You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1140 lines
39KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of Libav.
  10. *
  11. * Libav is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * Libav is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with Libav; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/internal.h"
  27. #include "libavutil/opt.h"
  28. #include "libavutil/timer.h"
  29. #include "avcodec.h"
  30. #include "blockdsp.h"
  31. #include "dsputil.h"
  32. #include "internal.h"
  33. #include "mpegvideo.h"
  34. #include "dnxhdenc.h"
  35. // The largest value that will not lead to overflow for 10bit samples.
  36. #define DNX10BIT_QMAT_SHIFT 18
  37. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  38. #define LAMBDA_FRAC_BITS 10
  39. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  40. static const AVOption options[] = {
  41. { "nitris_compat", "encode with Avid Nitris compatibility",
  42. offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
  43. { NULL }
  44. };
  45. static const AVClass class = {
  46. "dnxhd",
  47. av_default_item_name,
  48. options,
  49. LIBAVUTIL_VERSION_INT
  50. };
  51. static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *restrict block,
  52. const uint8_t *pixels,
  53. ptrdiff_t line_size)
  54. {
  55. int i;
  56. for (i = 0; i < 4; i++) {
  57. block[0] = pixels[0];
  58. block[1] = pixels[1];
  59. block[2] = pixels[2];
  60. block[3] = pixels[3];
  61. block[4] = pixels[4];
  62. block[5] = pixels[5];
  63. block[6] = pixels[6];
  64. block[7] = pixels[7];
  65. pixels += line_size;
  66. block += 8;
  67. }
  68. memcpy(block, block - 8, sizeof(*block) * 8);
  69. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  70. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  71. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  72. }
  73. static av_always_inline
  74. void dnxhd_10bit_get_pixels_8x4_sym(int16_t *restrict block,
  75. const uint8_t *pixels,
  76. ptrdiff_t line_size)
  77. {
  78. int i;
  79. block += 32;
  80. for (i = 0; i < 4; i++) {
  81. memcpy(block + i * 8, pixels + i * line_size, 8 * sizeof(*block));
  82. memcpy(block - (i + 1) * 8, pixels + i * line_size, 8 * sizeof(*block));
  83. }
  84. }
  85. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
  86. int n, int qscale, int *overflow)
  87. {
  88. const uint8_t *scantable= ctx->intra_scantable.scantable;
  89. const int *qmat = ctx->q_intra_matrix[qscale];
  90. int last_non_zero = 0;
  91. int i;
  92. ctx->dsp.fdct(block);
  93. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  94. block[0] = (block[0] + 2) >> 2;
  95. for (i = 1; i < 64; ++i) {
  96. int j = scantable[i];
  97. int sign = block[j] >> 31;
  98. int level = (block[j] ^ sign) - sign;
  99. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  100. block[j] = (level ^ sign) - sign;
  101. if (level)
  102. last_non_zero = i;
  103. }
  104. return last_non_zero;
  105. }
  106. static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
  107. {
  108. int i, j, level, run;
  109. int max_level = 1 << (ctx->cid_table->bit_depth + 2);
  110. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes,
  111. max_level * 4 * sizeof(*ctx->vlc_codes), fail);
  112. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits,
  113. max_level * 4 * sizeof(*ctx->vlc_bits), fail);
  114. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes,
  115. 63 * 2, fail);
  116. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits,
  117. 63, fail);
  118. ctx->vlc_codes += max_level * 2;
  119. ctx->vlc_bits += max_level * 2;
  120. for (level = -max_level; level < max_level; level++) {
  121. for (run = 0; run < 2; run++) {
  122. int index = (level << 1) | run;
  123. int sign, offset = 0, alevel = level;
  124. MASK_ABS(sign, alevel);
  125. if (alevel > 64) {
  126. offset = (alevel - 1) >> 6;
  127. alevel -= offset << 6;
  128. }
  129. for (j = 0; j < 257; j++) {
  130. if (ctx->cid_table->ac_level[j] == alevel &&
  131. (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
  132. (!run || (ctx->cid_table->ac_run_flag [j] && run))) {
  133. assert(!ctx->vlc_codes[index]);
  134. if (alevel) {
  135. ctx->vlc_codes[index] =
  136. (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
  137. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
  138. } else {
  139. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  140. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
  141. }
  142. break;
  143. }
  144. }
  145. assert(!alevel || j < 257);
  146. if (offset) {
  147. ctx->vlc_codes[index] =
  148. (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
  149. ctx->vlc_bits[index] += ctx->cid_table->index_bits;
  150. }
  151. }
  152. }
  153. for (i = 0; i < 62; i++) {
