You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

900 lines
29KB

  1. /*
  2. * RTP input format
  3. * Copyright (c) 2002 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/mathematics.h"
  22. #include "libavutil/avstring.h"
  23. #include "libavutil/time.h"
  24. #include "libavcodec/get_bits.h"
  25. #include "avformat.h"
  26. #include "network.h"
  27. #include "srtp.h"
  28. #include "url.h"
  29. #include "rtpdec.h"
  30. #include "rtpdec_formats.h"
  31. #define MIN_FEEDBACK_INTERVAL 200000 /* 200 ms in us */
  32. static RTPDynamicProtocolHandler gsm_dynamic_handler = {
  33. .enc_name = "GSM",
  34. .codec_type = AVMEDIA_TYPE_AUDIO,
  35. .codec_id = AV_CODEC_ID_GSM,
  36. };
  37. static RTPDynamicProtocolHandler realmedia_mp3_dynamic_handler = {
  38. .enc_name = "X-MP3-draft-00",
  39. .codec_type = AVMEDIA_TYPE_AUDIO,
  40. .codec_id = AV_CODEC_ID_MP3ADU,
  41. };
  42. static RTPDynamicProtocolHandler speex_dynamic_handler = {
  43. .enc_name = "speex",
  44. .codec_type = AVMEDIA_TYPE_AUDIO,
  45. .codec_id = AV_CODEC_ID_SPEEX,
  46. };
  47. static RTPDynamicProtocolHandler opus_dynamic_handler = {
  48. .enc_name = "opus",
  49. .codec_type = AVMEDIA_TYPE_AUDIO,
  50. .codec_id = AV_CODEC_ID_OPUS,
  51. };
  52. static RTPDynamicProtocolHandler ff_t140_dynamic_handler = {
  53. .enc_name = "t140",
  54. .codec_type = AVMEDIA_TYPE_SUBTITLE,
  55. .codec_id = AV_CODEC_ID_SUBRIP,
  56. };
  57. static RTPDynamicProtocolHandler *rtp_first_dynamic_payload_handler = NULL;
  58. void ff_register_dynamic_payload_handler(RTPDynamicProtocolHandler *handler)
  59. {
  60. handler->next = rtp_first_dynamic_payload_handler;
  61. rtp_first_dynamic_payload_handler = handler;
  62. }
  63. void ff_register_rtp_dynamic_payload_handlers(void)
  64. {
  65. ff_register_dynamic_payload_handler(&ff_ac3_dynamic_handler);
  66. ff_register_dynamic_payload_handler(&ff_amr_nb_dynamic_handler);
  67. ff_register_dynamic_payload_handler(&ff_amr_wb_dynamic_handler);
  68. ff_register_dynamic_payload_handler(&ff_g726_16_dynamic_handler);
  69. ff_register_dynamic_payload_handler(&ff_g726_24_dynamic_handler);
  70. ff_register_dynamic_payload_handler(&ff_g726_32_dynamic_handler);
  71. ff_register_dynamic_payload_handler(&ff_g726_40_dynamic_handler);
  72. ff_register_dynamic_payload_handler(&ff_h261_dynamic_handler);
  73. ff_register_dynamic_payload_handler(&ff_h263_1998_dynamic_handler);
  74. ff_register_dynamic_payload_handler(&ff_h263_2000_dynamic_handler);
  75. ff_register_dynamic_payload_handler(&ff_h263_rfc2190_dynamic_handler);
  76. ff_register_dynamic_payload_handler(&ff_h264_dynamic_handler);
  77. ff_register_dynamic_payload_handler(&ff_hevc_dynamic_handler);
  78. ff_register_dynamic_payload_handler(&ff_ilbc_dynamic_handler);
  79. ff_register_dynamic_payload_handler(&ff_jpeg_dynamic_handler);
  80. ff_register_dynamic_payload_handler(&ff_mp4a_latm_dynamic_handler);
  81. ff_register_dynamic_payload_handler(&ff_mp4v_es_dynamic_handler);
  82. ff_register_dynamic_payload_handler(&ff_mpeg_audio_dynamic_handler);
  83. ff_register_dynamic_payload_handler(&ff_mpeg_audio_robust_dynamic_handler);
  84. ff_register_dynamic_payload_handler(&ff_mpeg_video_dynamic_handler);
  85. ff_register_dynamic_payload_handler(&ff_mpeg4_generic_dynamic_handler);
  86. ff_register_dynamic_payload_handler(&ff_mpegts_dynamic_handler);
  87. ff_register_dynamic_payload_handler(&ff_ms_rtp_asf_pfa_handler);
