You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2753 lines
77KB

  1. ;******************************************************************************
  2. ;* VP8 MMXEXT optimizations
  3. ;* Copyright (c) 2010 Ronald S. Bultje <rsbultje@gmail.com>
  4. ;* Copyright (c) 2010 Jason Garrett-Glaser <darkshikari@gmail.com>
  5. ;*
  6. ;* This file is part of FFmpeg.
  7. ;*
  8. ;* FFmpeg is free software; you can redistribute it and/or
  9. ;* modify it under the terms of the GNU Lesser General Public
  10. ;* License as published by the Free Software Foundation; either
  11. ;* version 2.1 of the License, or (at your option) any later version.
  12. ;*
  13. ;* FFmpeg is distributed in the hope that it will be useful,
  14. ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. ;* Lesser General Public License for more details.
  17. ;*
  18. ;* You should have received a copy of the GNU Lesser General Public
  19. ;* License along with FFmpeg; if not, write to the Free Software
  20. ;* 51, Inc., Foundation Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. ;******************************************************************************
  22. %include "x86inc.asm"
  23. %include "x86util.asm"
  24. SECTION_RODATA
  25. fourtap_filter_hw_m: times 4 dw -6, 123
  26. times 4 dw 12, -1
  27. times 4 dw -9, 93
  28. times 4 dw 50, -6
  29. times 4 dw -6, 50
  30. times 4 dw 93, -9
  31. times 4 dw -1, 12
  32. times 4 dw 123, -6
  33. sixtap_filter_hw_m: times 4 dw 2, -11
  34. times 4 dw 108, 36
  35. times 4 dw -8, 1
  36. times 4 dw 3, -16
  37. times 4 dw 77, 77
  38. times 4 dw -16, 3
  39. times 4 dw 1, -8
  40. times 4 dw 36, 108
  41. times 4 dw -11, 2
  42. fourtap_filter_hb_m: times 8 db -6, 123
  43. times 8 db 12, -1
  44. times 8 db -9, 93
  45. times 8 db 50, -6
  46. times 8 db -6, 50
  47. times 8 db 93, -9
  48. times 8 db -1, 12
  49. times 8 db 123, -6
  50. sixtap_filter_hb_m: times 8 db 2, 1
  51. times 8 db -11, 108
  52. times 8 db 36, -8
  53. times 8 db 3, 3
  54. times 8 db -16, 77
  55. times 8 db 77, -16
  56. times 8 db 1, 2
  57. times 8 db -8, 36
  58. times 8 db 108, -11
  59. fourtap_filter_v_m: times 8 dw -6
  60. times 8 dw 123
  61. times 8 dw 12
  62. times 8 dw -1
  63. times 8 dw -9
  64. times 8 dw 93
  65. times 8 dw 50
  66. times 8 dw -6
  67. times 8 dw -6
  68. times 8 dw 50
  69. times 8 dw 93
  70. times 8 dw -9
  71. times 8 dw -1
  72. times 8 dw 12
  73. times 8 dw 123
  74. times 8 dw -6
  75. sixtap_filter_v_m: times 8 dw 2
  76. times 8 dw -11
  77. times 8 dw 108
  78. times 8 dw 36
  79. times 8 dw -8
  80. times 8 dw 1
  81. times 8 dw 3
  82. times 8 dw -16
  83. times 8 dw 77
  84. times 8 dw 77
  85. times 8 dw -16
  86. times 8 dw 3
  87. times 8 dw 1
  88. times 8 dw -8
  89. times 8 dw 36
  90. times 8 dw 108
  91. times 8 dw -11
  92. times 8 dw 2
  93. bilinear_filter_vw_m: times 8 dw 1
  94. times 8 dw 2
  95. times 8 dw 3
  96. times 8 dw 4
  97. times 8 dw 5
  98. times 8 dw 6
  99. times 8 dw 7
  100. bilinear_filter_vb_m: times 8 db 7, 1
  101. times 8 db 6, 2
  102. times 8 db 5, 3
  103. times 8 db 4, 4
  104. times 8 db 3, 5
  105. times 8 db 2, 6
  106. times 8 db 1, 7
  107. %ifdef PIC
  108. %define fourtap_filter_hw r11
  109. %define sixtap_filter_hw r11
  110. %define fourtap_filter_hb r11
  111. %define sixtap_filter_hb r11
  112. %define fourtap_filter_v r11
  113. %define sixtap_filter_v r11
  114. %define bilinear_filter_vw r11
  115. %define bilinear_filter_vb r11
  116. %else
  117. %define fourtap_filter_hw fourtap_filter_hw_m
  118. %define sixtap_filter_hw sixtap_filter_hw_m
  119. %define fourtap_filter_hb fourtap_filter_hb_m
  120. %define sixtap_filter_hb sixtap_filter_hb_m
  121. %define fourtap_filter_v fourtap_filter_v_m
  122. %define sixtap_filter_v sixtap_filter_v_m
  123. %define bilinear_filter_vw bilinear_filter_vw_m
  124. %define bilinear_filter_vb bilinear_filter_vb_m
  125. %endif
  126. filter_h2_shuf: db 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8
  127. filter_h4_shuf: db 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10
  128. filter_h6_shuf1: db 0, 5, 1, 6, 2, 7, 3, 8, 4, 9, 5, 10, 6, 11, 7, 12
  129. filter_h6_shuf2: db 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9
  130. filter_h6_shuf3: db 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11
  131. pw_20091: times 4 dw 20091
  132. pw_17734: times 4 dw 17734
  133. cextern pb_1
  134. cextern pw_3
  135. cextern pb_3
  136. cextern pw_4
  137. cextern pb_4
  138. cextern pw_9
  139. cextern pw_18
  140. cextern pw_27
  141. cextern pw_63
  142. cextern pw_64
  143. cextern pb_80
  144. cextern pb_F8
  145. cextern pb_FE
  146. SECTION .text
  147. ;-----------------------------------------------------------------------------
  148. ; subpel MC functions:
  149. ;
  150. ; void put_vp8_epel<size>_h<htap>v<vtap>_<opt>(uint8_t *dst, int deststride,
  151. ; uint8_t *src, int srcstride,
  152. ; int height, int mx, int my);
  153. ;-----------------------------------------------------------------------------
  154. %macro FILTER_SSSE3 3
  155. cglobal put_vp8_epel%1_h6_ssse3, 6, 6, %2
  156. lea r5d, [r5*3]
  157. mova m3, [filter_h6_shuf2]
  158. mova m4, [filter_h6_shuf3]
  159. %ifdef PIC
  160. lea r11, [sixtap_filter_hb_m]
  161. %endif
  162. mova m5, [sixtap_filter_hb+r5*8-48] ; set up 6tap filter in bytes
  163. mova m6, [sixtap_filter_hb+r5*8-32]
  164. mova m7, [sixtap_filter_hb+r5*8-16]
  165. .nextrow
  166. movu m0, [r2-2]
  167. mova m1, m0
  168. mova m2, m0
  169. %ifidn %1, 4
  170. ; For epel4, we need 9 bytes, but only 8 get loaded; to compensate, do the
  171. ; shuffle with a memory operand
  172. punpcklbw m0, [r2+3]
  173. %else
  174. pshufb m0, [filter_h6_shuf1]
  175. %endif
  176. pshufb m1, m3
  177. pshufb m2, m4
  178. pmaddubsw m0, m5
  179. pmaddubsw m1, m6
  180. pmaddubsw m2, m7
  181. paddsw m0, m1
  182. paddsw m0, m2
  183. paddsw m0, [pw_64]
  184. psraw m0, 7
  185. packuswb m0, m0
  186. movh [r0], m0 ; store
  187. ; go to next line
  188. add r0, r1
  189. add r2, r3
  190. dec r4 ; next row
  191. jg .nextrow
  192. REP_RET
  193. cglobal put_vp8_epel%1_h4_ssse3, 6, 6, %3
  194. shl r5d, 4
  195. mova m2, [pw_64]
  196. mova m3, [filter_h2_shuf]
  197. mova m4, [filter_h4_shuf]
  198. %ifdef PIC
  199. lea r11, [fourtap_filter_hb_m]
  200. %endif
  201. mova m5, [fourtap_filter_hb+r5-16] ; set up 4tap filter in bytes
  202. mova m6, [fourtap_filter_hb+r5]
  203. .nextrow
  204. movu m0, [r2-1]
  205. mova m1, m0
  206. pshufb m0, m3
  207. pshufb m1, m4
  208. pmaddubsw m0, m5
  209. pmaddubsw m1, m6
  210. paddsw m0, m2
  211. paddsw m0, m1
  212. psraw m0, 7
  213. packuswb m0, m0
  214. movh [r0], m0 ; store
  215. ; go to next line
  216. add r0, r1
  217. add r2, r3
  218. dec r4 ; next row
  219. jg .nextrow
  220. REP_RET
  221. cglobal put_vp8_epel%1_v4_ssse3, 7, 7, %2
  222. shl r6d, 4
  223. %ifdef PIC
  224. lea r11, [fourtap_filter_hb_m]
  225. %endif
  226. mova m5, [fourtap_filter_hb+r6-16]
  227. mova m6, [fourtap_filter_hb+r6]
  228. mova m7, [pw_64]
  229. ; read 3 lines
  230. sub r2, r3
  231. movh m0, [r2]
  232. movh m1, [r2+ r3]
  233. movh m2, [r2+2*r3]
  234. add r2, r3
  235. .nextrow
  236. movh m3, [r2+2*r3] ; read new row
  237. mova m4, m0
  238. mova m0, m1
  239. punpcklbw m4, m1
  240. mova m1, m2
  241. punpcklbw m2, m3
  242. pmaddubsw m4, m5
  243. pmaddubsw m2, m6
  244. paddsw m4, m2
  245. mova m2, m3
  246. paddsw m4, m7
  247. psraw m4, 7
  248. packuswb m4, m4
  249. movh [r0], m4
  250. ; go to next line
  251. add r0, r1
  252. add r2, r3
  253. dec r4 ; next row
  254. jg .nextrow
  255. REP_RET
  256. cglobal put_vp8_epel%1_v6_ssse3, 7, 7, %2
  257. lea r6d, [r6*3]
  258. %ifdef PIC
  259. lea r11, [sixtap_filter_hb_m]
  260. %endif
  261. lea r6, [sixtap_filter_hb+r6*8]
  262. ; read 5 lines
  263. sub r2, r3
  264. sub r2, r3
  265. movh m0, [r2]
  266. movh m1, [r2+r3]
  267. movh m2, [r2+r3*2]
  268. lea r2, [r2+r3*2]
  269. add r2, r3
  270. movh m3, [r2]
  271. movh m4, [r2+r3]
  272. .nextrow
  273. movh m5, [r2+2*r3] ; read new row
  274. mova m6, m0
  275. punpcklbw m6, m5
  276. mova m0, m1
  277. punpcklbw m1, m2
  278. mova m7, m3
  279. punpcklbw m7, m4
  280. pmaddubsw m6, [r6-48]
  281. pmaddubsw m1, [r6-32]
  282. pmaddubsw m7, [r6-16]
  283. paddsw m6, m1
  284. paddsw m6, m7
  285. mova m1, m2
  286. paddsw m6, [pw_64]
  287. mova m2, m3
  288. psraw m6, 7
  289. mova m3, m4
  290. packuswb m6, m6
  291. mova m4, m5
  292. movh [r0], m6
  293. ; go to next line
  294. add r0, r1
  295. add r2, r3
  296. dec r4 ; next row
  297. jg .nextrow
  298. REP_RET
  299. %endmacro
  300. INIT_MMX
  301. FILTER_SSSE3 4, 0, 0
  302. INIT_XMM
  303. FILTER_SSSE3 8, 8, 7
  304. ; 4x4 block, H-only 4-tap filter
  305. cglobal put_vp8_epel4_h4_mmxext, 6, 6
  306. shl r5d, 4
  307. %ifdef PIC
  308. lea r11, [fourtap_filter_hw_m]
  309. %endif
  310. movq mm4, [fourtap_filter_hw+r5-16] ; set up 4tap filter in words
  311. movq mm5, [fourtap_filter_hw+r5]
  312. movq mm7, [pw_64]
  313. pxor mm6, mm6
  314. .nextrow
  315. movq mm1, [r2-1] ; (ABCDEFGH) load 8 horizontal pixels
  316. ; first set of 2 pixels
  317. movq mm2, mm1 ; byte ABCD..
  318. punpcklbw mm1, mm6 ; byte->word ABCD
  319. pshufw mm0, mm2, 9 ; byte CDEF..
