You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

908 lines
40KB

  1. /*
  2. * Copyright (C) 2011-2013 Michael Niedermayer (michaelni@gmx.at)
  3. *
  4. * This file is part of libswresample
  5. *
  6. * libswresample is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * libswresample is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with libswresample; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "libavutil/opt.h"
  21. #include "swresample_internal.h"
  22. #include "audioconvert.h"
  23. #include "libavutil/avassert.h"
  24. #include "libavutil/channel_layout.h"
  25. #include <float.h>
  26. #define C30DB M_SQRT2
  27. #define C15DB 1.189207115
  28. #define C__0DB 1.0
  29. #define C_15DB 0.840896415
  30. #define C_30DB M_SQRT1_2
  31. #define C_45DB 0.594603558
  32. #define C_60DB 0.5
  33. #define ALIGN 32
  34. //TODO split options array out?
  35. #define OFFSET(x) offsetof(SwrContext,x)
  36. #define PARAM AV_OPT_FLAG_AUDIO_PARAM
  37. static const AVOption options[]={
  38. {"ich" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  39. {"in_channel_count" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  40. {"och" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  41. {"out_channel_count" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  42. {"uch" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  43. {"used_channel_count" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  44. {"isr" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  45. {"in_sample_rate" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  46. {"osr" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  47. {"out_sample_rate" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  48. {"isf" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  49. {"in_sample_fmt" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  50. {"osf" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  51. {"out_sample_fmt" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  52. {"tsf" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  53. {"internal_sample_fmt" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  54. {"icl" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  55. {"in_channel_layout" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  56. {"ocl" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  57. {"out_channel_layout" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  58. {"clev" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  59. {"center_mix_level" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  60. {"slev" , "set surround mix level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  61. {"surround_mix_level" , "set surround mix Level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  62. {"lfe_mix_level" , "set LFE mix level" , OFFSET(lfe_mix_level ), AV_OPT_TYPE_FLOAT, {.dbl=0 }, -32 , 32 , PARAM},
  63. {"rmvol" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  64. {"rematrix_volume" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  65. {"flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  66. {"swr_flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  67. {"res" , "force resampling" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_FLAG_RESAMPLE }, INT_MIN, INT_MAX , PARAM, "flags"},
  68. {"dither_scale" , "set dither scale" , OFFSET(dither.scale ), AV_OPT_TYPE_FLOAT, {.dbl=1 }, 0 , INT_MAX , PARAM},
  69. {"dither_method" , "set dither method" , OFFSET(dither.method ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_DITHER_NB-1, PARAM, "dither_method"},
  70. {"rectangular" , "select rectangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_RECTANGULAR}, INT_MIN, INT_MAX , PARAM, "dither_method"},
  71. {"triangular" , "select triangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR }, INT_MIN, INT_MAX , PARAM, "dither_method"},
  72. {"triangular_hp" , "select triangular dither with high pass" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR_HIGHPASS }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  73. {"lipshitz" , "select lipshitz noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_LIPSHITZ}, INT_MIN, INT_MAX, PARAM, "dither_method"},
  74. {"shibata" , "select shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  75. {"low_shibata" , "select low shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_LOW_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  76. {"high_shibata" , "select high shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_HIGH_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  77. {"f_weighted" , "select f-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_F_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  78. {"modified_e_weighted" , "select modified-e-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_MODIFIED_E_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  79. {"improved_e_weighted" , "select improved-e-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_IMPROVED_E_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  80. {"filter_size" , "set swr resampling filter size", OFFSET(filter_size) , AV_OPT_TYPE_INT , {.i64=32 }, 0 , INT_MAX , PARAM },
  81. {"phase_shift" , "set swr resampling phase shift", OFFSET(phase_shift) , AV_OPT_TYPE_INT , {.i64=10 }, 0 , 30 , PARAM },
  82. {"linear_interp" , "enable linear interpolation" , OFFSET(linear_interp) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 1 , PARAM },
  83. {"cutoff" , "set cutoff frequency ratio" , OFFSET(cutoff) , AV_OPT_TYPE_DOUBLE,{.dbl=0. }, 0 , 1 , PARAM },
  84. {"resampler" , "set resampling Engine" , OFFSET(engine) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_ENGINE_NB-1, PARAM, "resampler"},
  85. {"swr" , "select SW Resampler" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SWR }, INT_MIN, INT_MAX , PARAM, "resampler"},
  86. {"soxr" , "select SoX Resampler" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SOXR }, INT_MIN, INT_MAX , PARAM, "resampler"},
  87. {"precision" , "set soxr resampling precision (in bits)"
  88. , OFFSET(precision) , AV_OPT_TYPE_DOUBLE,{.dbl=20.0 }, 15.0 , 33.0 , PARAM },
  89. {"cheby" , "enable soxr Chebyshev passband & higher-precision irrational ratio approximation"
  90. , OFFSET(cheby) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 1 , PARAM },
  91. {"min_comp" , "set minimum difference between timestamps and audio data (in seconds) below which no timestamp compensation of either kind is applied"
  92. , OFFSET(min_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=FLT_MAX }, 0 , FLT_MAX , PARAM },
  93. {"min_hard_comp" , "set minimum difference between timestamps and audio data (in seconds) to trigger padding/trimming the data."
