You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

836 lines
27KB

  1. /*
  2. * Copyright (c) 2017 Paul B Mahol
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file
  22. * An arbitrary audio FIR filter
  23. */
  24. #include <float.h>
  25. #include "libavutil/common.h"
  26. #include "libavutil/float_dsp.h"
  27. #include "libavutil/intreadwrite.h"
  28. #include "libavutil/opt.h"
  29. #include "libavutil/xga_font_data.h"
  30. #include "libavcodec/avfft.h"
  31. #include "audio.h"
  32. #include "avfilter.h"
  33. #include "filters.h"
  34. #include "formats.h"
  35. #include "internal.h"
  36. #include "af_afir.h"
  37. static void fcmul_add_c(float *sum, const float *t, const float *c, ptrdiff_t len)
  38. {
  39. int n;
  40. for (n = 0; n < len; n++) {
  41. const float cre = c[2 * n ];
  42. const float cim = c[2 * n + 1];
  43. const float tre = t[2 * n ];
  44. const float tim = t[2 * n + 1];
  45. sum[2 * n ] += tre * cre - tim * cim;
  46. sum[2 * n + 1] += tre * cim + tim * cre;
  47. }
  48. sum[2 * n] += t[2 * n] * c[2 * n];
  49. }
  50. static int fir_channel(AVFilterContext *ctx, void *arg, int ch, int nb_jobs)
  51. {
  52. AudioFIRContext *s = ctx->priv;
  53. const float *in = (const float *)s->in[0]->extended_data[ch];
  54. AVFrame *out = arg;
  55. float *block, *buf, *ptr = (float *)out->extended_data[ch];
  56. int n, i, j;
  57. for (int segment = 0; segment < s->nb_segments; segment++) {
  58. AudioFIRSegment *seg = &s->seg[segment];
  59. float *src = (float *)seg->input->extended_data[ch];
  60. float *dst = (float *)seg->output->extended_data[ch];
  61. float *sum = (float *)seg->sum->extended_data[ch];
  62. s->fdsp->vector_fmul_scalar(src + seg->input_offset, in, s->dry_gain, FFALIGN(out->nb_samples, 4));
  63. emms_c();
  64. seg->output_offset[ch] += s->min_part_size;
  65. if (seg->output_offset[ch] == seg->part_size) {
  66. seg->output_offset[ch] = 0;
  67. memset(dst, 0, sizeof(*dst) * seg->part_size);
  68. } else {
  69. memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src));
  70. dst += seg->output_offset[ch];
  71. for (n = 0; n < out->nb_samples; n++) {
  72. ptr[n] += dst[n];
  73. }
  74. continue;
  75. }
  76. memset(sum, 0, sizeof(*sum) * seg->fft_length);
  77. block = (float *)seg->block->extended_data[ch] + seg->part_index[ch] * seg->block_size;
  78. memset(block + seg->part_size, 0, sizeof(*block) * (seg->fft_length - seg->part_size));
  79. memcpy(block, src, sizeof(*src) * seg->part_size);
  80. av_rdft_calc(seg->rdft[ch], block);
  81. block[2 * seg->part_size] = block[1];
  82. block[1] = 0;
  83. j = seg->part_index[ch];
  84. for (i = 0; i < seg->nb_partitions; i++) {
  85. const int coffset = j * seg->coeff_size;
  86. const float *block = (const float *)seg->block->extended_data[ch] + i * seg->block_size;
  87. const FFTComplex *coeff = (const FFTComplex *)seg->coeff->extended_data[ch * !s->one2many] + coffset;
  88. s->fcmul_add(sum, block, (const float *)coeff, seg->part_size);
  89. if (j == 0)
  90. j = seg->nb_partitions;
  91. j--;
  92. }
  93. sum[1] = sum[2 * seg->part_size];
  94. av_rdft_calc(seg->irdft[ch], sum);
  95. buf = (float *)seg->buffer->extended_data[ch];
  96. for (n = 0; n < seg->part_size; n++) {
  97. buf[n] += sum[n];
  98. }
  99. for (n = 0; n < seg->part_size; n++) {