  320. punpcklbw mm0, mm6 ; byte->word CDEF
  321. pshufw mm3, mm1, 0x94 ; word ABBC
  322. pshufw mm1, mm0, 0x94 ; word CDDE
  323. pmaddwd mm3, mm4 ; multiply 2px with F0/F1
  324. movq mm0, mm1 ; backup for second set of pixels
  325. pmaddwd mm1, mm5 ; multiply 2px with F2/F3
  326. paddd mm3, mm1 ; finish 1st 2px
  327. ; second set of 2 pixels, use backup of above
  328. punpckhbw mm2, mm6 ; byte->word EFGH
  329. pmaddwd mm0, mm4 ; multiply backed up 2px with F0/F1
  330. pshufw mm1, mm2, 0x94 ; word EFFG
  331. pmaddwd mm1, mm5 ; multiply 2px with F2/F3
  332. paddd mm0, mm1 ; finish 2nd 2px
  333. ; merge two sets of 2 pixels into one set of 4, round/clip/store
  334. packssdw mm3, mm0 ; merge dword->word (4px)
  335. paddsw mm3, mm7 ; rounding
  336. psraw mm3, 7
  337. packuswb mm3, mm6 ; clip and word->bytes
  338. movd [r0], mm3 ; store
  339. ; go to next line
  340. add r0, r1
  341. add r2, r3
  342. dec r4 ; next row
  343. jg .nextrow
  344. REP_RET
  345. ; 4x4 block, H-only 6-tap filter
  346. cglobal put_vp8_epel4_h6_mmxext, 6, 6
  347. lea r5d, [r5*3]
  348. %ifdef PIC
  349. lea r11, [sixtap_filter_hw_m]
  350. %endif
  351. movq mm4, [sixtap_filter_hw+r5*8-48] ; set up 4tap filter in words
  352. movq mm5, [sixtap_filter_hw+r5*8-32]
  353. movq mm6, [sixtap_filter_hw+r5*8-16]
  354. movq mm7, [pw_64]
  355. pxor mm3, mm3
  356. .nextrow
  357. movq mm1, [r2-2] ; (ABCDEFGH) load 8 horizontal pixels
  358. ; first set of 2 pixels
  359. movq mm2, mm1 ; byte ABCD..
  360. punpcklbw mm1, mm3 ; byte->word ABCD
  361. pshufw mm0, mm2, 0x9 ; byte CDEF..
  362. punpckhbw mm2, mm3 ; byte->word EFGH
  363. punpcklbw mm0, mm3 ; byte->word CDEF
  364. pshufw mm1, mm1, 0x94 ; word ABBC
  365. pshufw mm2, mm2, 0x94 ; word EFFG
  366. pmaddwd mm1, mm4 ; multiply 2px with F0/F1
  367. pshufw mm3, mm0, 0x94 ; word CDDE
  368. movq mm0, mm3 ; backup for second set of pixels
  369. pmaddwd mm3, mm5 ; multiply 2px with F2/F3
  370. paddd mm1, mm3 ; add to 1st 2px cache
  371. movq mm3, mm2 ; backup for second set of pixels
  372. pmaddwd mm2, mm6 ; multiply 2px with F4/F5
  373. paddd mm1, mm2 ; finish 1st 2px
  374. ; second set of 2 pixels, use backup of above
  375. movd mm2, [r2+3] ; byte FGHI (prevent overreads)
  376. pmaddwd mm0, mm4 ; multiply 1st backed up 2px with F0/F1
  377. pmaddwd mm3, mm5 ; multiply 2nd backed up 2px with F2/F3
  378. paddd mm0, mm3 ; add to 2nd 2px cache
  379. pxor mm3, mm3
  380. punpcklbw mm2, mm3 ; byte->word FGHI
  381. pshufw mm2, mm2, 0xE9 ; word GHHI
  382. pmaddwd mm2, mm6 ; multiply 2px with F4/F5
  383. paddd mm0, mm2 ; finish 2nd 2px
  384. ; merge two sets of 2 pixels into one set of 4, round/clip/store
  385. packssdw mm1, mm0 ; merge dword->word (4px)
  386. paddsw mm1, mm7 ; rounding
  387. psraw mm1, 7
  388. packuswb mm1, mm3 ; clip and word->bytes
  389. movd [r0], mm1 ; store
  390. ; go to next line
  391. add r0, r1
  392. add r2, r3
  393. dec r4 ; next row
  394. jg .nextrow
  395. REP_RET
  396. ; 4x4 block, H-only 4-tap filter
  397. INIT_XMM
  398. cglobal put_vp8_epel8_h4_sse2, 6, 6, 8
  399. shl r5d, 4
  400. %ifdef PIC
  401. lea r11, [fourtap_filter_hw_m]
  402. %endif
  403. mova m5, [fourtap_filter_hw+r5-16] ; set up 4tap filter in words
  404. mova m6, [fourtap_filter_hw+r5]
  405. pxor m7, m7
  406. .nextrow
  407. movh m0, [r2-1]
  408. punpcklbw m0, m7 ; ABCDEFGH
  409. mova m1, m0
  410. mova m2, m0
  411. mova m3, m0
  412. psrldq m1, 2 ; BCDEFGH
  413. psrldq m2, 4 ; CDEFGH
  414. psrldq m3, 6 ; DEFGH
  415. punpcklwd m0, m1 ; ABBCCDDE
  416. punpcklwd m2, m3 ; CDDEEFFG
  417. pmaddwd m0, m5
  418. pmaddwd m2, m6
  419. paddd m0, m2
  420. movh m1, [r2+3]
  421. punpcklbw m1, m7 ; ABCDEFGH
  422. mova m2, m1
  423. mova m3, m1
  424. mova m4, m1
  425. psrldq m2, 2 ; BCDEFGH
  426. psrldq m3, 4 ; CDEFGH
  427. psrldq m4, 6 ; DEFGH
  428. punpcklwd m1, m2 ; ABBCCDDE
  429. punpcklwd m3, m4 ; CDDEEFFG
  430. pmaddwd m1, m5
  431. pmaddwd m3, m6
  432. paddd m1, m3
  433. packssdw m0, m1
  434. paddsw m0, [pw_64]
  435. psraw m0, 7
  436. packuswb m0, m7
  437. movh [r0], m0 ; store
  438. ; go to next line
  439. add r0, r1
  440. add r2, r3
  441. dec r4 ; next row
  442. jg .nextrow
  443. REP_RET
  444. cglobal put_vp8_epel8_h6_sse2, 6, 6, 8
  445. lea r5d, [r5*3]
  446. %ifdef PIC
  447. lea r11, [sixtap_filter_hw_m]
  448. %endif
  449. lea r5, [sixtap_filter_hw+r5*8]
  450. pxor m7, m7
  451. .nextrow
  452. movu m0, [r2-2]
  453. mova m6, m0
  454. mova m4, m0
  455. punpcklbw m0, m7 ; ABCDEFGHI
  456. mova m1, m0
  457. mova m2, m0
  458. mova m3, m0
  459. psrldq m1, 2 ; BCDEFGH
  460. psrldq m2, 4 ; CDEFGH
  461. psrldq m3, 6 ; DEFGH
  462. psrldq m4, 4
  463. punpcklbw m4, m7 ; EFGH
  464. mova m5, m4
  465. psrldq m5, 2 ; FGH
  466. punpcklwd m0, m1 ; ABBCCDDE
  467. punpcklwd m2, m3 ; CDDEEFFG
  468. punpcklwd m4, m5 ; EFFGGHHI
  469. pmaddwd m0, [r5-48]
  470. pmaddwd m2, [r5-32]
  471. pmaddwd m4, [r5-16]
  472. paddd m0, m2
  473. paddd m0, m4
  474. psrldq m6, 4
  475. mova m4, m6
  476. punpcklbw m6, m7 ; ABCDEFGHI
  477. mova m1, m6
  478. mova m2, m6
  479. mova m3, m6
  480. psrldq m1, 2 ; BCDEFGH
  481. psrldq m2, 4 ; CDEFGH
  482. psrldq m3, 6 ; DEFGH
  483. psrldq m4, 4
  484. punpcklbw m4, m7 ; EFGH
  485. mova m5, m4
  486. psrldq m5, 2 ; FGH
  487. punpcklwd m6, m1 ; ABBCCDDE
  488. punpcklwd m2, m3 ; CDDEEFFG
  489. punpcklwd m4, m5 ; EFFGGHHI
  490. pmaddwd m6, [r5-48]
  491. pmaddwd m2, [r5-32]
  492. pmaddwd m4, [r5-16]
  493. paddd m6, m2
  494. paddd m6, m4
  495. packssdw m0, m6
  496. paddsw m0, [pw_64]
  497. psraw m0, 7
  498. packuswb m0, m7
  499. movh [r0], m0 ; store
  500. ; go to next line
  501. add r0, r1
  502. add r2, r3
  503. dec r4 ; next row
  504. jg .nextrow
  505. REP_RET
  506. %macro FILTER_V 3
  507. ; 4x4 block, V-only 4-tap filter
  508. cglobal put_vp8_epel%2_v4_%1, 7, 7, %3
  509. shl r6d, 5
  510. %ifdef PIC
  511. lea r11, [fourtap_filter_v_m]
  512. %endif
  513. lea r6, [fourtap_filter_v+r6-32]
  514. mova m6, [pw_64]
  515. pxor m7, m7
  516. mova m5, [r6+48]
  517. ; read 3 lines
  518. sub r2, r3
  519. movh m0, [r2]
  520. movh m1, [r2+ r3]
  521. movh m2, [r2+2*r3]
  522. add r2, r3
  523. punpcklbw m0, m7
  524. punpcklbw m1, m7
  525. punpcklbw m2, m7
  526. .nextrow
  527. ; first calculate negative taps (to prevent losing positive overflows)
  528. movh m4, [r2+2*r3] ; read new row
  529. punpcklbw m4, m7
  530. mova m3, m4
  531. pmullw m0, [r6+0]
  532. pmullw m4, m5
  533. paddsw m4, m0
  534. ; then calculate positive taps
  535. mova m0, m1
  536. pmullw m1, [r6+16]
  537. paddsw m4, m1
  538. mova m1, m2
  539. pmullw m2, [r6+32]
  540. paddsw m4, m2
  541. mova m2, m3
  542. ; round/clip/store
  543. paddsw m4, m6
  544. psraw m4, 7
  545. packuswb m4, m7
  546. movh [r0], m4
  547. ; go to next line
  548. add r0, r1
  549. add r2, r3
  550. dec r4 ; next row
  551. jg .nextrow
  552. REP_RET
  553. ; 4x4 block, V-only 6-tap filter
  554. cglobal put_vp8_epel%2_v6_%1, 7, 7, %3
  555. shl r6d, 4
  556. lea r6, [r6*3]
  557. %ifdef PIC
  558. lea r11, [sixtap_filter_v_m]
  559. %endif
  560. lea r6, [sixtap_filter_v+r6-96]
  561. pxor m7, m7
  562. ; read 5 lines
  563. sub r2, r3
  564. sub r2, r3
  565. movh m0, [r2]
  566. movh m1, [r2+r3]
  567. movh m2, [r2+r3*2]
  568. lea r2, [r2+r3*2]
  569. add r2, r3
  570. movh m3, [r2]
  571. movh m4, [r2+r3]
  572. punpcklbw m0, m7
  573. punpcklbw m1, m7
  574. punpcklbw m2, m7
  575. punpcklbw m3, m7
  576. punpcklbw m4, m7
  577. .nextrow
  578. ; first calculate negative taps (to prevent losing positive overflows)
  579. mova m5, m1
  580. pmullw m5, [r6+16]
  581. mova m6, m4
  582. pmullw m6, [r6+64]
  583. paddsw m6, m5
  584. ; then calculate positive taps
  585. movh m5, [r2+2*r3] ; read new row
  586. punpcklbw m5, m7
  587. pmullw m0, [r6+0]
  588. paddsw m6, m0
  589. mova m0, m1
  590. mova m1, m2
  591. pmullw m2, [r6+32]
  592. paddsw m6, m2
  593. mova m2, m3
  594. pmullw m3, [r6+48]
  595. paddsw m6, m3
  596. mova m3, m4
  597. mova m4, m5
  598. pmullw m5, [r6+80]
  599. paddsw m6, m5
  600. ; round/clip/store
  601. paddsw m6, [pw_64]
  602. psraw m6, 7
  603. packuswb m6, m7
  604. movh [r0], m6
  605. ; go to next line
  606. add r0, r1
  607. add r2, r3
  608. dec r4 ; next row
  609. jg .nextrow
  610. REP_RET
  611. %endmacro
  612. INIT_MMX
  613. FILTER_V mmxext, 4, 0
  614. INIT_XMM
  615. FILTER_V sse2, 8, 8
  616. %macro FILTER_BILINEAR 3
  617. cglobal put_vp8_bilinear%2_v_%1, 7,7,%3
  618. mov r5d, 8*16
  619. shl r6d, 4
  620. sub r5d, r6d
  621. %ifdef PIC
  622. lea r11, [bilinear_filter_vw_m]
  623. %endif
  624. pxor m6, m6