  94. , OFFSET(min_hard_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0.1 }, 0 , INT_MAX , PARAM },
  95. {"comp_duration" , "set duration (in seconds) over which data is stretched/squeezed to make it match the timestamps."
  96. , OFFSET(soft_compensation_duration),AV_OPT_TYPE_FLOAT ,{.dbl=1 }, 0 , INT_MAX , PARAM },
  97. {"max_soft_comp" , "set maximum factor by which data is stretched/squeezed to make it match the timestamps."
  98. , OFFSET(max_soft_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0 }, INT_MIN, INT_MAX , PARAM },
  99. {"async" , "simplified 1 parameter audio timestamp matching, 0(disabled), 1(filling and trimming), >1(maximum stretch/squeeze in samples per second)"
  100. , OFFSET(async) , AV_OPT_TYPE_FLOAT ,{.dbl=0 }, INT_MIN, INT_MAX , PARAM },
  101. {"first_pts" , "Assume the first pts should be this value (in samples)."
  102. , OFFSET(firstpts_in_samples), AV_OPT_TYPE_INT64 ,{.i64=AV_NOPTS_VALUE }, INT64_MIN,INT64_MAX, PARAM },
  103. { "matrix_encoding" , "set matrixed stereo encoding" , OFFSET(matrix_encoding), AV_OPT_TYPE_INT ,{.i64 = AV_MATRIX_ENCODING_NONE}, AV_MATRIX_ENCODING_NONE, AV_MATRIX_ENCODING_NB-1, PARAM, "matrix_encoding" },
  104. { "none", "select none", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_NONE }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  105. { "dolby", "select Dolby", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DOLBY }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  106. { "dplii", "select Dolby Pro Logic II", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DPLII }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  107. { "filter_type" , "select swr filter type" , OFFSET(filter_type) , AV_OPT_TYPE_INT , { .i64 = SWR_FILTER_TYPE_KAISER }, SWR_FILTER_TYPE_CUBIC, SWR_FILTER_TYPE_KAISER, PARAM, "filter_type" },
  108. { "cubic" , "select cubic" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_CUBIC }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  109. { "blackman_nuttall", "select Blackman Nuttall Windowed Sinc", 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_BLACKMAN_NUTTALL }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  110. { "kaiser" , "select Kaiser Windowed Sinc" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_KAISER }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  111. { "kaiser_beta" , "set swr Kaiser Window Beta" , OFFSET(kaiser_beta) , AV_OPT_TYPE_INT , {.i64=9 }, 2 , 16 , PARAM },
  112. {0}
  113. };
  114. static const char* context_to_name(void* ptr) {
  115. return "SWR";
  116. }
  117. static const AVClass av_class = {
  118. .class_name = "SWResampler",
  119. .item_name = context_to_name,
  120. .option = options,
  121. .version = LIBAVUTIL_VERSION_INT,
  122. .log_level_offset_offset = OFFSET(log_level_offset),
  123. .parent_log_context_offset = OFFSET(log_ctx),
  124. .category = AV_CLASS_CATEGORY_SWRESAMPLER,
  125. };
  126. unsigned swresample_version(void)
  127. {
  128. av_assert0(LIBSWRESAMPLE_VERSION_MICRO >= 100);
  129. return LIBSWRESAMPLE_VERSION_INT;
  130. }
  131. const char *swresample_configuration(void)
  132. {
  133. return FFMPEG_CONFIGURATION;
  134. }
  135. const char *swresample_license(void)
  136. {
  137. #define LICENSE_PREFIX "libswresample license: "
  138. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  139. }
  140. int swr_set_channel_mapping(struct SwrContext *s, const int *channel_map){
  141. if(!s || s->in_convert) // s needs to be allocated but not initialized
  142. return AVERROR(EINVAL);
  143. s->channel_map = channel_map;
  144. return 0;
  145. }
  146. const AVClass *swr_get_class(void)
  147. {
  148. return &av_class;
  149. }
  150. av_cold struct SwrContext *swr_alloc(void){
  151. SwrContext *s= av_mallocz(sizeof(SwrContext));
  152. if(s){
  153. s->av_class= &av_class;
  154. av_opt_set_defaults(s);
  155. }
  156. return s;
  157. }
  158. struct SwrContext *swr_alloc_set_opts(struct SwrContext *s,
  159. int64_t out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate,
  160. int64_t in_ch_layout, enum AVSampleFormat in_sample_fmt, int in_sample_rate,