  88. ff_register_dynamic_payload_handler(&ff_ms_rtp_asf_pfv_handler);
  89. ff_register_dynamic_payload_handler(&ff_qcelp_dynamic_handler);
  90. ff_register_dynamic_payload_handler(&ff_qdm2_dynamic_handler);
  91. ff_register_dynamic_payload_handler(&ff_qt_rtp_aud_handler);
  92. ff_register_dynamic_payload_handler(&ff_qt_rtp_vid_handler);
  93. ff_register_dynamic_payload_handler(&ff_quicktime_rtp_aud_handler);
  94. ff_register_dynamic_payload_handler(&ff_quicktime_rtp_vid_handler);
  95. ff_register_dynamic_payload_handler(&ff_svq3_dynamic_handler);
  96. ff_register_dynamic_payload_handler(&ff_t140_dynamic_handler);
  97. ff_register_dynamic_payload_handler(&ff_theora_dynamic_handler);
  98. ff_register_dynamic_payload_handler(&ff_vorbis_dynamic_handler);
  99. ff_register_dynamic_payload_handler(&ff_vp8_dynamic_handler);
  100. ff_register_dynamic_payload_handler(&ff_vp9_dynamic_handler);
  101. ff_register_dynamic_payload_handler(&gsm_dynamic_handler);
  102. ff_register_dynamic_payload_handler(&opus_dynamic_handler);
  103. ff_register_dynamic_payload_handler(&realmedia_mp3_dynamic_handler);
  104. ff_register_dynamic_payload_handler(&speex_dynamic_handler);
  105. }
  106. RTPDynamicProtocolHandler *ff_rtp_handler_find_by_name(const char *name,
  107. enum AVMediaType codec_type)
  108. {
  109. RTPDynamicProtocolHandler *handler;
  110. for (handler = rtp_first_dynamic_payload_handler;
  111. handler; handler = handler->next)
  112. if (!av_strcasecmp(name, handler->enc_name) &&
  113. codec_type == handler->codec_type)
  114. return handler;
  115. return NULL;
  116. }
  117. RTPDynamicProtocolHandler *ff_rtp_handler_find_by_id(int id,
  118. enum AVMediaType codec_type)
  119. {
  120. RTPDynamicProtocolHandler *handler;
  121. for (handler = rtp_first_dynamic_payload_handler;
  122. handler; handler = handler->next)
  123. if (handler->static_payload_id && handler->static_payload_id == id &&
  124. codec_type == handler->codec_type)
  125. return handler;
  126. return NULL;
  127. }
  128. static int rtcp_parse_packet(RTPDemuxContext *s, const unsigned char *buf,
  129. int len)
  130. {
  131. int payload_len;
  132. while (len >= 4) {
  133. payload_len = FFMIN(len, (AV_RB16(buf + 2) + 1) * 4);
  134. switch (buf[1]) {
  135. case RTCP_SR:
  136. if (payload_len < 20) {
  137. av_log(NULL, AV_LOG_ERROR,
  138. "Invalid length for RTCP SR packet\n");
  139. return AVERROR_INVALIDDATA;
  140. }
  141. s->last_rtcp_reception_time = av_gettime_relative();
  142. s->last_rtcp_ntp_time = AV_RB64(buf + 8);
  143. s->last_rtcp_timestamp = AV_RB32(buf + 16);
  144. if (s->first_rtcp_ntp_time == AV_NOPTS_VALUE) {
  145. s->first_rtcp_ntp_time = s->last_rtcp_ntp_time;
  146. if (!s->base_timestamp)
  147. s->base_timestamp = s->last_rtcp_timestamp;
  148. s->rtcp_ts_offset = s->last_rtcp_timestamp - s->base_timestamp;
  149. }
  150. break;
  151. case RTCP_BYE:
  152. return -RTCP_BYE;
  153. }
  154. buf += payload_len;
  155. len -= payload_len;
  156. }
  157. return -1;
  158. }
  159. #define RTP_SEQ_MOD (1 << 16)
  160. static void rtp_init_statistics(RTPStatistics *s, uint16_t base_sequence)
  161. {
  162. memset(s, 0, sizeof(RTPStatistics));
  163. s->max_seq = base_sequence;
  164. s->probation = 1;
  165. }
  166. /*
  167. * Called whenever there is a large jump in sequence numbers,
  168. * or when they get out of probation...
