You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1509 lines
50KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of Libav.
  10. *
  11. * Libav is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * Libav is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with Libav; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "get_bits.h"
  31. #include "put_bits.h"
  32. #include "dsputil.h"
  33. #include "thread.h"
  34. #include "huffman.h"
  35. #define VLC_BITS 11
  36. #if HAVE_BIGENDIAN
  37. #define B 3
  38. #define G 2
  39. #define R 1
  40. #define A 0
  41. #else
  42. #define B 0
  43. #define G 1
  44. #define R 2
  45. #define A 3
  46. #endif
  47. typedef enum Predictor {
  48. LEFT= 0,
  49. PLANE,
  50. MEDIAN,
  51. } Predictor;
  52. typedef struct HYuvContext {
  53. AVCodecContext *avctx;
  54. Predictor predictor;
  55. GetBitContext gb;
  56. PutBitContext pb;
  57. int interlaced;
  58. int decorrelate;
  59. int bitstream_bpp;
  60. int version;
  61. int yuy2; //use yuy2 instead of 422P
  62. int bgr32; //use bgr32 instead of bgr24
  63. int width, height;
  64. int flags;
  65. int context;
  66. int picture_number;
  67. int last_slice_end;
  68. uint8_t *temp[3];
  69. uint64_t stats[3][256];
  70. uint8_t len[3][256];
  71. uint32_t bits[3][256];
  72. uint32_t pix_bgr_map[1<<VLC_BITS];
  73. VLC vlc[6]; //Y,U,V,YY,YU,YV
  74. AVFrame picture;
  75. uint8_t *bitstream_buffer;
  76. unsigned int bitstream_buffer_size;
  77. DSPContext dsp;
  78. } HYuvContext;
  79. #define classic_shift_luma_table_size 42
  80. static const unsigned char classic_shift_luma[classic_shift_luma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = {
  81. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  82. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  83. 69,68, 0
  84. };
  85. #define classic_shift_chroma_table_size 59
  86. static const unsigned char classic_shift_chroma[classic_shift_chroma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = {
  87. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  88. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  89. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  90. };
  91. static const unsigned char classic_add_luma[256] = {
  92. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  93. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  94. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  95. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  96. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  97. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  98. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  99. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  100. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  101. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  102. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  103. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  104. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  105. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  106. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  107. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  108. };
  109. static const unsigned char classic_add_chroma[256] = {
  110. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  111. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  112. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  113. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  114. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  115. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  116. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  117. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  118. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  119. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  120. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  121. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  122. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  123. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  124. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  125. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  126. };
  127. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst,
  128. uint8_t *src, int w, int left)
  129. {
  130. int i;
  131. if (w < 32) {
  132. for (i = 0; i < w; i++) {
  133. const int temp = src[i];
  134. dst[i] = temp - left;
  135. left = temp;
  136. }
  137. return left;
  138. } else {
  139. for (i = 0; i < 16; i++) {
  140. const int temp = src[i];
  141. dst[i] = temp - left;
  142. left = temp;
  143. }
  144. s->dsp.diff_bytes(dst + 16, src + 16, src + 15, w - 16);
  145. return src[w-1];
  146. }
  147. }
  148. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst,
  149. uint8_t *src, int w,
  150. int *red, int *green, int *blue)
  151. {
  152. int i;
  153. int r,g,b;
  154. r = *red;
  155. g = *green;
  156. b = *blue;
  157. for (i = 0; i < FFMIN(w, 4); i++) {
  158. const int rt = src[i * 4 + R];
  159. const int gt = src[i * 4 + G];
  160. const int bt = src[i * 4 + B];
  161. dst[i * 4 + R] = rt - r;
  162. dst[i * 4 + G] = gt - g;
  163. dst[i * 4 + B] = bt - b;
  164. r = rt;
  165. g = gt;
  166. b = bt;
  167. }
  168. s->dsp.diff_bytes(dst + 16, src + 16, src + 12, w * 4 - 16);
  169. *red = src[(w - 1) * 4 + R];
  170. *green = src[(w - 1) * 4 + G];
  171. *blue = src[(w - 1) * 4 + B];
  172. }
  173. static int read_len_table(uint8_t *dst, GetBitContext *gb)
  174. {
  175. int i, val, repeat;
  176. for (i = 0; i < 256;) {
  177. repeat = get_bits(gb, 3);
  178. val = get_bits(gb, 5);
  179. if (repeat == 0)
  180. repeat = get_bits(gb, 8);
  181. if (i + repeat > 256 || get_bits_left(gb) < 0) {
  182. av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n");
  183. return -1;
  184. }
  185. while (repeat--)
  186. dst[i++] = val;
  187. }
  188. return 0;
  189. }
  190. static int generate_bits_table(uint32_t *dst, const uint8_t *len_table)
  191. {
  192. int len, index;
  193. uint32_t bits = 0;
  194. for (len = 32; len > 0; len--) {
  195. for (index = 0; index < 256; index++) {
  196. if (len_table[index] == len)
  197. dst[index] = bits++;
  198. }
  199. if (bits & 1) {
  200. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  201. return -1;
  202. }
  203. bits >>= 1;
  204. }
  205. return 0;
  206. }
  207. static void generate_joint_tables(HYuvContext *s)
  208. {
  209. uint16_t symbols[1 << VLC_BITS];
  210. uint16_t bits[1 << VLC_BITS];
  211. uint8_t len[1 << VLC_BITS];
  212. if (s->bitstream_bpp < 24) {
  213. int p, i, y, u;
  214. for (p = 0; p < 3; p++) {
  215. for (i = y = 0; y < 256; y++) {
  216. int len0 = s->len[0][y];
  217. int limit = VLC_BITS - len0;
  218. if(limit <= 0)
  219. continue;
  220. for (u = 0; u < 256; u++) {
  221. int len1 = s->len[p][u];
  222. if (len1 > limit)
  223. continue;
  224. len[i] = len0 + len1;
  225. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  226. symbols[i] = (y << 8) + u;
  227. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  228. i++;
  229. }
  230. }
  231. ff_free_vlc(&s->vlc[3 + p]);
  232. ff_init_vlc_sparse(&s->vlc[3 + p], VLC_BITS, i, len, 1, 1,
  233. bits, 2, 2, symbols, 2, 2, 0);
  234. }
  235. } else {
  236. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  237. int i, b, g, r, code;
  238. int p0 = s->decorrelate;
  239. int p1 = !s->decorrelate;
  240. // restrict the range to +/-16 because that's pretty much guaranteed to
  241. // cover all the combinations that fit in 11 bits total, and it doesn't
  242. // matter if we miss a few rare codes.