  625. mova m4, [bilinear_filter_vw+r5-16]
  626. mova m5, [bilinear_filter_vw+r6-16]
  627. .nextrow
  628. movh m0, [r2+r3*0]
  629. movh m1, [r2+r3*1]
  630. movh m3, [r2+r3*2]
  631. punpcklbw m0, m6
  632. punpcklbw m1, m6
  633. punpcklbw m3, m6
  634. mova m2, m1
  635. pmullw m0, m4
  636. pmullw m1, m5
  637. pmullw m2, m4
  638. pmullw m3, m5
  639. paddsw m0, m1
  640. paddsw m2, m3
  641. psraw m0, 2
  642. psraw m2, 2
  643. pavgw m0, m6
  644. pavgw m2, m6
  645. %ifidn %1, mmxext
  646. packuswb m0, m0
  647. packuswb m2, m2
  648. movh [r0+r1*0], m0
  649. movh [r0+r1*1], m2
  650. %else
  651. packuswb m0, m2
  652. movh [r0+r1*0], m0
  653. movhps [r0+r1*1], m0
  654. %endif
  655. lea r0, [r0+r1*2]
  656. lea r2, [r2+r3*2]
  657. sub r4, 2
  658. jg .nextrow
  659. REP_RET
  660. cglobal put_vp8_bilinear%2_h_%1, 7,7,%3
  661. mov r6d, 8*16
  662. shl r5d, 4
  663. sub r6d, r5d
  664. %ifdef PIC
  665. lea r11, [bilinear_filter_vw_m]
  666. %endif
  667. pxor m6, m6
  668. mova m4, [bilinear_filter_vw+r6-16]
  669. mova m5, [bilinear_filter_vw+r5-16]
  670. .nextrow
  671. movh m0, [r2+r3*0+0]
  672. movh m1, [r2+r3*0+1]
  673. movh m2, [r2+r3*1+0]
  674. movh m3, [r2+r3*1+1]
  675. punpcklbw m0, m6
  676. punpcklbw m1, m6
  677. punpcklbw m2, m6
  678. punpcklbw m3, m6
  679. pmullw m0, m4
  680. pmullw m1, m5
  681. pmullw m2, m4
  682. pmullw m3, m5
  683. paddsw m0, m1
  684. paddsw m2, m3
  685. psraw m0, 2
  686. psraw m2, 2
  687. pavgw m0, m6
  688. pavgw m2, m6
  689. %ifidn %1, mmxext
  690. packuswb m0, m0
  691. packuswb m2, m2
  692. movh [r0+r1*0], m0
  693. movh [r0+r1*1], m2
  694. %else
  695. packuswb m0, m2
  696. movh [r0+r1*0], m0
  697. movhps [r0+r1*1], m0
  698. %endif
  699. lea r0, [r0+r1*2]
  700. lea r2, [r2+r3*2]
  701. sub r4, 2
  702. jg .nextrow
  703. REP_RET
  704. %endmacro
  705. INIT_MMX
  706. FILTER_BILINEAR mmxext, 4, 0
  707. INIT_XMM
  708. FILTER_BILINEAR sse2, 8, 7
  709. %macro FILTER_BILINEAR_SSSE3 1
  710. cglobal put_vp8_bilinear%1_v_ssse3, 7,7
  711. shl r6d, 4
  712. %ifdef PIC
  713. lea r11, [bilinear_filter_vb_m]
  714. %endif
  715. pxor m4, m4
  716. mova m3, [bilinear_filter_vb+r6-16]
  717. .nextrow
  718. movh m0, [r2+r3*0]
  719. movh m1, [r2+r3*1]
  720. movh m2, [r2+r3*2]
  721. punpcklbw m0, m1
  722. punpcklbw m1, m2
  723. pmaddubsw m0, m3
  724. pmaddubsw m1, m3
  725. psraw m0, 2
  726. psraw m1, 2
  727. pavgw m0, m4
  728. pavgw m1, m4
  729. %if mmsize==8
  730. packuswb m0, m0
  731. packuswb m1, m1
  732. movh [r0+r1*0], m0
  733. movh [r0+r1*1], m1
  734. %else
  735. packuswb m0, m1
  736. movh [r0+r1*0], m0
  737. movhps [r0+r1*1], m0
  738. %endif
  739. lea r0, [r0+r1*2]
  740. lea r2, [r2+r3*2]
  741. sub r4, 2
  742. jg .nextrow
  743. REP_RET
  744. cglobal put_vp8_bilinear%1_h_ssse3, 7,7
  745. shl r5d, 4
  746. %ifdef PIC
  747. lea r11, [bilinear_filter_vb_m]
  748. %endif
  749. pxor m4, m4
  750. mova m2, [filter_h2_shuf]
  751. mova m3, [bilinear_filter_vb+r5-16]
  752. .nextrow
  753. movu m0, [r2+r3*0]
  754. movu m1, [r2+r3*1]
  755. pshufb m0, m2
  756. pshufb m1, m2
  757. pmaddubsw m0, m3
  758. pmaddubsw m1, m3
  759. psraw m0, 2
  760. psraw m1, 2
  761. pavgw m0, m4
  762. pavgw m1, m4
  763. %if mmsize==8
  764. packuswb m0, m0
  765. packuswb m1, m1
  766. movh [r0+r1*0], m0
  767. movh [r0+r1*1], m1
  768. %else
  769. packuswb m0, m1
  770. movh [r0+r1*0], m0
  771. movhps [r0+r1*1], m0
  772. %endif
  773. lea r0, [r0+r1*2]
  774. lea r2, [r2+r3*2]
  775. sub r4, 2
  776. jg .nextrow
  777. REP_RET
  778. %endmacro
  779. INIT_MMX
  780. FILTER_BILINEAR_SSSE3 4
  781. INIT_XMM
  782. FILTER_BILINEAR_SSSE3 8
  783. cglobal put_vp8_pixels8_mmx, 5,5
  784. .nextrow:
  785. movq mm0, [r2+r3*0]
  786. movq mm1, [r2+r3*1]
  787. lea r2, [r2+r3*2]
  788. movq [r0+r1*0], mm0
  789. movq [r0+r1*1], mm1
  790. lea r0, [r0+r1*2]
  791. sub r4d, 2
  792. jg .nextrow
  793. REP_RET
  794. cglobal put_vp8_pixels16_mmx, 5,5
  795. .nextrow:
  796. movq mm0, [r2+r3*0+0]
  797. movq mm1, [r2+r3*0+8]
  798. movq mm2, [r2+r3*1+0]
  799. movq mm3, [r2+r3*1+8]
  800. lea r2, [r2+r3*2]
  801. movq [r0+r1*0+0], mm0
  802. movq [r0+r1*0+8], mm1
  803. movq [r0+r1*1+0], mm2
  804. movq [r0+r1*1+8], mm3
  805. lea r0, [r0+r1*2]
  806. sub r4d, 2
  807. jg .nextrow
  808. REP_RET
  809. cglobal put_vp8_pixels16_sse, 5,5,2
  810. .nextrow:
  811. movups xmm0, [r2+r3*0]
  812. movups xmm1, [r2+r3*1]
  813. lea r2, [r2+r3*2]
  814. movaps [r0+r1*0], xmm0
  815. movaps [r0+r1*1], xmm1
  816. lea r0, [r0+r1*2]
  817. sub r4d, 2
  818. jg .nextrow
  819. REP_RET
  820. ;-----------------------------------------------------------------------------
  821. ; void vp8_idct_dc_add_<opt>(uint8_t *dst, DCTELEM block[16], int stride);
  822. ;-----------------------------------------------------------------------------
  823. %macro ADD_DC 4
  824. %4 m2, [r0+%3]
  825. %4 m3, [r0+r2+%3]
  826. %4 m4, [r1+%3]
  827. %4 m5, [r1+r2+%3]
  828. paddusb m2, %1
  829. paddusb m3, %1
  830. paddusb m4, %1
  831. paddusb m5, %1
  832. psubusb m2, %2
  833. psubusb m3, %2
  834. psubusb m4, %2
  835. psubusb m5, %2
  836. %4 [r0+%3], m2
  837. %4 [r0+r2+%3], m3
  838. %4 [r1+%3], m4
  839. %4 [r1+r2+%3], m5
  840. %endmacro
  841. INIT_MMX
  842. cglobal vp8_idct_dc_add_mmx, 3, 3
  843. ; load data
  844. movd m0, [r1]
  845. ; calculate DC
  846. paddw m0, [pw_4]
  847. pxor m1, m1
  848. psraw m0, 3
  849. movd [r1], m1
  850. psubw m1, m0
  851. packuswb m0, m0
  852. packuswb m1, m1
  853. punpcklbw m0, m0
  854. punpcklbw m1, m1
  855. punpcklwd m0, m0
  856. punpcklwd m1, m1
  857. ; add DC
  858. lea r1, [r0+r2*2]
  859. ADD_DC m0, m1, 0, movh
  860. RET
  861. INIT_XMM
  862. cglobal vp8_idct_dc_add_sse4, 3, 3, 6
  863. ; load data
  864. movd m0, [r1]
  865. pxor m1, m1
  866. ; calculate DC
  867. paddw m0, [pw_4]
  868. movd [r1], m1
  869. lea r1, [r0+r2*2]
  870. movd m2, [r0]
  871. movd m3, [r0+r2]
  872. movd m4, [r1]
  873. movd m5, [r1+r2]
  874. psraw m0, 3
  875. pshuflw m0, m0, 0
  876. punpcklqdq m0, m0
  877. punpckldq m2, m3
  878. punpckldq m4, m5
  879. punpcklbw m2, m1
  880. punpcklbw m4, m1
  881. paddw m2, m0
  882. paddw m4, m0
  883. packuswb m2, m4
  884. movd [r0], m2
  885. pextrd [r0+r2], m2, 1
  886. pextrd [r1], m2, 2
  887. pextrd [r1+r2], m2, 3
  888. RET
  889. ;-----------------------------------------------------------------------------
  890. ; void vp8_idct_dc_add4y_<opt>(uint8_t *dst, DCTELEM block[4][16], int stride);
  891. ;-----------------------------------------------------------------------------
  892. INIT_MMX
  893. cglobal vp8_idct_dc_add4y_mmx, 3, 3
  894. ; load data
  895. movd m0, [r1+32*0] ; A
  896. movd m1, [r1+32*2] ; C
  897. punpcklwd m0, [r1+32*1] ; A B
  898. punpcklwd m1, [r1+32*3] ; C D
  899. punpckldq m0, m1 ; A B C D
  900. pxor m6, m6
  901. ; calculate DC
  902. paddw m0, [pw_4]
  903. movd [r1+32*0], m6
  904. movd [r1+32*1], m6
  905. movd [r1+32*2], m6
  906. movd [r1+32*3], m6
  907. psraw m0, 3
  908. psubw m6, m0
  909. packuswb m0, m0
  910. packuswb m6, m6
  911. punpcklbw m0, m0 ; AABBCCDD
  912. punpcklbw m6, m6 ; AABBCCDD
  913. movq m1, m0
  914. movq m7, m6
  915. punpcklbw m0, m0 ; AAAABBBB
  916. punpckhbw m1, m1 ; CCCCDDDD
  917. punpcklbw m6, m6 ; AAAABBBB
  918. punpckhbw m7, m7 ; CCCCDDDD
  919. ; add DC
  920. lea r1, [r0+r2*2]
  921. ADD_DC m0, m6, 0, mova
  922. ADD_DC m1, m7, 8, mova
  923. RET
  924. INIT_XMM
  925. cglobal vp8_idct_dc_add4y_sse2, 3, 3, 6
  926. ; load data
  927. movd m0, [r1+32*0] ; A
  928. movd m1, [r1+32*2] ; C
  929. punpcklwd m0, [r1+32*1] ; A B
  930. punpcklwd m1, [r1+32*3] ; C D
  931. punpckldq m0, m1 ; A B C D
  932. pxor m1, m1
  933. ; calculate DC
  934. paddw m0, [pw_4]
  935. movd [r1+32*0], m1
  936. movd [r1+32*1], m1
  937. movd [r1+32*2], m1
  938. movd [r1+32*3], m1
  939. psraw m0, 3
  940. psubw m1, m0
  941. packuswb m0, m0
  942. packuswb m1, m1
  943. punpcklbw m0, m0
  944. punpcklbw m1, m1
  945. punpcklbw m0, m0
  946. punpcklbw m1, m1
  947. ; add DC
  948. lea r1, [r0+r2*2]
  949. ADD_DC m0, m1, 0, mova
  950. RET
  951. ;-----------------------------------------------------------------------------
  952. ; void vp8_idct_dc_add4uv_<opt>(uint8_t *dst, DCTELEM block[4][16], int stride);
  953. ;-----------------------------------------------------------------------------
  954. INIT_MMX
  955. cglobal vp8_idct_dc_add4uv_mmx, 3, 3
  956. ; load data
  957. movd m0, [r1+32*0] ; A
  958. movd m1, [r1+32*2] ; C
  959. punpcklwd m0, [r1+32*1] ; A B
  960. punpcklwd m1, [r1+32*3] ; C D
  961. punpckldq m0, m1 ; A B C D
  962. pxor m6, m6
  963. ; calculate DC
