|
- /*
- * AC-3 Audio Decoder
- * This code is developed as part of Google Summer of Code 2006 Program.
- *
- * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
- * Copyright (c) 2007 Justin Ruggles
- *
- * Portions of this code are derived from liba52
- * http://liba52.sourceforge.net
- * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
- * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- #include <stdio.h>
- #include <stddef.h>
- #include <math.h>
- #include <string.h>
-
- #include "avcodec.h"
- #include "ac3_parser.h"
- #include "bitstream.h"
- #include "dsputil.h"
- #include "random.h"
-
- /**
- * Table of bin locations for rematrixing bands
- * reference: Section 7.5.2 Rematrixing : Frequency Band Definitions
- */
- static const uint8_t rematrix_band_tbl[5] = { 13, 25, 37, 61, 253 };
-
- /* table for exponent to scale_factor mapping
- * scale_factor[i] = 2 ^ -(i + 15)
- */
- static float scale_factors[25];
-
- /** table for grouping exponents */
- static uint8_t exp_ungroup_tbl[128][3];
-
- static int16_t l3_quantizers_1[32];
- static int16_t l3_quantizers_2[32];
- static int16_t l3_quantizers_3[32];
-
- static int16_t l5_quantizers_1[128];
- static int16_t l5_quantizers_2[128];
- static int16_t l5_quantizers_3[128];
-
- static int16_t l7_quantizers[7];
-
- static int16_t l11_quantizers_1[128];
- static int16_t l11_quantizers_2[128];
-
- static int16_t l15_quantizers[15];
-
- static const uint8_t qntztab[16] = { 0, 5, 7, 3, 7, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16 };
-
- /* Adjustmens in dB gain */
- #define LEVEL_MINUS_3DB 0.7071067811865476
- #define LEVEL_MINUS_4POINT5DB 0.5946035575013605
- #define LEVEL_MINUS_6DB 0.5000000000000000
- #define LEVEL_PLUS_3DB 1.4142135623730951
- #define LEVEL_PLUS_6DB 2.0000000000000000
- #define LEVEL_ZERO 0.0000000000000000
-
- static const float clevs[4] = { LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB,
- LEVEL_MINUS_6DB, LEVEL_MINUS_4POINT5DB };
-
- static const float slevs[4] = { LEVEL_MINUS_3DB, LEVEL_MINUS_6DB, LEVEL_ZERO, LEVEL_MINUS_6DB };
-
- #define AC3_OUTPUT_LFEON 8
-
- typedef struct {
- int acmod;
- int cmixlev;
- int surmixlev;
- int dsurmod;
-
- int blksw[AC3_MAX_CHANNELS];
- int dithflag[AC3_MAX_CHANNELS];
- int cplinu;
- int chincpl[AC3_MAX_CHANNELS];
- int phsflginu;
- int cplcoe;
- uint32_t cplbndstrc;
- int rematstr;
- int nrematbnd;
- int rematflg[AC3_MAX_CHANNELS];
- int cplexpstr;
- int lfeexpstr;
- int chexpstr[5];
- int cplsnroffst;
- int cplfgain;
- int snroffst[5];
- int fgain[5];
- int lfesnroffst;
- int lfefgain;
- int cpldeltbae;
- int deltbae[5];
- int cpldeltnseg;
- uint8_t cpldeltoffst[8];
- uint8_t cpldeltlen[8];
- uint8_t cpldeltba[8];
- int deltnseg[5];
- uint8_t deltoffst[5][8];
- uint8_t deltlen[5][8];
- uint8_t deltba[5][8];
-
- /* Derived Attributes. */
- int sampling_rate;
- int bit_rate;
- int frame_size;
-
- int nchans; //number of total channels
- int nfchans; //number of full-bandwidth channels
- int lfeon; //lfe channel in use
- int output_mode; ///< output channel configuration
- int out_channels; ///< number of output channels
-
- float dynrng; //dynamic range gain
- float dynrng2; //dynamic range gain for 1+1 mode
- float cplco[5][18]; //coupling coordinates
- int ncplbnd; //number of coupling bands
- int ncplsubnd; //number of coupling sub bands
- int cplstrtmant; //coupling start mantissa
- int cplendmant; //coupling end mantissa
- int endmant[5]; //channel end mantissas
- AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters
-
- int8_t dcplexps[256]; //decoded coupling exponents
- int8_t dexps[5][256]; //decoded fbw channel exponents
- int8_t dlfeexps[256]; //decoded lfe channel exponents
- uint8_t cplbap[256]; //coupling bit allocation pointers
- uint8_t bap[5][256]; //fbw channel bit allocation pointers
- uint8_t lfebap[256]; //lfe channel bit allocation pointers
-
- DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]); //transform coefficients
-
- /* For IMDCT. */
- MDCTContext imdct_512; //for 512 sample imdct transform
- MDCTContext imdct_256; //for 256 sample imdct transform
- DSPContext dsp; //for optimization
-
- DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS][256]); //output after imdct transform and windowing
- DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS][256]); //delay - added to the next block
- DECLARE_ALIGNED_16(float, tmp_imdct[256]); //temporary storage for imdct transform
- DECLARE_ALIGNED_16(float, tmp_output[512]); //temporary storage for output before windowing
- DECLARE_ALIGNED_16(float, window[256]); //window coefficients
-
- /* Miscellaneous. */
- GetBitContext gb;
- AVRandomState dith_state; //for dither generation
- } AC3DecodeContext;
-
- /*********** BEGIN INIT HELPER FUNCTIONS ***********/
- /**
- * Generate a Kaiser-Bessel Derived Window.