  161. int log_offset, void *log_ctx){
  162. if(!s) s= swr_alloc();
  163. if(!s) return NULL;
  164. s->log_level_offset= log_offset;
  165. s->log_ctx= log_ctx;
  166. av_opt_set_int(s, "ocl", out_ch_layout, 0);
  167. av_opt_set_int(s, "osf", out_sample_fmt, 0);
  168. av_opt_set_int(s, "osr", out_sample_rate, 0);
  169. av_opt_set_int(s, "icl", in_ch_layout, 0);
  170. av_opt_set_int(s, "isf", in_sample_fmt, 0);
  171. av_opt_set_int(s, "isr", in_sample_rate, 0);
  172. av_opt_set_int(s, "tsf", AV_SAMPLE_FMT_NONE, 0);
  173. av_opt_set_int(s, "ich", av_get_channel_layout_nb_channels(s-> in_ch_layout), 0);
  174. av_opt_set_int(s, "och", av_get_channel_layout_nb_channels(s->out_ch_layout), 0);
  175. av_opt_set_int(s, "uch", 0, 0);
  176. return s;
  177. }
  178. static void set_audiodata_fmt(AudioData *a, enum AVSampleFormat fmt){
  179. a->fmt = fmt;
  180. a->bps = av_get_bytes_per_sample(fmt);
  181. a->planar= av_sample_fmt_is_planar(fmt);
  182. }
  183. static void free_temp(AudioData *a){
  184. av_free(a->data);
  185. memset(a, 0, sizeof(*a));
  186. }
  187. av_cold void swr_free(SwrContext **ss){
  188. SwrContext *s= *ss;
  189. if(s){
  190. free_temp(&s->postin);
  191. free_temp(&s->midbuf);
  192. free_temp(&s->preout);
  193. free_temp(&s->in_buffer);
  194. free_temp(&s->silence);
  195. free_temp(&s->drop_temp);
  196. free_temp(&s->dither.noise);
  197. free_temp(&s->dither.temp);
  198. swri_audio_convert_free(&s-> in_convert);
  199. swri_audio_convert_free(&s->out_convert);
  200. swri_audio_convert_free(&s->full_convert);
  201. if (s->resampler)
  202. s->resampler->free(&s->resample);
  203. swri_rematrix_free(s);
  204. }
  205. av_freep(ss);
  206. }
  207. av_cold int swr_init(struct SwrContext *s){
  208. int ret;
  209. s->in_buffer_index= 0;
  210. s->in_buffer_count= 0;
  211. s->resample_in_constraint= 0;
  212. free_temp(&s->postin);
  213. free_temp(&s->midbuf);
  214. free_temp(&s->preout);
  215. free_temp(&s->in_buffer);
  216. free_temp(&s->silence);
  217. free_temp(&s->drop_temp);
  218. free_temp(&s->dither.noise);
  219. free_temp(&s->dither.temp);
  220. memset(s->in.ch, 0, sizeof(s->in.ch));
  221. memset(s->out.ch, 0, sizeof(s->out.ch));
  222. swri_audio_convert_free(&s-> in_convert);
  223. swri_audio_convert_free(&s->out_convert);
  224. swri_audio_convert_free(&s->full_convert);
  225. swri_rematrix_free(s);
  226. s->flushed = 0;
  227. if(s-> in_sample_fmt >= AV_SAMPLE_FMT_NB){
  228. av_log(s, AV_LOG_ERROR, "Requested input sample format %d is invalid\n", s->in_sample_fmt);
  229. return AVERROR(EINVAL);
  230. }
  231. if(s->out_sample_fmt >= AV_SAMPLE_FMT_NB){
  232. av_log(s, AV_LOG_ERROR, "Requested output sample format %d is invalid\n", s->out_sample_fmt);
  233. return AVERROR(EINVAL);
  234. }
  235. if(s->int_sample_fmt == AV_SAMPLE_FMT_NONE){
  236. if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_S16P){
  237. s->int_sample_fmt= AV_SAMPLE_FMT_S16P;
  238. }else if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_FLTP){
  239. s->int_sample_fmt= AV_SAMPLE_FMT_FLTP;
  240. }else{
  241. av_log(s, AV_LOG_DEBUG, "Using double precision mode\n");
  242. s->int_sample_fmt= AV_SAMPLE_FMT_DBLP;
  243. }
  244. }
  245. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  246. &&s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  247. &&s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  248. &&s->int_sample_fmt != AV_SAMPLE_FMT_DBLP){
  249. av_log(s, AV_LOG_ERROR, "Requested sample format %s is not supported internally, S16/S32/FLT/DBL is supported\n", av_get_sample_fmt_name(s->int_sample_fmt));
  250. return AVERROR(EINVAL);
  251. }
  252. switch(s->engine){
  253. #if CONFIG_LIBSOXR
  254. extern struct Resampler const soxr_resampler;
  255. case SWR_ENGINE_SOXR: s->resampler = &soxr_resampler; break;
  256. #endif
  257. case SWR_ENGINE_SWR : s->resampler = &swri_resampler; break;
  258. default:
  259. av_log(s, AV_LOG_ERROR, "Requested resampling engine is unavailable\n");
  260. return AVERROR(EINVAL);
  261. }
  262. set_audiodata_fmt(&s-> in, s-> in_sample_fmt);