  169. */
  170. static void rtp_init_sequence(RTPStatistics *s, uint16_t seq)
  171. {
  172. s->max_seq = seq;
  173. s->cycles = 0;
  174. s->base_seq = seq - 1;
  175. s->bad_seq = RTP_SEQ_MOD + 1;
  176. s->received = 0;
  177. s->expected_prior = 0;
  178. s->received_prior = 0;
  179. s->jitter = 0;
  180. s->transit = 0;
  181. }
  182. /* Returns 1 if we should handle this packet. */
  183. static int rtp_valid_packet_in_sequence(RTPStatistics *s, uint16_t seq)
  184. {
  185. uint16_t udelta = seq - s->max_seq;
  186. const int MAX_DROPOUT = 3000;
  187. const int MAX_MISORDER = 100;
  188. const int MIN_SEQUENTIAL = 2;
  189. /* source not valid until MIN_SEQUENTIAL packets with sequence
  190. * seq. numbers have been received */
  191. if (s->probation) {
  192. if (seq == s->max_seq + 1) {
  193. s->probation--;
  194. s->max_seq = seq;
  195. if (s->probation == 0) {
  196. rtp_init_sequence(s, seq);
  197. s->received++;
  198. return 1;
  199. }
  200. } else {
  201. s->probation = MIN_SEQUENTIAL - 1;
  202. s->max_seq = seq;
  203. }
  204. } else if (udelta < MAX_DROPOUT) {
  205. // in order, with permissible gap
  206. if (seq < s->max_seq) {
  207. // sequence number wrapped; count another 64k cycles
  208. s->cycles += RTP_SEQ_MOD;
  209. }
  210. s->max_seq = seq;
  211. } else if (udelta <= RTP_SEQ_MOD - MAX_MISORDER) {
  212. // sequence made a large jump...
  213. if (seq == s->bad_seq) {
  214. /* two sequential packets -- assume that the other side
  215. * restarted without telling us; just resync. */
  216. rtp_init_sequence(s, seq);
  217. } else {
  218. s->bad_seq = (seq + 1) & (RTP_SEQ_MOD - 1);
  219. return 0;
  220. }
  221. } else {
  222. // duplicate or reordered packet...
  223. }
  224. s->received++;
  225. return 1;
  226. }
  227. static void rtcp_update_jitter(RTPStatistics *s, uint32_t sent_timestamp,
  228. uint32_t arrival_timestamp)
  229. {
  230. // Most of this is pretty straight from RFC 3550 appendix A.8
  231. uint32_t transit = arrival_timestamp - sent_timestamp;
  232. uint32_t prev_transit = s->transit;
  233. int32_t d = transit - prev_transit;
  234. // Doing the FFABS() call directly on the "transit - prev_transit"
  235. // expression doesn't work, since it's an unsigned expression. Doing the
  236. // transit calculation in unsigned is desired though, since it most
  237. // probably will need to wrap around.
  238. d = FFABS(d);
  239. s->transit = transit;
  240. if (!prev_transit)
  241. return;
  242. s->jitter += d - (int32_t) ((s->jitter + 8) >> 4);
  243. }
  244. int ff_rtp_check_and_send_back_rr(RTPDemuxContext *s, URLContext *fd,
  245. AVIOContext *avio, int count)
  246. {
  247. AVIOContext *pb;
  248. uint8_t *buf;
  249. int len;
  250. int rtcp_bytes;
  251. RTPStatistics *stats = &s->statistics;
  252. uint32_t lost;
  253. uint32_t extended_max;
  254. uint32_t expected_interval;
  255. uint32_t received_interval;
  256. int32_t lost_interval;
  257. uint32_t expected;
  258. uint32_t fraction;
  259. if ((!fd && !avio) || (count < 1))
  260. return -1;
  261. /* TODO: I think this is way too often; RFC 1889 has algorithm for this */
  262. /* XXX: MPEG pts hardcoded. RTCP send every 0.5 seconds */
  263. s->octet_count += count;
  264. rtcp_bytes = ((s->octet_count - s->last_octet_count) * RTCP_TX_RATIO_NUM) /
  265. RTCP_TX_RATIO_DEN;
  266. rtcp_bytes /= 50; // mmu_man: that's enough for me... VLC sends much less btw !?
  267. if (rtcp_bytes < 28)
  268. return -1;
  269. s->last_octet_count = s->octet_count;
  270. if (!fd)
  271. pb = avio;
  272. else if (avio_open_dyn_buf(&pb) < 0)
  273. return -1;
  274. // Receiver Report
  275. avio_w8(pb, (RTP_VERSION << 6) + 1); /* 1 report block */
  276. avio_w8(pb, RTCP_RR);
  277. avio_wb16(pb, 7); /* length in words - 1 */
  278. // our own SSRC: we use the server's SSRC + 1 to avoid conflicts
  279. avio_wb32(pb, s->ssrc + 1);
  280. avio_wb32(pb, s->ssrc); // server SSRC
  281. // some placeholders we should really fill...