  964. paddw m0, [pw_4]
  965. movd [r1+32*0], m6
  966. movd [r1+32*1], m6
  967. movd [r1+32*2], m6
  968. movd [r1+32*3], m6
  969. psraw m0, 3
  970. psubw m6, m0
  971. packuswb m0, m0
  972. packuswb m6, m6
  973. punpcklbw m0, m0 ; AABBCCDD
  974. punpcklbw m6, m6 ; AABBCCDD
  975. movq m1, m0
  976. movq m7, m6
  977. punpcklbw m0, m0 ; AAAABBBB
  978. punpckhbw m1, m1 ; CCCCDDDD
  979. punpcklbw m6, m6 ; AAAABBBB
  980. punpckhbw m7, m7 ; CCCCDDDD
  981. ; add DC
  982. lea r1, [r0+r2*2]
  983. ADD_DC m0, m6, 0, mova
  984. lea r0, [r0+r2*4]
  985. lea r1, [r1+r2*4]
  986. ADD_DC m1, m7, 0, mova
  987. RET
  988. ;-----------------------------------------------------------------------------
  989. ; void vp8_idct_add_<opt>(uint8_t *dst, DCTELEM block[16], int stride);
  990. ;-----------------------------------------------------------------------------
  991. ; calculate %1=mul_35468(%1)-mul_20091(%2); %2=mul_20091(%1)+mul_35468(%2)
  992. ; this macro assumes that m6/m7 have words for 20091/17734 loaded
  993. %macro VP8_MULTIPLY_SUMSUB 4
  994. mova %3, %1
  995. mova %4, %2
  996. pmulhw %3, m6 ;20091(1)
  997. pmulhw %4, m6 ;20091(2)
  998. paddw %3, %1
  999. paddw %4, %2
  1000. paddw %1, %1
  1001. paddw %2, %2
  1002. pmulhw %1, m7 ;35468(1)
  1003. pmulhw %2, m7 ;35468(2)
  1004. psubw %1, %4
  1005. paddw %2, %3
  1006. %endmacro
  1007. ; calculate x0=%1+%3; x1=%1-%3
  1008. ; x2=mul_35468(%2)-mul_20091(%4); x3=mul_20091(%2)+mul_35468(%4)
  1009. ; %1=x0+x3 (tmp0); %2=x1+x2 (tmp1); %3=x1-x2 (tmp2); %4=x0-x3 (tmp3)
  1010. ; %5/%6 are temporary registers
  1011. ; we assume m6/m7 have constant words 20091/17734 loaded in them
  1012. %macro VP8_IDCT_TRANSFORM4x4_1D 6
  1013. SUMSUB_BA m%3, m%1, m%5 ;t0, t1
  1014. VP8_MULTIPLY_SUMSUB m%2, m%4, m%5,m%6 ;t2, t3
  1015. SUMSUB_BA m%4, m%3, m%5 ;tmp0, tmp3
  1016. SUMSUB_BA m%2, m%1, m%5 ;tmp1, tmp2
  1017. SWAP %4, %1
  1018. SWAP %4, %3
  1019. %endmacro
  1020. INIT_MMX
  1021. %macro VP8_IDCT_ADD 1
  1022. cglobal vp8_idct_add_%1, 3, 3
  1023. ; load block data
  1024. movq m0, [r1+ 0]
  1025. movq m1, [r1+ 8]
  1026. movq m2, [r1+16]
  1027. movq m3, [r1+24]
  1028. movq m6, [pw_20091]
  1029. movq m7, [pw_17734]
  1030. %ifidn %1, sse
  1031. xorps xmm0, xmm0
  1032. movaps [r1+ 0], xmm0
  1033. movaps [r1+16], xmm0
  1034. %else
  1035. pxor m4, m4
  1036. movq [r1+ 0], m4
  1037. movq [r1+ 8], m4
  1038. movq [r1+16], m4
  1039. movq [r1+24], m4
  1040. %endif
  1041. ; actual IDCT
  1042. VP8_IDCT_TRANSFORM4x4_1D 0, 1, 2, 3, 4, 5
  1043. TRANSPOSE4x4W 0, 1, 2, 3, 4
  1044. paddw m0, [pw_4]
  1045. VP8_IDCT_TRANSFORM4x4_1D 0, 1, 2, 3, 4, 5
  1046. TRANSPOSE4x4W 0, 1, 2, 3, 4
  1047. ; store
  1048. pxor m4, m4
  1049. lea r1, [r0+2*r2]
  1050. STORE_DIFFx2 m0, m1, m6, m7, m4, 3, r0, r2
  1051. STORE_DIFFx2 m2, m3, m6, m7, m4, 3, r1, r2
  1052. RET
  1053. %endmacro
  1054. VP8_IDCT_ADD mmx
  1055. VP8_IDCT_ADD sse
  1056. ;-----------------------------------------------------------------------------
  1057. ; void vp8_luma_dc_wht_mmxext(DCTELEM block[4][4][16], DCTELEM dc[16])
  1058. ;-----------------------------------------------------------------------------
  1059. %macro SCATTER_WHT 3
  1060. movd r1d, m%1
  1061. movd r2d, m%2
  1062. mov [r0+2*16*(0+%3)], r1w
  1063. mov [r0+2*16*(1+%3)], r2w
  1064. shr r1d, 16
  1065. shr r2d, 16
  1066. psrlq m%1, 32
  1067. psrlq m%2, 32
  1068. mov [r0+2*16*(4+%3)], r1w
  1069. mov [r0+2*16*(5+%3)], r2w
  1070. movd r1d, m%1
  1071. movd r2d, m%2
  1072. mov [r0+2*16*(8+%3)], r1w
  1073. mov [r0+2*16*(9+%3)], r2w
  1074. shr r1d, 16
  1075. shr r2d, 16
  1076. mov [r0+2*16*(12+%3)], r1w
  1077. mov [r0+2*16*(13+%3)], r2w
  1078. %endmacro
  1079. %macro HADAMARD4_1D 4
  1080. SUMSUB_BADC m%2, m%1, m%4, m%3
  1081. SUMSUB_BADC m%4, m%2, m%3, m%1
  1082. SWAP %1, %4, %3
  1083. %endmacro
  1084. INIT_MMX
  1085. cglobal vp8_luma_dc_wht_mmx, 2,3
  1086. movq m0, [r1]
  1087. movq m1, [r1+8]
  1088. movq m2, [r1+16]
  1089. movq m3, [r1+24]
  1090. HADAMARD4_1D 0, 1, 2, 3
  1091. TRANSPOSE4x4W 0, 1, 2, 3, 4
  1092. paddw m0, [pw_3]
  1093. HADAMARD4_1D 0, 1, 2, 3
  1094. psraw m0, 3
  1095. psraw m1, 3
  1096. psraw m2, 3
  1097. psraw m3, 3
  1098. SCATTER_WHT 0, 1, 0
  1099. SCATTER_WHT 2, 3, 2
  1100. RET
  1101. ;-----------------------------------------------------------------------------
  1102. ; void vp8_h/v_loop_filter_simple_<opt>(uint8_t *dst, int stride, int flim);
  1103. ;-----------------------------------------------------------------------------
  1104. ; macro called with 7 mm register indexes as argument, and 4 regular registers
  1105. ;
  1106. ; first 4 mm registers will carry the transposed pixel data
  1107. ; the other three are scratchspace (one would be sufficient, but this allows
  1108. ; for more spreading/pipelining and thus faster execution on OOE CPUs)
  1109. ;
  1110. ; first two regular registers are buf+4*stride and buf+5*stride
  1111. ; third is -stride, fourth is +stride
  1112. %macro READ_8x4_INTERLEAVED 11
  1113. ; interleave 8 (A-H) rows of 4 pixels each
  1114. movd m%1, [%8+%10*4] ; A0-3
  1115. movd m%5, [%9+%10*4] ; B0-3
  1116. movd m%2, [%8+%10*2] ; C0-3
  1117. movd m%6, [%8+%10] ; D0-3
  1118. movd m%3, [%8] ; E0-3
  1119. movd m%7, [%9] ; F0-3
  1120. movd m%4, [%9+%11] ; G0-3
  1121. punpcklbw m%1, m%5 ; A/B interleaved
  1122. movd m%5, [%9+%11*2] ; H0-3
  1123. punpcklbw m%2, m%6 ; C/D interleaved
  1124. punpcklbw m%3, m%7 ; E/F interleaved
  1125. punpcklbw m%4, m%5 ; G/H interleaved
  1126. %endmacro
  1127. ; macro called with 7 mm register indexes as argument, and 5 regular registers
  1128. ; first 11 mean the same as READ_8x4_TRANSPOSED above
  1129. ; fifth regular register is scratchspace to reach the bottom 8 rows, it
  1130. ; will be set to second regular register + 8*stride at the end
  1131. %macro READ_16x4_INTERLEAVED 12
  1132. ; transpose 16 (A-P) rows of 4 pixels each
  1133. lea %12, [r0+8*r2]
  1134. ; read (and interleave) those addressable by %8 (=r0), A/C/D/E/I/K/L/M
  1135. movd m%1, [%8+%10*4] ; A0-3
  1136. movd m%3, [%12+%10*4] ; I0-3
  1137. movd m%2, [%8+%10*2] ; C0-3
  1138. movd m%4, [%12+%10*2] ; K0-3
  1139. movd m%6, [%8+%10] ; D0-3
  1140. movd m%5, [%12+%10] ; L0-3
  1141. movd m%7, [%12] ; M0-3
  1142. add %12, %11
  1143. punpcklbw m%1, m%3 ; A/I
  1144. movd m%3, [%8] ; E0-3
  1145. punpcklbw m%2, m%4 ; C/K
  1146. punpcklbw m%6, m%5 ; D/L
  1147. punpcklbw m%3, m%7 ; E/M
  1148. punpcklbw m%2, m%6 ; C/D/K/L interleaved
  1149. ; read (and interleave) those addressable by %9 (=r4), B/F/G/H/J/N/O/P
  1150. movd m%5, [%9+%10*4] ; B0-3
  1151. movd m%4, [%12+%10*4] ; J0-3
  1152. movd m%7, [%9] ; F0-3
  1153. movd m%6, [%12] ; N0-3
  1154. punpcklbw m%5, m%4 ; B/J
  1155. punpcklbw m%7, m%6 ; F/N
  1156. punpcklbw m%1, m%5 ; A/B/I/J interleaved
  1157. punpcklbw m%3, m%7 ; E/F/M/N interleaved
  1158. movd m%4, [%9+%11] ; G0-3
  1159. movd m%6, [%12+%11] ; O0-3
  1160. movd m%5, [%9+%11*2] ; H0-3
  1161. movd m%7, [%12+%11*2] ; P0-3
  1162. punpcklbw m%4, m%6 ; G/O
  1163. punpcklbw m%5, m%7 ; H/P
  1164. punpcklbw m%4, m%5 ; G/H/O/P interleaved
  1165. %endmacro
  1166. ; write 4 mm registers of 2 dwords each
  1167. ; first four arguments are mm register indexes containing source data
  1168. ; last four are registers containing buf+4*stride, buf+5*stride,
  1169. ; -stride and +stride
  1170. %macro WRITE_4x2D 8
  1171. ; write out (2 dwords per register)
  1172. movd [%5+%7*4], m%1
  1173. movd [%5+%7*2], m%2
  1174. movd [%5], m%3
  1175. movd [%6+%8], m%4
  1176. punpckhdq m%1, m%1
  1177. punpckhdq m%2, m%2
  1178. punpckhdq m%3, m%3
  1179. punpckhdq m%4, m%4
  1180. movd [%6+%7*4], m%1
  1181. movd [%5+%7], m%2
  1182. movd [%6], m%3
  1183. movd [%6+%8*2], m%4
  1184. %endmacro
  1185. ; write 4 xmm registers of 4 dwords each
  1186. ; arguments same as WRITE_2x4D, but with an extra register, so that the 5 regular
  1187. ; registers contain buf+4*stride, buf+5*stride, buf+12*stride, -stride and +stride
  1188. ; we add 1*stride to the third regular registry in the process
  1189. ; the 10th argument is 16 if it's a Y filter (i.e. all regular registers cover the
  1190. ; same memory region), or 8 if they cover two separate buffers (third one points to
  1191. ; a different memory region than the first two), allowing for more optimal code for
  1192. ; the 16-width case
  1193. %macro WRITE_4x4D 10
  1194. ; write out (4 dwords per register), start with dwords zero
  1195. movd [%5+%8*4], m%1
  1196. movd [%5], m%2
  1197. movd [%7+%8*4], m%3
  1198. movd [%7], m%4
  1199. ; store dwords 1
  1200. psrldq m%1, 4
  1201. psrldq m%2, 4
  1202. psrldq m%3, 4