  100. dst[n] += buf[n];
  101. }
  102. buf = (float *)seg->buffer->extended_data[ch];
  103. memcpy(buf, sum + seg->part_size, seg->part_size * sizeof(*buf));
  104. seg->part_index[ch] = (seg->part_index[ch] + 1) % seg->nb_partitions;
  105. memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src));
  106. for (n = 0; n < out->nb_samples; n++) {
  107. ptr[n] += dst[n];
  108. }
  109. }
  110. s->fdsp->vector_fmul_scalar(ptr, ptr, s->wet_gain, FFALIGN(out->nb_samples, 4));
  111. emms_c();
  112. return 0;
  113. }
  114. static int fir_frame(AudioFIRContext *s, AVFrame *in, AVFilterLink *outlink)
  115. {
  116. AVFilterContext *ctx = outlink->src;
  117. AVFrame *out = NULL;
  118. out = ff_get_audio_buffer(outlink, in->nb_samples);
  119. if (!out) {
  120. av_frame_free(&in);
  121. return AVERROR(ENOMEM);
  122. }
  123. if (s->pts == AV_NOPTS_VALUE)
  124. s->pts = in->pts;
  125. s->in[0] = in;
  126. ctx->internal->execute(ctx, fir_channel, out, NULL, outlink->channels);
  127. out->pts = s->pts;
  128. if (s->pts != AV_NOPTS_VALUE)
  129. s->pts += av_rescale_q(out->nb_samples, (AVRational){1, outlink->sample_rate}, outlink->time_base);
  130. av_frame_free(&in);
  131. s->in[0] = NULL;
  132. return ff_filter_frame(outlink, out);
  133. }
  134. static void drawtext(AVFrame *pic, int x, int y, const char *txt, uint32_t color)
  135. {
  136. const uint8_t *font;
  137. int font_height;
  138. int i;
  139. font = avpriv_cga_font, font_height = 8;
  140. for (i = 0; txt[i]; i++) {
  141. int char_y, mask;
  142. uint8_t *p = pic->data[0] + y * pic->linesize[0] + (x + i * 8) * 4;
  143. for (char_y = 0; char_y < font_height; char_y++) {
  144. for (mask = 0x80; mask; mask >>= 1) {
  145. if (font[txt[i] * font_height + char_y] & mask)
  146. AV_WL32(p, color);
  147. p += 4;
  148. }
  149. p += pic->linesize[0] - 8 * 4;
  150. }
  151. }
  152. }
  153. static void draw_line(AVFrame *out, int x0, int y0, int x1, int y1, uint32_t color)
  154. {
  155. int dx = FFABS(x1-x0);
  156. int dy = FFABS(y1-y0), sy = y0 < y1 ? 1 : -1;
  157. int err = (dx>dy ? dx : -dy) / 2, e2;
  158. for (;;) {
  159. AV_WL32(out->data[0] + y0 * out->linesize[0] + x0 * 4, color);
  160. if (x0 == x1 && y0 == y1)
  161. break;
  162. e2 = err;
  163. if (e2 >-dx) {
  164. err -= dy;
  165. x0--;
  166. }
  167. if (e2 < dy) {
  168. err += dx;
  169. y0 += sy;
  170. }
  171. }
  172. }
  173. static void draw_response(AVFilterContext *ctx, AVFrame *out)
  174. {
  175. AudioFIRContext *s = ctx->priv;
  176. float *mag, *phase, *delay, min = FLT_MAX, max = FLT_MIN;
  177. float min_delay = FLT_MAX, max_delay = FLT_MIN;
  178. int prev_ymag = -1, prev_yphase = -1, prev_ydelay = -1;
  179. char text[32];
  180. int channel, i, x;
  181. memset(out->data[0], 0, s->h * out->linesize[0]);
  182. phase = av_malloc_array(s->w, sizeof(*phase));
  183. mag = av_malloc_array(s->w, sizeof(*mag));
  184. delay = av_malloc_array(s->w, sizeof(*delay));
  185. if (!mag || !phase || !delay)
  186. goto end;
  187. channel = av_clip(s->ir_channel, 0, s->in[1]->channels - 1);
  188. for (i = 0; i < s->w; i++) {
  189. const float *src = (const float *)s->in[1]->extended_data[channel];
  190. double w = i * M_PI / (s->w - 1);
  191. double div, real_num = 0., imag_num = 0., real = 0., imag = 0.;