  282. // RFC 1889/p64
  283. extended_max = stats->cycles + stats->max_seq;
  284. expected = extended_max - stats->base_seq;
  285. lost = expected - stats->received;
  286. lost = FFMIN(lost, 0xffffff); // clamp it since it's only 24 bits...
  287. expected_interval = expected - stats->expected_prior;
  288. stats->expected_prior = expected;
  289. received_interval = stats->received - stats->received_prior;
  290. stats->received_prior = stats->received;
  291. lost_interval = expected_interval - received_interval;
  292. if (expected_interval == 0 || lost_interval <= 0)
  293. fraction = 0;
  294. else
  295. fraction = (lost_interval << 8) / expected_interval;
  296. fraction = (fraction << 24) | lost;
  297. avio_wb32(pb, fraction); /* 8 bits of fraction, 24 bits of total packets lost */
  298. avio_wb32(pb, extended_max); /* max sequence received */
  299. avio_wb32(pb, stats->jitter >> 4); /* jitter */
  300. if (s->last_rtcp_ntp_time == AV_NOPTS_VALUE) {
  301. avio_wb32(pb, 0); /* last SR timestamp */
  302. avio_wb32(pb, 0); /* delay since last SR */
  303. } else {
  304. uint32_t middle_32_bits = s->last_rtcp_ntp_time >> 16; // this is valid, right? do we need to handle 64 bit values special?
  305. uint32_t delay_since_last = av_rescale(av_gettime_relative() - s->last_rtcp_reception_time,
  306. 65536, AV_TIME_BASE);
  307. avio_wb32(pb, middle_32_bits); /* last SR timestamp */
  308. avio_wb32(pb, delay_since_last); /* delay since last SR */
  309. }
  310. // CNAME
  311. avio_w8(pb, (RTP_VERSION << 6) + 1); /* 1 report block */
  312. avio_w8(pb, RTCP_SDES);
  313. len = strlen(s->hostname);
  314. avio_wb16(pb, (7 + len + 3) / 4); /* length in words - 1 */
  315. avio_wb32(pb, s->ssrc + 1);
  316. avio_w8(pb, 0x01);
  317. avio_w8(pb, len);
  318. avio_write(pb, s->hostname, len);
  319. avio_w8(pb, 0); /* END */
  320. // padding
  321. for (len = (7 + len) % 4; len % 4; len++)
  322. avio_w8(pb, 0);
  323. avio_flush(pb);
  324. if (!fd)
  325. return 0;
  326. len = avio_close_dyn_buf(pb, &buf);
  327. if ((len > 0) && buf) {
  328. int av_unused result;
  329. av_dlog(s->ic, "sending %d bytes of RR\n", len);
  330. result = ffurl_write(fd, buf, len);
  331. av_dlog(s->ic, "result from ffurl_write: %d\n", result);
  332. av_free(buf);
  333. }
  334. return 0;
  335. }
  336. void ff_rtp_send_punch_packets(URLContext *rtp_handle)
  337. {
  338. AVIOContext *pb;
  339. uint8_t *buf;
  340. int len;
  341. /* Send a small RTP packet */
  342. if (avio_open_dyn_buf(&pb) < 0)
  343. return;
  344. avio_w8(pb, (RTP_VERSION << 6));
  345. avio_w8(pb, 0); /* Payload type */
  346. avio_wb16(pb, 0); /* Seq */
  347. avio_wb32(pb, 0); /* Timestamp */
  348. avio_wb32(pb, 0); /* SSRC */
  349. avio_flush(pb);
  350. len = avio_close_dyn_buf(pb, &buf);
  351. if ((len > 0) && buf)
  352. ffurl_write(rtp_handle, buf, len);
  353. av_free(buf);
  354. /* Send a minimal RTCP RR */
  355. if (avio_open_dyn_buf(&pb) < 0)
  356. return;
  357. avio_w8(pb, (RTP_VERSION << 6));
  358. avio_w8(pb, RTCP_RR); /* receiver report */
  359. avio_wb16(pb, 1); /* length in words - 1 */
  360. avio_wb32(pb, 0); /* our own SSRC */
  361. avio_flush(pb);
  362. len = avio_close_dyn_buf(pb, &buf);
  363. if ((len > 0) && buf)
  364. ffurl_write(rtp_handle, buf, len);
  365. av_free(buf);
  366. }
  367. static int find_missing_packets(RTPDemuxContext *s, uint16_t *first_missing,
  368. uint16_t *missing_mask)
  369. {
  370. int i;
  371. uint16_t next_seq = s->seq + 1;
  372. RTPPacket *pkt = s->queue;
  373. if (!pkt || pkt->seq == next_seq)
  374. return 0;
  375. *missing_mask = 0;
  376. for (i = 1; i <= 16; i++) {
  377. uint16_t missing_seq = next_seq + i;
  378. while (pkt) {