  243. for (i = 0, g = -16; g < 16; g++) {
  244. int len0 = s->len[p0][g & 255];
  245. int limit0 = VLC_BITS - len0;
  246. if (limit0 < 2)
  247. continue;
  248. for (b = -16; b < 16; b++) {
  249. int len1 = s->len[p1][b & 255];
  250. int limit1 = limit0 - len1;
  251. if (limit1 < 1)
  252. continue;
  253. code = (s->bits[p0][g & 255] << len1) + s->bits[p1][b & 255];
  254. for (r = -16; r < 16; r++) {
  255. int len2 = s->len[2][r & 255];
  256. if (len2 > limit1)
  257. continue;
  258. len[i] = len0 + len1 + len2;
  259. bits[i] = (code << len2) + s->bits[2][r & 255];
  260. if (s->decorrelate) {
  261. map[i][G] = g;
  262. map[i][B] = g + b;
  263. map[i][R] = g + r;
  264. } else {
  265. map[i][B] = g;
  266. map[i][G] = b;
  267. map[i][R] = r;
  268. }
  269. i++;
  270. }
  271. }
  272. }
  273. ff_free_vlc(&s->vlc[3]);
  274. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  275. }
  276. }
  277. static int read_huffman_tables(HYuvContext *s, const uint8_t *src, int length)
  278. {
  279. GetBitContext gb;
  280. int i;
  281. init_get_bits(&gb, src, length * 8);
  282. for (i = 0; i < 3; i++) {
  283. if (read_len_table(s->len[i], &gb) < 0)
  284. return -1;
  285. if (generate_bits_table(s->bits[i], s->len[i]) < 0) {
  286. return -1;
  287. }
  288. ff_free_vlc(&s->vlc[i]);
  289. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1,
  290. s->bits[i], 4, 4, 0);
  291. }
  292. generate_joint_tables(s);
  293. return (get_bits_count(&gb) + 7) / 8;
  294. }
  295. static int read_old_huffman_tables(HYuvContext *s)
  296. {
  297. #if 1
  298. GetBitContext gb;
  299. int i;
  300. init_get_bits(&gb, classic_shift_luma,
  301. classic_shift_luma_table_size * 8);
  302. if (read_len_table(s->len[0], &gb) < 0)
  303. return -1;
  304. init_get_bits(&gb, classic_shift_chroma,
  305. classic_shift_chroma_table_size * 8);
  306. if (read_len_table(s->len[1], &gb) < 0)
  307. return -1;
  308. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  309. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  310. if (s->bitstream_bpp >= 24) {
  311. memcpy(s->bits[1], s->bits[0], 256 * sizeof(uint32_t));
  312. memcpy(s->len[1] , s->len [0], 256 * sizeof(uint8_t));
  313. }
  314. memcpy(s->bits[2], s->bits[1], 256 * sizeof(uint32_t));
  315. memcpy(s->len[2] , s->len [1], 256 * sizeof(uint8_t));
  316. for (i = 0; i < 3; i++) {
  317. ff_free_vlc(&s->vlc[i]);
  318. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1,
  319. s->bits[i], 4, 4, 0);
  320. }
  321. generate_joint_tables(s);
  322. return 0;
  323. #else
  324. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  325. return -1;
  326. #endif
  327. }
  328. static av_cold void alloc_temp(HYuvContext *s)
  329. {
  330. int i;
  331. if (s->bitstream_bpp<24) {
  332. for (i=0; i<3; i++) {
  333. s->temp[i]= av_malloc(s->width + 16);
  334. }
  335. } else {
  336. s->temp[0]= av_mallocz(4*s->width + 16);
  337. }
  338. }
  339. static av_cold int common_init(AVCodecContext *avctx)
  340. {
  341. HYuvContext *s = avctx->priv_data;
  342. s->avctx = avctx;
  343. s->flags = avctx->flags;
  344. ff_dsputil_init(&s->dsp, avctx);
  345. s->width = avctx->width;
  346. s->height = avctx->height;
  347. assert(s->width>0 && s->height>0);
  348. return 0;
  349. }
  350. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  351. static av_cold int decode_init(AVCodecContext *avctx)
  352. {
  353. HYuvContext *s = avctx->priv_data;
  354. common_init(avctx);
  355. memset(s->vlc, 0, 3 * sizeof(VLC));
  356. avctx->coded_frame = &s->picture;
  357. s->interlaced = s->height > 288;
  358. s->bgr32 = 1;
  359. if (avctx->extradata_size) {
  360. if ((avctx->bits_per_coded_sample & 7) &&
  361. avctx->bits_per_coded_sample != 12)
  362. s->version = 1; // do such files exist at all?