  192. for (x = 0; x < s->nb_taps; x++) {
  193. real += cos(-x * w) * src[x];
  194. imag += sin(-x * w) * src[x];
  195. real_num += cos(-x * w) * src[x] * x;
  196. imag_num += sin(-x * w) * src[x] * x;
  197. }
  198. mag[i] = hypot(real, imag);
  199. phase[i] = atan2(imag, real);
  200. div = real * real + imag * imag;
  201. delay[i] = (real_num * real + imag_num * imag) / div;
  202. min = fminf(min, mag[i]);
  203. max = fmaxf(max, mag[i]);
  204. min_delay = fminf(min_delay, delay[i]);
  205. max_delay = fmaxf(max_delay, delay[i]);
  206. }
  207. for (i = 0; i < s->w; i++) {
  208. int ymag = mag[i] / max * (s->h - 1);
  209. int ydelay = (delay[i] - min_delay) / (max_delay - min_delay) * (s->h - 1);
  210. int yphase = (0.5 * (1. + phase[i] / M_PI)) * (s->h - 1);
  211. ymag = s->h - 1 - av_clip(ymag, 0, s->h - 1);
  212. yphase = s->h - 1 - av_clip(yphase, 0, s->h - 1);
  213. ydelay = s->h - 1 - av_clip(ydelay, 0, s->h - 1);
  214. if (prev_ymag < 0)
  215. prev_ymag = ymag;
  216. if (prev_yphase < 0)
  217. prev_yphase = yphase;
  218. if (prev_ydelay < 0)
  219. prev_ydelay = ydelay;
  220. draw_line(out, i, ymag, FFMAX(i - 1, 0), prev_ymag, 0xFFFF00FF);
  221. draw_line(out, i, yphase, FFMAX(i - 1, 0), prev_yphase, 0xFF00FF00);
  222. draw_line(out, i, ydelay, FFMAX(i - 1, 0), prev_ydelay, 0xFF00FFFF);
  223. prev_ymag = ymag;
  224. prev_yphase = yphase;
  225. prev_ydelay = ydelay;
  226. }
  227. if (s->w > 400 && s->h > 100) {
  228. drawtext(out, 2, 2, "Max Magnitude:", 0xDDDDDDDD);
  229. snprintf(text, sizeof(text), "%.2f", max);
  230. drawtext(out, 15 * 8 + 2, 2, text, 0xDDDDDDDD);
  231. drawtext(out, 2, 12, "Min Magnitude:", 0xDDDDDDDD);
  232. snprintf(text, sizeof(text), "%.2f", min);
  233. drawtext(out, 15 * 8 + 2, 12, text, 0xDDDDDDDD);
  234. drawtext(out, 2, 22, "Max Delay:", 0xDDDDDDDD);
  235. snprintf(text, sizeof(text), "%.2f", max_delay);
  236. drawtext(out, 11 * 8 + 2, 22, text, 0xDDDDDDDD);
  237. drawtext(out, 2, 32, "Min Delay:", 0xDDDDDDDD);
  238. snprintf(text, sizeof(text), "%.2f", min_delay);
  239. drawtext(out, 11 * 8 + 2, 32, text, 0xDDDDDDDD);
  240. }
  241. end:
  242. av_free(delay);
  243. av_free(phase);
  244. av_free(mag);
  245. }
  246. static int init_segment(AVFilterContext *ctx, AudioFIRSegment *seg,
  247. int offset, int nb_partitions, int part_size)
  248. {
  249. AudioFIRContext *s = ctx->priv;
  250. seg->rdft = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->rdft));
  251. seg->irdft = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->irdft));
  252. if (!seg->rdft || !seg->irdft)
  253. return AVERROR(ENOMEM);
  254. seg->fft_length = part_size * 4 + 1;
  255. seg->part_size = part_size;
  256. seg->block_size = FFALIGN(seg->fft_length, 32);
  257. seg->coeff_size = FFALIGN(seg->part_size + 1, 32);
  258. seg->nb_partitions = nb_partitions;
  259. seg->input_size = offset + s->min_part_size;
  260. seg->input_offset = offset;
  261. seg->part_index = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->part_index));
  262. seg->output_offset = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->output_offset));
  263. if (!seg->part_index || !seg->output_offset)
  264. return AVERROR(ENOMEM);
  265. for (int ch = 0; ch < ctx->inputs[0]->channels; ch++) {