- */
- static void ac3_window_init(float *window)
- {
- int i, j;
- double sum = 0.0, bessel, tmp;
- double local_window[256];
- double alpha2 = (5.0 * M_PI / 256.0) * (5.0 * M_PI / 256.0);
-
- for (i = 0; i < 256; i++) {
- tmp = i * (256 - i) * alpha2;
- bessel = 1.0;
- for (j = 100; j > 0; j--) /* defaul to 100 iterations */
- bessel = bessel * tmp / (j * j) + 1;
- sum += bessel;
- local_window[i] = sum;
- }
-
- sum++;
- for (i = 0; i < 256; i++)
- window[i] = sqrt(local_window[i] / sum);
- }
-
- /*
- * Generate quantizer tables.
- */
- static void generate_quantizers_table(int16_t quantizers[], int level, int length)
- {
- int i;
-
- for (i = 0; i < length; i++)
- quantizers[i] = ((2 * i - level + 1) << 15) / level;
- }
-
- static void generate_quantizers_table_1(int16_t quantizers[], int level, int length1, int length2, int size)
- {
- int i, j;
- int16_t v;
-
- for (i = 0; i < length1; i++) {
- v = ((2 * i - level + 1) << 15) / level;
- for (j = 0; j < length2; j++)
- quantizers[i * length2 + j] = v;
- }
-
- for (i = length1 * length2; i < size; i++)
- quantizers[i] = 0;
- }
-
- static void generate_quantizers_table_2(int16_t quantizers[], int level, int length1, int length2, int size)
- {
- int i, j;
- int16_t v;
-
- for (i = 0; i < length1; i++) {
- v = ((2 * (i % level) - level + 1) << 15) / level;
- for (j = 0; j < length2; j++)
- quantizers[i * length2 + j] = v;
- }
-
- for (i = length1 * length2; i < size; i++)
- quantizers[i] = 0;
-
- }
-
- static void generate_quantizers_table_3(int16_t quantizers[], int level, int length1, int length2, int size)
- {
- int i, j;
-
- for (i = 0; i < length1; i++)
- for (j = 0; j < length2; j++)
- quantizers[i * length2 + j] = ((2 * (j % level) - level + 1) << 15) / level;
-
- for (i = length1 * length2; i < size; i++)
- quantizers[i] = 0;
- }
-
- /*
- * Initialize tables at runtime.
- */
- static void ac3_tables_init(void)
- {
- int i;
-
- /* Quantizer ungrouping tables. */
- // for level-3 quantizers
- generate_quantizers_table_1(l3_quantizers_1, 3, 3, 9, 32);
- generate_quantizers_table_2(l3_quantizers_2, 3, 9, 3, 32);
- generate_quantizers_table_3(l3_quantizers_3, 3, 9, 3, 32);
-
- //for level-5 quantizers
- generate_quantizers_table_1(l5_quantizers_1, 5, 5, 25, 128);
- generate_quantizers_table_2(l5_quantizers_2, 5, 25, 5, 128);
- generate_quantizers_table_3(l5_quantizers_3, 5, 25, 5, 128);
-
- //for level-7 quantizers
- generate_quantizers_table(l7_quantizers, 7, 7);
-
- //for level-4 quantizers
- generate_quantizers_table_2(l11_quantizers_1, 11, 11, 11, 128);
- generate_quantizers_table_3(l11_quantizers_2, 11, 11, 11, 128);
-
- //for level-15 quantizers
- generate_quantizers_table(l15_quantizers, 15, 15);
- /* End Quantizer ungrouping tables. */
-
- //generate scale factors
- for (i = 0; i < 25; i++)
- scale_factors[i] = pow(2.0, -(i + 15));
-
- /* generate exponent tables
- reference: Section 7.1.3 Exponent Decoding */
- for(i=0; i<128; i++) {
- exp_ungroup_tbl[i][0] = i / 25;
- exp_ungroup_tbl[i][1] = (i % 25) / 5;
- exp_ungroup_tbl[i][2] = (i % 25) % 5;
- }
- }
-
-
- static int ac3_decode_init(AVCodecContext *avctx)
- {
- AC3DecodeContext *ctx = avctx->priv_data;
-
- ac3_common_init();
- ac3_tables_init();
- ff_mdct_init(&ctx->imdct_256, 8, 1);
- ff_mdct_init(&ctx->imdct_512, 9, 1);
- ac3_window_init(ctx->window);
- dsputil_init(&ctx->dsp, avctx);
- av_init_random(0, &ctx->dith_state);
-
- return 0;
- }
- /*********** END INIT FUNCTIONS ***********/
-
- /**
- * Parses the 'sync info' and 'bit stream info' from the AC-3 bitstream.
- * GetBitContext within AC3DecodeContext must point to
- * start of the synchronized ac3 bitstream.