  1203. psrldq m%4, 4
  1204. movd [%6+%8*4], m%1
  1205. movd [%6], m%2
  1206. %if %10 == 16
  1207. movd [%6+%9*4], m%3
  1208. %endif
  1209. movd [%7+%9], m%4
  1210. ; write dwords 2
  1211. psrldq m%1, 4
  1212. psrldq m%2, 4
  1213. %if %10 == 8
  1214. movd [%5+%8*2], m%1
  1215. movd %5, m%3
  1216. %endif
  1217. psrldq m%3, 4
  1218. psrldq m%4, 4
  1219. %if %10 == 16
  1220. movd [%5+%8*2], m%1
  1221. %endif
  1222. movd [%6+%9], m%2
  1223. movd [%7+%8*2], m%3
  1224. movd [%7+%9*2], m%4
  1225. add %7, %9
  1226. ; store dwords 3
  1227. psrldq m%1, 4
  1228. psrldq m%2, 4
  1229. psrldq m%3, 4
  1230. psrldq m%4, 4
  1231. %if %10 == 8
  1232. mov [%7+%8*4], %5d
  1233. movd [%6+%8*2], m%1
  1234. %else
  1235. movd [%5+%8], m%1
  1236. %endif
  1237. movd [%6+%9*2], m%2
  1238. movd [%7+%8*2], m%3
  1239. movd [%7+%9*2], m%4
  1240. %endmacro
  1241. %macro SPLATB_REG_MMX 2-3
  1242. movd %1, %2
  1243. punpcklbw %1, %1
  1244. punpcklwd %1, %1
  1245. punpckldq %1, %1
  1246. %endmacro
  1247. %macro SPLATB_REG_MMXEXT 2-3
  1248. movd %1, %2
  1249. punpcklbw %1, %1
  1250. pshufw %1, %1, 0x0
  1251. %endmacro
  1252. %macro SPLATB_REG_SSE2 2-3
  1253. movd %1, %2
  1254. punpcklbw %1, %1
  1255. pshuflw %1, %1, 0x0
  1256. punpcklqdq %1, %1
  1257. %endmacro
  1258. %macro SPLATB_REG_SSSE3 3
  1259. movd %1, %2
  1260. pshufb %1, %3
  1261. %endmacro
  1262. %macro SIMPLE_LOOPFILTER 3
  1263. cglobal vp8_%2_loop_filter_simple_%1, 3, %3
  1264. %ifidn %2, h
  1265. mov r5, rsp ; backup stack pointer
  1266. and rsp, ~(mmsize-1) ; align stack
  1267. %endif
  1268. %if mmsize == 8 ; mmx/mmxext
  1269. mov r3, 2
  1270. %endif
  1271. %ifnidn %1, sse2 && mmsize == 16
  1272. pxor m0, m0
  1273. %endif
  1274. SPLATB_REG m7, r2, m0 ; splat "flim" into register
  1275. ; set up indexes to address 4 rows
  1276. mov r2, r1
  1277. neg r1
  1278. %ifidn %2, h
  1279. lea r0, [r0+4*r2-2]
  1280. sub rsp, mmsize*2 ; (aligned) storage space for saving p1/q1
  1281. %endif
  1282. %if mmsize == 8 ; mmx / mmxext
  1283. .next8px
  1284. %endif
  1285. %ifidn %2, v
  1286. ; read 4 half/full rows of pixels
  1287. mova m0, [r0+r1*2] ; p1
  1288. mova m1, [r0+r1] ; p0
  1289. mova m2, [r0] ; q0
  1290. mova m3, [r0+r2] ; q1
  1291. %else ; h
  1292. lea r4, [r0+r2]
  1293. %if mmsize == 8 ; mmx/mmxext
  1294. READ_8x4_INTERLEAVED 0, 1, 2, 3, 4, 5, 6, r0, r4, r1, r2
  1295. %else ; sse2
  1296. READ_16x4_INTERLEAVED 0, 1, 2, 3, 4, 5, 6, r0, r4, r1, r2, r3
  1297. %endif
  1298. TRANSPOSE4x4W 0, 1, 2, 3, 4
  1299. mova [rsp], m0 ; store p1
  1300. mova [rsp+mmsize], m3 ; store q1
  1301. %endif
  1302. ; simple_limit
  1303. mova m5, m2 ; m5=backup of q0
  1304. mova m6, m1 ; m6=backup of p0
  1305. psubusb m1, m2 ; p0-q0
  1306. psubusb m2, m6 ; q0-p0
  1307. por m1, m2 ; FFABS(p0-q0)
  1308. paddusb m1, m1 ; m1=FFABS(p0-q0)*2
  1309. mova m4, m3
  1310. mova m2, m0
  1311. psubusb m3, m0 ; q1-p1
  1312. psubusb m0, m4 ; p1-q1
  1313. por m3, m0 ; FFABS(p1-q1)
  1314. mova m0, [pb_80]
  1315. pxor m2, m0
  1316. pxor m4, m0
  1317. psubsb m2, m4 ; m2=p1-q1 (signed) backup for below
  1318. pand m3, [pb_FE]
  1319. psrlq m3, 1 ; m3=FFABS(p1-q1)/2, this can be used signed
  1320. paddusb m3, m1
  1321. psubusb m3, m7
  1322. pxor m1, m1
  1323. pcmpeqb m3, m1 ; abs(p0-q0)*2+abs(p1-q1)/2<=flim mask(0xff/0x0)
  1324. ; filter_common (use m2/p1-q1, m4=q0, m6=p0, m5/q0-p0 and m3/mask)
  1325. mova m4, m5
  1326. pxor m5, m0
  1327. pxor m0, m6
  1328. psubsb m5, m0 ; q0-p0 (signed)
  1329. paddsb m2, m5
  1330. paddsb m2, m5
  1331. paddsb m2, m5 ; a=(p1-q1) + 3*(q0-p0)
  1332. pand m2, m3 ; apply filter mask (m3)
  1333. mova m3, [pb_F8]
  1334. mova m1, m2
  1335. paddsb m2, [pb_4] ; f1<<3=a+4
  1336. paddsb m1, [pb_3] ; f2<<3=a+3
  1337. pand m2, m3
  1338. pand m1, m3 ; cache f2<<3
  1339. pxor m0, m0
  1340. pxor m3, m3
  1341. pcmpgtb m0, m2 ; which values are <0?
  1342. psubb m3, m2 ; -f1<<3
  1343. psrlq m2, 3 ; +f1
  1344. psrlq m3, 3 ; -f1
  1345. pand m3, m0
  1346. pandn m0, m2
  1347. psubusb m4, m0
  1348. paddusb m4, m3 ; q0-f1
  1349. pxor m0, m0
  1350. pxor m3, m3
  1351. pcmpgtb m0, m1 ; which values are <0?
  1352. psubb m3, m1 ; -f2<<3
  1353. psrlq m1, 3 ; +f2
  1354. psrlq m3, 3 ; -f2
  1355. pand m3, m0
  1356. pandn m0, m1
  1357. paddusb m6, m0
  1358. psubusb m6, m3 ; p0+f2
  1359. ; store
  1360. %ifidn %2, v
  1361. mova [r0], m4
  1362. mova [r0+r1], m6
  1363. %else ; h
  1364. mova m0, [rsp] ; p1
  1365. SWAP 2, 4 ; p0
  1366. SWAP 1, 6 ; q0
  1367. mova m3, [rsp+mmsize] ; q1
  1368. TRANSPOSE4x4B 0, 1, 2, 3, 4
  1369. %if mmsize == 16 ; sse2
  1370. add r3, r1 ; change from r4*8*stride to r0+8*stride
  1371. WRITE_4x4D 0, 1, 2, 3, r0, r4, r3, r1, r2, 16
  1372. %else ; mmx/mmxext
  1373. WRITE_4x2D 0, 1, 2, 3, r0, r4, r1, r2
  1374. %endif
  1375. %endif
  1376. %if mmsize == 8 ; mmx/mmxext
  1377. ; next 8 pixels
  1378. %ifidn %2, v
  1379. add r0, 8 ; advance 8 cols = pixels
  1380. %else ; h
  1381. lea r0, [r0+r2*8] ; advance 8 rows = lines
  1382. %endif
  1383. dec r3
  1384. jg .next8px
  1385. %ifidn %2, v
  1386. REP_RET
  1387. %else ; h
  1388. mov rsp, r5 ; restore stack pointer
  1389. RET
  1390. %endif
  1391. %else ; sse2
  1392. %ifidn %2, h
  1393. mov rsp, r5 ; restore stack pointer
  1394. %endif
  1395. RET
  1396. %endif
  1397. %endmacro
  1398. INIT_MMX
  1399. %define SPLATB_REG SPLATB_REG_MMX
  1400. SIMPLE_LOOPFILTER mmx, v, 4
  1401. SIMPLE_LOOPFILTER mmx, h, 6
  1402. %define SPLATB_REG SPLATB_REG_MMXEXT
  1403. SIMPLE_LOOPFILTER mmxext, v, 4
  1404. SIMPLE_LOOPFILTER mmxext, h, 6
  1405. INIT_XMM
  1406. %define SPLATB_REG SPLATB_REG_SSE2
  1407. SIMPLE_LOOPFILTER sse2, v, 3
  1408. SIMPLE_LOOPFILTER sse2, h, 6
  1409. %define SPLATB_REG SPLATB_REG_SSSE3
  1410. SIMPLE_LOOPFILTER ssse3, v, 3
  1411. SIMPLE_LOOPFILTER ssse3, h, 6
  1412. ;-----------------------------------------------------------------------------
  1413. ; void vp8_h/v_loop_filter<size>_inner_<opt>(uint8_t *dst, [uint8_t *v,] int stride,
  1414. ; int flimE, int flimI, int hev_thr);
  1415. ;-----------------------------------------------------------------------------
  1416. %macro INNER_LOOPFILTER 5
  1417. %if %4 == 8 ; chroma
  1418. cglobal vp8_%2_loop_filter8uv_inner_%1, 6, %3, %5
  1419. %define dst8_reg r1
  1420. %define mstride_reg r2
  1421. %define E_reg r3
  1422. %define I_reg r4
  1423. %define hev_thr_reg r5
  1424. %else ; luma
  1425. cglobal vp8_%2_loop_filter16y_inner_%1, 5, %3, %5
  1426. %define mstride_reg r1
  1427. %define E_reg r2
  1428. %define I_reg r3
  1429. %define hev_thr_reg r4
  1430. %ifdef m8 ; x86-64, sse2
  1431. %define dst8_reg r4
  1432. %elif mmsize == 16 ; x86-32, sse2
  1433. %define dst8_reg r5
  1434. %else ; x86-32, mmx/mmxext
  1435. %define cnt_reg r5
  1436. %endif
  1437. %endif
  1438. %define dst_reg r0
  1439. %define stride_reg E_reg
  1440. %define dst2_reg I_reg
  1441. %ifndef m8
  1442. %define stack_reg hev_thr_reg
  1443. %endif
  1444. %ifnidn %1, sse2 && mmsize == 16
  1445. pxor m7, m7
  1446. %endif
  1447. %ifndef m8 ; mmx/mmxext or sse2 on x86-32
  1448. ; splat function arguments
  1449. SPLATB_REG m0, E_reg, m7 ; E
  1450. SPLATB_REG m1, I_reg, m7 ; I
  1451. SPLATB_REG m2, hev_thr_reg, m7 ; hev_thresh
  1452. ; align stack
  1453. mov stack_reg, rsp ; backup stack pointer
  1454. and rsp, ~(mmsize-1) ; align stack
  1455. %ifidn %2, v
  1456. sub rsp, mmsize * 4 ; stack layout: [0]=E, [1]=I, [2]=hev_thr
  1457. ; [3]=hev() result
  1458. %else ; h
  1459. sub rsp, mmsize * 5 ; extra storage space for transposes
  1460. %endif
  1461. %define flim_E [rsp]
  1462. %define flim_I [rsp+mmsize]
  1463. %define hev_thr [rsp+mmsize*2]
  1464. %define mask_res [rsp+mmsize*3]
  1465. %define p0backup [rsp+mmsize*3]
  1466. %define q0backup [rsp+mmsize*4]
  1467. mova flim_E, m0
  1468. mova flim_I, m1
  1469. mova hev_thr, m2
  1470. %else ; sse2 on x86-64
  1471. %define flim_E m9
  1472. %define flim_I m10
  1473. %define hev_thr m11
  1474. %define mask_res m12
  1475. %define p0backup m12
  1476. %define q0backup m8
  1477. ; splat function arguments
  1478. SPLATB_REG flim_E, E_reg, m7 ; E
  1479. SPLATB_REG flim_I, I_reg, m7 ; I
  1480. SPLATB_REG hev_thr, hev_thr_reg, m7 ; hev_thresh
  1481. %endif
  1482. %if mmsize == 8 && %4 == 16 ; mmx/mmxext
  1483. mov cnt_reg, 2
  1484. %endif
  1485. mov stride_reg, mstride_reg
  1486. neg mstride_reg
  1487. %ifidn %2, h
  1488. lea dst_reg, [dst_reg + stride_reg*4-4]
  1489. %if %4 == 8
  1490. lea dst8_reg, [dst8_reg+ stride_reg*4-4]
  1491. %endif
  1492. %endif
  1493. %if mmsize == 8
  1494. .next8px
  1495. %endif
  1496. ; read