  266. seg->rdft[ch] = av_rdft_init(av_log2(2 * part_size), DFT_R2C);
  267. seg->irdft[ch] = av_rdft_init(av_log2(2 * part_size), IDFT_C2R);
  268. if (!seg->rdft[ch] || !seg->irdft[ch])
  269. return AVERROR(ENOMEM);
  270. }
  271. seg->sum = ff_get_audio_buffer(ctx->inputs[0], seg->fft_length);
  272. seg->block = ff_get_audio_buffer(ctx->inputs[0], seg->nb_partitions * seg->block_size);
  273. seg->buffer = ff_get_audio_buffer(ctx->inputs[0], seg->part_size);
  274. seg->coeff = ff_get_audio_buffer(ctx->inputs[1], seg->nb_partitions * seg->coeff_size * 2);
  275. seg->input = ff_get_audio_buffer(ctx->inputs[0], seg->input_size);
  276. seg->output = ff_get_audio_buffer(ctx->inputs[0], seg->part_size);
  277. if (!seg->buffer || !seg->sum || !seg->block || !seg->coeff || !seg->input || !seg->output)
  278. return AVERROR(ENOMEM);
  279. return 0;
  280. }
  281. static int convert_coeffs(AVFilterContext *ctx)
  282. {
  283. AudioFIRContext *s = ctx->priv;
  284. int left, offset = 0, part_size, max_part_size;
  285. int ret, i, ch, n;
  286. float power = 0;
  287. s->nb_taps = ff_inlink_queued_samples(ctx->inputs[1]);
  288. if (s->nb_taps <= 0)
  289. return AVERROR(EINVAL);
  290. if (s->minp > s->maxp) {
  291. s->maxp = s->minp;
  292. }
  293. left = s->nb_taps;
  294. part_size = 1 << av_log2(s->minp);
  295. max_part_size = 1 << av_log2(s->maxp);
  296. s->min_part_size = part_size;
  297. for (i = 0; left > 0; i++) {
  298. int step = part_size == max_part_size ? INT_MAX : 1 + (i == 0);
  299. int nb_partitions = FFMIN(step, (left + part_size - 1) / part_size);
  300. s->nb_segments = i + 1;
  301. ret = init_segment(ctx, &s->seg[i], offset, nb_partitions, part_size);
  302. if (ret < 0)
  303. return ret;
  304. offset += nb_partitions * part_size;
  305. left -= nb_partitions * part_size;
  306. part_size *= 2;
  307. part_size = FFMIN(part_size, max_part_size);
  308. }
  309. ret = ff_inlink_consume_samples(ctx->inputs[1], s->nb_taps, s->nb_taps, &s->in[1]);
  310. if (ret < 0)
  311. return ret;
  312. if (ret == 0)
  313. return AVERROR_BUG;
  314. if (s->response)
  315. draw_response(ctx, s->video);
  316. s->gain = 1;
  317. switch (s->gtype) {
  318. case -1:
  319. /* nothing to do */
  320. break;
  321. case 0:
  322. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  323. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  324. for (i = 0; i < s->nb_taps; i++)
  325. power += FFABS(time[i]);
  326. }
  327. s->gain = ctx->inputs[1]->channels / power;
  328. break;
  329. case 1:
  330. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  331. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  332. for (i = 0; i < s->nb_taps; i++)
  333. power += time[i];
  334. }
  335. s->gain = ctx->inputs[1]->channels / power;
  336. break;
  337. case 2:
  338. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  339. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  340. for (i = 0; i < s->nb_taps; i++)
  341. power += time[i] * time[i];
  342. }
  343. s->gain = sqrtf(ch / power);
  344. break;
  345. default:
  346. return AVERROR_BUG;
  347. }
  348. s->gain = FFMIN(s->gain * s->ir_gain, 1.f);
  349. av_log(ctx, AV_LOG_DEBUG, "power %f, gain %f\n", power, s->gain);