  379. int16_t diff = pkt->seq - missing_seq;
  380. if (diff >= 0)
  381. break;
  382. pkt = pkt->next;
  383. }
  384. if (!pkt)
  385. break;
  386. if (pkt->seq == missing_seq)
  387. continue;
  388. *missing_mask |= 1 << (i - 1);
  389. }
  390. *first_missing = next_seq;
  391. return 1;
  392. }
  393. int ff_rtp_send_rtcp_feedback(RTPDemuxContext *s, URLContext *fd,
  394. AVIOContext *avio)
  395. {
  396. int len, need_keyframe, missing_packets;
  397. AVIOContext *pb;
  398. uint8_t *buf;
  399. int64_t now;
  400. uint16_t first_missing = 0, missing_mask = 0;
  401. if (!fd && !avio)
  402. return -1;
  403. need_keyframe = s->handler && s->handler->need_keyframe &&
  404. s->handler->need_keyframe(s->dynamic_protocol_context);
  405. missing_packets = find_missing_packets(s, &first_missing, &missing_mask);
  406. if (!need_keyframe && !missing_packets)
  407. return 0;
  408. /* Send new feedback if enough time has elapsed since the last
  409. * feedback packet. */
  410. now = av_gettime_relative();
  411. if (s->last_feedback_time &&
  412. (now - s->last_feedback_time) < MIN_FEEDBACK_INTERVAL)
  413. return 0;
  414. s->last_feedback_time = now;
  415. if (!fd)
  416. pb = avio;
  417. else if (avio_open_dyn_buf(&pb) < 0)
  418. return -1;
  419. if (need_keyframe) {
  420. avio_w8(pb, (RTP_VERSION << 6) | 1); /* PLI */
  421. avio_w8(pb, RTCP_PSFB);
  422. avio_wb16(pb, 2); /* length in words - 1 */
  423. // our own SSRC: we use the server's SSRC + 1 to avoid conflicts
  424. avio_wb32(pb, s->ssrc + 1);
  425. avio_wb32(pb, s->ssrc); // server SSRC
  426. }
  427. if (missing_packets) {
  428. avio_w8(pb, (RTP_VERSION << 6) | 1); /* NACK */
  429. avio_w8(pb, RTCP_RTPFB);
  430. avio_wb16(pb, 3); /* length in words - 1 */
  431. avio_wb32(pb, s->ssrc + 1);
  432. avio_wb32(pb, s->ssrc); // server SSRC
  433. avio_wb16(pb, first_missing);
  434. avio_wb16(pb, missing_mask);
  435. }
  436. avio_flush(pb);
  437. if (!fd)
  438. return 0;
  439. len = avio_close_dyn_buf(pb, &buf);
  440. if (len > 0 && buf) {
  441. ffurl_write(fd, buf, len);
  442. av_free(buf);
  443. }
  444. return 0;
  445. }
  446. /**
  447. * open a new RTP parse context for stream 'st'. 'st' can be NULL for
  448. * MPEG2-TS streams.
  449. */
  450. RTPDemuxContext *ff_rtp_parse_open(AVFormatContext *s1, AVStream *st,
  451. int payload_type, int queue_size)
  452. {
  453. RTPDemuxContext *s;
  454. s = av_mallocz(sizeof(RTPDemuxContext));
  455. if (!s)
  456. return NULL;
  457. s->payload_type = payload_type;
  458. s->last_rtcp_ntp_time = AV_NOPTS_VALUE;
  459. s->first_rtcp_ntp_time = AV_NOPTS_VALUE;
  460. s->ic = s1;
  461. s->st = st;
  462. s->queue_size = queue_size;
  463. rtp_init_statistics(&s->statistics, 0);
  464. if (st) {
  465. switch (st->codec->codec_id) {
  466. case AV_CODEC_ID_ADPCM_G722:
  467. /* According to RFC 3551, the stream clock rate is 8000
  468. * even if the sample rate is 16000. */
  469. if (st->codec->sample_rate == 8000)
  470. st->codec->sample_rate = 16000;
  471. break;
  472. default:
  473. break;
  474. }
  475. }
  476. // needed to send back RTCP RR in RTSP sessions
  477. gethostname(s->hostname, sizeof(s->hostname));
  478. return s;
  479. }
  480. void ff_rtp_parse_set_dynamic_protocol(RTPDemuxContext *s, PayloadContext *ctx,
  481. RTPDynamicProtocolHandler *handler)
  482. {
  483. s->dynamic_protocol_context = ctx;
  484. s->handler = handler;
  485. }
  486. void ff_rtp_parse_set_crypto(RTPDemuxContext *s, const char *suite,
  487. const char *params)
  488. {
  489. if (!ff_srtp_set_crypto(&s->srtp, suite, params))
  490. s->srtp_enabled = 1;
  491. }
  492. /**
  493. * This was the second switch in rtp_parse packet.