  363. else
  364. s->version = 2;
  365. } else
  366. s->version = 0;
  367. if (s->version == 2) {
  368. int method, interlace;
  369. if (avctx->extradata_size < 4)
  370. return -1;
  371. method = ((uint8_t*)avctx->extradata)[0];
  372. s->decorrelate = method & 64 ? 1 : 0;
  373. s->predictor = method & 63;
  374. s->bitstream_bpp = ((uint8_t*)avctx->extradata)[1];
  375. if (s->bitstream_bpp == 0)
  376. s->bitstream_bpp = avctx->bits_per_coded_sample & ~7;
  377. interlace = (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  378. s->interlaced = (interlace == 1) ? 1 : (interlace == 2) ? 0 : s->interlaced;
  379. s->context = ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  380. if ( read_huffman_tables(s, ((uint8_t*)avctx->extradata) + 4,
  381. avctx->extradata_size - 4) < 0)
  382. return -1;
  383. }else{
  384. switch (avctx->bits_per_coded_sample & 7) {
  385. case 1:
  386. s->predictor = LEFT;
  387. s->decorrelate = 0;
  388. break;
  389. case 2:
  390. s->predictor = LEFT;
  391. s->decorrelate = 1;
  392. break;
  393. case 3:
  394. s->predictor = PLANE;
  395. s->decorrelate = avctx->bits_per_coded_sample >= 24;
  396. break;
  397. case 4:
  398. s->predictor = MEDIAN;
  399. s->decorrelate = 0;
  400. break;
  401. default:
  402. s->predictor = LEFT; //OLD
  403. s->decorrelate = 0;
  404. break;
  405. }
  406. s->bitstream_bpp = avctx->bits_per_coded_sample & ~7;
  407. s->context = 0;
  408. if (read_old_huffman_tables(s) < 0)
  409. return -1;
  410. }
  411. switch (s->bitstream_bpp) {
  412. case 12:
  413. avctx->pix_fmt = PIX_FMT_YUV420P;
  414. break;
  415. case 16:
  416. if (s->yuy2) {
  417. avctx->pix_fmt = PIX_FMT_YUYV422;
  418. } else {
  419. avctx->pix_fmt = PIX_FMT_YUV422P;
  420. }
  421. break;
  422. case 24:
  423. case 32:
  424. if (s->bgr32) {
  425. avctx->pix_fmt = PIX_FMT_RGB32;
  426. } else {
  427. avctx->pix_fmt = PIX_FMT_BGR24;
  428. }
  429. break;
  430. default:
  431. return AVERROR_INVALIDDATA;
  432. }
  433. alloc_temp(s);
  434. return 0;
  435. }
  436. static av_cold int decode_init_thread_copy(AVCodecContext *avctx)
  437. {
  438. HYuvContext *s = avctx->priv_data;
  439. int i;
  440. avctx->coded_frame= &s->picture;
  441. alloc_temp(s);
  442. for (i = 0; i < 6; i++)
  443. s->vlc[i].table = NULL;
  444. if (s->version == 2) {
  445. if (read_huffman_tables(s, ((uint8_t*)avctx->extradata) + 4,
  446. avctx->extradata_size) < 0)
  447. return -1;
  448. } else {
  449. if (read_old_huffman_tables(s) < 0)
  450. return -1;
  451. }
  452. return 0;
  453. }
  454. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  455. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  456. static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf)
  457. {
  458. int i;
  459. int index = 0;
  460. for (i = 0; i < 256;) {
  461. int val = len[i];
  462. int repeat = 0;
  463. for (; i < 256 && len[i] == val && repeat < 255; i++)
  464. repeat++;
  465. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  466. if ( repeat > 7) {
  467. buf[index++] = val;
  468. buf[index++] = repeat;
  469. } else {
  470. buf[index++] = val | (repeat << 5);
  471. }
  472. }
  473. return index;
  474. }
  475. static av_cold int encode_init(AVCodecContext *avctx)
  476. {
  477. HYuvContext *s = avctx->priv_data;
  478. int i, j;
  479. common_init(avctx);
  480. avctx->extradata = av_mallocz(1024*30); // 256*3+4 == 772
  481. avctx->stats_out = av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  482. s->version = 2;
  483. avctx->coded_frame = &s->picture;
  484. switch (avctx->pix_fmt) {
  485. case PIX_FMT_YUV420P:
  486. s->bitstream_bpp = 12;
  487. break;
  488. case PIX_FMT_YUV422P:
  489. s->bitstream_bpp = 16;
  490. break;
  491. case PIX_FMT_RGB32:
  492. s->bitstream_bpp = 24;
  493. break;
  494. default:
  495. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  496. return -1;
  497. }
  498. avctx->bits_per_coded_sample = s->bitstream_bpp;
  499. s->decorrelate = s->bitstream_bpp >= 24;
  500. s->predictor = avctx->prediction_method;
  501. s->interlaced = avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  502. if (avctx->context_model == 1) {
  503. s->context = avctx->context_model;
  504. if (s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)) {
  505. av_log(avctx, AV_LOG_ERROR,
  506. "context=1 is not compatible with "
  507. "2 pass huffyuv encoding\n");
  508. return -1;
  509. }
  510. }else s->context= 0;
  511. if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) {
  512. if (avctx->pix_fmt == PIX_FMT_YUV420P) {
  513. av_log(avctx, AV_LOG_ERROR,
  514. "Error: YV12 is not supported by huffyuv; use "
  515. "vcodec=ffvhuff or format=422p\n");
  516. return -1;
  517. }
  518. if (avctx->context_model) {
  519. av_log(avctx, AV_LOG_ERROR,
  520. "Error: per-frame huffman tables are not supported "
  521. "by huffyuv; use vcodec=ffvhuff\n");
  522. return -1;
  523. }
  524. if (s->interlaced != ( s->height > 288 ))
  525. av_log(avctx, AV_LOG_INFO,
  526. "using huffyuv 2.2.0 or newer interlacing flag\n");
  527. }
  528. if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN) {
  529. av_log(avctx, AV_LOG_ERROR,
  530. "Error: RGB is incompatible with median predictor\n");
  531. return -1;
  532. }
  533. ((uint8_t*)avctx->extradata)[0] = s->predictor | (s->decorrelate << 6);
  534. ((uint8_t*)avctx->extradata)[1] = s->bitstream_bpp;
  535. ((uint8_t*)avctx->extradata)[2] = s->interlaced ? 0x10 : 0x20;
  536. if (s->context)
  537. ((uint8_t*)avctx->extradata)[2] |= 0x40;