  350. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  351. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  352. s->fdsp->vector_fmul_scalar(time, time, s->gain, FFALIGN(s->nb_taps, 4));
  353. }
  354. av_log(ctx, AV_LOG_DEBUG, "nb_taps: %d\n", s->nb_taps);
  355. av_log(ctx, AV_LOG_DEBUG, "nb_segments: %d\n", s->nb_segments);
  356. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  357. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  358. int toffset = 0;
  359. for (i = FFMAX(1, s->length * s->nb_taps); i < s->nb_taps; i++)
  360. time[i] = 0;
  361. av_log(ctx, AV_LOG_DEBUG, "channel: %d\n", ch);
  362. for (int segment = 0; segment < s->nb_segments; segment++) {
  363. AudioFIRSegment *seg = &s->seg[segment];
  364. float *block = (float *)seg->block->extended_data[ch];
  365. FFTComplex *coeff = (FFTComplex *)seg->coeff->extended_data[ch];
  366. av_log(ctx, AV_LOG_DEBUG, "segment: %d\n", segment);
  367. for (i = 0; i < seg->nb_partitions; i++) {
  368. const float scale = 1.f / seg->part_size;
  369. const int coffset = i * seg->coeff_size;
  370. const int remaining = s->nb_taps - toffset;
  371. const int size = remaining >= seg->part_size ? seg->part_size : remaining;
  372. memset(block, 0, sizeof(*block) * seg->fft_length);
  373. memcpy(block, time + toffset, size * sizeof(*block));
  374. av_rdft_calc(seg->rdft[0], block);
  375. coeff[coffset].re = block[0] * scale;
  376. coeff[coffset].im = 0;
  377. for (n = 1; n < seg->part_size; n++) {
  378. coeff[coffset + n].re = block[2 * n] * scale;
  379. coeff[coffset + n].im = block[2 * n + 1] * scale;
  380. }
  381. coeff[coffset + seg->part_size].re = block[1] * scale;
  382. coeff[coffset + seg->part_size].im = 0;
  383. toffset += size;
  384. }
  385. av_log(ctx, AV_LOG_DEBUG, "nb_partitions: %d\n", seg->nb_partitions);
  386. av_log(ctx, AV_LOG_DEBUG, "partition size: %d\n", seg->part_size);
  387. av_log(ctx, AV_LOG_DEBUG, "block size: %d\n", seg->block_size);
  388. av_log(ctx, AV_LOG_DEBUG, "fft_length: %d\n", seg->fft_length);
  389. av_log(ctx, AV_LOG_DEBUG, "coeff_size: %d\n", seg->coeff_size);
  390. av_log(ctx, AV_LOG_DEBUG, "input_size: %d\n", seg->input_size);
  391. av_log(ctx, AV_LOG_DEBUG, "input_offset: %d\n", seg->input_offset);
  392. }
  393. }
  394. av_frame_free(&s->in[1]);
  395. s->have_coeffs = 1;
  396. return 0;
  397. }
  398. static int check_ir(AVFilterLink *link, AVFrame *frame)
  399. {
  400. AVFilterContext *ctx = link->dst;
  401. AudioFIRContext *s = ctx->priv;
  402. int nb_taps, max_nb_taps;
  403. nb_taps = ff_inlink_queued_samples(link);
  404. max_nb_taps = s->max_ir_len * ctx->outputs[0]->sample_rate;
  405. if (nb_taps > max_nb_taps) {
  406. av_log(ctx, AV_LOG_ERROR, "Too big number of coefficients: %d > %d.\n", nb_taps, max_nb_taps);
  407. return AVERROR(EINVAL);
  408. }
  409. return 0;
  410. }
  411. static int activate(AVFilterContext *ctx)
  412. {
  413. AudioFIRContext *s = ctx->priv;
  414. AVFilterLink *outlink = ctx->outputs[0];
  415. AVFrame *in = NULL;
  416. int ret, status;
  417. int64_t pts;
  418. FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[0], ctx);
  419. if (s->response)
  420. FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[1], ctx);
  421. if (!s->eof_coeffs) {
  422. AVFrame *ir = NULL;
  423. ret = check_ir(ctx->inputs[1], ir);