  263. set_audiodata_fmt(&s->out, s->out_sample_fmt);
  264. if (s->firstpts_in_samples != AV_NOPTS_VALUE) {
  265. if (!s->async && s->min_compensation >= FLT_MAX/2)
  266. s->async = 1;
  267. s->firstpts =
  268. s->outpts = s->firstpts_in_samples * s->out_sample_rate;
  269. }
  270. if (s->async) {
  271. if (s->min_compensation >= FLT_MAX/2)
  272. s->min_compensation = 0.001;
  273. if (s->async > 1.0001) {
  274. s->max_soft_compensation = s->async / (double) s->in_sample_rate;
  275. }
  276. }
  277. if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
  278. s->resample = s->resampler->init(s->resample, s->out_sample_rate, s->in_sample_rate, s->filter_size, s->phase_shift, s->linear_interp, s->cutoff, s->int_sample_fmt, s->filter_type, s->kaiser_beta, s->precision, s->cheby);
  279. }else
  280. s->resampler->free(&s->resample);
  281. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  282. && s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  283. && s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  284. && s->int_sample_fmt != AV_SAMPLE_FMT_DBLP
  285. && s->resample){
  286. av_log(s, AV_LOG_ERROR, "Resampling only supported with internal s16/s32/flt/dbl\n");
  287. return -1;
  288. }
  289. if(!s->used_ch_count)
  290. s->used_ch_count= s->in.ch_count;
  291. if(s->used_ch_count && s-> in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s-> in_ch_layout)){
  292. av_log(s, AV_LOG_WARNING, "Input channel layout has a different number of channels than the number of used channels, ignoring layout\n");
  293. s-> in_ch_layout= 0;
  294. }
  295. if(!s-> in_ch_layout)
  296. s-> in_ch_layout= av_get_default_channel_layout(s->used_ch_count);
  297. if(!s->out_ch_layout)
  298. s->out_ch_layout= av_get_default_channel_layout(s->out.ch_count);
  299. s->rematrix= s->out_ch_layout !=s->in_ch_layout || s->rematrix_volume!=1.0 ||
  300. s->rematrix_custom;
  301. #define RSC 1 //FIXME finetune
  302. if(!s-> in.ch_count)
  303. s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
  304. if(!s->used_ch_count)
  305. s->used_ch_count= s->in.ch_count;
  306. if(!s->out.ch_count)
  307. s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
  308. if(!s-> in.ch_count){
  309. av_assert0(!s->in_ch_layout);
  310. av_log(s, AV_LOG_ERROR, "Input channel count and layout are unset\n");
  311. return -1;
  312. }
  313. if ((!s->out_ch_layout || !s->in_ch_layout) && s->used_ch_count != s->out.ch_count && !s->rematrix_custom) {
  314. char l1[1024], l2[1024];
  315. av_get_channel_layout_string(l1, sizeof(l1), s-> in.ch_count, s-> in_ch_layout);
  316. av_get_channel_layout_string(l2, sizeof(l2), s->out.ch_count, s->out_ch_layout);
  317. av_log(s, AV_LOG_ERROR, "Rematrix is needed between %s and %s "
  318. "but there is not enough information to do it\n", l1, l2);
  319. return -1;
  320. }
  321. av_assert0(s->used_ch_count);
  322. av_assert0(s->out.ch_count);
  323. s->resample_first= RSC*s->out.ch_count/s->in.ch_count - RSC < s->out_sample_rate/(float)s-> in_sample_rate - 1.0;
  324. s->in_buffer= s->in;
  325. s->silence = s->in;
  326. s->drop_temp= s->out;
  327. if(!s->resample && !s->rematrix && !s->channel_map && !s->dither.method){
  328. s->full_convert = swri_audio_convert_alloc(s->out_sample_fmt,
  329. s-> in_sample_fmt, s-> in.ch_count, NULL, 0);
  330. return 0;
  331. }
  332. s->in_convert = swri_audio_convert_alloc(s->int_sample_fmt,
  333. s-> in_sample_fmt, s->used_ch_count, s->channel_map, 0);
  334. s->out_convert= swri_audio_convert_alloc(s->out_sample_fmt,
  335. s->int_sample_fmt, s->out.ch_count, NULL, 0);
  336. if (!s->in_convert || !s->out_convert)
  337. return AVERROR(ENOMEM);
  338. s->postin= s->in;
  339. s->preout= s->out;
  340. s->midbuf= s->in;
  341. if(s->channel_map){
  342. s->postin.ch_count=
  343. s->midbuf.ch_count= s->used_ch_count;
  344. if(s->resample)
  345. s->in_buffer.ch_count= s->used_ch_count;
  346. }
  347. if(!s->resample_first){
  348. s->midbuf.ch_count= s->out.ch_count;
  349. if(s->resample)
  350. s->in_buffer.ch_count = s->out.ch_count;
  351. }
  352. set_audiodata_fmt(&s->postin, s->int_sample_fmt);