  1497. lea dst2_reg, [dst_reg + stride_reg]
  1498. %ifidn %2, v
  1499. %if %4 == 8 && mmsize == 16
  1500. %define movrow movh
  1501. %else
  1502. %define movrow mova
  1503. %endif
  1504. movrow m0, [dst_reg +mstride_reg*4] ; p3
  1505. movrow m1, [dst2_reg+mstride_reg*4] ; p2
  1506. movrow m2, [dst_reg +mstride_reg*2] ; p1
  1507. movrow m5, [dst2_reg] ; q1
  1508. movrow m6, [dst2_reg+ stride_reg] ; q2
  1509. movrow m7, [dst2_reg+ stride_reg*2] ; q3
  1510. %if mmsize == 16 && %4 == 8
  1511. movhps m0, [dst8_reg+mstride_reg*4]
  1512. movhps m2, [dst8_reg+mstride_reg*2]
  1513. add dst8_reg, stride_reg
  1514. movhps m1, [dst8_reg+mstride_reg*4]
  1515. movhps m5, [dst8_reg]
  1516. movhps m6, [dst8_reg+ stride_reg]
  1517. movhps m7, [dst8_reg+ stride_reg*2]
  1518. add dst8_reg, mstride_reg
  1519. %endif
  1520. %elif mmsize == 8 ; mmx/mmxext (h)
  1521. ; read 8 rows of 8px each
  1522. movu m0, [dst_reg +mstride_reg*4]
  1523. movu m1, [dst2_reg+mstride_reg*4]
  1524. movu m2, [dst_reg +mstride_reg*2]
  1525. movu m3, [dst_reg +mstride_reg]
  1526. movu m4, [dst_reg]
  1527. movu m5, [dst2_reg]
  1528. movu m6, [dst2_reg+ stride_reg]
  1529. ; 8x8 transpose
  1530. TRANSPOSE4x4B 0, 1, 2, 3, 7
  1531. mova q0backup, m1
  1532. movu m7, [dst2_reg+ stride_reg*2]
  1533. TRANSPOSE4x4B 4, 5, 6, 7, 1
  1534. SBUTTERFLY dq, 0, 4, 1 ; p3/p2
  1535. SBUTTERFLY dq, 2, 6, 1 ; q0/q1
  1536. SBUTTERFLY dq, 3, 7, 1 ; q2/q3
  1537. mova m1, q0backup
  1538. mova q0backup, m2 ; store q0
  1539. SBUTTERFLY dq, 1, 5, 2 ; p1/p0
  1540. mova p0backup, m5 ; store p0
  1541. SWAP 1, 4
  1542. SWAP 2, 4
  1543. SWAP 6, 3
  1544. SWAP 5, 3
  1545. %else ; sse2 (h)
  1546. %if %4 == 16
  1547. lea dst8_reg, [dst_reg + stride_reg*8]
  1548. %endif
  1549. ; read 16 rows of 8px each, interleave
  1550. movh m0, [dst_reg +mstride_reg*4]
  1551. movh m1, [dst8_reg+mstride_reg*4]
  1552. movh m2, [dst_reg +mstride_reg*2]
  1553. movh m5, [dst8_reg+mstride_reg*2]
  1554. movh m3, [dst_reg +mstride_reg]
  1555. movh m6, [dst8_reg+mstride_reg]
  1556. movh m4, [dst_reg]
  1557. movh m7, [dst8_reg]
  1558. punpcklbw m0, m1 ; A/I
  1559. punpcklbw m2, m5 ; C/K
  1560. punpcklbw m3, m6 ; D/L
  1561. punpcklbw m4, m7 ; E/M
  1562. add dst8_reg, stride_reg
  1563. movh m1, [dst2_reg+mstride_reg*4]
  1564. movh m6, [dst8_reg+mstride_reg*4]
  1565. movh m5, [dst2_reg]
  1566. movh m7, [dst8_reg]
  1567. punpcklbw m1, m6 ; B/J
  1568. punpcklbw m5, m7 ; F/N
  1569. movh m6, [dst2_reg+ stride_reg]
  1570. movh m7, [dst8_reg+ stride_reg]
  1571. punpcklbw m6, m7 ; G/O
  1572. ; 8x16 transpose
  1573. TRANSPOSE4x4B 0, 1, 2, 3, 7
  1574. %ifdef m8
  1575. SWAP 1, 8
  1576. %else
  1577. mova q0backup, m1
  1578. %endif
  1579. movh m7, [dst2_reg+ stride_reg*2]
  1580. movh m1, [dst8_reg+ stride_reg*2]
  1581. punpcklbw m7, m1 ; H/P
  1582. TRANSPOSE4x4B 4, 5, 6, 7, 1
  1583. SBUTTERFLY dq, 0, 4, 1 ; p3/p2
  1584. SBUTTERFLY dq, 2, 6, 1 ; q0/q1
  1585. SBUTTERFLY dq, 3, 7, 1 ; q2/q3
  1586. %ifdef m8
  1587. SWAP 1, 8
  1588. SWAP 2, 8
  1589. %else
  1590. mova m1, q0backup
  1591. mova q0backup, m2 ; store q0
  1592. %endif
  1593. SBUTTERFLY dq, 1, 5, 2 ; p1/p0
  1594. %ifdef m12
  1595. SWAP 5, 12
  1596. %else
  1597. mova p0backup, m5 ; store p0
  1598. %endif
  1599. SWAP 1, 4
  1600. SWAP 2, 4
  1601. SWAP 6, 3
  1602. SWAP 5, 3
  1603. %endif
  1604. ; normal_limit for p3-p2, p2-p1, q3-q2 and q2-q1
  1605. mova m4, m1
  1606. SWAP 4, 1
  1607. psubusb m4, m0 ; p2-p3
  1608. psubusb m0, m1 ; p3-p2
  1609. por m0, m4 ; abs(p3-p2)
  1610. mova m4, m2
  1611. SWAP 4, 2
  1612. psubusb m4, m1 ; p1-p2
  1613. psubusb m1, m2 ; p2-p1
  1614. por m1, m4 ; abs(p2-p1)
  1615. mova m4, m6
  1616. SWAP 4, 6
  1617. psubusb m4, m7 ; q2-q3
  1618. psubusb m7, m6 ; q3-q2
  1619. por m7, m4 ; abs(q3-q2)
  1620. mova m4, m5
  1621. SWAP 4, 5
  1622. psubusb m4, m6 ; q1-q2
  1623. psubusb m6, m5 ; q2-q1
  1624. por m6, m4 ; abs(q2-q1)
  1625. %ifidn %1, mmx
  1626. mova m4, flim_I
  1627. pxor m3, m3
  1628. psubusb m0, m4
  1629. psubusb m1, m4
  1630. psubusb m7, m4
  1631. psubusb m6, m4
  1632. pcmpeqb m0, m3 ; abs(p3-p2) <= I
  1633. pcmpeqb m1, m3 ; abs(p2-p1) <= I
  1634. pcmpeqb m7, m3 ; abs(q3-q2) <= I
  1635. pcmpeqb m6, m3 ; abs(q2-q1) <= I
  1636. pand m0, m1
  1637. pand m7, m6
  1638. pand m0, m7
  1639. %else ; mmxext/sse2
  1640. pmaxub m0, m1
  1641. pmaxub m6, m7
  1642. pmaxub m0, m6
  1643. %endif
  1644. ; normal_limit and high_edge_variance for p1-p0, q1-q0
  1645. SWAP 7, 3 ; now m7 is zero
  1646. %ifidn %2, v
  1647. movrow m3, [dst_reg +mstride_reg] ; p0
  1648. %if mmsize == 16 && %4 == 8
  1649. movhps m3, [dst8_reg+mstride_reg]
  1650. %endif
  1651. %elifdef m12
  1652. SWAP 3, 12
  1653. %else
  1654. mova m3, p0backup
  1655. %endif
  1656. mova m1, m2
  1657. SWAP 1, 2
  1658. mova m6, m3
  1659. SWAP 3, 6
  1660. psubusb m1, m3 ; p1-p0
  1661. psubusb m6, m2 ; p0-p1
  1662. por m1, m6 ; abs(p1-p0)
  1663. %ifidn %1, mmx
  1664. mova m6, m1
  1665. psubusb m1, m4
  1666. psubusb m6, hev_thr
  1667. pcmpeqb m1, m7 ; abs(p1-p0) <= I
  1668. pcmpeqb m6, m7 ; abs(p1-p0) <= hev_thresh
  1669. pand m0, m1
  1670. mova mask_res, m6
  1671. %else ; mmxext/sse2
  1672. pmaxub m0, m1 ; max_I
  1673. SWAP 1, 4 ; max_hev_thresh
  1674. %endif
  1675. SWAP 6, 4 ; now m6 is I
  1676. %ifidn %2, v
  1677. movrow m4, [dst_reg] ; q0
  1678. %if mmsize == 16 && %4 == 8
  1679. movhps m4, [dst8_reg]
  1680. %endif
  1681. %elifdef m8
  1682. SWAP 4, 8
  1683. %else
  1684. mova m4, q0backup
  1685. %endif
  1686. mova m1, m4
  1687. SWAP 1, 4
  1688. mova m7, m5
  1689. SWAP 7, 5
  1690. psubusb m1, m5 ; q0-q1
  1691. psubusb m7, m4 ; q1-q0
  1692. por m1, m7 ; abs(q1-q0)
  1693. %ifidn %1, mmx
  1694. mova m7, m1
  1695. psubusb m1, m6
  1696. psubusb m7, hev_thr
  1697. pxor m6, m6
  1698. pcmpeqb m1, m6 ; abs(q1-q0) <= I
  1699. pcmpeqb m7, m6 ; abs(q1-q0) <= hev_thresh
  1700. mova m6, mask_res
  1701. pand m0, m1 ; abs([pq][321]-[pq][210]) <= I
  1702. pand m6, m7
  1703. %else ; mmxext/sse2
  1704. pxor m7, m7
  1705. pmaxub m0, m1
  1706. pmaxub m6, m1
  1707. psubusb m0, flim_I
  1708. psubusb m6, hev_thr
  1709. pcmpeqb m0, m7 ; max(abs(..)) <= I
  1710. pcmpeqb m6, m7 ; !(max(abs..) > thresh)
  1711. %endif
  1712. %ifdef m12
  1713. SWAP 6, 12
  1714. %else
  1715. mova mask_res, m6 ; !(abs(p1-p0) > hev_t || abs(q1-q0) > hev_t)
  1716. %endif
  1717. ; simple_limit
  1718. mova m1, m3
  1719. SWAP 1, 3
  1720. mova m6, m4 ; keep copies of p0/q0 around for later use
  1721. SWAP 6, 4
  1722. psubusb m1, m4 ; p0-q0
  1723. psubusb m6, m3 ; q0-p0
  1724. por m1, m6 ; abs(q0-p0)
  1725. paddusb m1, m1 ; m1=2*abs(q0-p0)
  1726. mova m7, m2
  1727. SWAP 7, 2
  1728. mova m6, m5
  1729. SWAP 6, 5
  1730. psubusb m7, m5 ; p1-q1
  1731. psubusb m6, m2 ; q1-p1
  1732. por m7, m6 ; abs(q1-p1)
  1733. pxor m6, m6
  1734. pand m7, [pb_FE]
  1735. psrlq m7, 1 ; abs(q1-p1)/2
  1736. paddusb m7, m1 ; abs(q0-p0)*2+abs(q1-p1)/2
  1737. psubusb m7, flim_E
  1738. pcmpeqb m7, m6 ; abs(q0-p0)*2+abs(q1-p1)/2 <= E
  1739. pand m0, m7 ; normal_limit result
  1740. ; filter_common; at this point, m2-m5=p1-q1 and m0 is filter_mask
  1741. %ifdef m8 ; x86-64 && sse2
  1742. mova m8, [pb_80]
  1743. %define pb_80_var m8
  1744. %else ; x86-32 or mmx/mmxext
  1745. %define pb_80_var [pb_80]
  1746. %endif
  1747. mova m1, m4
  1748. mova m7, m3
  1749. pxor m1, pb_80_var
  1750. pxor m7, pb_80_var
  1751. psubsb m1, m7 ; (signed) q0-p0
  1752. mova m6, m2
  1753. mova m7, m5
  1754. pxor m6, pb_80_var
  1755. pxor m7, pb_80_var
  1756. psubsb m6, m7 ; (signed) p1-q1
  1757. mova m7, mask_res
  1758. pandn m7, m6
  1759. paddsb m7, m1
  1760. paddsb m7, m1
  1761. paddsb m7, m1 ; 3*(q0-p0)+is4tap?(p1-q1)
  1762. pand m7, m0
  1763. mova m1, [pb_F8]
  1764. mova m6, m7
  1765. paddsb m7, [pb_3]
  1766. paddsb m6, [pb_4]
  1767. pand m7, m1
  1768. pand m6, m1
  1769. pxor m1, m1
  1770. pxor m0, m0
  1771. pcmpgtb m1, m7
  1772. psubb m0, m7
  1773. psrlq m7, 3 ; +f2
  1774. psrlq m0, 3 ; -f2
  1775. pand m0, m1
  1776. pandn m1, m7
  1777. psubusb m3, m0
  1778. paddusb m3, m1 ; p0+f2
  1779. pxor m1, m1
  1780. pxor m0, m0
  1781. pcmpgtb m0, m6
  1782. psubb m1, m6
  1783. psrlq m6, 3 ; +f1
  1784. psrlq m1, 3 ; -f1
  1785. pand m1, m0
  1786. pandn m0, m6
  1787. psubusb m4, m0
  1788. paddusb m4, m1 ; q0-f1
  1789. %ifdef m12
  1790. SWAP 6, 12
  1791. %else
  1792. mova m6, mask_res
  1793. %endif
  1794. %ifidn %1, mmx
  1795. mova m7, [pb_1]
  1796. %else ; mmxext/sse2
  1797. pxor m7, m7
  1798. %endif
  1799. pand m0, m6
  1800. pand m1, m6
  1801. %ifidn %1, mmx
  1802. paddusb m0, m7