  424. if (ret < 0)
  425. return ret;
  426. if (ff_outlink_get_status(ctx->inputs[1]) == AVERROR_EOF)
  427. s->eof_coeffs = 1;
  428. if (!s->eof_coeffs) {
  429. if (ff_outlink_frame_wanted(ctx->outputs[0]))
  430. ff_inlink_request_frame(ctx->inputs[1]);
  431. else if (s->response && ff_outlink_frame_wanted(ctx->outputs[1]))
  432. ff_inlink_request_frame(ctx->inputs[1]);
  433. return 0;
  434. }
  435. }
  436. if (!s->have_coeffs && s->eof_coeffs) {
  437. ret = convert_coeffs(ctx);
  438. if (ret < 0)
  439. return ret;
  440. }
  441. ret = ff_inlink_consume_samples(ctx->inputs[0], s->min_part_size, s->min_part_size, &in);
  442. if (ret > 0)
  443. ret = fir_frame(s, in, outlink);
  444. if (ret < 0)
  445. return ret;
  446. if (s->response && s->have_coeffs) {
  447. int64_t old_pts = s->video->pts;
  448. int64_t new_pts = av_rescale_q(s->pts, ctx->inputs[0]->time_base, ctx->outputs[1]->time_base);
  449. if (ff_outlink_frame_wanted(ctx->outputs[1]) && old_pts < new_pts) {
  450. s->video->pts = new_pts;
  451. return ff_filter_frame(ctx->outputs[1], av_frame_clone(s->video));
  452. }
  453. }
  454. if (ff_inlink_queued_samples(ctx->inputs[0]) >= s->min_part_size) {
  455. ff_filter_set_ready(ctx, 10);
  456. return 0;
  457. }
  458. if (ff_inlink_acknowledge_status(ctx->inputs[0], &status, &pts)) {
  459. if (status == AVERROR_EOF) {
  460. ff_outlink_set_status(ctx->outputs[0], status, pts);
  461. if (s->response)
  462. ff_outlink_set_status(ctx->outputs[1], status, pts);
  463. return 0;
  464. }
  465. }
  466. if (ff_outlink_frame_wanted(ctx->outputs[0]) &&
  467. !ff_outlink_get_status(ctx->inputs[0])) {
  468. ff_inlink_request_frame(ctx->inputs[0]);
  469. return 0;
  470. }
  471. if (s->response &&
  472. ff_outlink_frame_wanted(ctx->outputs[1]) &&
  473. !ff_outlink_get_status(ctx->inputs[0])) {
  474. ff_inlink_request_frame(ctx->inputs[0]);
  475. return 0;
  476. }
  477. return FFERROR_NOT_READY;
  478. }
  479. static int query_formats(AVFilterContext *ctx)
  480. {
  481. AudioFIRContext *s = ctx->priv;
  482. AVFilterFormats *formats;
  483. AVFilterChannelLayouts *layouts;
  484. static const enum AVSampleFormat sample_fmts[] = {
  485. AV_SAMPLE_FMT_FLTP,
  486. AV_SAMPLE_FMT_NONE
  487. };
  488. static const enum AVPixelFormat pix_fmts[] = {
  489. AV_PIX_FMT_RGB0,
  490. AV_PIX_FMT_NONE
  491. };
  492. int ret;
  493. if (s->response) {
  494. AVFilterLink *videolink = ctx->outputs[1];
  495. formats = ff_make_format_list(pix_fmts);
  496. if ((ret = ff_formats_ref(formats, &videolink->in_formats)) < 0)
  497. return ret;
  498. }
  499. layouts = ff_all_channel_counts();
  500. if (!layouts)
  501. return AVERROR(ENOMEM);
  502. if (s->ir_format) {
  503. ret = ff_set_common_channel_layouts(ctx, layouts);
  504. if (ret < 0)
  505. return ret;
  506. } else {
  507. AVFilterChannelLayouts *mono = NULL;
  508. ret = ff_add_channel_layout(&mono, AV_CH_LAYOUT_MONO);
  509. if (ret)
  510. return ret;
  511. if ((ret = ff_channel_layouts_ref(layouts, &ctx->inputs[0]->out_channel_layouts)) < 0)
  512. return ret;
  513. if ((ret = ff_channel_layouts_ref(layouts, &ctx->outputs[0]->in_channel_layouts)) < 0)
  514. return ret;
  515. if ((ret = ff_channel_layouts_ref(mono, &ctx->inputs[1]->out_channel_layouts)) < 0)