- */
- static int ac3_parse_header(AC3DecodeContext *ctx)
- {
- AC3HeaderInfo hdr;
- GetBitContext *gb = &ctx->gb;
- int err, i;
-
- err = ff_ac3_parse_header(gb->buffer, &hdr);
- if(err)
- return err;
-
- /* get decoding parameters from header info */
- ctx->bit_alloc_params.fscod = hdr.fscod;
- ctx->acmod = hdr.acmod;
- ctx->cmixlev = hdr.cmixlev;
- ctx->surmixlev = hdr.surmixlev;
- ctx->dsurmod = hdr.dsurmod;
- ctx->lfeon = hdr.lfeon;
- ctx->bit_alloc_params.halfratecod = hdr.halfratecod;
- ctx->sampling_rate = hdr.sample_rate;
- ctx->bit_rate = hdr.bit_rate;
- ctx->nchans = hdr.channels;
- ctx->nfchans = ctx->nchans - ctx->lfeon;
- ctx->frame_size = hdr.frame_size;
-
- /* set default output to all source channels */
- ctx->out_channels = ctx->nchans;
- ctx->output_mode = ctx->acmod;
- if(ctx->lfeon)
- ctx->output_mode |= AC3_OUTPUT_LFEON;
-
- /* skip over portion of header which has already been read */
- skip_bits(gb, 16); //skip the sync_word, sync_info->sync_word = get_bits(gb, 16);
- skip_bits(gb, 16); // skip crc1
- skip_bits(gb, 8); // skip fscod and frmsizecod
- skip_bits(gb, 11); // skip bsid, bsmod, and acmod
- if(ctx->acmod == AC3_ACMOD_STEREO) {
- skip_bits(gb, 2); // skip dsurmod
- } else {
- if((ctx->acmod & 1) && ctx->acmod != AC3_ACMOD_MONO)
- skip_bits(gb, 2); // skip cmixlev
- if(ctx->acmod & 4)
- skip_bits(gb, 2); // skip surmixlev
- }
- skip_bits1(gb); // skip lfeon
-
- /* read the rest of the bsi. read twice for dual mono mode. */
- i = !(ctx->acmod);
- do {
- skip_bits(gb, 5); //skip dialog normalization
- if (get_bits1(gb))
- skip_bits(gb, 8); //skip compression
- if (get_bits1(gb))
- skip_bits(gb, 8); //skip language code
- if (get_bits1(gb))
- skip_bits(gb, 7); //skip audio production information
- } while (i--);
-
- skip_bits(gb, 2); //skip copyright bit and original bitstream bit
-
- /* FIXME: read & use the xbsi1 downmix levels */
- if (get_bits1(gb))
- skip_bits(gb, 14); //skip timecode1
- if (get_bits1(gb))
- skip_bits(gb, 14); //skip timecode2
-
- if (get_bits1(gb)) {
- i = get_bits(gb, 6); //additional bsi length
- do {
- skip_bits(gb, 8);
- } while(i--);
- }
-
- return 0;
- }
-
- /**
- * Decodes the grouped exponents.
- * This function decodes the coded exponents according to exponent strategy
- * and stores them in the decoded exponents buffer.
- *
- * @param[in] gb GetBitContext which points to start of coded exponents
- * @param[in] expstr Exponent coding strategy
- * @param[in] ngrps Number of grouped exponents
- * @param[in] absexp Absolute exponent or DC exponent
- * @param[out] dexps Decoded exponents are stored in dexps
- */
- static void decode_exponents(GetBitContext *gb, int expstr, int ngrps,
- uint8_t absexp, int8_t *dexps)
- {
- int i, j, grp, grpsize;
- int dexp[256];
- int expacc, prevexp;
-
- /* unpack groups */
- grpsize = expstr + (expstr == EXP_D45);
- for(grp=0,i=0; grp<ngrps; grp++) {
- expacc = get_bits(gb, 7);
- dexp[i++] = exp_ungroup_tbl[expacc][0];
- dexp[i++] = exp_ungroup_tbl[expacc][1];
- dexp[i++] = exp_ungroup_tbl[expacc][2];
- }
-
- /* convert to absolute exps and expand groups */
- prevexp = absexp;
- for(i=0; i<ngrps*3; i++) {
- prevexp = av_clip(prevexp + dexp[i]-2, 0, 24);
- for(j=0; j<grpsize; j++) {
- dexps[(i*grpsize)+j] = prevexp;
- }
- }
- }
-
- typedef struct { /* grouped mantissas for 3-level 5-leve and 11-level quantization */
- int16_t l3_quantizers[3];
- int16_t l5_quantizers[3];
- int16_t l11_quantizers[2];
- int l3ptr;
- int l5ptr;
- int l11ptr;
- } mant_groups;
-
- /* Get the transform coefficients for coupling channel and uncouple channels.
- * The coupling transform coefficients starts at the the cplstrtmant, which is
- * equal to endmant[ch] for fbw channels. Hence we can uncouple channels before
- * getting transform coefficients for the channel.