  1803. pand m1, [pb_FE]
  1804. pandn m7, m0
  1805. psrlq m1, 1
  1806. psrlq m7, 1
  1807. SWAP 0, 7
  1808. %else ; mmxext/sse2
  1809. psubusb m1, [pb_1]
  1810. pavgb m0, m7 ; a
  1811. pavgb m1, m7 ; -a
  1812. %endif
  1813. psubusb m5, m0
  1814. psubusb m2, m1
  1815. paddusb m5, m1 ; q1-a
  1816. paddusb m2, m0 ; p1+a
  1817. ; store
  1818. %ifidn %2, v
  1819. movrow [dst_reg +mstride_reg*2], m2
  1820. movrow [dst_reg +mstride_reg ], m3
  1821. movrow [dst_reg], m4
  1822. movrow [dst_reg + stride_reg ], m5
  1823. %if mmsize == 16 && %4 == 8
  1824. movhps [dst8_reg+mstride_reg*2], m2
  1825. movhps [dst8_reg+mstride_reg ], m3
  1826. movhps [dst8_reg], m4
  1827. movhps [dst8_reg+ stride_reg ], m5
  1828. %endif
  1829. %else ; h
  1830. add dst_reg, 2
  1831. add dst2_reg, 2
  1832. ; 4x8/16 transpose
  1833. TRANSPOSE4x4B 2, 3, 4, 5, 6
  1834. %if mmsize == 8 ; mmx/mmxext (h)
  1835. WRITE_4x2D 2, 3, 4, 5, dst_reg, dst2_reg, mstride_reg, stride_reg
  1836. %else ; sse2 (h)
  1837. lea dst8_reg, [dst8_reg+mstride_reg+2]
  1838. WRITE_4x4D 2, 3, 4, 5, dst_reg, dst2_reg, dst8_reg, mstride_reg, stride_reg, %4
  1839. %endif
  1840. %endif
  1841. %if mmsize == 8
  1842. %if %4 == 8 ; chroma
  1843. %ifidn %2, h
  1844. sub dst_reg, 2
  1845. %endif
  1846. cmp dst_reg, dst8_reg
  1847. mov dst_reg, dst8_reg
  1848. jnz .next8px
  1849. %else
  1850. %ifidn %2, h
  1851. lea dst_reg, [dst_reg + stride_reg*8-2]
  1852. %else ; v
  1853. add dst_reg, 8
  1854. %endif
  1855. dec cnt_reg
  1856. jg .next8px
  1857. %endif
  1858. %endif
  1859. %ifndef m8 ; sse2 on x86-32 or mmx/mmxext
  1860. mov rsp, stack_reg ; restore stack pointer
  1861. %endif
  1862. RET
  1863. %endmacro
  1864. INIT_MMX
  1865. %define SPLATB_REG SPLATB_REG_MMX
  1866. INNER_LOOPFILTER mmx, v, 6, 16, 0
  1867. INNER_LOOPFILTER mmx, h, 6, 16, 0
  1868. INNER_LOOPFILTER mmx, v, 6, 8, 0
  1869. INNER_LOOPFILTER mmx, h, 6, 8, 0
  1870. %define SPLATB_REG SPLATB_REG_MMXEXT
  1871. INNER_LOOPFILTER mmxext, v, 6, 16, 0
  1872. INNER_LOOPFILTER mmxext, h, 6, 16, 0
  1873. INNER_LOOPFILTER mmxext, v, 6, 8, 0
  1874. INNER_LOOPFILTER mmxext, h, 6, 8, 0
  1875. INIT_XMM
  1876. %define SPLATB_REG SPLATB_REG_SSE2
  1877. INNER_LOOPFILTER sse2, v, 5, 16, 13
  1878. %ifdef m8
  1879. INNER_LOOPFILTER sse2, h, 5, 16, 13
  1880. %else
  1881. INNER_LOOPFILTER sse2, h, 6, 16, 13
  1882. %endif
  1883. INNER_LOOPFILTER sse2, v, 6, 8, 13
  1884. INNER_LOOPFILTER sse2, h, 6, 8, 13
  1885. %define SPLATB_REG SPLATB_REG_SSSE3
  1886. INNER_LOOPFILTER ssse3, v, 5, 16, 13
  1887. %ifdef m8
  1888. INNER_LOOPFILTER ssse3, h, 5, 16, 13
  1889. %else
  1890. INNER_LOOPFILTER ssse3, h, 6, 16, 13
  1891. %endif
  1892. INNER_LOOPFILTER ssse3, v, 6, 8, 13
  1893. INNER_LOOPFILTER ssse3, h, 6, 8, 13
  1894. ;-----------------------------------------------------------------------------
  1895. ; void vp8_h/v_loop_filter<size>_mbedge_<opt>(uint8_t *dst, [uint8_t *v,] int stride,
  1896. ; int flimE, int flimI, int hev_thr);
  1897. ;-----------------------------------------------------------------------------
  1898. ; write 4 or 8 words in the mmx/xmm registers as 8 lines
  1899. ; 1 and 2 are the registers to write, this can be the same (for SSE2)
  1900. ; for pre-SSE4:
  1901. ; 3 is a general-purpose register that we will clobber
  1902. ; for SSE4:
  1903. ; 3 is a pointer to the destination's 5th line
  1904. ; 4 is a pointer to the destination's 4th line
  1905. ; 5/6 is -stride and +stride
  1906. ; 7 is optimization string
  1907. %macro WRITE_8W 7
  1908. %ifidn %7, sse4
  1909. pextrw [%4+%5*4], %1, 0
  1910. pextrw [%3+%5*4], %1, 1
  1911. pextrw [%4+%5*2], %1, 2
  1912. pextrw [%4+%5 ], %1, 3
  1913. pextrw [%4 ], %1, 4
  1914. pextrw [%3 ], %1, 5
  1915. pextrw [%3+%6 ], %1, 6
  1916. pextrw [%3+%6*2], %1, 7
  1917. %else
  1918. movd %3, %1
  1919. %if mmsize == 8
  1920. punpckhdq %1, %1
  1921. %else
  1922. psrldq %1, 4
  1923. %endif
  1924. mov [%4+%5*4], %3w
  1925. shr %3, 16
  1926. add %4, %6
  1927. mov [%4+%5*4], %3w
  1928. movd %3, %1
  1929. %if mmsize == 16
  1930. psrldq %1, 4
  1931. %endif
  1932. add %4, %5
  1933. mov [%4+%5*2], %3w
  1934. shr %3, 16
  1935. mov [%4+%5 ], %3w
  1936. movd %3, %2
  1937. %if mmsize == 8
  1938. punpckhdq %2, %2
  1939. %else
  1940. psrldq %2, 4
  1941. %endif
  1942. mov [%4 ], %3w
  1943. shr %3, 16
  1944. mov [%4+%6 ], %3w
  1945. movd %3, %2
  1946. add %4, %6
  1947. mov [%4+%6 ], %3w
  1948. shr %3, 16
  1949. mov [%4+%6*2], %3w
  1950. %if mmsize == 8
  1951. add %4, %5
  1952. %endif
  1953. %endif
  1954. %endmacro
  1955. %macro MBEDGE_LOOPFILTER 5
  1956. %if %4 == 8 ; chroma
  1957. cglobal vp8_%2_loop_filter8uv_mbedge_%1, 6, %3, %5
  1958. %define dst8_reg r1
  1959. %define mstride_reg r2
  1960. %define E_reg r3
  1961. %define I_reg r4
  1962. %define hev_thr_reg r5
  1963. %else ; luma
  1964. cglobal vp8_%2_loop_filter16y_mbedge_%1, 5, %3, %5
  1965. %define mstride_reg r1
  1966. %define E_reg r2
  1967. %define I_reg r3
  1968. %define hev_thr_reg r4
  1969. %ifdef m8 ; x86-64, sse2
  1970. %define dst8_reg r4
  1971. %elif mmsize == 16 ; x86-32, sse2
  1972. %define dst8_reg r5
  1973. %else ; x86-32, mmx/mmxext
  1974. %define cnt_reg r5
  1975. %endif
  1976. %endif
  1977. %define dst_reg r0
  1978. %define stride_reg E_reg
  1979. %define dst2_reg I_reg
  1980. %ifndef m8
  1981. %define stack_reg hev_thr_reg
  1982. %endif
  1983. %ifnidn %1, sse2 && mmsize == 16
  1984. pxor m7, m7
  1985. %endif
  1986. %ifndef m8 ; mmx/mmxext or sse2 on x86-32
  1987. ; splat function arguments
  1988. SPLATB_REG m0, E_reg, m7 ; E
  1989. SPLATB_REG m1, I_reg, m7 ; I
  1990. SPLATB_REG m2, hev_thr_reg, m7 ; hev_thresh
  1991. ; align stack
  1992. mov stack_reg, rsp ; backup stack pointer
  1993. and rsp, ~(mmsize-1) ; align stack
  1994. sub rsp, mmsize * 8 ; stack layout: [0]=E, [1]=I, [2]=hev_thr
  1995. ; [3]=hev() result
  1996. ; [4]=filter tmp result
  1997. ; [5]/[6] = p2/q2 backup
  1998. ; [7]=lim_res sign result
  1999. %define flim_E [rsp]
  2000. %define flim_I [rsp+mmsize]
  2001. %define hev_thr [rsp+mmsize*2]
  2002. %define mask_res [rsp+mmsize*3]
  2003. %define lim_res [rsp+mmsize*4]
  2004. %define p0backup [rsp+mmsize*3]
  2005. %define q0backup [rsp+mmsize*4]
  2006. %define p2backup [rsp+mmsize*5]
  2007. %define q2backup [rsp+mmsize*6]
  2008. %define lim_sign [rsp+mmsize*7]
  2009. mova flim_E, m0
  2010. mova flim_I, m1
  2011. mova hev_thr, m2
  2012. %else ; sse2 on x86-64
  2013. %define flim_E m9
  2014. %define flim_I m10
  2015. %define hev_thr m11
  2016. %define mask_res m12
  2017. %define lim_res m8
  2018. %define p0backup m12
  2019. %define q0backup m8
  2020. %define p2backup m13
  2021. %define q2backup m14
  2022. %define lim_sign m15
  2023. ; splat function arguments
  2024. SPLATB_REG flim_E, E_reg, m7 ; E
  2025. SPLATB_REG flim_I, I_reg, m7 ; I
  2026. SPLATB_REG hev_thr, hev_thr_reg, m7 ; hev_thresh
  2027. %endif
  2028. %if mmsize == 8 && %4 == 16 ; mmx/mmxext
  2029. mov cnt_reg, 2
  2030. %endif
  2031. mov stride_reg, mstride_reg
  2032. neg mstride_reg
  2033. %ifidn %2, h
  2034. lea dst_reg, [dst_reg + stride_reg*4-4]
  2035. %if %4 == 8
  2036. lea dst8_reg, [dst8_reg+ stride_reg*4-4]
  2037. %endif
  2038. %endif
  2039. %if mmsize == 8
  2040. .next8px
  2041. %endif
  2042. ; read
  2043. lea dst2_reg, [dst_reg + stride_reg]
  2044. %ifidn %2, v
  2045. %if %4 == 8 && mmsize == 16
  2046. %define movrow movh
  2047. %else
  2048. %define movrow mova
  2049. %endif
  2050. movrow m0, [dst_reg +mstride_reg*4] ; p3
  2051. movrow m1, [dst2_reg+mstride_reg*4] ; p2
  2052. movrow m2, [dst_reg +mstride_reg*2] ; p1
  2053. movrow m5, [dst2_reg] ; q1
  2054. movrow m6, [dst2_reg+ stride_reg] ; q2
  2055. movrow m7, [dst2_reg+ stride_reg*2] ; q3
  2056. %if mmsize == 16 && %4 == 8
  2057. movhps m0, [dst8_reg+mstride_reg*4]
  2058. movhps m2, [dst8_reg+mstride_reg*2]
  2059. add dst8_reg, stride_reg
  2060. movhps m1, [dst8_reg+mstride_reg*4]
  2061. movhps m5, [dst8_reg]
  2062. movhps m6, [dst8_reg+ stride_reg]
  2063. movhps m7, [dst8_reg+ stride_reg*2]
  2064. add dst8_reg, mstride_reg
  2065. %endif
  2066. %elif mmsize == 8 ; mmx/mmxext (h)
  2067. ; read 8 rows of 8px each
  2068. movu m0, [dst_reg +mstride_reg*4]
  2069. movu m1, [dst2_reg+mstride_reg*4]
  2070. movu m2, [dst_reg +mstride_reg*2]
  2071. movu m3, [dst_reg +mstride_reg]
  2072. movu m4, [dst_reg]
  2073. movu m5, [dst2_reg]
  2074. movu m6, [dst2_reg+ stride_reg]
  2075. ; 8x8 transpose
  2076. TRANSPOSE4x4B 0, 1, 2, 3, 7
  2077. mova q0backup, m1
  2078. movu m7, [dst2_reg+ stride_reg*2]
  2079. TRANSPOSE4x4B 4, 5, 6, 7, 1