  154. int run = ctx->cid_table->run[i];
  155. assert(run < 63);
  156. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  157. ctx->run_bits[run] = ctx->cid_table->run_bits[i];
  158. }
  159. return 0;
  160. fail:
  161. return AVERROR(ENOMEM);
  162. }
  163. static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  164. {
  165. // init first elem to 1 to avoid div by 0 in convert_matrix
  166. uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
  167. int qscale, i;
  168. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  169. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  170. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l,
  171. (ctx->m.avctx->qmax + 1) * 64 * sizeof(int), fail);
  172. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c,
  173. (ctx->m.avctx->qmax + 1) * 64 * sizeof(int), fail);
  174. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16,
  175. (ctx->m.avctx->qmax + 1) * 64 * 2 * sizeof(uint16_t),
  176. fail);
  177. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16,
  178. (ctx->m.avctx->qmax + 1) * 64 * 2 * sizeof(uint16_t),
  179. fail);
  180. if (ctx->cid_table->bit_depth == 8) {
  181. for (i = 1; i < 64; i++) {
  182. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  183. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  184. }
  185. ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
  186. weight_matrix, ctx->m.intra_quant_bias, 1,
  187. ctx->m.avctx->qmax, 1);
  188. for (i = 1; i < 64; i++) {
  189. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  190. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  191. }
  192. ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
  193. weight_matrix, ctx->m.intra_quant_bias, 1,
  194. ctx->m.avctx->qmax, 1);
  195. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  196. for (i = 0; i < 64; i++) {
  197. ctx->qmatrix_l[qscale][i] <<= 2;
  198. ctx->qmatrix_c[qscale][i] <<= 2;
  199. ctx->qmatrix_l16[qscale][0][i] <<= 2;
  200. ctx->qmatrix_l16[qscale][1][i] <<= 2;
  201. ctx->qmatrix_c16[qscale][0][i] <<= 2;
  202. ctx->qmatrix_c16[qscale][1][i] <<= 2;
  203. }
  204. }
  205. } else {
  206. // 10-bit
  207. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  208. for (i = 1; i < 64; i++) {
  209. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  210. /* The quantization formula from the VC-3 standard is:
  211. * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
  212. * (qscale * weight_table[i]))
  213. * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  214. * The s factor compensates scaling of DCT coefficients done by
  215. * the DCT routines, and therefore is not present in standard.
  216. * It's 8 for 8-bit samples and 4 for 10-bit ones.
  217. * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  218. * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
  219. * (qscale * weight_table[i])
  220. * For 10-bit samples, p / s == 2 */
  221. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  222. (qscale * luma_weight_table[i]);
  223. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  224. (qscale * chroma_weight_table[i]);
  225. }
  226. }
  227. }
  228. return 0;
  229. fail:
  230. return AVERROR(ENOMEM);
  231. }
  232. static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
  233. {
  234. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc,
  235. 8160 * ctx->m.avctx->qmax * sizeof(RCEntry), fail);
  236. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  237. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp,
  238. ctx->m.mb_num * sizeof(RCCMPEntry), fail);
  239. ctx->frame_bits = (ctx->cid_table->coding_unit_size -
  240. 640 - 4 - ctx->min_padding) * 8;
  241. ctx->qscale = 1;
  242. ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
  243. return 0;
  244. fail:
  245. return AVERROR(ENOMEM);
  246. }
  247. static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
  248. {
  249. DNXHDEncContext *ctx = avctx->priv_data;
  250. int i, index, bit_depth, ret;
  251. switch (avctx->pix_fmt) {
  252. case AV_PIX_FMT_YUV422P:
  253. bit_depth = 8;
  254. break;
  255. case AV_PIX_FMT_YUV422P10:
  256. bit_depth = 10;
  257. break;
  258. default:
  259. av_log(avctx, AV_LOG_ERROR,
  260. "pixel format is incompatible with DNxHD\n");
  261. return AVERROR(EINVAL);
  262. }
  263. ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
  264. if (!ctx->cid) {
  265. av_log(avctx, AV_LOG_ERROR,
  266. "video parameters incompatible with DNxHD\n");
  267. return AVERROR(EINVAL);
  268. }
  269. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  270. index = ff_dnxhd_get_cid_table(ctx->cid);
  271. ctx->cid_table = &ff_dnxhd_cid_table[index];
  272. ctx->m.avctx = avctx;
  273. ctx->m.mb_intra = 1;
  274. ctx->m.h263_aic = 1;
  275. avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