  494. * Normalizes time, if required, sets stream_index, etc.
  495. */
  496. static void finalize_packet(RTPDemuxContext *s, AVPacket *pkt, uint32_t timestamp)
  497. {
  498. if (pkt->pts != AV_NOPTS_VALUE || pkt->dts != AV_NOPTS_VALUE)
  499. return; /* Timestamp already set by depacketizer */
  500. if (timestamp == RTP_NOTS_VALUE)
  501. return;
  502. if (s->last_rtcp_ntp_time != AV_NOPTS_VALUE && s->ic->nb_streams > 1) {
  503. int64_t addend;
  504. int delta_timestamp;
  505. /* compute pts from timestamp with received ntp_time */
  506. delta_timestamp = timestamp - s->last_rtcp_timestamp;
  507. /* convert to the PTS timebase */
  508. addend = av_rescale(s->last_rtcp_ntp_time - s->first_rtcp_ntp_time,
  509. s->st->time_base.den,
  510. (uint64_t) s->st->time_base.num << 32);
  511. pkt->pts = s->range_start_offset + s->rtcp_ts_offset + addend +
  512. delta_timestamp;
  513. return;
  514. }
  515. if (!s->base_timestamp)
  516. s->base_timestamp = timestamp;
  517. /* assume that the difference is INT32_MIN < x < INT32_MAX,
  518. * but allow the first timestamp to exceed INT32_MAX */
  519. if (!s->timestamp)
  520. s->unwrapped_timestamp += timestamp;
  521. else
  522. s->unwrapped_timestamp += (int32_t)(timestamp - s->timestamp);
  523. s->timestamp = timestamp;
  524. pkt->pts = s->unwrapped_timestamp + s->range_start_offset -
  525. s->base_timestamp;
  526. }
  527. static int rtp_parse_packet_internal(RTPDemuxContext *s, AVPacket *pkt,
  528. const uint8_t *buf, int len)
  529. {
  530. unsigned int ssrc;
  531. int payload_type, seq, flags = 0;
  532. int ext, csrc;
  533. AVStream *st;
  534. uint32_t timestamp;
  535. int rv = 0;
  536. csrc = buf[0] & 0x0f;
  537. ext = buf[0] & 0x10;
  538. payload_type = buf[1] & 0x7f;
  539. if (buf[1] & 0x80)
  540. flags |= RTP_FLAG_MARKER;
  541. seq = AV_RB16(buf + 2);
  542. timestamp = AV_RB32(buf + 4);
  543. ssrc = AV_RB32(buf + 8);
  544. /* store the ssrc in the RTPDemuxContext */
  545. s->ssrc = ssrc;
  546. /* NOTE: we can handle only one payload type */
  547. if (s->payload_type != payload_type)
  548. return -1;
  549. st = s->st;
  550. // only do something with this if all the rtp checks pass...
  551. if (!rtp_valid_packet_in_sequence(&s->statistics, seq)) {
  552. av_log(st ? st->codec : NULL, AV_LOG_ERROR,
  553. "RTP: PT=%02x: bad cseq %04x expected=%04x\n",
  554. payload_type, seq, ((s->seq + 1) & 0xffff));
  555. return -1;
  556. }
  557. if (buf[0] & 0x20) {
  558. int padding = buf[len - 1];
  559. if (len >= 12 + padding)
  560. len -= padding;
  561. }
  562. s->seq = seq;
  563. len -= 12;
  564. buf += 12;
  565. len -= 4 * csrc;
  566. buf += 4 * csrc;
  567. if (len < 0)
  568. return AVERROR_INVALIDDATA;
  569. /* RFC 3550 Section 5.3.1 RTP Header Extension handling */
  570. if (ext) {
  571. if (len < 4)
  572. return -1;
  573. /* calculate the header extension length (stored as number
  574. * of 32-bit words) */
  575. ext = (AV_RB16(buf + 2) + 1) << 2;
  576. if (len < ext)
  577. return -1;
  578. // skip past RTP header extension
  579. len -= ext;
  580. buf += ext;
  581. }
  582. if (s->handler && s->handler->parse_packet) {
  583. rv = s->handler->parse_packet(s->ic, s->dynamic_protocol_context,
  584. s->st, pkt, &timestamp, buf, len, seq,
  585. flags);
  586. } else if (st) {
  587. if ((rv = av_new_packet(pkt, len)) < 0)
  588. return rv;
  589. memcpy(pkt->data, buf, len);
  590. pkt->stream_index = st->index;
  591. } else {
  592. return AVERROR(EINVAL);
  593. }
  594. // now perform timestamp things....