  516. return ret;
  517. }
  518. formats = ff_make_format_list(sample_fmts);
  519. if ((ret = ff_set_common_formats(ctx, formats)) < 0)
  520. return ret;
  521. formats = ff_all_samplerates();
  522. return ff_set_common_samplerates(ctx, formats);
  523. }
  524. static int config_output(AVFilterLink *outlink)
  525. {
  526. AVFilterContext *ctx = outlink->src;
  527. AudioFIRContext *s = ctx->priv;
  528. s->one2many = ctx->inputs[1]->channels == 1;
  529. outlink->sample_rate = ctx->inputs[0]->sample_rate;
  530. outlink->time_base = ctx->inputs[0]->time_base;
  531. outlink->channel_layout = ctx->inputs[0]->channel_layout;
  532. outlink->channels = ctx->inputs[0]->channels;
  533. s->nb_channels = outlink->channels;
  534. s->nb_coef_channels = ctx->inputs[1]->channels;
  535. s->pts = AV_NOPTS_VALUE;
  536. return 0;
  537. }
  538. static void uninit_segment(AVFilterContext *ctx, AudioFIRSegment *seg)
  539. {
  540. AudioFIRContext *s = ctx->priv;
  541. if (seg->rdft) {
  542. for (int ch = 0; ch < s->nb_channels; ch++) {
  543. av_rdft_end(seg->rdft[ch]);
  544. }
  545. }
  546. av_freep(&seg->rdft);
  547. if (seg->irdft) {
  548. for (int ch = 0; ch < s->nb_channels; ch++) {
  549. av_rdft_end(seg->irdft[ch]);
  550. }
  551. }
  552. av_freep(&seg->irdft);
  553. av_freep(&seg->output_offset);
  554. av_freep(&seg->part_index);
  555. av_frame_free(&seg->block);
  556. av_frame_free(&seg->sum);
  557. av_frame_free(&seg->buffer);
  558. av_frame_free(&seg->coeff);
  559. av_frame_free(&seg->input);
  560. av_frame_free(&seg->output);
  561. seg->input_size = 0;
  562. }
  563. static av_cold void uninit(AVFilterContext *ctx)
  564. {
  565. AudioFIRContext *s = ctx->priv;
  566. for (int i = 0; i < s->nb_segments; i++) {
  567. uninit_segment(ctx, &s->seg[i]);
  568. }
  569. av_freep(&s->fdsp);
  570. av_frame_free(&s->in[1]);
  571. for (int i = 0; i < ctx->nb_outputs; i++)
  572. av_freep(&ctx->output_pads[i].name);
  573. av_frame_free(&s->video);
  574. }
  575. static int config_video(AVFilterLink *outlink)
  576. {
  577. AVFilterContext *ctx = outlink->src;
  578. AudioFIRContext *s = ctx->priv;
  579. outlink->sample_aspect_ratio = (AVRational){1,1};
  580. outlink->w = s->w;
  581. outlink->h = s->h;
  582. outlink->frame_rate = s->frame_rate;
  583. outlink->time_base = av_inv_q(outlink->frame_rate);
  584. av_frame_free(&s->video);
  585. s->video = ff_get_video_buffer(outlink, outlink->w, outlink->h);
  586. if (!s->video)
  587. return AVERROR(ENOMEM);
  588. return 0;
  589. }
  590. static av_cold int init(AVFilterContext *ctx)
  591. {
  592. AudioFIRContext *s = ctx->priv;
  593. AVFilterPad pad, vpad;
  594. int ret;
  595. pad = (AVFilterPad){
  596. .name = av_strdup("default"),
  597. .type = AVMEDIA_TYPE_AUDIO,
  598. .config_props = config_output,
  599. };
  600. if (!pad.name)
  601. return AVERROR(ENOMEM);
  602. if (s->response) {
  603. vpad = (AVFilterPad){
  604. .name = av_strdup("filter_response"),
  605. .type = AVMEDIA_TYPE_VIDEO,
  606. .config_props = config_video,
  607. };
  608. if (!vpad.name)
  609. return AVERROR(ENOMEM);
  610. }
  611. ret = ff_insert_outpad(ctx, 0, &pad);
  612. if (ret < 0) {
  613. av_freep(&pad.name);
  614. return ret;
  615. }
  616. if (s->response) {
  617. ret = ff_insert_outpad(ctx, 1, &vpad);