- */
- static int get_transform_coeffs_cpling(AC3DecodeContext *ctx, mant_groups *m)
- {
- GetBitContext *gb = &ctx->gb;
- int ch, start, end, cplbndstrc, bnd, gcode, tbap;
- float cplcos[5], cplcoeff;
- uint8_t *exps = ctx->dcplexps;
- uint8_t *bap = ctx->cplbap;
-
- cplbndstrc = ctx->cplbndstrc;
- start = ctx->cplstrtmant;
- bnd = 0;
-
- while (start < ctx->cplendmant) {
- end = start + 12;
- while (cplbndstrc & 1) {
- end += 12;
- cplbndstrc >>= 1;
- }
- cplbndstrc >>= 1;
- for (ch = 0; ch < ctx->nfchans; ch++)
- cplcos[ch] = ctx->cplco[ch][bnd];
- bnd++;
-
- while (start < end) {
- tbap = bap[start];
- switch(tbap) {
- case 0:
- for (ch = 0; ch < ctx->nfchans; ch++)
- if (ctx->chincpl[ch]) {
- if (ctx->dithflag[ch]) {
- cplcoeff = (av_random(&ctx->dith_state) & 0xFFFF) * scale_factors[exps[start]];
- ctx->transform_coeffs[ch + 1][start] = cplcoeff * cplcos[ch] * LEVEL_MINUS_3DB;
- } else
- ctx->transform_coeffs[ch + 1][start] = 0;
- }
- start++;
- continue;
- case 1:
- if (m->l3ptr > 2) {
- gcode = get_bits(gb, 5);
- m->l3_quantizers[0] = l3_quantizers_1[gcode];
- m->l3_quantizers[1] = l3_quantizers_2[gcode];
- m->l3_quantizers[2] = l3_quantizers_3[gcode];
- m->l3ptr = 0;
- }
- cplcoeff = m->l3_quantizers[m->l3ptr++] * scale_factors[exps[start]];
- break;
-
- case 2:
- if (m->l5ptr > 2) {
- gcode = get_bits(gb, 7);
- m->l5_quantizers[0] = l5_quantizers_1[gcode];
- m->l5_quantizers[1] = l5_quantizers_2[gcode];
- m->l5_quantizers[2] = l5_quantizers_3[gcode];
- m->l5ptr = 0;
- }
- cplcoeff = m->l5_quantizers[m->l5ptr++] * scale_factors[exps[start]];
- break;
-
- case 3:
- cplcoeff = l7_quantizers[get_bits(gb, 3)] * scale_factors[exps[start]];
- break;
-
- case 4:
- if (m->l11ptr > 1) {
- gcode = get_bits(gb, 7);
- m->l11_quantizers[0] = l11_quantizers_1[gcode];
- m->l11_quantizers[1] = l11_quantizers_2[gcode];
- m->l11ptr = 0;
- }
- cplcoeff = m->l11_quantizers[m->l11ptr++] * scale_factors[exps[start]];
- break;
-
- case 5:
- cplcoeff = l15_quantizers[get_bits(gb, 4)] * scale_factors[exps[start]];
- break;
-
- default:
- cplcoeff = (get_sbits(gb, qntztab[tbap]) << (16 - qntztab[tbap])) * scale_factors[exps[start]];
- }
- for (ch = 0; ch < ctx->nfchans; ch++)
- if (ctx->chincpl[ch])
- ctx->transform_coeffs[ch + 1][start] = cplcoeff * cplcos[ch];
- start++;
- }
- }
-
- return 0;
- }
-
- /* Get the transform coefficients for particular channel */
- static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_groups *m)
- {
- GetBitContext *gb = &ctx->gb;
- int i, gcode, tbap, dithflag, end;
- uint8_t *exps;
- uint8_t *bap;
- float *coeffs;
-
- if (ch_index != -1) { /* fbw channels */
- dithflag = ctx->dithflag[ch_index];
- exps = ctx->dexps[ch_index];
- bap = ctx->bap[ch_index];
- coeffs = ctx->transform_coeffs[ch_index + 1];
- end = ctx->endmant[ch_index];
- } else if (ch_index == -1) {
- dithflag = 0;
- exps = ctx->dlfeexps;
- bap = ctx->lfebap;
- coeffs = ctx->transform_coeffs[0];
- end = 7;
- }
-
-
- for (i = 0; i < end; i++) {
- tbap = bap[i];
- switch (tbap) {
- case 0:
- if (!dithflag) {
- coeffs[i] = 0;
- continue;
- }
- else {
- coeffs[i] = (av_random(&ctx->dith_state) & 0xFFFF) * scale_factors[exps[i]];
- coeffs[i] *= LEVEL_MINUS_3DB;
- continue;
- }
-
- case 1:
- if (m->l3ptr > 2) {
- gcode = get_bits(gb, 5);
- m->l3_quantizers[0] = l3_quantizers_1[gcode];
- m->l3_quantizers[1] = l3_quantizers_2[gcode];
- m->l3_quantizers[2] = l3_quantizers_3[gcode];
- m->l3ptr = 0;
- }
- coeffs[i] = m->l3_quantizers[m->l3ptr++] * scale_factors[exps[i]];
- continue;
-
- case 2:
- if (m->l5ptr > 2) {
- gcode = get_bits(gb, 7);
- m->l5_quantizers[0] = l5_quantizers_1[gcode];
- m->l5_quantizers[1] = l5_quantizers_2[gcode];
- m->l5_quantizers[2] = l5_quantizers_3[gcode];
- m->l5ptr = 0;
- }
- coeffs[i] = m->l5_quantizers[m->l5ptr++] * scale_factors[exps[i]];
- continue;
-
- case 3:
- coeffs[i] = l7_quantizers[get_bits(gb, 3)] * scale_factors[exps[i]];
- continue;
-
- case 4:
- if (m->l11ptr > 1) {
- gcode = get_bits(gb, 7);
- m->l11_quantizers[0] = l11_quantizers_1[gcode];
- m->l11_quantizers[1] = l11_quantizers_2[gcode];
- m->l11ptr = 0;
- }
- coeffs[i] = m->l11_quantizers[m->l11ptr++] * scale_factors[exps[i]];
- continue;
-
- case 5:
- coeffs[i] = l15_quantizers[get_bits(gb, 4)] * scale_factors[exps[i]];
- continue;
-
- default:
- coeffs[i] = (get_sbits(gb, qntztab[tbap]) << (16 - qntztab[tbap])) * scale_factors[exps[i]];
- continue;
- }
- }
-
- return 0;
- }
-
- /* Get the transform coefficients.
