granules[ch][gr];
  2036. reorder_block(s, g);
  2037. #if defined(DEBUG)
  2038. sample_dump(0, g->sb_hybrid, 576);
  2039. #endif
  2040. s->compute_antialias(s, g);
  2041. #if defined(DEBUG)
  2042. sample_dump(1, g->sb_hybrid, 576);
  2043. #endif
  2044. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2045. #if defined(DEBUG)
  2046. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2047. #endif
  2048. }
  2049. } /* gr */
  2050. if(get_bits_count(&s->gb)<0)
  2051. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  2052. return nb_granules * 18;
  2053. }
  2054. static int mp_decode_frame(MPADecodeContext *s,
  2055. OUT_INT *samples, const uint8_t *buf, int buf_size)
  2056. {
  2057. int i, nb_frames, ch;
  2058. OUT_INT *samples_ptr;
  2059. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  2060. /* skip error protection field */
  2061. if (s->error_protection)
  2062. get_bits(&s->gb, 16);
  2063. dprintf(s->avctx, "frame %d:\n", s->frame_count);
  2064. switch(s->layer) {
  2065. case 1:
  2066. nb_frames = mp_decode_layer1(s);
  2067. break;
  2068. case 2:
  2069. nb_frames = mp_decode_layer2(s);
  2070. break;
  2071. case 3:
  2072. default:
  2073. nb_frames = mp_decode_layer3(s);
  2074. s->last_buf_size=0;
  2075. if(s->in_gb.buffer){
  2076. align_get_bits(&s->gb);
  2077. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2078. if(i >= 0 && i <= BACKSTEP_SIZE){
  2079. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  2080. s->last_buf_size=i;
  2081. }else
  2082. av_log(NULL, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  2083. s->gb= s->in_gb;
  2084. s->in_gb.buffer= NULL;
  2085. }
  2086. align_get_bits(&s->gb);
  2087. assert((get_bits_count(&s->gb) & 7) == 0);
  2088. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2089. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  2090. av_log(NULL, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  2091. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  2092. }
  2093. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  2094. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  2095. s->last_buf_size += i;
  2096. break;
  2097. }
  2098. #if defined(DEBUG)
  2099. for(i=0;i<nb_frames;i++) {
  2100. for(ch=0;ch<s->nb_channels;ch++) {
  2101. int j;
  2102. dprintf(s->avctx, "%d-%d:", i, ch);
  2103. for(j=0;j<SBLIMIT;j++)
  2104. dprintf(s->avctx, " %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2105. dprintf(s->avctx, "\n");
  2106. }
  2107. }
  2108. #endif
  2109. /* apply the synthesis filter */
  2110. for(ch=0;ch<s->nb_channels;ch++) {
  2111. samples_ptr = samples + ch;
  2112. for(i=0;i<nb_frames;i++) {
  2113. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2114. window, &s->dither_state,
  2115. samples_ptr, s->nb_channels,
  2116. s->sb_samples[ch][i]);
  2117. samples_ptr += 32 * s->nb_channels;
  2118. }
  2119. }
  2120. #ifdef DEBUG
  2121. s->frame_count++;
  2122. #endif
  2123. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2124. }
  2125. static int decode_frame(AVCodecContext * avctx,
  2126. void *data, int *data_size,
  2127. uint8_t * buf, int buf_size)
  2128. {
  2129. MPADecodeContext *s = avctx->priv_data;
  2130. uint32_t header;
  2131. int out_size;
  2132. OUT_INT *out_samples = data;
  2133. retry:
  2134. if(buf_size < HEADER_SIZE)
  2135. return -1;
  2136. header = AV_RB32(buf);
  2137. if(ff_mpa_check_header(header) < 0){
  2138. buf++;
  2139. // buf_size--;
  2140. av_log(avctx, AV_LOG_ERROR, "Header missing skipping one byte.\n");
  2141. goto retry;
  2142. }
  2143. if (ff_mpegaudio_decode_header(s, header) == 1) {
  2144. /* free format: prepare to compute frame size */
  2145. s->frame_size = -1;
  2146. return -1;
  2147. }
  2148. /* update codec info */
  2149. avctx->channels = s->nb_channels;
  2150. avctx->bit_rate = s->bit_rate;
  2151. avctx->sub_id = s->layer;
  2152. switch(s->layer) {
  2153. case 1:
  2154. avctx->frame_size = 384;
  2155. break;
  2156. case 2:
  2157. avctx->frame_size = 1152;
  2158. break;
  2159. case 3:
  2160. if (s->lsf)