  538. ((uint8_t*)avctx->extradata)[3] = 0;
  539. s->avctx->extradata_size = 4;
  540. if (avctx->stats_in) {
  541. char *p = avctx->stats_in;
  542. for (i = 0; i < 3; i++)
  543. for (j = 0; j < 256; j++)
  544. s->stats[i][j] = 1;
  545. for (;;) {
  546. for (i = 0; i < 3; i++) {
  547. char *next;
  548. for (j = 0; j < 256; j++) {
  549. s->stats[i][j] += strtol(p, &next, 0);
  550. if (next == p) return -1;
  551. p = next;
  552. }
  553. }
  554. if (p[0] == 0 || p[1] == 0 || p[2] == 0) break;
  555. }
  556. } else {
  557. for (i = 0; i < 3; i++)
  558. for (j = 0; j < 256; j++) {
  559. int d = FFMIN(j, 256 - j);
  560. s->stats[i][j] = 100000000 / (d + 1);
  561. }
  562. }
  563. for (i = 0; i < 3; i++) {
  564. ff_huff_gen_len_table(s->len[i], s->stats[i]);
  565. if (generate_bits_table(s->bits[i], s->len[i]) < 0) {
  566. return -1;
  567. }
  568. s->avctx->extradata_size +=
  569. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  570. }
  571. if (s->context) {
  572. for (i = 0; i < 3; i++) {
  573. int pels = s->width * s->height / (i ? 40 : 10);
  574. for (j = 0; j < 256; j++) {
  575. int d = FFMIN(j, 256 - j);
  576. s->stats[i][j] = pels/(d + 1);
  577. }
  578. }
  579. } else {
  580. for (i = 0; i < 3; i++)
  581. for (j = 0; j < 256; j++)
  582. s->stats[i][j]= 0;
  583. }
  584. alloc_temp(s);
  585. s->picture_number=0;
  586. return 0;
  587. }
  588. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  589. /* TODO instead of restarting the read when the code isn't in the first level
  590. * of the joint table, jump into the 2nd level of the individual table. */
  591. #define READ_2PIX(dst0, dst1, plane1){\
  592. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  593. if(code != 0xffff){\
  594. dst0 = code>>8;\
  595. dst1 = code;\
  596. }else{\
  597. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  598. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  599. }\
  600. }
  601. static void decode_422_bitstream(HYuvContext *s, int count)
  602. {
  603. int i;
  604. count /= 2;
  605. if (count >= (get_bits_left(&s->gb)) / (31 * 4)) {
  606. for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) {
  607. READ_2PIX(s->temp[0][2 * i ], s->temp[1][i], 1);
  608. READ_2PIX(s->temp[0][2 * i + 1], s->temp[2][i], 2);
  609. }
  610. } else {
  611. for (i = 0; i < count; i++) {
  612. READ_2PIX(s->temp[0][2 * i ], s->temp[1][i], 1);
  613. READ_2PIX(s->temp[0][2 * i + 1], s->temp[2][i], 2);
  614. }
  615. }
  616. }
  617. static void decode_gray_bitstream(HYuvContext *s, int count)
  618. {
  619. int i;
  620. count/=2;
  621. if (count >= (get_bits_left(&s->gb)) / (31 * 2)) {
  622. for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) {
  623. READ_2PIX(s->temp[0][2 * i], s->temp[0][2 * i + 1], 0);
  624. }
  625. } else {
  626. for(i=0; i<count; i++){
  627. READ_2PIX(s->temp[0][2 * i], s->temp[0][2 * i + 1], 0);
  628. }
  629. }
  630. }
  631. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  632. static int encode_422_bitstream(HYuvContext *s, int offset, int count)
  633. {
  634. int i;
  635. const uint8_t *y = s->temp[0] + offset;
  636. const uint8_t *u = s->temp[1] + offset / 2;
  637. const uint8_t *v = s->temp[2] + offset / 2;
  638. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 2 * 4 * count) {
  639. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  640. return -1;
  641. }
  642. #define LOAD4\
  643. int y0 = y[2 * i];\
  644. int y1 = y[2 * i + 1];\
  645. int u0 = u[i];\
  646. int v0 = v[i];
  647. count /= 2;
  648. if (s->flags & CODEC_FLAG_PASS1) {
  649. for(i = 0; i < count; i++) {
  650. LOAD4;
  651. s->stats[0][y0]++;
  652. s->stats[1][u0]++;
  653. s->stats[0][y1]++;
  654. s->stats[2][v0]++;
  655. }
  656. }
  657. if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
  658. return 0;
  659. if (s->context) {
  660. for (i = 0; i < count; i++) {
  661. LOAD4;
  662. s->stats[0][y0]++;
  663. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  664. s->stats[1][u0]++;
  665. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  666. s->stats[0][y1]++;
  667. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  668. s->stats[2][v0]++;
  669. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  670. }
  671. } else {
  672. for(i = 0; i < count; i++) {
  673. LOAD4;
  674. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  675. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  676. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  677. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  678. }
  679. }
  680. return 0;
  681. }
  682. static int encode_gray_bitstream(HYuvContext *s, int count)
  683. {
  684. int i;
  685. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 4 * count) {
  686. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  687. return -1;
  688. }
  689. #define LOAD2\
  690. int y0 = s->temp[0][2 * i];\
  691. int y1 = s->temp[0][2 * i + 1];
  692. #define STAT2\
  693. s->stats[0][y0]++;\
  694. s->stats[0][y1]++;
  695. #define WRITE2\
  696. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  697. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  698. count /= 2;
  699. if (s->flags & CODEC_FLAG_PASS1) {
  700. for (i = 0; i < count; i++) {
  701. LOAD2;
  702. STAT2;
  703. }
  704. }
  705. if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
  706. return 0;
  707. if (s->context) {
  708. for (i = 0; i < count; i++) {
  709. LOAD2;
  710. STAT2;
  711. WRITE2;
  712. }
  713. } else {