- * This function extracts the tranform coefficients form the ac3 bitstream.
- * This function is called after bit allocation is performed.
- */
- static int get_transform_coeffs(AC3DecodeContext * ctx)
- {
- int i, end;
- int got_cplchan = 0;
- mant_groups m;
-
- m.l3ptr = m.l5ptr = m.l11ptr = 3;
-
- for (i = 0; i < ctx->nfchans; i++) {
- /* transform coefficients for individual channel */
- if (get_transform_coeffs_ch(ctx, i, &m))
- return -1;
- /* tranform coefficients for coupling channels */
- if (ctx->chincpl[i]) {
- if (!got_cplchan) {
- if (get_transform_coeffs_cpling(ctx, &m)) {
- av_log(NULL, AV_LOG_ERROR, "error in decoupling channels\n");
- return -1;
- }
- got_cplchan = 1;
- }
- end = ctx->cplendmant;
- } else
- end = ctx->endmant[i];
- do
- ctx->transform_coeffs[i + 1][end] = 0;
- while(++end < 256);
- }
- if (ctx->lfeon) {
- if (get_transform_coeffs_ch(ctx, -1, &m))
- return -1;
- for (i = 7; i < 256; i++) {
- ctx->transform_coeffs[0][i] = 0;
- }
- }
-
- return 0;
- }
-
- /**
- * Performs stereo rematrixing.
- * reference: Section 7.5.4 Rematrixing : Decoding Technique
- */
- static void do_rematrixing(AC3DecodeContext *ctx)
- {
- int bnd, i;
- int end, bndend;
- float tmp0, tmp1;
-
- end = FFMIN(ctx->endmant[0], ctx->endmant[1]);
-
- for(bnd=0; bnd<ctx->nrematbnd; bnd++) {
- if(ctx->rematflg[bnd]) {
- bndend = FFMIN(end, rematrix_band_tbl[bnd+1]);
- for(i=rematrix_band_tbl[bnd]; i<bndend; i++) {
- tmp0 = ctx->transform_coeffs[1][i];
- tmp1 = ctx->transform_coeffs[2][i];
- ctx->transform_coeffs[1][i] = tmp0 + tmp1;
- ctx->transform_coeffs[2][i] = tmp0 - tmp1;
- }
- }
- }
- }
-
- /* This function performs the imdct on 256 sample transform
- * coefficients.
- */
- static void do_imdct_256(AC3DecodeContext *ctx, int chindex)
- {
- int i, k;
- DECLARE_ALIGNED_16(float, x[128]);
- FFTComplex z[2][64];
- float *o_ptr = ctx->tmp_output;
-
- for(i=0; i<2; i++) {
- /* de-interleave coefficients */
- for(k=0; k<128; k++) {
- x[k] = ctx->transform_coeffs[chindex][2*k+i];
- }
-
- /* run standard IMDCT */
- ctx->imdct_256.fft.imdct_calc(&ctx->imdct_256, o_ptr, x, ctx->tmp_imdct);
-
- /* reverse the post-rotation & reordering from standard IMDCT */
- for(k=0; k<32; k++) {
- z[i][32+k].re = -o_ptr[128+2*k];
- z[i][32+k].im = -o_ptr[2*k];
- z[i][31-k].re = o_ptr[2*k+1];
- z[i][31-k].im = o_ptr[128+2*k+1];
- }
- }
-
- /* apply AC-3 post-rotation & reordering */
- for(k=0; k<64; k++) {
- o_ptr[ 2*k ] = -z[0][ k].im;
- o_ptr[ 2*k+1] = z[0][63-k].re;
- o_ptr[128+2*k ] = -z[0][ k].re;
- o_ptr[128+2*k+1] = z[0][63-k].im;
- o_ptr[256+2*k ] = -z[1][ k].re;
- o_ptr[256+2*k+1] = z[1][63-k].im;
- o_ptr[384+2*k ] = z[1][ k].im;
- o_ptr[384+2*k+1] = -z[1][63-k].re;
- }
- }
-
- /* IMDCT Transform. */
- static inline void do_imdct(AC3DecodeContext *ctx)
- {
- int ch;
-
- if (ctx->output_mode & AC3_OUTPUT_LFEON) {
- ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output,
- ctx->transform_coeffs[0], ctx->tmp_imdct);
- ctx->dsp.vector_fmul_add_add(ctx->output[0], ctx->tmp_output,
- ctx->window, ctx->delay[0], 384, 256, 1);
- ctx->dsp.vector_fmul_reverse(ctx->delay[0], ctx->tmp_output+256,
- ctx->window, 256);
- }
- for (ch=1; ch<=ctx->nfchans; ch++) {
- if (ctx->blksw[ch-1])
- do_imdct_256(ctx, ch);
- else
- ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output,
- ctx->transform_coeffs[ch],
- ctx->tmp_imdct);
-
- ctx->dsp.vector_fmul_add_add(ctx->output[ch], ctx->tmp_output,
- ctx->window, ctx->delay[ch], 384, 256, 1);
- ctx->dsp.vector_fmul_reverse(ctx->delay[ch], ctx->tmp_output+256,
- ctx->window, 256);
- }
- }
-
- /* Parse the audio block from ac3 bitstream.
- * This function extract the audio block from the ac3 bitstream
- * and produces the output for the block. This function must
- * be called for each of the six audio block in the ac3 bitstream.