  353. set_audiodata_fmt(&s->midbuf, s->int_sample_fmt);
  354. set_audiodata_fmt(&s->preout, s->int_sample_fmt);
  355. if(s->resample){
  356. set_audiodata_fmt(&s->in_buffer, s->int_sample_fmt);
  357. }
  358. if ((ret = swri_dither_init(s, s->out_sample_fmt, s->int_sample_fmt)) < 0)
  359. return ret;
  360. if(s->rematrix || s->dither.method)
  361. return swri_rematrix_init(s);
  362. return 0;
  363. }
  364. int swri_realloc_audio(AudioData *a, int count){
  365. int i, countb;
  366. AudioData old;
  367. if(count < 0 || count > INT_MAX/2/a->bps/a->ch_count)
  368. return AVERROR(EINVAL);
  369. if(a->count >= count)
  370. return 0;
  371. count*=2;
  372. countb= FFALIGN(count*a->bps, ALIGN);
  373. old= *a;
  374. av_assert0(a->bps);
  375. av_assert0(a->ch_count);
  376. a->data= av_mallocz(countb*a->ch_count);
  377. if(!a->data)
  378. return AVERROR(ENOMEM);
  379. for(i=0; i<a->ch_count; i++){
  380. a->ch[i]= a->data + i*(a->planar ? countb : a->bps);
  381. if(a->planar) memcpy(a->ch[i], old.ch[i], a->count*a->bps);
  382. }
  383. if(!a->planar) memcpy(a->ch[0], old.ch[0], a->count*a->ch_count*a->bps);
  384. av_free(old.data);
  385. a->count= count;
  386. return 1;
  387. }
  388. static void copy(AudioData *out, AudioData *in,
  389. int count){
  390. av_assert0(out->planar == in->planar);
  391. av_assert0(out->bps == in->bps);
  392. av_assert0(out->ch_count == in->ch_count);
  393. if(out->planar){
  394. int ch;
  395. for(ch=0; ch<out->ch_count; ch++)
  396. memcpy(out->ch[ch], in->ch[ch], count*out->bps);
  397. }else
  398. memcpy(out->ch[0], in->ch[0], count*out->ch_count*out->bps);
  399. }
  400. static void fill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  401. int i;
  402. if(!in_arg){
  403. memset(out->ch, 0, sizeof(out->ch));
  404. }else if(out->planar){
  405. for(i=0; i<out->ch_count; i++)
  406. out->ch[i]= in_arg[i];
  407. }else{
  408. for(i=0; i<out->ch_count; i++)
  409. out->ch[i]= in_arg[0] + i*out->bps;
  410. }
  411. }
  412. static void reversefill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  413. int i;
  414. if(out->planar){
  415. for(i=0; i<out->ch_count; i++)
  416. in_arg[i]= out->ch[i];
  417. }else{
  418. in_arg[0]= out->ch[0];
  419. }
  420. }
  421. /**
  422. *
  423. * out may be equal in.
  424. */
  425. static void buf_set(AudioData *out, AudioData *in, int count){
  426. int ch;
  427. if(in->planar){
  428. for(ch=0; ch<out->ch_count; ch++)
  429. out->ch[ch]= in->ch[ch] + count*out->bps;
  430. }else{
  431. for(ch=out->ch_count-1; ch>=0; ch--)
  432. out->ch[ch]= in->ch[0] + (ch + count*out->ch_count) * out->bps;
  433. }
  434. }
  435. /**
  436. *
  437. * @return number of samples output per channel
  438. */
  439. static int resample(SwrContext *s, AudioData *out_param, int out_count,
  440. const AudioData * in_param, int in_count){
  441. AudioData in, out, tmp;
  442. int ret_sum=0;
  443. int border=0;
  444. av_assert1(s->in_buffer.ch_count == in_param->ch_count);
  445. av_assert1(s->in_buffer.planar == in_param->planar);
  446. av_assert1(s->in_buffer.fmt == in_param->fmt);
  447. tmp=out=*out_param;
  448. in = *in_param;
  449. do{
  450. int ret, size, consumed;
  451. if(!s->resample_in_constraint && s->in_buffer_count){
  452. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  453. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &tmp, s->in_buffer_count, &consumed);
  454. out_count -= ret;
  455. ret_sum += ret;
  456. buf_set(&out, &out, ret);
  457. s->in_buffer_count -= consumed;
  458. s->in_buffer_index += consumed;
  459. if(!in_count)
  460. break;
  461. if(s->in_buffer_count <= border){
  462. buf_set(&in, &in, -s->in_buffer_count);
  463. in_count += s->in_buffer_count;
  464. s->in_buffer_count=0;
  465. s->in_buffer_index=0;
  466. border = 0;
  467. }
  468. }
  469. if((s->flushed || in_count) && !s->in_buffer_count){
  470. s->in_buffer_index=0;
  471. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &in, in_count, &consumed);
  472. out_count -= ret;
  473. ret_sum += ret;
  474. buf_set(&out, &out, ret);
  475. in_count -= consumed;