  618. if (ret < 0) {
  619. av_freep(&vpad.name);
  620. return ret;
  621. }
  622. }
  623. s->fcmul_add = fcmul_add_c;
  624. s->fdsp = avpriv_float_dsp_alloc(0);
  625. if (!s->fdsp)
  626. return AVERROR(ENOMEM);
  627. if (ARCH_X86)
  628. ff_afir_init_x86(s);
  629. return 0;
  630. }
  631. static const AVFilterPad afir_inputs[] = {
  632. {
  633. .name = "main",
  634. .type = AVMEDIA_TYPE_AUDIO,
  635. },{
  636. .name = "ir",
  637. .type = AVMEDIA_TYPE_AUDIO,
  638. },
  639. { NULL }
  640. };
  641. #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  642. #define VF AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  643. #define OFFSET(x) offsetof(AudioFIRContext, x)
  644. static const AVOption afir_options[] = {
  645. { "dry", "set dry gain", OFFSET(dry_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, AF },
  646. { "wet", "set wet gain", OFFSET(wet_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, AF },
  647. { "length", "set IR length", OFFSET(length), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, AF },
  648. { "gtype", "set IR auto gain type",OFFSET(gtype), AV_OPT_TYPE_INT, {.i64=0}, -1, 2, AF, "gtype" },
  649. { "none", "without auto gain", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, AF, "gtype" },
  650. { "peak", "peak gain", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "gtype" },
  651. { "dc", "DC gain", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "gtype" },
  652. { "gn", "gain to noise", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, "gtype" },
  653. { "irgain", "set IR gain", OFFSET(ir_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, AF },
  654. { "irfmt", "set IR format", OFFSET(ir_format), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, AF, "irfmt" },
  655. { "mono", "single channel", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "irfmt" },
  656. { "input", "same as input", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "irfmt" },
  657. { "maxir", "set max IR length", OFFSET(max_ir_len), AV_OPT_TYPE_FLOAT, {.dbl=30}, 0.1, 60, AF },
  658. { "response", "show IR frequency response", OFFSET(response), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, VF },
  659. { "channel", "set IR channel to display frequency response", OFFSET(ir_channel), AV_OPT_TYPE_INT, {.i64=0}, 0, 1024, VF },
  660. { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "hd720"}, 0, 0, VF },
  661. { "rate", "set video rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "25"}, 0, INT32_MAX, VF },
  662. { "minp", "set min partition size", OFFSET(minp), AV_OPT_TYPE_INT, {.i64=8192}, 16, 32768, AF },
  663. { "maxp", "set max partition size", OFFSET(maxp), AV_OPT_TYPE_INT, {.i64=8192}, 16, 32768, AF },
  664. { NULL }
  665. };
  666. AVFILTER_DEFINE_CLASS(afir);
  667. AVFilter ff_af_afir = {
  668. .name = "afir",
  669. .description = NULL_IF_CONFIG_SMALL("Apply Finite Impulse Response filter with supplied coefficients in 2nd stream."),
  670. .priv_size = sizeof(AudioFIRContext),
  671. .priv_class = &afir_class,
  672. .query_formats = query_formats,
  673. .init = init,
  674. .activate = activate,
  675. .uninit = uninit,
  676. .inputs = afir_inputs,
  677. .flags = AVFILTER_FLAG_DYNAMIC_OUTPUTS |
  678. AVFILTER_FLAG_SLICE_THREADS,
  679. };