- */
- static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk)
- {
- int nfchans = ctx->nfchans;
- int acmod = ctx->acmod;
- int i, bnd, seg, grpsize, ch;
- GetBitContext *gb = &ctx->gb;
- int bit_alloc_flags = 0;
- int8_t *dexps;
- int mstrcplco, cplcoexp, cplcomant;
- int dynrng, chbwcod, ngrps, cplabsexp, skipl;
-
- for (i = 0; i < nfchans; i++) /*block switch flag */
- ctx->blksw[i] = get_bits1(gb);
-
- for (i = 0; i < nfchans; i++) /* dithering flag */
- ctx->dithflag[i] = get_bits1(gb);
-
- if (get_bits1(gb)) { /* dynamic range */
- dynrng = get_sbits(gb, 8);
- ctx->dynrng = ((((dynrng & 0x1f) | 0x20) << 13) * scale_factors[3 - (dynrng >> 5)]);
- } else if(blk == 0) {
- ctx->dynrng = 1.0;
- }
-
- if(acmod == AC3_ACMOD_DUALMONO) { /* dynamic range 1+1 mode */
- if(get_bits1(gb)) {
- dynrng = get_sbits(gb, 8);
- ctx->dynrng2 = ((((dynrng & 0x1f) | 0x20) << 13) * scale_factors[3 - (dynrng >> 5)]);
- } else if(blk == 0) {
- ctx->dynrng2 = 1.0;
- }
- }
-
- if (get_bits1(gb)) { /* coupling strategy */
- ctx->cplinu = get_bits1(gb);
- ctx->cplbndstrc = 0;
- if (ctx->cplinu) { /* coupling in use */
- int cplbegf, cplendf;
-
- for (i = 0; i < nfchans; i++)
- ctx->chincpl[i] = get_bits1(gb);
-
- if (acmod == AC3_ACMOD_STEREO)
- ctx->phsflginu = get_bits1(gb); //phase flag in use
-
- cplbegf = get_bits(gb, 4);
- cplendf = get_bits(gb, 4);
-
- if (3 + cplendf - cplbegf < 0) {
- av_log(NULL, AV_LOG_ERROR, "cplendf = %d < cplbegf = %d\n", cplendf, cplbegf);
- return -1;
- }
-
- ctx->ncplbnd = ctx->ncplsubnd = 3 + cplendf - cplbegf;
- ctx->cplstrtmant = cplbegf * 12 + 37;
- ctx->cplendmant = cplendf * 12 + 73;
- for (i = 0; i < ctx->ncplsubnd - 1; i++) /* coupling band structure */
- if (get_bits1(gb)) {
- ctx->cplbndstrc |= 1 << i;
- ctx->ncplbnd--;
- }
- } else {
- for (i = 0; i < nfchans; i++)
- ctx->chincpl[i] = 0;
- }
- }
-
- if (ctx->cplinu) {
- ctx->cplcoe = 0;
-
- for (i = 0; i < nfchans; i++)
- if (ctx->chincpl[i])
- if (get_bits1(gb)) { /* coupling co-ordinates */
- ctx->cplcoe |= 1 << i;
- mstrcplco = 3 * get_bits(gb, 2);
- for (bnd = 0; bnd < ctx->ncplbnd; bnd++) {
- cplcoexp = get_bits(gb, 4);
- cplcomant = get_bits(gb, 4);
- if (cplcoexp == 15)
- cplcomant <<= 14;
- else
- cplcomant = (cplcomant | 0x10) << 13;
- ctx->cplco[i][bnd] = cplcomant * scale_factors[cplcoexp + mstrcplco];
- }
- }
-
- if (acmod == AC3_ACMOD_STEREO && ctx->phsflginu && (ctx->cplcoe & 1 || ctx->cplcoe & 2))
- for (bnd = 0; bnd < ctx->ncplbnd; bnd++)
- if (get_bits1(gb))
- ctx->cplco[1][bnd] = -ctx->cplco[1][bnd];
- }
-
- if (acmod == AC3_ACMOD_STEREO) {/* rematrixing */
- ctx->rematstr = get_bits1(gb);
- if (ctx->rematstr) {
- ctx->nrematbnd = 4;
- if(ctx->cplinu && ctx->cplstrtmant <= 61)
- ctx->nrematbnd -= 1 + (ctx->cplstrtmant == 37);
- for(bnd=0; bnd<ctx->nrematbnd; bnd++)
- ctx->rematflg[bnd] = get_bits1(gb);
- }
- }
-
- ctx->cplexpstr = EXP_REUSE;
- ctx->lfeexpstr = EXP_REUSE;
- if (ctx->cplinu) /* coupling exponent strategy */
- ctx->cplexpstr = get_bits(gb, 2);
- for (i = 0; i < nfchans; i++) /* channel exponent strategy */
- ctx->chexpstr[i] = get_bits(gb, 2);
- if (ctx->lfeon) /* lfe exponent strategy */
- ctx->lfeexpstr = get_bits1(gb);
-
- for (i = 0; i < nfchans; i++) /* channel bandwidth code */
- if (ctx->chexpstr[i] != EXP_REUSE) {
- if (ctx->chincpl[i])
- ctx->endmant[i] = ctx->cplstrtmant;
- else {
- chbwcod = get_bits(gb, 6);
- if (chbwcod > 60) {
- av_log(NULL, AV_LOG_ERROR, "chbwcod = %d > 60", chbwcod);
- return -1;
- }
- ctx->endmant[i] = chbwcod * 3 + 73;
- }
- }
-
- if (ctx->cplexpstr != EXP_REUSE) {/* coupling exponents */
- bit_alloc_flags = 64;
- cplabsexp = get_bits(gb, 4) << 1;
- ngrps = (ctx->cplendmant - ctx->cplstrtmant) / (3 << (ctx->cplexpstr - 1));
- decode_exponents(gb, ctx->cplexpstr, ngrps, cplabsexp, ctx->dcplexps + ctx->cplstrtmant);
- }
-
- for (i = 0; i < nfchans; i++) /* fbw channel exponents */
- if (ctx->chexpstr[i] != EXP_REUSE) {
- bit_alloc_flags |= 1 << i;
- grpsize = 3 << (ctx->chexpstr[i] - 1);