  276. ff_blockdsp_init(&ctx->bdsp, avctx);
  277. ff_dsputil_init(&ctx->m.dsp, avctx);
  278. ff_idctdsp_init(&ctx->m.idsp, avctx);
  279. ff_dct_common_init(&ctx->m);
  280. if (!ctx->m.dct_quantize)
  281. ctx->m.dct_quantize = ff_dct_quantize_c;
  282. if (ctx->cid_table->bit_depth == 10) {
  283. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  284. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  285. ctx->block_width_l2 = 4;
  286. } else {
  287. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  288. ctx->block_width_l2 = 3;
  289. }
  290. if (ARCH_X86)
  291. ff_dnxhdenc_init_x86(ctx);
  292. ctx->m.mb_height = (avctx->height + 15) / 16;
  293. ctx->m.mb_width = (avctx->width + 15) / 16;
  294. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  295. ctx->interlaced = 1;
  296. ctx->m.mb_height /= 2;
  297. }
  298. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  299. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  300. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  301. // XXX tune lbias/cbias
  302. if ((ret = dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0)) < 0)
  303. return ret;
  304. /* Avid Nitris hardware decoder requires a minimum amount of padding
  305. * in the coding unit payload */
  306. if (ctx->nitris_compat)
  307. ctx->min_padding = 1600;
  308. if ((ret = dnxhd_init_vlc(ctx)) < 0)
  309. return ret;
  310. if ((ret = dnxhd_init_rc(ctx)) < 0)
  311. return ret;
  312. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size,
  313. ctx->m.mb_height * sizeof(uint32_t), fail);
  314. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs,
  315. ctx->m.mb_height * sizeof(uint32_t), fail);
  316. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits,
  317. ctx->m.mb_num * sizeof(uint16_t), fail);
  318. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale,
  319. ctx->m.mb_num * sizeof(uint8_t), fail);
  320. avctx->coded_frame = av_frame_alloc();
  321. if (!avctx->coded_frame)
  322. return AVERROR(ENOMEM);
  323. avctx->coded_frame->key_frame = 1;
  324. avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
  325. if (avctx->thread_count > MAX_THREADS) {
  326. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  327. return AVERROR(EINVAL);
  328. }
  329. ctx->thread[0] = ctx;
  330. for (i = 1; i < avctx->thread_count; i++) {
  331. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  332. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  333. }
  334. return 0;
  335. fail: // for FF_ALLOCZ_OR_GOTO
  336. return AVERROR(ENOMEM);
  337. }
  338. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  339. {
  340. DNXHDEncContext *ctx = avctx->priv_data;
  341. const uint8_t header_prefix[5] = { 0x00, 0x00, 0x02, 0x80, 0x01 };
  342. memset(buf, 0, 640);
  343. memcpy(buf, header_prefix, 5);
  344. buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
  345. buf[6] = 0x80; // crc flag off
  346. buf[7] = 0xa0; // reserved
  347. AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
  348. AV_WB16(buf + 0x1a, avctx->width); // SPL
  349. AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
  350. buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
  351. buf[0x22] = 0x88 + (ctx->interlaced << 2);
  352. AV_WB32(buf + 0x28, ctx->cid); // CID
  353. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  354. buf[0x5f] = 0x01; // UDL
  355. buf[0x167] = 0x02; // reserved
  356. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  357. buf[0x16d] = ctx->m.mb_height; // Ns
  358. buf[0x16f] = 0x10; // reserved
  359. ctx->msip = buf + 0x170;
  360. return 0;
  361. }
  362. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  363. {
  364. int nbits;
  365. if (diff < 0) {
  366. nbits = av_log2_16bit(-2 * diff);
  367. diff--;
  368. } else {
  369. nbits = av_log2_16bit(2 * diff);
  370. }
  371. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  372. (ctx->cid_table->dc_codes[nbits] << nbits) +
  373. (diff & ((1 << nbits) - 1)));
  374. }
  375. static av_always_inline
  376. void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
  377. int last_index, int n)
  378. {
  379. int last_non_zero = 0;
  380. int slevel, i, j;
  381. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  382. ctx->m.last_dc[n] = block[0];
  383. for (i = 1; i <= last_index; i++) {
  384. j = ctx->m.intra_scantable.permutated[i];
  385. slevel = block[j];
  386. if (slevel) {
  387. int run_level = i - last_non_zero - 1;
  388. int rlevel = (slevel << 1) | !!run_level;
  389. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  390. if (run_level)
  391. put_bits(&ctx->m.pb, ctx->run_bits[run_level],
  392. ctx->run_codes[run_level]);
  393. last_non_zero = i;
  394. }
  395. }
  396. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  397. }