  595. finalize_packet(s, pkt, timestamp);
  596. return rv;
  597. }
  598. void ff_rtp_reset_packet_queue(RTPDemuxContext *s)
  599. {
  600. while (s->queue) {
  601. RTPPacket *next = s->queue->next;
  602. av_freep(&s->queue->buf);
  603. av_freep(&s->queue);
  604. s->queue = next;
  605. }
  606. s->seq = 0;
  607. s->queue_len = 0;
  608. s->prev_ret = 0;
  609. }
  610. static void enqueue_packet(RTPDemuxContext *s, uint8_t *buf, int len)
  611. {
  612. uint16_t seq = AV_RB16(buf + 2);
  613. RTPPacket **cur = &s->queue, *packet;
  614. /* Find the correct place in the queue to insert the packet */
  615. while (*cur) {
  616. int16_t diff = seq - (*cur)->seq;
  617. if (diff < 0)
  618. break;
  619. cur = &(*cur)->next;
  620. }
  621. packet = av_mallocz(sizeof(*packet));
  622. if (!packet)
  623. return;
  624. packet->recvtime = av_gettime_relative();
  625. packet->seq = seq;
  626. packet->len = len;
  627. packet->buf = buf;
  628. packet->next = *cur;
  629. *cur = packet;
  630. s->queue_len++;
  631. }
  632. static int has_next_packet(RTPDemuxContext *s)
  633. {
  634. return s->queue && s->queue->seq == (uint16_t) (s->seq + 1);
  635. }
  636. int64_t ff_rtp_queued_packet_time(RTPDemuxContext *s)
  637. {
  638. return s->queue ? s->queue->recvtime : 0;
  639. }
  640. static int rtp_parse_queued_packet(RTPDemuxContext *s, AVPacket *pkt)
  641. {
  642. int rv;
  643. RTPPacket *next;
  644. if (s->queue_len <= 0)
  645. return -1;
  646. if (!has_next_packet(s))
  647. av_log(s->st ? s->st->codec : NULL, AV_LOG_WARNING,
  648. "RTP: missed %d packets\n", s->queue->seq - s->seq - 1);
  649. /* Parse the first packet in the queue, and dequeue it */
  650. rv = rtp_parse_packet_internal(s, pkt, s->queue->buf, s->queue->len);
  651. next = s->queue->next;
  652. av_freep(&s->queue->buf);
  653. av_freep(&s->queue);
  654. s->queue = next;
  655. s->queue_len--;
  656. return rv;
  657. }
  658. static int rtp_parse_one_packet(RTPDemuxContext *s, AVPacket *pkt,
  659. uint8_t **bufptr, int len)
  660. {
  661. uint8_t *buf = bufptr ? *bufptr : NULL;
  662. int flags = 0;
  663. uint32_t timestamp;
  664. int rv = 0;
  665. if (!buf) {
  666. /* If parsing of the previous packet actually returned 0 or an error,
  667. * there's nothing more to be parsed from that packet, but we may have
  668. * indicated that we can return the next enqueued packet. */
  669. if (s->prev_ret <= 0)
  670. return rtp_parse_queued_packet(s, pkt);
  671. /* return the next packets, if any */
  672. if (s->handler && s->handler->parse_packet) {
  673. /* timestamp should be overwritten by parse_packet, if not,
  674. * the packet is left with pts == AV_NOPTS_VALUE */
  675. timestamp = RTP_NOTS_VALUE;
  676. rv = s->handler->parse_packet(s->ic, s->dynamic_protocol_context,
  677. s->st, pkt, &timestamp, NULL, 0, 0,
  678. flags);
  679. finalize_packet(s, pkt, timestamp);
  680. return rv;
  681. }
  682. }
  683. if (len < 12)
  684. return -1;
  685. if ((buf[0] & 0xc0) != (RTP_VERSION << 6))
  686. return -1;
  687. if (RTP_PT_IS_RTCP(buf[1])) {
  688. return rtcp_parse_packet(s, buf, len);
  689. }
  690. if (s->st) {
  691. int64_t received = av_gettime_relative();
  692. uint32_t arrival_ts = av_rescale_q(received, AV_TIME_BASE_Q,
  693. s->st->time_base);
  694. timestamp = AV_RB32(buf + 4);
  695. // Calculate the jitter immediately, before queueing the packet
  696. // into the reordering queue.