  476. buf_set(&in, &in, consumed);
  477. }
  478. //TODO is this check sane considering the advanced copy avoidance below
  479. size= s->in_buffer_index + s->in_buffer_count + in_count;
  480. if( size > s->in_buffer.count
  481. && s->in_buffer_count + in_count <= s->in_buffer_index){
  482. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  483. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  484. s->in_buffer_index=0;
  485. }else
  486. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  487. return ret;
  488. if(in_count){
  489. int count= in_count;
  490. if(s->in_buffer_count && s->in_buffer_count+2 < count && out_count) count= s->in_buffer_count+2;
  491. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  492. copy(&tmp, &in, /*in_*/count);
  493. s->in_buffer_count += count;
  494. in_count -= count;
  495. border += count;
  496. buf_set(&in, &in, count);
  497. s->resample_in_constraint= 0;
  498. if(s->in_buffer_count != count || in_count)
  499. continue;
  500. }
  501. break;
  502. }while(1);
  503. s->resample_in_constraint= !!out_count;
  504. return ret_sum;
  505. }
  506. static int swr_convert_internal(struct SwrContext *s, AudioData *out, int out_count,
  507. AudioData *in , int in_count){
  508. AudioData *postin, *midbuf, *preout;
  509. int ret/*, in_max*/;
  510. AudioData preout_tmp, midbuf_tmp;
  511. if(s->full_convert){
  512. av_assert0(!s->resample);
  513. swri_audio_convert(s->full_convert, out, in, in_count);
  514. return out_count;
  515. }
  516. // in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
  517. // in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
  518. if((ret=swri_realloc_audio(&s->postin, in_count))<0)
  519. return ret;
  520. if(s->resample_first){
  521. av_assert0(s->midbuf.ch_count == s->used_ch_count);
  522. if((ret=swri_realloc_audio(&s->midbuf, out_count))<0)
  523. return ret;
  524. }else{
  525. av_assert0(s->midbuf.ch_count == s->out.ch_count);
  526. if((ret=swri_realloc_audio(&s->midbuf, in_count))<0)
  527. return ret;
  528. }
  529. if((ret=swri_realloc_audio(&s->preout, out_count))<0)
  530. return ret;
  531. postin= &s->postin;
  532. midbuf_tmp= s->midbuf;
  533. midbuf= &midbuf_tmp;
  534. preout_tmp= s->preout;
  535. preout= &preout_tmp;
  536. if(s->int_sample_fmt == s-> in_sample_fmt && s->in.planar && !s->channel_map)
  537. postin= in;
  538. if(s->resample_first ? !s->resample : !s->rematrix)
  539. midbuf= postin;
  540. if(s->resample_first ? !s->rematrix : !s->resample)
  541. preout= midbuf;
  542. if(s->int_sample_fmt == s->out_sample_fmt && s->out.planar){
  543. if(preout==in){
  544. out_count= FFMIN(out_count, in_count); //TODO check at the end if this is needed or redundant
  545. av_assert0(s->in.planar); //we only support planar internally so it has to be, we support copying non planar though
  546. copy(out, in, out_count);
  547. return out_count;
  548. }
  549. else if(preout==postin) preout= midbuf= postin= out;
  550. else if(preout==midbuf) preout= midbuf= out;
  551. else preout= out;
  552. }
  553. if(in != postin){
  554. swri_audio_convert(s->in_convert, postin, in, in_count);
  555. }
  556. if(s->resample_first){
  557. if(postin != midbuf)
  558. out_count= resample(s, midbuf, out_count, postin, in_count);
  559. if(midbuf != preout)
  560. swri_rematrix(s, preout, midbuf, out_count, preout==out);
  561. }else{
  562. if(postin != midbuf)
  563. swri_rematrix(s, midbuf, postin, in_count, midbuf==out);
  564. if(midbuf != preout)
  565. out_count= resample(s, preout, out_count, midbuf, in_count);
  566. }
  567. if(preout != out && out_count){
  568. AudioData *conv_src = preout;
  569. if(s->dither.method){
  570. int ch;
  571. int dither_count= FFMAX(out_count, 1<<16);
  572. if (preout == in) {
  573. conv_src = &s->dither.temp;
  574. if((ret=swri_realloc_audio(&s->dither.temp, dither_count))<0)
  575. return ret;
  576. }
  577. if((ret=swri_realloc_audio(&s->dither.noise, dither_count))<0)
  578. return ret;
  579. if(ret)
  580. for(ch=0; ch<s->dither.noise.ch_count; ch++)
  581. swri_get_dither(s, s->dither.noise.ch[ch], s->dither.noise.count, 12345678913579<<ch, s->dither.noise.fmt);