  398. static av_always_inline
  399. void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
  400. int qscale, int last_index)
  401. {
  402. const uint8_t *weight_matrix;
  403. int level;
  404. int i;
  405. weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
  406. : ctx->cid_table->luma_weight;
  407. for (i = 1; i <= last_index; i++) {
  408. int j = ctx->m.intra_scantable.permutated[i];
  409. level = block[j];
  410. if (level) {
  411. if (level < 0) {
  412. level = (1 - 2 * level) * qscale * weight_matrix[i];
  413. if (ctx->cid_table->bit_depth == 10) {
  414. if (weight_matrix[i] != 8)
  415. level += 8;
  416. level >>= 4;
  417. } else {
  418. if (weight_matrix[i] != 32)
  419. level += 32;
  420. level >>= 6;
  421. }
  422. level = -level;
  423. } else {
  424. level = (2 * level + 1) * qscale * weight_matrix[i];
  425. if (ctx->cid_table->bit_depth == 10) {
  426. if (weight_matrix[i] != 8)
  427. level += 8;
  428. level >>= 4;
  429. } else {
  430. if (weight_matrix[i] != 32)
  431. level += 32;
  432. level >>= 6;
  433. }
  434. }
  435. block[j] = level;
  436. }
  437. }
  438. }
  439. static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
  440. {
  441. int score = 0;
  442. int i;
  443. for (i = 0; i < 64; i++)
  444. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  445. return score;
  446. }
  447. static av_always_inline
  448. int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
  449. {
  450. int last_non_zero = 0;
  451. int bits = 0;
  452. int i, j, level;
  453. for (i = 1; i <= last_index; i++) {
  454. j = ctx->m.intra_scantable.permutated[i];
  455. level = block[j];
  456. if (level) {
  457. int run_level = i - last_non_zero - 1;
  458. bits += ctx->vlc_bits[(level << 1) |
  459. !!run_level] + ctx->run_bits[run_level];
  460. last_non_zero = i;
  461. }
  462. }
  463. return bits;
  464. }
  465. static av_always_inline
  466. void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  467. {
  468. const int bs = ctx->block_width_l2;
  469. const int bw = 1 << bs;
  470. const uint8_t *ptr_y = ctx->thread[0]->src[0] +
  471. ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
  472. const uint8_t *ptr_u = ctx->thread[0]->src[1] +
  473. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  474. const uint8_t *ptr_v = ctx->thread[0]->src[2] +
  475. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  476. DSPContext *dsp = &ctx->m.dsp;
  477. dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
  478. dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
  479. dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
  480. dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
  481. if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  482. if (ctx->interlaced) {
  483. ctx->get_pixels_8x4_sym(ctx->blocks[4],
  484. ptr_y + ctx->dct_y_offset,
  485. ctx->m.linesize);
  486. ctx->get_pixels_8x4_sym(ctx->blocks[5],
  487. ptr_y + ctx->dct_y_offset + bw,
  488. ctx->m.linesize);
  489. ctx->get_pixels_8x4_sym(ctx->blocks[6],
  490. ptr_u + ctx->dct_uv_offset,
  491. ctx->m.uvlinesize);
  492. ctx->get_pixels_8x4_sym(ctx->blocks[7],
  493. ptr_v + ctx->dct_uv_offset,
  494. ctx->m.uvlinesize);
  495. } else {
  496. ctx->bdsp.clear_block(ctx->blocks[4]);
  497. ctx->bdsp.clear_block(ctx->blocks[5]);
  498. ctx->bdsp.clear_block(ctx->blocks[6]);
  499. ctx->bdsp.clear_block(ctx->blocks[7]);
  500. }
  501. } else {
  502. dsp->get_pixels(ctx->blocks[4],
  503. ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  504. dsp->get_pixels(ctx->blocks[5],
  505. ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  506. dsp->get_pixels(ctx->blocks[6],
  507. ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  508. dsp->get_pixels(ctx->blocks[7],
  509. ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  510. }
  511. }
  512. static av_always_inline
  513. int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  514. {
  515. if (i & 2) {
  516. ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
  517. ctx->m.q_intra_matrix = ctx->qmatrix_c;
  518. return 1 + (i & 1);
  519. } else {
  520. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  521. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  522. return 0;
  523. }
  524. }
  525. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
  526. int jobnr, int threadnr)
  527. {
  528. DNXHDEncContext *ctx = avctx->priv_data;
  529. int mb_y = jobnr, mb_x;
  530. int qscale = ctx->qscale;
  531. LOCAL_ALIGNED_16(int16_t, block, [64]);
  532. ctx = ctx->thread[threadnr];
  533. ctx->m.last_dc[0] =
  534. ctx->m.last_dc[1] =
  535. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  536. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  537. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  538. int ssd = 0;