- ngrps = (ctx->endmant[i] + grpsize - 4) / grpsize;
- dexps = ctx->dexps[i];
- dexps[0] = get_bits(gb, 4);
- decode_exponents(gb, ctx->chexpstr[i], ngrps, dexps[0], dexps + 1);
- skip_bits(gb, 2); /* skip gainrng */
- }
-
- if (ctx->lfeexpstr != EXP_REUSE) { /* lfe exponents */
- bit_alloc_flags |= 32;
- ctx->dlfeexps[0] = get_bits(gb, 4);
- decode_exponents(gb, ctx->lfeexpstr, 2, ctx->dlfeexps[0], ctx->dlfeexps + 1);
- }
-
- if (get_bits1(gb)) { /* bit allocation information */
- bit_alloc_flags = 127;
- ctx->bit_alloc_params.sdecay = ff_sdecaytab[get_bits(gb, 2)];
- ctx->bit_alloc_params.fdecay = ff_fdecaytab[get_bits(gb, 2)];
- ctx->bit_alloc_params.sgain = ff_sgaintab[get_bits(gb, 2)];
- ctx->bit_alloc_params.dbknee = ff_dbkneetab[get_bits(gb, 2)];
- ctx->bit_alloc_params.floor = ff_floortab[get_bits(gb, 3)];
- }
-
- if (get_bits1(gb)) { /* snroffset */
- int csnr;
- bit_alloc_flags = 127;
- csnr = (get_bits(gb, 6) - 15) << 4;
- if (ctx->cplinu) { /* coupling fine snr offset and fast gain code */
- ctx->cplsnroffst = (csnr + get_bits(gb, 4)) << 2;
- ctx->cplfgain = ff_fgaintab[get_bits(gb, 3)];
- }
- for (i = 0; i < nfchans; i++) { /* channel fine snr offset and fast gain code */
- ctx->snroffst[i] = (csnr + get_bits(gb, 4)) << 2;
- ctx->fgain[i] = ff_fgaintab[get_bits(gb, 3)];
- }
- if (ctx->lfeon) { /* lfe fine snr offset and fast gain code */
- ctx->lfesnroffst = (csnr + get_bits(gb, 4)) << 2;
- ctx->lfefgain = ff_fgaintab[get_bits(gb, 3)];
- }
- }
-
- if (ctx->cplinu && get_bits1(gb)) { /* coupling leak information */
- bit_alloc_flags |= 64;
- ctx->bit_alloc_params.cplfleak = get_bits(gb, 3);
- ctx->bit_alloc_params.cplsleak = get_bits(gb, 3);
- }
-
- if (get_bits1(gb)) { /* delta bit allocation information */
- bit_alloc_flags = 127;
-
- if (ctx->cplinu) {
- ctx->cpldeltbae = get_bits(gb, 2);
- if (ctx->cpldeltbae == DBA_RESERVED) {
- av_log(NULL, AV_LOG_ERROR, "coupling delta bit allocation strategy reserved\n");
- return -1;
- }
- }
-
- for (i = 0; i < nfchans; i++) {
- ctx->deltbae[i] = get_bits(gb, 2);
- if (ctx->deltbae[i] == DBA_RESERVED) {
- av_log(NULL, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
- return -1;
- }
- }
-
- if (ctx->cplinu)
- if (ctx->cpldeltbae == DBA_NEW) { /*coupling delta offset, len and bit allocation */
- ctx->cpldeltnseg = get_bits(gb, 3);
- for (seg = 0; seg <= ctx->cpldeltnseg; seg++) {
- ctx->cpldeltoffst[seg] = get_bits(gb, 5);
- ctx->cpldeltlen[seg] = get_bits(gb, 4);
- ctx->cpldeltba[seg] = get_bits(gb, 3);
- }
- }
-
- for (i = 0; i < nfchans; i++)
- if (ctx->deltbae[i] == DBA_NEW) {/*channel delta offset, len and bit allocation */
- ctx->deltnseg[i] = get_bits(gb, 3);
- for (seg = 0; seg <= ctx->deltnseg[i]; seg++) {
- ctx->deltoffst[i][seg] = get_bits(gb, 5);
- ctx->deltlen[i][seg] = get_bits(gb, 4);
- ctx->deltba[i][seg] = get_bits(gb, 3);
- }
- }
- } else if(blk == 0) {
- if(ctx->cplinu)
- ctx->cpldeltbae = DBA_NONE;
- for(i=0; i<nfchans; i++) {
- ctx->deltbae[i] = DBA_NONE;
- }
- }
-
- if (bit_alloc_flags) {
- if (ctx->cplinu && (bit_alloc_flags & 64))
- ac3_parametric_bit_allocation(&ctx->bit_alloc_params, ctx->cplbap,
- ctx->dcplexps, ctx->cplstrtmant,
- ctx->cplendmant, ctx->cplsnroffst,
- ctx->cplfgain, 0,
- ctx->cpldeltbae, ctx->cpldeltnseg,
- ctx->cpldeltoffst, ctx->cpldeltlen,
- ctx->cpldeltba);
- for (i = 0; i < nfchans; i++)
- if ((bit_alloc_flags >> i) & 1)
- ac3_parametric_bit_allocation(&ctx->bit_alloc_params,
- ctx->bap[i], ctx->dexps[i], 0,
- ctx->endmant[i], ctx->snroffst[i],
- ctx->fgain[i], 0, ctx->deltbae[i],
- ctx->deltnseg[i], ctx->deltoffst[i],
- ctx->deltlen[i], ctx->deltba[i]);
- if (ctx->lfeon && (bit_alloc_flags & 32))
- ac3_parametric_bit_allocation(&ctx->bit_alloc_params, ctx->lfebap,
- ctx->dlfeexps, 0, 7, ctx->lfesnroffst,
- ctx->lfefgain, 1,
- DBA_NONE, 0, NULL, NULL, NULL);
- }
-
- if (get_bits1(gb)) { /* unused dummy data */
- skipl = get_bits(gb, 9);
- while(skipl--)
- skip_bits(gb, 8);
- }
- /* unpack the transform coefficients
- * * this also uncouples channels if coupling is in use.