  2161. avctx->frame_size = 576;
  2162. else
  2163. avctx->frame_size = 1152;
  2164. break;
  2165. }
  2166. if(s->frame_size<=0 || s->frame_size > buf_size){
  2167. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  2168. return -1;
  2169. }else if(s->frame_size < buf_size){
  2170. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  2171. buf_size= s->frame_size;
  2172. }
  2173. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2174. if(out_size>=0){
  2175. *data_size = out_size;
  2176. avctx->sample_rate = s->sample_rate;
  2177. //FIXME maybe move the other codec info stuff from above here too
  2178. }else
  2179. av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
  2180. s->frame_size = 0;
  2181. return buf_size;
  2182. }
  2183. static void flush(AVCodecContext *avctx){
  2184. MPADecodeContext *s = avctx->priv_data;
  2185. s->last_buf_size= 0;
  2186. }
  2187. #ifdef CONFIG_MP3ADU_DECODER
  2188. static int decode_frame_adu(AVCodecContext * avctx,
  2189. void *data, int *data_size,
  2190. uint8_t * buf, int buf_size)
  2191. {
  2192. MPADecodeContext *s = avctx->priv_data;
  2193. uint32_t header;
  2194. int len, out_size;
  2195. OUT_INT *out_samples = data;
  2196. len = buf_size;
  2197. // Discard too short frames
  2198. if (buf_size < HEADER_SIZE) {
  2199. *data_size = 0;
  2200. return buf_size;
  2201. }
  2202. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2203. len = MPA_MAX_CODED_FRAME_SIZE;
  2204. // Get header and restore sync word
  2205. header = AV_RB32(buf) | 0xffe00000;
  2206. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2207. *data_size = 0;
  2208. return buf_size;
  2209. }
  2210. ff_mpegaudio_decode_header(s, header);
  2211. /* update codec info */
  2212. avctx->sample_rate = s->sample_rate;
  2213. avctx->channels = s->nb_channels;
  2214. avctx->bit_rate = s->bit_rate;
  2215. avctx->sub_id = s->layer;
  2216. avctx->frame_size=s->frame_size = len;
  2217. if (avctx->parse_only) {
  2218. out_size = buf_size;
  2219. } else {
  2220. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2221. }
  2222. *data_size = out_size;
  2223. return buf_size;
  2224. }
  2225. #endif /* CONFIG_MP3ADU_DECODER */
  2226. #ifdef CONFIG_MP3ON4_DECODER
  2227. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2228. static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */
  2229. static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */
  2230. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2231. static int chan_offset[9][5] = {
  2232. {0},
  2233. {0}, // C
  2234. {0}, // FLR
  2235. {2,0}, // C FLR
  2236. {2,0,3}, // C FLR BS
  2237. {4,0,2}, // C FLR BLRS
  2238. {4,0,2,5}, // C FLR BLRS LFE
  2239. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2240. {0,2} // FLR BLRS
  2241. };
  2242. static int decode_init_mp3on4(AVCodecContext * avctx)
  2243. {
  2244. MP3On4DecodeContext *s = avctx->priv_data;
  2245. int i;
  2246. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2247. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2248. return -1;
  2249. }
  2250. s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
  2251. s->frames = mp3Frames[s->chan_cfg];
  2252. if(!s->frames) {
  2253. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2254. return -1;
  2255. }
  2256. avctx->channels = mp3Channels[s->chan_cfg];
  2257. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2258. * We replace avctx->priv_data with the context of the first decoder so that
  2259. * decode_init() does not have to be changed.
  2260. * Other decoders will be inited here copying data from the first context
  2261. */
  2262. // Allocate zeroed memory for the first decoder context
  2263. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2264. // Put decoder context in place to make init_decode() happy
  2265. avctx->priv_data = s->mp3decctx[0];
  2266. decode_init(avctx);
  2267. // Restore mp3on4 context pointer
  2268. avctx->priv_data = s;
  2269. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2270. /* Create a separate codec/context for each frame (first is already ok).