  714. for (i = 0; i < count; i++) {
  715. LOAD2;
  716. WRITE2;
  717. }
  718. }
  719. return 0;
  720. }
  721. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  722. static av_always_inline void decode_bgr_1(HYuvContext *s, int count,
  723. int decorrelate, int alpha)
  724. {
  725. int i;
  726. for (i = 0; i < count; i++) {
  727. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  728. if (code != -1) {
  729. *(uint32_t*)&s->temp[0][4 * i] = s->pix_bgr_map[code];
  730. } else if(decorrelate) {
  731. s->temp[0][4 * i + G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  732. s->temp[0][4 * i + B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) +
  733. s->temp[0][4 * i + G];
  734. s->temp[0][4 * i + R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) +
  735. s->temp[0][4 * i + G];
  736. } else {
  737. s->temp[0][4 * i + B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  738. s->temp[0][4 * i + G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  739. s->temp[0][4 * i + R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  740. }
  741. if (alpha)
  742. s->temp[0][4 * i + A] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  743. }
  744. }
  745. static void decode_bgr_bitstream(HYuvContext *s, int count)
  746. {
  747. if (s->decorrelate) {
  748. if (s->bitstream_bpp==24)
  749. decode_bgr_1(s, count, 1, 0);
  750. else
  751. decode_bgr_1(s, count, 1, 1);
  752. } else {
  753. if (s->bitstream_bpp==24)
  754. decode_bgr_1(s, count, 0, 0);
  755. else
  756. decode_bgr_1(s, count, 0, 1);
  757. }
  758. }
  759. static int encode_bgr_bitstream(HYuvContext *s, int count)
  760. {
  761. int i;
  762. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 3 * 4 * count) {
  763. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  764. return -1;
  765. }
  766. #define LOAD3\
  767. int g = s->temp[0][4 * i + G];\
  768. int b = (s->temp[0][4 * i + B] - g) & 0xff;\
  769. int r = (s->temp[0][4 * i + R] - g) & 0xff;
  770. #define STAT3\
  771. s->stats[0][b]++;\
  772. s->stats[1][g]++;\
  773. s->stats[2][r]++;
  774. #define WRITE3\
  775. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  776. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  777. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);
  778. if ((s->flags & CODEC_FLAG_PASS1) &&
  779. (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
  780. for (i = 0; i < count; i++) {
  781. LOAD3;
  782. STAT3;
  783. }
  784. } else if (s->context || (s->flags & CODEC_FLAG_PASS1)) {
  785. for (i = 0; i < count; i++) {
  786. LOAD3;
  787. STAT3;
  788. WRITE3;
  789. }
  790. } else {
  791. for (i = 0; i < count; i++) {
  792. LOAD3;
  793. WRITE3;
  794. }
  795. }
  796. return 0;
  797. }
  798. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  799. static void draw_slice(HYuvContext *s, int y)
  800. {
  801. int h, cy, i;
  802. int offset[AV_NUM_DATA_POINTERS];
  803. if (s->avctx->draw_horiz_band==NULL)
  804. return;
  805. h = y - s->last_slice_end;
  806. y -= h;
  807. if (s->bitstream_bpp == 12) {
  808. cy = y>>1;
  809. } else {
  810. cy = y;
  811. }
  812. offset[0] = s->picture.linesize[0]*y;
  813. offset[1] = s->picture.linesize[1]*cy;
  814. offset[2] = s->picture.linesize[2]*cy;
  815. for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
  816. offset[i] = 0;
  817. emms_c();
  818. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  819. s->last_slice_end = y + h;
  820. }
  821. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
  822. AVPacket *avpkt)
  823. {
  824. const uint8_t *buf = avpkt->data;
  825. int buf_size = avpkt->size;
  826. HYuvContext *s = avctx->priv_data;
  827. const int width = s->width;
  828. const int width2 = s->width>>1;
  829. const int height = s->height;
  830. int fake_ystride, fake_ustride, fake_vstride;
  831. AVFrame * const p = &s->picture;
  832. int table_size = 0;
  833. AVFrame *picture = data;
  834. av_fast_malloc(&s->bitstream_buffer,
  835. &s->bitstream_buffer_size,
  836. buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  837. if (!s->bitstream_buffer)
  838. return AVERROR(ENOMEM);
  839. memset(s->bitstream_buffer + buf_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  840. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer,
  841. (const uint32_t*)buf, buf_size / 4);
  842. if (p->data[0])
  843. ff_thread_release_buffer(avctx, p);
  844. p->reference = 0;
  845. if (ff_thread_get_buffer(avctx, p) < 0) {
  846. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  847. return -1;
  848. }
  849. if (s->context) {
  850. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  851. if (table_size < 0)
  852. return -1;
  853. }
  854. if ((unsigned)(buf_size-table_size) >= INT_MAX / 8)
  855. return -1;
  856. init_get_bits(&s->gb, s->bitstream_buffer+table_size,
  857. (buf_size-table_size) * 8);
  858. fake_ystride = s->interlaced ? p->linesize[0] * 2 : p->linesize[0];
  859. fake_ustride = s->interlaced ? p->linesize[1] * 2 : p->linesize[1];
  860. fake_vstride = s->interlaced ? p->linesize[2] * 2 : p->linesize[2];
  861. s->last_slice_end = 0;
  862. if (s->bitstream_bpp < 24) {
  863. int y, cy;
  864. int lefty, leftu, leftv;
  865. int lefttopy, lefttopu, lefttopv;
  866. if (s->yuy2) {
  867. p->data[0][3] = get_bits(&s->gb, 8);
  868. p->data[0][2] = get_bits(&s->gb, 8);
  869. p->data[0][1] = get_bits(&s->gb, 8);
  870. p->data[0][0] = get_bits(&s->gb, 8);
  871. av_log(avctx, AV_LOG_ERROR,
  872. "YUY2 output is not implemented yet\n");