  582. av_assert0(s->dither.noise.ch_count == preout->ch_count);
  583. if(s->dither.noise_pos + out_count > s->dither.noise.count)
  584. s->dither.noise_pos = 0;
  585. if (s->dither.method < SWR_DITHER_NS){
  586. if (s->mix_2_1_simd) {
  587. int len1= out_count&~15;
  588. int off = len1 * preout->bps;
  589. if(len1)
  590. for(ch=0; ch<preout->ch_count; ch++)
  591. s->mix_2_1_simd(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_one, 0, 0, len1);
  592. if(out_count != len1)
  593. for(ch=0; ch<preout->ch_count; ch++)
  594. s->mix_2_1_f(conv_src->ch[ch] + off, preout->ch[ch] + off, s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos + off + len1, s->native_one, 0, 0, out_count - len1);
  595. } else {
  596. for(ch=0; ch<preout->ch_count; ch++)
  597. s->mix_2_1_f(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_one, 0, 0, out_count);
  598. }
  599. } else {
  600. switch(s->int_sample_fmt) {
  601. case AV_SAMPLE_FMT_S16P :swri_noise_shaping_int16(s, conv_src, preout, &s->dither.noise, out_count); break;
  602. case AV_SAMPLE_FMT_S32P :swri_noise_shaping_int32(s, conv_src, preout, &s->dither.noise, out_count); break;
  603. case AV_SAMPLE_FMT_FLTP :swri_noise_shaping_float(s, conv_src, preout, &s->dither.noise, out_count); break;
  604. case AV_SAMPLE_FMT_DBLP :swri_noise_shaping_double(s,conv_src, preout, &s->dither.noise, out_count); break;
  605. }
  606. }
  607. s->dither.noise_pos += out_count;
  608. }
  609. //FIXME packed doesnt need more than 1 chan here!
  610. swri_audio_convert(s->out_convert, out, conv_src, out_count);
  611. }
  612. return out_count;
  613. }
  614. int swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
  615. const uint8_t *in_arg [SWR_CH_MAX], int in_count){
  616. AudioData * in= &s->in;
  617. AudioData *out= &s->out;
  618. while(s->drop_output > 0){
  619. int ret;
  620. uint8_t *tmp_arg[SWR_CH_MAX];
  621. #define MAX_DROP_STEP 16384
  622. if((ret=swri_realloc_audio(&s->drop_temp, FFMIN(s->drop_output, MAX_DROP_STEP)))<0)
  623. return ret;
  624. reversefill_audiodata(&s->drop_temp, tmp_arg);
  625. s->drop_output *= -1; //FIXME find a less hackish solution
  626. ret = swr_convert(s, tmp_arg, FFMIN(-s->drop_output, MAX_DROP_STEP), in_arg, in_count); //FIXME optimize but this is as good as never called so maybe it doesnt matter
  627. s->drop_output *= -1;
  628. in_count = 0;
  629. if(ret>0) {
  630. s->drop_output -= ret;
  631. continue;
  632. }
  633. if(s->drop_output || !out_arg)
  634. return 0;
  635. }
  636. if(!in_arg){
  637. if(s->resample){
  638. if (!s->flushed)
  639. s->resampler->flush(s);
  640. s->resample_in_constraint = 0;
  641. s->flushed = 1;
  642. }else if(!s->in_buffer_count){
  643. return 0;
  644. }
  645. }else
  646. fill_audiodata(in , (void*)in_arg);
  647. fill_audiodata(out, out_arg);
  648. if(s->resample){
  649. int ret = swr_convert_internal(s, out, out_count, in, in_count);
  650. if(ret>0 && !s->drop_output)
  651. s->outpts += ret * (int64_t)s->in_sample_rate;
  652. return ret;
  653. }else{
  654. AudioData tmp= *in;
  655. int ret2=0;
  656. int ret, size;
  657. size = FFMIN(out_count, s->in_buffer_count);
  658. if(size){
  659. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  660. ret= swr_convert_internal(s, out, size, &tmp, size);
  661. if(ret<0)
  662. return ret;
  663. ret2= ret;
  664. s->in_buffer_count -= ret;
  665. s->in_buffer_index += ret;
  666. buf_set(out, out, ret);
  667. out_count -= ret;
  668. if(!s->in_buffer_count)
  669. s->in_buffer_index = 0;
  670. }
  671. if(in_count){
  672. size= s->in_buffer_index + s->in_buffer_count + in_count - out_count;
  673. if(in_count > out_count) { //FIXME move after swr_convert_internal
  674. if( size > s->in_buffer.count
  675. && s->in_buffer_count + in_count - out_count <= s->in_buffer_index){
  676. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  677. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  678. s->in_buffer_index=0;
  679. }else
  680. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  681. return ret;
  682. }