  539. int ac_bits = 0;
  540. int dc_bits = 0;
  541. int i;
  542. dnxhd_get_blocks(ctx, mb_x, mb_y);
  543. for (i = 0; i < 8; i++) {
  544. int16_t *src_block = ctx->blocks[i];
  545. int overflow, nbits, diff, last_index;
  546. int n = dnxhd_switch_matrix(ctx, i);
  547. memcpy(block, src_block, 64 * sizeof(*block));
  548. last_index = ctx->m.dct_quantize(&ctx->m, block, i,
  549. qscale, &overflow);
  550. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  551. diff = block[0] - ctx->m.last_dc[n];
  552. if (diff < 0)
  553. nbits = av_log2_16bit(-2 * diff);
  554. else
  555. nbits = av_log2_16bit(2 * diff);
  556. assert(nbits < ctx->cid_table->bit_depth + 4);
  557. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  558. ctx->m.last_dc[n] = block[0];
  559. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  560. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  561. ctx->m.idsp.idct(block);
  562. ssd += dnxhd_ssd_block(block, src_block);
  563. }
  564. }
  565. ctx->mb_rc[qscale][mb].ssd = ssd;
  566. ctx->mb_rc[qscale][mb].bits = ac_bits + dc_bits + 12 +
  567. 8 * ctx->vlc_bits[0];
  568. }
  569. return 0;
  570. }
  571. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
  572. int jobnr, int threadnr)
  573. {
  574. DNXHDEncContext *ctx = avctx->priv_data;
  575. int mb_y = jobnr, mb_x;
  576. ctx = ctx->thread[threadnr];
  577. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr],
  578. ctx->slice_size[jobnr]);
  579. ctx->m.last_dc[0] =
  580. ctx->m.last_dc[1] =
  581. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  582. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  583. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  584. int qscale = ctx->mb_qscale[mb];
  585. int i;
  586. put_bits(&ctx->m.pb, 12, qscale << 1);
  587. dnxhd_get_blocks(ctx, mb_x, mb_y);
  588. for (i = 0; i < 8; i++) {
  589. int16_t *block = ctx->blocks[i];
  590. int overflow, n = dnxhd_switch_matrix(ctx, i);
  591. int last_index = ctx->m.dct_quantize(&ctx->m, block, i,
  592. qscale, &overflow);
  593. // START_TIMER;
  594. dnxhd_encode_block(ctx, block, last_index, n);
  595. // STOP_TIMER("encode_block");
  596. }
  597. }
  598. if (put_bits_count(&ctx->m.pb) & 31)
  599. put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
  600. flush_put_bits(&ctx->m.pb);
  601. return 0;
  602. }
  603. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  604. {
  605. int mb_y, mb_x;
  606. int offset = 0;
  607. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  608. int thread_size;
  609. ctx->slice_offs[mb_y] = offset;
  610. ctx->slice_size[mb_y] = 0;
  611. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  612. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  613. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  614. }
  615. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31) & ~31;
  616. ctx->slice_size[mb_y] >>= 3;
  617. thread_size = ctx->slice_size[mb_y];
  618. offset += thread_size;
  619. }
  620. }
  621. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
  622. int jobnr, int threadnr)
  623. {
  624. DNXHDEncContext *ctx = avctx->priv_data;
  625. int mb_y = jobnr, mb_x, x, y;
  626. int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
  627. ((avctx->height >> ctx->interlaced) & 0xF);
  628. ctx = ctx->thread[threadnr];
  629. if (ctx->cid_table->bit_depth == 8) {
  630. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
  631. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  632. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  633. int sum;
  634. int varc;
  635. if (!partial_last_row && mb_x * 16 <= avctx->width - 16) {
  636. sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
  637. varc = ctx->m.dsp.pix_norm1(pix, ctx->m.linesize);
  638. } else {
  639. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  640. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  641. sum = varc = 0;
  642. for (y = 0; y < bh; y++) {
  643. for (x = 0; x < bw; x++) {
  644. uint8_t val = pix[x + y * ctx->m.linesize];
  645. sum += val;
  646. varc += val * val;
  647. }
  648. }
  649. }
  650. varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
  651. ctx->mb_cmp[mb].value = varc;
  652. ctx->mb_cmp[mb].mb = mb;
  653. }
  654. } else { // 10-bit
  655. int const linesize = ctx->m.linesize >> 1;
  656. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  657. uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
  658. ((mb_y << 4) * linesize) + (mb_x << 4);
  659. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  660. int sum = 0;
  661. int sqsum = 0;
  662. int mean, sqmean;
  663. int i, j;
  664. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  665. for (i = 0; i < 16; ++i) {
  666. for (j = 0; j < 16; ++j) {
  667. // Turn 16-bit pixels into 10-bit ones.