  873. return -1;
  874. } else {
  875. leftv = p->data[2][0] = get_bits(&s->gb, 8);
  876. lefty = p->data[0][1] = get_bits(&s->gb, 8);
  877. leftu = p->data[1][0] = get_bits(&s->gb, 8);
  878. p->data[0][0] = get_bits(&s->gb, 8);
  879. switch (s->predictor) {
  880. case LEFT:
  881. case PLANE:
  882. decode_422_bitstream(s, width-2);
  883. lefty = s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  884. if (!(s->flags&CODEC_FLAG_GRAY)) {
  885. leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2 - 1, leftu);
  886. leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2 - 1, leftv);
  887. }
  888. for (cy = y = 1; y < s->height; y++, cy++) {
  889. uint8_t *ydst, *udst, *vdst;
  890. if (s->bitstream_bpp == 12) {
  891. decode_gray_bitstream(s, width);
  892. ydst = p->data[0] + p->linesize[0] * y;
  893. lefty = s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  894. if (s->predictor == PLANE) {
  895. if (y > s->interlaced)
  896. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  897. }
  898. y++;
  899. if (y >= s->height) break;
  900. }
  901. draw_slice(s, y);
  902. ydst = p->data[0] + p->linesize[0]*y;
  903. udst = p->data[1] + p->linesize[1]*cy;
  904. vdst = p->data[2] + p->linesize[2]*cy;
  905. decode_422_bitstream(s, width);
  906. lefty = s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  907. if (!(s->flags & CODEC_FLAG_GRAY)) {
  908. leftu= s->dsp.add_hfyu_left_prediction(udst, s->temp[1], width2, leftu);
  909. leftv= s->dsp.add_hfyu_left_prediction(vdst, s->temp[2], width2, leftv);
  910. }
  911. if (s->predictor == PLANE) {
  912. if (cy > s->interlaced) {
  913. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  914. if (!(s->flags & CODEC_FLAG_GRAY)) {
  915. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  916. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  917. }
  918. }
  919. }
  920. }
  921. draw_slice(s, height);
  922. break;
  923. case MEDIAN:
  924. /* first line except first 2 pixels is left predicted */
  925. decode_422_bitstream(s, width - 2);
  926. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width - 2, lefty);
  927. if (!(s->flags & CODEC_FLAG_GRAY)) {
  928. leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2 - 1, leftu);
  929. leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2 - 1, leftv);
  930. }
  931. cy = y = 1;
  932. /* second line is left predicted for interlaced case */
  933. if (s->interlaced) {
  934. decode_422_bitstream(s, width);
  935. lefty = s->dsp.add_hfyu_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  936. if (!(s->flags & CODEC_FLAG_GRAY)) {
  937. leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  938. leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  939. }
  940. y++; cy++;
  941. }
  942. /* next 4 pixels are left predicted too */
  943. decode_422_bitstream(s, 4);
  944. lefty = s->dsp.add_hfyu_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  945. if (!(s->flags&CODEC_FLAG_GRAY)) {
  946. leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  947. leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  948. }
  949. /* next line except the first 4 pixels is median predicted */
  950. lefttopy = p->data[0][3];
  951. decode_422_bitstream(s, width - 4);
  952. s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  953. if (!(s->flags&CODEC_FLAG_GRAY)) {
  954. lefttopu = p->data[1][1];
  955. lefttopv = p->data[2][1];
  956. s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1] + 2, s->temp[1], width2 - 2, &leftu, &lefttopu);
  957. s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2] + 2, s->temp[2], width2 - 2, &leftv, &lefttopv);
  958. }
  959. y++; cy++;
  960. for (; y<height; y++, cy++) {
  961. uint8_t *ydst, *udst, *vdst;
  962. if (s->bitstream_bpp == 12) {
  963. while (2 * cy > y) {
  964. decode_gray_bitstream(s, width);
  965. ydst = p->data[0] + p->linesize[0] * y;
  966. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  967. y++;
  968. }
  969. if (y >= height) break;
  970. }
  971. draw_slice(s, y);
  972. decode_422_bitstream(s, width);
  973. ydst = p->data[0] + p->linesize[0] * y;
  974. udst = p->data[1] + p->linesize[1] * cy;
  975. vdst = p->data[2] + p->linesize[2] * cy;
  976. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  977. if (!(s->flags & CODEC_FLAG_GRAY)) {
  978. s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  979. s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  980. }
  981. }
  982. draw_slice(s, height);
  983. break;
  984. }
  985. }
  986. } else {
  987. int y;
  988. int leftr, leftg, leftb, lefta;
  989. const int last_line = (height - 1) * p->linesize[0];
  990. if (s->bitstream_bpp == 32) {
  991. lefta = p->data[0][last_line+A] = get_bits(&s->gb, 8);
  992. leftr = p->data[0][last_line+R] = get_bits(&s->gb, 8);
  993. leftg = p->data[0][last_line+G] = get_bits(&s->gb, 8);
  994. leftb = p->data[0][last_line+B] = get_bits(&s->gb, 8);
  995. } else {
  996. leftr = p->data[0][last_line+R] = get_bits(&s->gb, 8);
  997. leftg = p->data[0][last_line+G] = get_bits(&s->gb, 8);
  998. leftb = p->data[0][last_line+B] = get_bits(&s->gb, 8);
  999. lefta = p->data[0][last_line+A] = 255;
  1000. skip_bits(&s->gb, 8);
  1001. }
  1002. if (s->bgr32) {
  1003. switch (s->predictor) {
  1004. case LEFT:
  1005. case PLANE:
  1006. decode_bgr_bitstream(s, width - 1);
  1007. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width - 1, &leftr, &leftg, &leftb, &lefta);
  1008. for (y = s->height - 2; y >= 0; y--) { //Yes it is stored upside down.