- */
- if (get_transform_coeffs(ctx)) {
- av_log(NULL, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n");
- return -1;
- }
-
- /* recover coefficients if rematrixing is in use */
- if(ctx->acmod == AC3_ACMOD_STEREO)
- do_rematrixing(ctx);
-
- /* apply scaling to coefficients (headroom, dynrng) */
- if(ctx->lfeon) {
- for(i=0; i<7; i++) {
- ctx->transform_coeffs[0][i] *= 2.0f * ctx->dynrng;
- }
- }
- for(ch=1; ch<=ctx->nfchans; ch++) {
- float gain = 2.0f;
- if(ctx->acmod == AC3_ACMOD_DUALMONO && ch == 2) {
- gain *= ctx->dynrng2;
- } else {
- gain *= ctx->dynrng;
- }
- for(i=0; i<ctx->endmant[ch-1]; i++) {
- ctx->transform_coeffs[ch][i] *= gain;
- }
- }
-
- do_imdct(ctx);
-
- return 0;
- }
-
- static inline int16_t convert(int32_t i)
- {
- if (i > 0x43c07fff)
- return 32767;
- else if (i <= 0x43bf8000)
- return -32768;
- else
- return (i - 0x43c00000);
- }
-
- /* Decode ac3 frame.
- *
- * @param avctx Pointer to AVCodecContext
- * @param data Pointer to pcm smaples
- * @param data_size Set to number of pcm samples produced by decoding
- * @param buf Data to be decoded
- * @param buf_size Size of the buffer
- */
- static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size)
- {
- AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
- int16_t *out_samples = (int16_t *)data;
- int i, j, k, start;
- int32_t *int_ptr[6];
-
- for (i = 0; i < 6; i++)
- int_ptr[i] = (int32_t *)(&ctx->output[i]);
-
- //Initialize the GetBitContext with the start of valid AC3 Frame.
- init_get_bits(&ctx->gb, buf, buf_size * 8);
-
- //Parse the syncinfo.
- if (ac3_parse_header(ctx)) {
- av_log(avctx, AV_LOG_ERROR, "\n");
- *data_size = 0;
- return buf_size;
- }
-
- avctx->sample_rate = ctx->sampling_rate;
- avctx->bit_rate = ctx->bit_rate;
-
- /* channel config */
- if (avctx->channels == 0) {
- avctx->channels = ctx->out_channels;
- }
- if(avctx->channels != ctx->out_channels) {
- av_log(avctx, AV_LOG_ERROR, "Cannot mix AC3 to %d channels.\n",
- avctx->channels);
- return -1;
- }
-
- //av_log(avctx, AV_LOG_INFO, "channels = %d \t bit rate = %d \t sampling rate = %d \n", avctx->channels, avctx->bit_rate * 1000, avctx->sample_rate);
-
- //Parse the Audio Blocks.
- for (i = 0; i < NB_BLOCKS; i++) {
- if (ac3_parse_audio_block(ctx, i)) {
- av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n");
- *data_size = 0;
- return ctx->frame_size;
- }
- start = (ctx->output_mode & AC3_OUTPUT_LFEON) ? 0 : 1;
- for (k = 0; k < 256; k++)
- for (j = start; j <= ctx->nfchans; j++)
- *(out_samples++) = convert(int_ptr[j][k]);
- }
- *data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t);
- return ctx->frame_size;
- }
-
- /* Uninitialize ac3 decoder.
- */
- static int ac3_decode_end(AVCodecContext *avctx)
- {
- AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
- ff_mdct_end(&ctx->imdct_512);
- ff_mdct_end(&ctx->imdct_256);
-
- return 0;
- }
-
- AVCodec ac3_decoder = {
- .name = "ac3",
- .type = CODEC_TYPE_AUDIO,
- .id = CODEC_ID_AC3,
- .priv_data_size = sizeof (AC3DecodeContext),
- .init = ac3_decode_init,
- .close = ac3_decode_end,
- .decode = ac3_decode_frame,
- };
|