  2271. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2272. */
  2273. for (i = 1; i < s->frames; i++) {
  2274. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2275. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2276. s->mp3decctx[i]->adu_mode = 1;
  2277. s->mp3decctx[i]->avctx = avctx;
  2278. }
  2279. return 0;
  2280. }
  2281. static int decode_close_mp3on4(AVCodecContext * avctx)
  2282. {
  2283. MP3On4DecodeContext *s = avctx->priv_data;
  2284. int i;
  2285. for (i = 0; i < s->frames; i++)
  2286. if (s->mp3decctx[i])
  2287. av_free(s->mp3decctx[i]);
  2288. return 0;
  2289. }
  2290. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2291. void *data, int *data_size,
  2292. uint8_t * buf, int buf_size)
  2293. {
  2294. MP3On4DecodeContext *s = avctx->priv_data;
  2295. MPADecodeContext *m;
  2296. int len, out_size = 0;
  2297. uint32_t header;
  2298. OUT_INT *out_samples = data;
  2299. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2300. OUT_INT *outptr, *bp;
  2301. int fsize;
  2302. unsigned char *start2 = buf, *start;
  2303. int fr, i, j, n;
  2304. int off = avctx->channels;
  2305. int *coff = chan_offset[s->chan_cfg];
  2306. len = buf_size;
  2307. // Discard too short frames
  2308. if (buf_size < HEADER_SIZE) {
  2309. *data_size = 0;
  2310. return buf_size;
  2311. }
  2312. // If only one decoder interleave is not needed
  2313. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2314. for (fr = 0; fr < s->frames; fr++) {
  2315. start = start2;
  2316. fsize = (start[0] << 4) | (start[1] >> 4);
  2317. start2 += fsize;
  2318. if (fsize > len)
  2319. fsize = len;
  2320. len -= fsize;
  2321. if (fsize > MPA_MAX_CODED_FRAME_SIZE)
  2322. fsize = MPA_MAX_CODED_FRAME_SIZE;
  2323. m = s->mp3decctx[fr];
  2324. assert (m != NULL);
  2325. // Get header
  2326. header = AV_RB32(start) | 0xfff00000;
  2327. if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
  2328. *data_size = 0;
  2329. return buf_size;
  2330. }
  2331. ff_mpegaudio_decode_header(m, header);
  2332. mp_decode_frame(m, decoded_buf, start, fsize);
  2333. n = MPA_FRAME_SIZE * m->nb_channels;
  2334. out_size += n * sizeof(OUT_INT);
  2335. if(s->frames > 1) {
  2336. /* interleave output data */
  2337. bp = out_samples + coff[fr];
  2338. if(m->nb_channels == 1) {
  2339. for(j = 0; j < n; j++) {
  2340. *bp = decoded_buf[j];
  2341. bp += off;
  2342. }
  2343. } else {
  2344. for(j = 0; j < n; j++) {
  2345. bp[0] = decoded_buf[j++];
  2346. bp[1] = decoded_buf[j];
  2347. bp += off;
  2348. }
  2349. }
  2350. }
  2351. }
  2352. /* update codec info */
  2353. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2354. avctx->frame_size= buf_size;
  2355. avctx->bit_rate = 0;
  2356. for (i = 0; i < s->frames; i++)
  2357. avctx->bit_rate += s->mp3decctx[i]->bit_rate;
  2358. *data_size = out_size;
  2359. return buf_size;
  2360. }
  2361. #endif /* CONFIG_MP3ON4_DECODER */
  2362. #ifdef CONFIG_MP2_DECODER
  2363. AVCodec mp2_decoder =
  2364. {
  2365. "mp2",
  2366. CODEC_TYPE_AUDIO,
  2367. CODEC_ID_MP2,
  2368. sizeof(MPADecodeContext),
  2369. decode_init,
  2370. NULL,
  2371. NULL,
  2372. decode_frame,
  2373. CODEC_CAP_PARSE_ONLY,
  2374. };
  2375. #endif
  2376. #ifdef CONFIG_MP3_DECODER
  2377. AVCodec mp3_decoder =
  2378. {
  2379. "mp3",
  2380. CODEC_TYPE_AUDIO,
  2381. CODEC_ID_MP3,
  2382. sizeof(MPADecodeContext),
  2383. decode_init,
  2384. NULL,
  2385. NULL,
  2386. decode_frame,
  2387. CODEC_CAP_PARSE_ONLY,
  2388. .flush= flush,
  2389. };
  2390. #endif
  2391. #ifdef CONFIG_MP3ADU_DECODER
  2392. AVCodec mp3adu_decoder =
  2393. {
  2394. "mp3adu",
  2395. CODEC_TYPE_AUDIO,
  2396. CODEC_ID_MP3ADU,
  2397. sizeof(MPADecodeContext),
  2398. decode_init,
  2399. NULL,
  2400. NULL,
  2401. decode_frame_adu,
  2402. CODEC_CAP_PARSE_ONLY,
  2403. .flush= flush,
  2404. };
  2405. #endif
  2406. #ifdef CONFIG_MP3ON4_DECODER
  2407. AVCodec mp3on4_decoder =
  2408. {
  2409. "mp3on4",
  2410. CODEC_TYPE_AUDIO,
  2411. CODEC_ID_MP3ON4,
  2412. sizeof(MP3On4DecodeContext),
  2413. decode_init_mp3on4,
  2414. NULL,
  2415. decode_close_mp3on4,
  2416. decode_frame_mp3on4,
  2417. .flush= flush,
  2418. };
  2419. #endif