  668. int const sample = (unsigned) pix[j] >> 6;
  669. sum += sample;
  670. sqsum += sample * sample;
  671. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  672. }
  673. pix += linesize;
  674. }
  675. mean = sum >> 8; // 16*16 == 2^8
  676. sqmean = sqsum >> 8;
  677. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  678. ctx->mb_cmp[mb].mb = mb;
  679. }
  680. }
  681. return 0;
  682. }
  683. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  684. {
  685. int lambda, up_step, down_step;
  686. int last_lower = INT_MAX, last_higher = 0;
  687. int x, y, q;
  688. for (q = 1; q < avctx->qmax; q++) {
  689. ctx->qscale = q;
  690. avctx->execute2(avctx, dnxhd_calc_bits_thread,
  691. NULL, NULL, ctx->m.mb_height);
  692. }
  693. up_step = down_step = 2 << LAMBDA_FRAC_BITS;
  694. lambda = ctx->lambda;
  695. for (;;) {
  696. int bits = 0;
  697. int end = 0;
  698. if (lambda == last_higher) {
  699. lambda++;
  700. end = 1; // need to set final qscales/bits
  701. }
  702. for (y = 0; y < ctx->m.mb_height; y++) {
  703. for (x = 0; x < ctx->m.mb_width; x++) {
  704. unsigned min = UINT_MAX;
  705. int qscale = 1;
  706. int mb = y * ctx->m.mb_width + x;
  707. for (q = 1; q < avctx->qmax; q++) {
  708. unsigned score = ctx->mb_rc[q][mb].bits * lambda +
  709. ((unsigned) ctx->mb_rc[q][mb].ssd << LAMBDA_FRAC_BITS);
  710. if (score < min) {
  711. min = score;
  712. qscale = q;
  713. }
  714. }
  715. bits += ctx->mb_rc[qscale][mb].bits;
  716. ctx->mb_qscale[mb] = qscale;
  717. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  718. }
  719. bits = (bits + 31) & ~31; // padding
  720. if (bits > ctx->frame_bits)
  721. break;
  722. }
  723. // av_dlog(ctx->m.avctx,
  724. // "lambda %d, up %u, down %u, bits %d, frame %d\n",
  725. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  726. if (end) {
  727. if (bits > ctx->frame_bits)
  728. return AVERROR(EINVAL);
  729. break;
  730. }
  731. if (bits < ctx->frame_bits) {
  732. last_lower = FFMIN(lambda, last_lower);
  733. if (last_higher != 0)
  734. lambda = (lambda+last_higher)>>1;
  735. else
  736. lambda -= down_step;
  737. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  738. up_step = 1<<LAMBDA_FRAC_BITS;
  739. lambda = FFMAX(1, lambda);
  740. if (lambda == last_lower)
  741. break;
  742. } else {
  743. last_higher = FFMAX(lambda, last_higher);
  744. if (last_lower != INT_MAX)
  745. lambda = (lambda+last_lower)>>1;
  746. else if ((int64_t)lambda + up_step > INT_MAX)
  747. return AVERROR(EINVAL);
  748. else
  749. lambda += up_step;
  750. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  751. down_step = 1<<LAMBDA_FRAC_BITS;
  752. }
  753. }
  754. //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
  755. ctx->lambda = lambda;
  756. return 0;
  757. }
  758. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  759. {
  760. int bits = 0;
  761. int up_step = 1;
  762. int down_step = 1;
  763. int last_higher = 0;
  764. int last_lower = INT_MAX;
  765. int qscale;
  766. int x, y;
  767. qscale = ctx->qscale;
  768. for (;;) {
  769. bits = 0;
  770. ctx->qscale = qscale;
  771. // XXX avoid recalculating bits
  772. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
  773. NULL, NULL, ctx->m.mb_height);
  774. for (y = 0; y < ctx->m.mb_height; y++) {
  775. for (x = 0; x < ctx->m.mb_width; x++)
  776. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  777. bits = (bits+31)&~31; // padding
  778. if (bits > ctx->frame_bits)
  779. break;
  780. }
  781. // av_dlog(ctx->m.avctx,
  782. // "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  783. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits,
  784. // last_higher, last_lower);
  785. if (bits < ctx->frame_bits) {
  786. if (qscale == 1)
  787. return 1;
  788. if (last_higher == qscale - 1) {
  789. qscale = last_higher;
  790. break;
  791. }