  1009. decode_bgr_bitstream(s, width);
  1010. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb, &lefta);
  1011. if (s->predictor == PLANE) {
  1012. if (s->bitstream_bpp != 32) lefta = 0;
  1013. if ((y & s->interlaced) == 0 &&
  1014. y < s->height - 1 - s->interlaced) {
  1015. s->dsp.add_bytes(p->data[0] + p->linesize[0] * y,
  1016. p->data[0] + p->linesize[0] * y +
  1017. fake_ystride, fake_ystride);
  1018. }
  1019. }
  1020. }
  1021. // just 1 large slice as this is not possible in reverse order
  1022. draw_slice(s, height);
  1023. break;
  1024. default:
  1025. av_log(avctx, AV_LOG_ERROR,
  1026. "prediction type not supported!\n");
  1027. }
  1028. }else{
  1029. av_log(avctx, AV_LOG_ERROR,
  1030. "BGR24 output is not implemented yet\n");
  1031. return -1;
  1032. }
  1033. }
  1034. emms_c();
  1035. *picture = *p;
  1036. *data_size = sizeof(AVFrame);
  1037. return (get_bits_count(&s->gb) + 31) / 32 * 4 + table_size;
  1038. }
  1039. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1040. static int common_end(HYuvContext *s)
  1041. {
  1042. int i;
  1043. for(i = 0; i < 3; i++) {
  1044. av_freep(&s->temp[i]);
  1045. }
  1046. return 0;
  1047. }
  1048. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  1049. static av_cold int decode_end(AVCodecContext *avctx)
  1050. {
  1051. HYuvContext *s = avctx->priv_data;
  1052. int i;
  1053. if (s->picture.data[0])
  1054. avctx->release_buffer(avctx, &s->picture);
  1055. common_end(s);
  1056. av_freep(&s->bitstream_buffer);
  1057. for (i = 0; i < 6; i++) {
  1058. ff_free_vlc(&s->vlc[i]);
  1059. }
  1060. return 0;
  1061. }
  1062. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1063. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  1064. static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  1065. const AVFrame *pict, int *got_packet)
  1066. {
  1067. HYuvContext *s = avctx->priv_data;
  1068. const int width = s->width;
  1069. const int width2 = s->width>>1;
  1070. const int height = s->height;
  1071. const int fake_ystride = s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1072. const int fake_ustride = s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1073. const int fake_vstride = s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1074. AVFrame * const p = &s->picture;
  1075. int i, j, size = 0, ret;
  1076. if (!pkt->data &&
  1077. (ret = av_new_packet(pkt, width * height * 3 * 4 + FF_MIN_BUFFER_SIZE)) < 0) {
  1078. av_log(avctx, AV_LOG_ERROR, "Error allocating output packet.\n");
  1079. return ret;
  1080. }
  1081. *p = *pict;
  1082. p->pict_type = AV_PICTURE_TYPE_I;
  1083. p->key_frame = 1;
  1084. if (s->context) {
  1085. for (i = 0; i < 3; i++) {
  1086. ff_huff_gen_len_table(s->len[i], s->stats[i]);
  1087. if (generate_bits_table(s->bits[i], s->len[i]) < 0)
  1088. return -1;
  1089. size += store_table(s, s->len[i], &pkt->data[size]);
  1090. }
  1091. for (i = 0; i < 3; i++)
  1092. for (j = 0; j < 256; j++)
  1093. s->stats[i][j] >>= 1;
  1094. }
  1095. init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
  1096. if (avctx->pix_fmt == PIX_FMT_YUV422P ||
  1097. avctx->pix_fmt == PIX_FMT_YUV420P) {
  1098. int lefty, leftu, leftv, y, cy;
  1099. put_bits(&s->pb, 8, leftv = p->data[2][0]);
  1100. put_bits(&s->pb, 8, lefty = p->data[0][1]);
  1101. put_bits(&s->pb, 8, leftu = p->data[1][0]);
  1102. put_bits(&s->pb, 8, p->data[0][0]);
  1103. lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  1104. leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  1105. leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  1106. encode_422_bitstream(s, 2, width-2);
  1107. if (s->predictor==MEDIAN) {
  1108. int lefttopy, lefttopu, lefttopv;
  1109. cy = y = 1;
  1110. if (s->interlaced) {
  1111. lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty);
  1112. leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu);
  1113. leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv);
  1114. encode_422_bitstream(s, 0, width);
  1115. y++; cy++;
  1116. }
  1117. lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty);
  1118. leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu);
  1119. leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv);
  1120. encode_422_bitstream(s, 0, 4);
  1121. lefttopy = p->data[0][3];
  1122. lefttopu = p->data[1][1];
  1123. lefttopv = p->data[2][1];
  1124. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride + 4, width - 4 , &lefty, &lefttopy);
  1125. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu);
  1126. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv);
  1127. encode_422_bitstream(s, 0, width - 4);
  1128. y++; cy++;
  1129. for (; y < height; y++,cy++) {
  1130. uint8_t *ydst, *udst, *vdst;
  1131. if (s->bitstream_bpp == 12) {
  1132. while (2 * cy > y) {
  1133. ydst = p->data[0] + p->linesize[0] * y;
  1134. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1135. encode_gray_bitstream(s, width);
  1136. y++;
  1137. }
  1138. if (y >= height) break;
  1139. }
  1140. ydst = p->data[0] + p->linesize[0] * y;
  1141. udst = p->data[1] + p->linesize[1] * cy;
  1142. vdst = p->data[2] + p->linesize[2] * cy;
  1143. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1144. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1145. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1146. encode_422_bitstream(s, 0, width);
  1147. }
  1148. } else {
  1149. for (cy = y = 1; y < height; y++, cy++) {
  1150. uint8_t *ydst, *udst, *vdst;
  1151. /* encode a luma only line & y++ */
  1152. if (s->bitstream_bpp == 12) {