  697. rtcp_update_jitter(&s->statistics, timestamp, arrival_ts);
  698. }
  699. if ((s->seq == 0 && !s->queue) || s->queue_size <= 1) {
  700. /* First packet, or no reordering */
  701. return rtp_parse_packet_internal(s, pkt, buf, len);
  702. } else {
  703. uint16_t seq = AV_RB16(buf + 2);
  704. int16_t diff = seq - s->seq;
  705. if (diff < 0) {
  706. /* Packet older than the previously emitted one, drop */
  707. av_log(s->st ? s->st->codec : NULL, AV_LOG_WARNING,
  708. "RTP: dropping old packet received too late\n");
  709. return -1;
  710. } else if (diff <= 1) {
  711. /* Correct packet */
  712. rv = rtp_parse_packet_internal(s, pkt, buf, len);
  713. return rv;
  714. } else {
  715. /* Still missing some packet, enqueue this one. */
  716. enqueue_packet(s, buf, len);
  717. *bufptr = NULL;
  718. /* Return the first enqueued packet if the queue is full,
  719. * even if we're missing something */
  720. if (s->queue_len >= s->queue_size)
  721. return rtp_parse_queued_packet(s, pkt);
  722. return -1;
  723. }
  724. }
  725. }
  726. /**
  727. * Parse an RTP or RTCP packet directly sent as a buffer.
  728. * @param s RTP parse context.
  729. * @param pkt returned packet
  730. * @param bufptr pointer to the input buffer or NULL to read the next packets
  731. * @param len buffer len
  732. * @return 0 if a packet is returned, 1 if a packet is returned and more can follow
  733. * (use buf as NULL to read the next). -1 if no packet (error or no more packet).
  734. */
  735. int ff_rtp_parse_packet(RTPDemuxContext *s, AVPacket *pkt,
  736. uint8_t **bufptr, int len)
  737. {
  738. int rv;
  739. if (s->srtp_enabled && bufptr && ff_srtp_decrypt(&s->srtp, *bufptr, &len) < 0)
  740. return -1;
  741. rv = rtp_parse_one_packet(s, pkt, bufptr, len);
  742. s->prev_ret = rv;
  743. while (rv == AVERROR(EAGAIN) && has_next_packet(s))
  744. rv = rtp_parse_queued_packet(s, pkt);
  745. return rv ? rv : has_next_packet(s);
  746. }
  747. void ff_rtp_parse_close(RTPDemuxContext *s)
  748. {
  749. ff_rtp_reset_packet_queue(s);
  750. ff_srtp_free(&s->srtp);
  751. av_free(s);
  752. }
  753. int ff_parse_fmtp(AVFormatContext *s,
  754. AVStream *stream, PayloadContext *data, const char *p,
  755. int (*parse_fmtp)(AVFormatContext *s,
  756. AVStream *stream,
  757. PayloadContext *data,
  758. char *attr, char *value))
  759. {
  760. char attr[256];
  761. char *value;
  762. int res;
  763. int value_size = strlen(p) + 1;
  764. if (!(value = av_malloc(value_size))) {
  765. av_log(NULL, AV_LOG_ERROR, "Failed to allocate data for FMTP.\n");
  766. return AVERROR(ENOMEM);
  767. }
  768. // remove protocol identifier
  769. while (*p && *p == ' ')
  770. p++; // strip spaces
  771. while (*p && *p != ' ')
  772. p++; // eat protocol identifier
  773. while (*p && *p == ' ')
  774. p++; // strip trailing spaces
  775. while (ff_rtsp_next_attr_and_value(&p,
  776. attr, sizeof(attr),
  777. value, value_size)) {
  778. res = parse_fmtp(s, stream, data, attr, value);
  779. if (res < 0 && res != AVERROR_PATCHWELCOME) {
  780. av_free(value);
  781. return res;
  782. }
  783. }
  784. av_free(value);
  785. return 0;
  786. }
  787. int ff_rtp_finalize_packet(AVPacket *pkt, AVIOContext **dyn_buf, int stream_idx)
  788. {
  789. int ret;
  790. av_init_packet(pkt);
  791. pkt->size = avio_close_dyn_buf(*dyn_buf, &pkt->data);
  792. pkt->stream_index = stream_idx;
  793. *dyn_buf = NULL;
  794. if ((ret = av_packet_from_data(pkt, pkt->data, pkt->size)) < 0) {
  795. av_freep(&pkt->data);
  796. return ret;
  797. }
  798. return pkt->size;
  799. }