  792. last_lower = FFMIN(qscale, last_lower);
  793. if (last_higher != 0)
  794. qscale = (qscale + last_higher) >> 1;
  795. else
  796. qscale -= down_step++;
  797. if (qscale < 1)
  798. qscale = 1;
  799. up_step = 1;
  800. } else {
  801. if (last_lower == qscale + 1)
  802. break;
  803. last_higher = FFMAX(qscale, last_higher);
  804. if (last_lower != INT_MAX)
  805. qscale = (qscale + last_lower) >> 1;
  806. else
  807. qscale += up_step++;
  808. down_step = 1;
  809. if (qscale >= ctx->m.avctx->qmax)
  810. return AVERROR(EINVAL);
  811. }
  812. }
  813. //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
  814. ctx->qscale = qscale;
  815. return 0;
  816. }
  817. #define BUCKET_BITS 8
  818. #define RADIX_PASSES 4
  819. #define NBUCKETS (1 << BUCKET_BITS)
  820. static inline int get_bucket(int value, int shift)
  821. {
  822. value >>= shift;
  823. value &= NBUCKETS - 1;
  824. return NBUCKETS - 1 - value;
  825. }
  826. static void radix_count(const RCCMPEntry *data, int size,
  827. int buckets[RADIX_PASSES][NBUCKETS])
  828. {
  829. int i, j;
  830. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  831. for (i = 0; i < size; i++) {
  832. int v = data[i].value;
  833. for (j = 0; j < RADIX_PASSES; j++) {
  834. buckets[j][get_bucket(v, 0)]++;
  835. v >>= BUCKET_BITS;
  836. }
  837. assert(!v);
  838. }
  839. for (j = 0; j < RADIX_PASSES; j++) {
  840. int offset = size;
  841. for (i = NBUCKETS - 1; i >= 0; i--)
  842. buckets[j][i] = offset -= buckets[j][i];
  843. assert(!buckets[j][0]);
  844. }
  845. }
  846. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
  847. int size, int buckets[NBUCKETS], int pass)
  848. {
  849. int shift = pass * BUCKET_BITS;
  850. int i;
  851. for (i = 0; i < size; i++) {
  852. int v = get_bucket(data[i].value, shift);
  853. int pos = buckets[v]++;
  854. dst[pos] = data[i];
  855. }
  856. }
  857. static void radix_sort(RCCMPEntry *data, int size)
  858. {
  859. int buckets[RADIX_PASSES][NBUCKETS];
  860. RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
  861. radix_count(data, size, buckets);
  862. radix_sort_pass(tmp, data, size, buckets[0], 0);
  863. radix_sort_pass(data, tmp, size, buckets[1], 1);
  864. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  865. radix_sort_pass(tmp, data, size, buckets[2], 2);
  866. radix_sort_pass(data, tmp, size, buckets[3], 3);
  867. }
  868. av_free(tmp);
  869. }
  870. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  871. {
  872. int max_bits = 0;
  873. int ret, x, y;
  874. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  875. return ret;
  876. for (y = 0; y < ctx->m.mb_height; y++) {
  877. for (x = 0; x < ctx->m.mb_width; x++) {
  878. int mb = y * ctx->m.mb_width + x;
  879. int delta_bits;
  880. ctx->mb_qscale[mb] = ctx->qscale;
  881. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  882. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  883. if (!RC_VARIANCE) {
  884. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits -
  885. ctx->mb_rc[ctx->qscale + 1][mb].bits;
  886. ctx->mb_cmp[mb].mb = mb;
  887. ctx->mb_cmp[mb].value =
  888. delta_bits ? ((ctx->mb_rc[ctx->qscale][mb].ssd -
  889. ctx->mb_rc[ctx->qscale + 1][mb].ssd) * 100) /
  890. delta_bits
  891. : INT_MIN; // avoid increasing qscale
  892. }
  893. }
  894. max_bits += 31; // worst padding
  895. }
  896. if (!ret) {
  897. if (RC_VARIANCE)
  898. avctx->execute2(avctx, dnxhd_mb_var_thread,
  899. NULL, NULL, ctx->m.mb_height);
  900. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  901. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  902. int mb = ctx->mb_cmp[x].mb;
  903. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits -
  904. ctx->mb_rc[ctx->qscale + 1][mb].bits;
  905. ctx->mb_qscale[mb] = ctx->qscale + 1;
  906. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale + 1][mb].bits;