  1153. ydst = p->data[0] + p->linesize[0] * y;
  1154. if (s->predictor == PLANE && s->interlaced < y) {
  1155. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1156. lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1157. } else {
  1158. lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1159. }
  1160. encode_gray_bitstream(s, width);
  1161. y++;
  1162. if (y >= height) break;
  1163. }
  1164. ydst = p->data[0] + p->linesize[0] * y;
  1165. udst = p->data[1] + p->linesize[1] * cy;
  1166. vdst = p->data[2] + p->linesize[2] * cy;
  1167. if (s->predictor == PLANE && s->interlaced < cy) {
  1168. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1169. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1170. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1171. lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1172. leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1173. leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1174. } else {
  1175. lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1176. leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1177. leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1178. }
  1179. encode_422_bitstream(s, 0, width);
  1180. }
  1181. }
  1182. } else if(avctx->pix_fmt == PIX_FMT_RGB32) {
  1183. uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
  1184. const int stride = -p->linesize[0];
  1185. const int fake_stride = -fake_ystride;
  1186. int y;
  1187. int leftr, leftg, leftb;
  1188. put_bits(&s->pb, 8, leftr = data[R]);
  1189. put_bits(&s->pb, 8, leftg = data[G]);
  1190. put_bits(&s->pb, 8, leftb = data[B]);
  1191. put_bits(&s->pb, 8, 0);
  1192. sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1, &leftr, &leftg, &leftb);
  1193. encode_bgr_bitstream(s, width - 1);
  1194. for (y = 1; y < s->height; y++) {
  1195. uint8_t *dst = data + y*stride;
  1196. if (s->predictor == PLANE && s->interlaced < y) {
  1197. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4);
  1198. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1199. } else {
  1200. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1201. }
  1202. encode_bgr_bitstream(s, width);
  1203. }
  1204. } else {
  1205. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1206. }
  1207. emms_c();
  1208. size += (put_bits_count(&s->pb) + 31) / 8;
  1209. put_bits(&s->pb, 16, 0);
  1210. put_bits(&s->pb, 15, 0);
  1211. size /= 4;
  1212. if ((s->flags&CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) {
  1213. int j;
  1214. char *p = avctx->stats_out;
  1215. char *end = p + 1024*30;
  1216. for (i = 0; i < 3; i++) {
  1217. for (j = 0; j < 256; j++) {
  1218. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1219. p += strlen(p);
  1220. s->stats[i][j]= 0;
  1221. }
  1222. snprintf(p, end-p, "\n");
  1223. p++;
  1224. }
  1225. } else
  1226. avctx->stats_out[0] = '\0';
  1227. if (!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
  1228. flush_put_bits(&s->pb);
  1229. s->dsp.bswap_buf((uint32_t*)pkt->data, (uint32_t*)pkt->data, size);
  1230. }
  1231. s->picture_number++;
  1232. pkt->size = size * 4;
  1233. pkt->flags |= AV_PKT_FLAG_KEY;
  1234. *got_packet = 1;
  1235. return 0;
  1236. }
  1237. static av_cold int encode_end(AVCodecContext *avctx)
  1238. {
  1239. HYuvContext *s = avctx->priv_data;
  1240. common_end(s);
  1241. av_freep(&avctx->extradata);
  1242. av_freep(&avctx->stats_out);
  1243. return 0;
  1244. }
  1245. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  1246. #if CONFIG_HUFFYUV_DECODER
  1247. AVCodec ff_huffyuv_decoder = {
  1248. .name = "huffyuv",
  1249. .type = AVMEDIA_TYPE_VIDEO,
  1250. .id = AV_CODEC_ID_HUFFYUV,
  1251. .priv_data_size = sizeof(HYuvContext),
  1252. .init = decode_init,
  1253. .close = decode_end,
  1254. .decode = decode_frame,
  1255. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
  1256. CODEC_CAP_FRAME_THREADS,
  1257. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1258. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1259. };
  1260. #endif
  1261. #if CONFIG_FFVHUFF_DECODER
  1262. AVCodec ff_ffvhuff_decoder = {
  1263. .name = "ffvhuff",
  1264. .type = AVMEDIA_TYPE_VIDEO,
  1265. .id = AV_CODEC_ID_FFVHUFF,
  1266. .priv_data_size = sizeof(HYuvContext),
  1267. .init = decode_init,
  1268. .close = decode_end,
  1269. .decode = decode_frame,
  1270. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
  1271. CODEC_CAP_FRAME_THREADS,
  1272. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1273. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1274. };
  1275. #endif
  1276. #if CONFIG_HUFFYUV_ENCODER
  1277. AVCodec ff_huffyuv_encoder = {
  1278. .name = "huffyuv",
  1279. .type = AVMEDIA_TYPE_VIDEO,
  1280. .id = AV_CODEC_ID_HUFFYUV,
  1281. .priv_data_size = sizeof(HYuvContext),
  1282. .init = encode_init,
  1283. .encode2 = encode_frame,
  1284. .close = encode_end,
  1285. .pix_fmts = (const enum PixelFormat[]){
  1286. PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE
  1287. },
  1288. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1289. };
  1290. #endif
  1291. #if CONFIG_FFVHUFF_ENCODER
  1292. AVCodec ff_ffvhuff_encoder = {
  1293. .name = "ffvhuff",
  1294. .type = AVMEDIA_TYPE_VIDEO,
  1295. .id = AV_CODEC_ID_FFVHUFF,
  1296. .priv_data_size = sizeof(HYuvContext),
  1297. .init = encode_init,
  1298. .encode2 = encode_frame,
  1299. .close = encode_end,
  1300. .pix_fmts = (const enum PixelFormat[]){
  1301. PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE
  1302. },
  1303. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1304. };
  1305. #endif