  683. if(out_count){
  684. size = FFMIN(in_count, out_count);
  685. ret= swr_convert_internal(s, out, size, in, size);
  686. if(ret<0)
  687. return ret;
  688. buf_set(in, in, ret);
  689. in_count -= ret;
  690. ret2 += ret;
  691. }
  692. if(in_count){
  693. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  694. copy(&tmp, in, in_count);
  695. s->in_buffer_count += in_count;
  696. }
  697. }
  698. if(ret2>0 && !s->drop_output)
  699. s->outpts += ret2 * (int64_t)s->in_sample_rate;
  700. return ret2;
  701. }
  702. }
  703. int swr_drop_output(struct SwrContext *s, int count){
  704. s->drop_output += count;
  705. if(s->drop_output <= 0)
  706. return 0;
  707. av_log(s, AV_LOG_VERBOSE, "discarding %d audio samples\n", count);
  708. return swr_convert(s, NULL, s->drop_output, NULL, 0);
  709. }
  710. int swr_inject_silence(struct SwrContext *s, int count){
  711. int ret, i;
  712. uint8_t *tmp_arg[SWR_CH_MAX];
  713. if(count <= 0)
  714. return 0;
  715. #define MAX_SILENCE_STEP 16384
  716. while (count > MAX_SILENCE_STEP) {
  717. if ((ret = swr_inject_silence(s, MAX_SILENCE_STEP)) < 0)
  718. return ret;
  719. count -= MAX_SILENCE_STEP;
  720. }
  721. if((ret=swri_realloc_audio(&s->silence, count))<0)
  722. return ret;
  723. if(s->silence.planar) for(i=0; i<s->silence.ch_count; i++) {
  724. memset(s->silence.ch[i], s->silence.bps==1 ? 0x80 : 0, count*s->silence.bps);
  725. } else
  726. memset(s->silence.ch[0], s->silence.bps==1 ? 0x80 : 0, count*s->silence.bps*s->silence.ch_count);
  727. reversefill_audiodata(&s->silence, tmp_arg);
  728. av_log(s, AV_LOG_VERBOSE, "adding %d audio samples of silence\n", count);
  729. ret = swr_convert(s, NULL, 0, (const uint8_t**)tmp_arg, count);
  730. return ret;
  731. }
  732. int64_t swr_get_delay(struct SwrContext *s, int64_t base){
  733. if (s->resampler && s->resample){
  734. return s->resampler->get_delay(s, base);
  735. }else{
  736. return (s->in_buffer_count*base + (s->in_sample_rate>>1))/ s->in_sample_rate;
  737. }
  738. }
  739. int swr_set_compensation(struct SwrContext *s, int sample_delta, int compensation_distance){
  740. int ret;
  741. if (!s || compensation_distance < 0)
  742. return AVERROR(EINVAL);
  743. if (!compensation_distance && sample_delta)
  744. return AVERROR(EINVAL);
  745. if (!s->resample) {
  746. s->flags |= SWR_FLAG_RESAMPLE;
  747. ret = swr_init(s);
  748. if (ret < 0)
  749. return ret;
  750. }
  751. if (!s->resampler->set_compensation){
  752. return AVERROR(EINVAL);
  753. }else{
  754. return s->resampler->set_compensation(s->resample, sample_delta, compensation_distance);
  755. }
  756. }
  757. int64_t swr_next_pts(struct SwrContext *s, int64_t pts){
  758. if(pts == INT64_MIN)
  759. return s->outpts;
  760. if(s->min_compensation >= FLT_MAX) {
  761. return (s->outpts = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate));
  762. } else {
  763. int64_t delta = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate) - s->outpts + s->drop_output*(int64_t)s->in_sample_rate;
  764. double fdelta = delta /(double)(s->in_sample_rate * (int64_t)s->out_sample_rate);
  765. if(fabs(fdelta) > s->min_compensation) {
  766. if(s->outpts == s->firstpts || fabs(fdelta) > s->min_hard_compensation){
  767. int ret;
  768. if(delta > 0) ret = swr_inject_silence(s, delta / s->out_sample_rate);
  769. else ret = swr_drop_output (s, -delta / s-> in_sample_rate);
  770. if(ret<0){
  771. av_log(s, AV_LOG_ERROR, "Failed to compensate for timestamp delta of %f\n", fdelta);
  772. }
  773. } else if(s->soft_compensation_duration && s->max_soft_compensation) {
  774. int duration = s->out_sample_rate * s->soft_compensation_duration;
  775. double max_soft_compensation = s->max_soft_compensation / (s->max_soft_compensation < 0 ? -s->in_sample_rate : 1);
  776. int comp = av_clipf(fdelta, -max_soft_compensation, max_soft_compensation) * duration ;
  777. av_log(s, AV_LOG_VERBOSE, "compensating audio timestamp drift:%f compensation:%d in:%d\n", fdelta, comp, duration);
  778. swr_set_compensation(s, comp, duration);
  779. }
  780. }
  781. return s->outpts;
  782. }
  783. }