  907. }
  908. }
  909. return 0;
  910. }
  911. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  912. {
  913. int i;
  914. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  915. ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
  916. ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
  917. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  918. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  919. }
  920. ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame;
  921. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  922. }
  923. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  924. const AVFrame *frame, int *got_packet)
  925. {
  926. DNXHDEncContext *ctx = avctx->priv_data;
  927. int first_field = 1;
  928. int offset, i, ret;
  929. uint8_t *buf;
  930. if ((ret = ff_alloc_packet(pkt, ctx->cid_table->frame_size)) < 0) {
  931. av_log(avctx, AV_LOG_ERROR,
  932. "output buffer is too small to compress picture\n");
  933. return ret;
  934. }
  935. buf = pkt->data;
  936. dnxhd_load_picture(ctx, frame);
  937. encode_coding_unit:
  938. for (i = 0; i < 3; i++) {
  939. ctx->src[i] = frame->data[i];
  940. if (ctx->interlaced && ctx->cur_field)
  941. ctx->src[i] += frame->linesize[i];
  942. }
  943. dnxhd_write_header(avctx, buf);
  944. if (avctx->mb_decision == FF_MB_DECISION_RD)
  945. ret = dnxhd_encode_rdo(avctx, ctx);
  946. else
  947. ret = dnxhd_encode_fast(avctx, ctx);
  948. if (ret < 0) {
  949. av_log(avctx, AV_LOG_ERROR,
  950. "picture could not fit ratecontrol constraints, increase qmax\n");
  951. return ret;
  952. }
  953. dnxhd_setup_threads_slices(ctx);
  954. offset = 0;
  955. for (i = 0; i < ctx->m.mb_height; i++) {
  956. AV_WB32(ctx->msip + i * 4, offset);
  957. offset += ctx->slice_size[i];
  958. assert(!(ctx->slice_size[i] & 3));
  959. }
  960. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  961. assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  962. memset(buf + 640 + offset, 0,
  963. ctx->cid_table->coding_unit_size - 4 - offset - 640);
  964. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  965. if (ctx->interlaced && first_field) {
  966. first_field = 0;
  967. ctx->cur_field ^= 1;
  968. buf += ctx->cid_table->coding_unit_size;
  969. goto encode_coding_unit;
  970. }
  971. avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
  972. pkt->flags |= AV_PKT_FLAG_KEY;
  973. *got_packet = 1;
  974. return 0;
  975. }
  976. static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
  977. {
  978. DNXHDEncContext *ctx = avctx->priv_data;
  979. int max_level = 1 << (ctx->cid_table->bit_depth + 2);
  980. int i;
  981. av_free(ctx->vlc_codes - max_level * 2);
  982. av_free(ctx->vlc_bits - max_level * 2);
  983. av_freep(&ctx->run_codes);
  984. av_freep(&ctx->run_bits);
  985. av_freep(&ctx->mb_bits);
  986. av_freep(&ctx->mb_qscale);
  987. av_freep(&ctx->mb_rc);
  988. av_freep(&ctx->mb_cmp);
  989. av_freep(&ctx->slice_size);
  990. av_freep(&ctx->slice_offs);
  991. av_freep(&ctx->qmatrix_c);
  992. av_freep(&ctx->qmatrix_l);
  993. av_freep(&ctx->qmatrix_c16);
  994. av_freep(&ctx->qmatrix_l16);
  995. for (i = 1; i < avctx->thread_count; i++)
  996. av_freep(&ctx->thread[i]);
  997. av_frame_free(&avctx->coded_frame);
  998. return 0;
  999. }
  1000. AVCodec ff_dnxhd_encoder = {
  1001. .name = "dnxhd",
  1002. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  1003. .type = AVMEDIA_TYPE_VIDEO,
  1004. .id = AV_CODEC_ID_DNXHD,
  1005. .priv_data_size = sizeof(DNXHDEncContext),
  1006. .init = dnxhd_encode_init,
  1007. .encode2 = dnxhd_encode_picture,
  1008. .close = dnxhd_encode_end,
  1009. .capabilities = CODEC_CAP_SLICE_THREADS,
  1010. .pix_fmts = (const enum AVPixelFormat[]) {
  1011. AV_PIX_FMT_YUV422P,
  1012. AV_PIX_FMT_YUV422P10,
  1013. AV_PIX_FMT_NONE
  1014. },
  1015. .priv_class = &class,
  1016. };