  2080. SBUTTERFLY dq, 0, 4, 1 ; p3/p2
  2081. SBUTTERFLY dq, 2, 6, 1 ; q0/q1
  2082. SBUTTERFLY dq, 3, 7, 1 ; q2/q3
  2083. mova m1, q0backup
  2084. mova q0backup, m2 ; store q0
  2085. SBUTTERFLY dq, 1, 5, 2 ; p1/p0
  2086. mova p0backup, m5 ; store p0
  2087. SWAP 1, 4
  2088. SWAP 2, 4
  2089. SWAP 6, 3
  2090. SWAP 5, 3
  2091. %else ; sse2 (h)
  2092. %if %4 == 16
  2093. lea dst8_reg, [dst_reg + stride_reg*8]
  2094. %endif
  2095. ; read 16 rows of 8px each, interleave
  2096. movh m0, [dst_reg +mstride_reg*4]
  2097. movh m1, [dst8_reg+mstride_reg*4]
  2098. movh m2, [dst_reg +mstride_reg*2]
  2099. movh m5, [dst8_reg+mstride_reg*2]
  2100. movh m3, [dst_reg +mstride_reg]
  2101. movh m6, [dst8_reg+mstride_reg]
  2102. movh m4, [dst_reg]
  2103. movh m7, [dst8_reg]
  2104. punpcklbw m0, m1 ; A/I
  2105. punpcklbw m2, m5 ; C/K
  2106. punpcklbw m3, m6 ; D/L
  2107. punpcklbw m4, m7 ; E/M
  2108. add dst8_reg, stride_reg
  2109. movh m1, [dst2_reg+mstride_reg*4]
  2110. movh m6, [dst8_reg+mstride_reg*4]
  2111. movh m5, [dst2_reg]
  2112. movh m7, [dst8_reg]
  2113. punpcklbw m1, m6 ; B/J
  2114. punpcklbw m5, m7 ; F/N
  2115. movh m6, [dst2_reg+ stride_reg]
  2116. movh m7, [dst8_reg+ stride_reg]
  2117. punpcklbw m6, m7 ; G/O
  2118. ; 8x16 transpose
  2119. TRANSPOSE4x4B 0, 1, 2, 3, 7
  2120. %ifdef m8
  2121. SWAP 1, 8
  2122. %else
  2123. mova q0backup, m1
  2124. %endif
  2125. movh m7, [dst2_reg+ stride_reg*2]
  2126. movh m1, [dst8_reg+ stride_reg*2]
  2127. punpcklbw m7, m1 ; H/P
  2128. TRANSPOSE4x4B 4, 5, 6, 7, 1
  2129. SBUTTERFLY dq, 0, 4, 1 ; p3/p2
  2130. SBUTTERFLY dq, 2, 6, 1 ; q0/q1
  2131. SBUTTERFLY dq, 3, 7, 1 ; q2/q3
  2132. %ifdef m8
  2133. SWAP 1, 8
  2134. SWAP 2, 8
  2135. %else
  2136. mova m1, q0backup
  2137. mova q0backup, m2 ; store q0
  2138. %endif
  2139. SBUTTERFLY dq, 1, 5, 2 ; p1/p0
  2140. %ifdef m12
  2141. SWAP 5, 12
  2142. %else
  2143. mova p0backup, m5 ; store p0
  2144. %endif
  2145. SWAP 1, 4
  2146. SWAP 2, 4
  2147. SWAP 6, 3
  2148. SWAP 5, 3
  2149. %endif
  2150. ; normal_limit for p3-p2, p2-p1, q3-q2 and q2-q1
  2151. mova m4, m1
  2152. SWAP 4, 1
  2153. psubusb m4, m0 ; p2-p3
  2154. psubusb m0, m1 ; p3-p2
  2155. por m0, m4 ; abs(p3-p2)
  2156. mova m4, m2
  2157. SWAP 4, 2
  2158. psubusb m4, m1 ; p1-p2
  2159. mova p2backup, m1
  2160. psubusb m1, m2 ; p2-p1
  2161. por m1, m4 ; abs(p2-p1)
  2162. mova m4, m6
  2163. SWAP 4, 6
  2164. psubusb m4, m7 ; q2-q3
  2165. psubusb m7, m6 ; q3-q2
  2166. por m7, m4 ; abs(q3-q2)
  2167. mova m4, m5
  2168. SWAP 4, 5
  2169. psubusb m4, m6 ; q1-q2
  2170. mova q2backup, m6
  2171. psubusb m6, m5 ; q2-q1
  2172. por m6, m4 ; abs(q2-q1)
  2173. %ifidn %1, mmx
  2174. mova m4, flim_I
  2175. pxor m3, m3
  2176. psubusb m0, m4
  2177. psubusb m1, m4
  2178. psubusb m7, m4
  2179. psubusb m6, m4
  2180. pcmpeqb m0, m3 ; abs(p3-p2) <= I
  2181. pcmpeqb m1, m3 ; abs(p2-p1) <= I
  2182. pcmpeqb m7, m3 ; abs(q3-q2) <= I
  2183. pcmpeqb m6, m3 ; abs(q2-q1) <= I
  2184. pand m0, m1
  2185. pand m7, m6
  2186. pand m0, m7
  2187. %else ; mmxext/sse2
  2188. pmaxub m0, m1
  2189. pmaxub m6, m7
  2190. pmaxub m0, m6
  2191. %endif
  2192. ; normal_limit and high_edge_variance for p1-p0, q1-q0
  2193. SWAP 7, 3 ; now m7 is zero
  2194. %ifidn %2, v
  2195. movrow m3, [dst_reg +mstride_reg] ; p0
  2196. %if mmsize == 16 && %4 == 8
  2197. movhps m3, [dst8_reg+mstride_reg]
  2198. %endif
  2199. %elifdef m12
  2200. SWAP 3, 12
  2201. %else
  2202. mova m3, p0backup
  2203. %endif
  2204. mova m1, m2
  2205. SWAP 1, 2
  2206. mova m6, m3
  2207. SWAP 3, 6
  2208. psubusb m1, m3 ; p1-p0
  2209. psubusb m6, m2 ; p0-p1
  2210. por m1, m6 ; abs(p1-p0)
  2211. %ifidn %1, mmx
  2212. mova m6, m1
  2213. psubusb m1, m4
  2214. psubusb m6, hev_thr
  2215. pcmpeqb m1, m7 ; abs(p1-p0) <= I
  2216. pcmpeqb m6, m7 ; abs(p1-p0) <= hev_thresh
  2217. pand m0, m1
  2218. mova mask_res, m6
  2219. %else ; mmxext/sse2
  2220. pmaxub m0, m1 ; max_I
  2221. SWAP 1, 4 ; max_hev_thresh
  2222. %endif
  2223. SWAP 6, 4 ; now m6 is I
  2224. %ifidn %2, v
  2225. movrow m4, [dst_reg] ; q0
  2226. %if mmsize == 16 && %4 == 8
  2227. movhps m4, [dst8_reg]
  2228. %endif
  2229. %elifdef m8
  2230. SWAP 4, 8
  2231. %else
  2232. mova m4, q0backup
  2233. %endif
  2234. mova m1, m4
  2235. SWAP 1, 4
  2236. mova m7, m5
  2237. SWAP 7, 5
  2238. psubusb m1, m5 ; q0-q1
  2239. psubusb m7, m4 ; q1-q0
  2240. por m1, m7 ; abs(q1-q0)
  2241. %ifidn %1, mmx
  2242. mova m7, m1
  2243. psubusb m1, m6
  2244. psubusb m7, hev_thr
  2245. pxor m6, m6
  2246. pcmpeqb m1, m6 ; abs(q1-q0) <= I
  2247. pcmpeqb m7, m6 ; abs(q1-q0) <= hev_thresh
  2248. mova m6, mask_res
  2249. pand m0, m1 ; abs([pq][321]-[pq][210]) <= I
  2250. pand m6, m7
  2251. %else ; mmxext/sse2
  2252. pxor m7, m7
  2253. pmaxub m0, m1
  2254. pmaxub m6, m1
  2255. psubusb m0, flim_I
  2256. psubusb m6, hev_thr
  2257. pcmpeqb m0, m7 ; max(abs(..)) <= I
  2258. pcmpeqb m6, m7 ; !(max(abs..) > thresh)
  2259. %endif
  2260. %ifdef m12
  2261. SWAP 6, 12
  2262. %else
  2263. mova mask_res, m6 ; !(abs(p1-p0) > hev_t || abs(q1-q0) > hev_t)
  2264. %endif
  2265. ; simple_limit
  2266. mova m1, m3
  2267. SWAP 1, 3
  2268. mova m6, m4 ; keep copies of p0/q0 around for later use
  2269. SWAP 6, 4
  2270. psubusb m1, m4 ; p0-q0
  2271. psubusb m6, m3 ; q0-p0
  2272. por m1, m6 ; abs(q0-p0)
  2273. paddusb m1, m1 ; m1=2*abs(q0-p0)
  2274. mova m7, m2
  2275. SWAP 7, 2
  2276. mova m6, m5
  2277. SWAP 6, 5
  2278. psubusb m7, m5 ; p1-q1
  2279. psubusb m6, m2 ; q1-p1
  2280. por m7, m6 ; abs(q1-p1)
  2281. pxor m6, m6
  2282. pand m7, [pb_FE]
  2283. psrlq m7, 1 ; abs(q1-p1)/2
  2284. paddusb m7, m1 ; abs(q0-p0)*2+abs(q1-p1)/2
  2285. psubusb m7, flim_E
  2286. pcmpeqb m7, m6 ; abs(q0-p0)*2+abs(q1-p1)/2 <= E
  2287. pand m0, m7 ; normal_limit result
  2288. ; filter_common; at this point, m2-m5=p1-q1 and m0 is filter_mask
  2289. %ifdef m8 ; x86-64 && sse2
  2290. mova m8, [pb_80]
  2291. %define pb_80_var m8
  2292. %else ; x86-32 or mmx/mmxext
  2293. %define pb_80_var [pb_80]
  2294. %endif
  2295. mova m1, m4
  2296. mova m7, m3
  2297. pxor m1, pb_80_var
  2298. pxor m7, pb_80_var
  2299. psubsb m1, m7 ; (signed) q0-p0
  2300. mova m6, m2
  2301. mova m7, m5
  2302. pxor m6, pb_80_var
  2303. pxor m7, pb_80_var
  2304. psubsb m6, m7 ; (signed) p1-q1
  2305. mova m7, mask_res
  2306. paddsb m6, m1
  2307. paddsb m6, m1
  2308. paddsb m6, m1
  2309. pand m6, m0
  2310. %ifdef m8
  2311. mova lim_res, m6 ; 3*(qp-p0)+(p1-q1) masked for filter_mbedge
  2312. pand lim_res, m7
  2313. %else
  2314. mova m0, m6
  2315. pand m0, m7
  2316. mova lim_res, m0
  2317. %endif
  2318. pandn m7, m6 ; 3*(q0-p0)+(p1-q1) masked for filter_common
  2319. mova m1, [pb_F8]
  2320. mova m6, m7
  2321. paddsb m7, [pb_3]
  2322. paddsb m6, [pb_4]
  2323. pand m7, m1
  2324. pand m6, m1
  2325. pxor m1, m1
  2326. pxor m0, m0
  2327. pcmpgtb m1, m7
  2328. psubb m0, m7
  2329. psrlq m7, 3 ; +f2
  2330. psrlq m0, 3 ; -f2
  2331. pand m0, m1
  2332. pandn m1, m7
  2333. psubusb m3, m0
  2334. paddusb m3, m1 ; p0+f2
  2335. pxor m1, m1
  2336. pxor m0, m0
  2337. pcmpgtb m0, m6
  2338. psubb m1, m6
  2339. psrlq m6, 3 ; +f1
  2340. psrlq m1, 3 ; -f1
  2341. pand m1, m0
  2342. pandn m0, m6
  2343. psubusb m4, m0
  2344. paddusb m4, m1 ; q0-f1
  2345. ; filter_mbedge (m2-m5 = p1-q1; lim_res carries w)
  2346. mova m7, [pw_63]
  2347. %ifdef m8
  2348. SWAP 1, 8
  2349. %else
  2350. mova m1, lim_res
  2351. %endif
  2352. pxor m0, m0
  2353. mova m6, m1
  2354. pcmpgtb m0, m1 ; which are negative
  2355. punpcklbw m6, m0 ; signed byte->word
  2356. punpckhbw m1, m0
  2357. mova lim_sign, m0
  2358. mova mask_res, m6 ; backup for later in filter
  2359. mova lim_res, m1
  2360. pmullw m6, [pw_27]
  2361. pmullw m1, [pw_27]
  2362. paddw m6, m7
  2363. paddw m1, m7
  2364. psraw m6, 7
  2365. psraw m1, 7
  2366. packsswb m6, m1 ; a0
  2367. pxor m1, m1
  2368. psubb m1, m6
  2369. pand m1, m0 ; -a0
  2370. pandn m0, m6 ; +a0
  2371. psubusb m3, m1
  2372. paddusb m4, m1
  2373. paddusb m3, m0 ; p0+a0
  2374. psubusb m4, m0 ; q0-a0
  2375. mova m6, mask_res
  2376. mova m1, lim_res
  2377. mova m0, lim_sign
  2378. pmullw m6, [pw_18]
  2379. pmullw m1, [pw_18]
  2380. paddw m6, m7
  2381. paddw m1, m7
  2382. psraw m6, 7
  2383. psraw m1, 7
  2384. packsswb m6, m1 ; a1
  2385. pxor m1, m1
  2386. psubb m1, m6
  2387. pand m1, m0 ; -a1
  2388. pandn m0, m6 ; +a1
  2389. psubusb m2, m1
  2390. paddusb m5, m1
  2391. paddusb m2, m0 ; p1+a1
  2392. psubusb m5, m0 ; q1-a1
  2393. %ifdef m8
  2394. SWAP 6, 12
  2395. SWAP 1, 8
  2396. %else
  2397. mova m6, mask_res
  2398. mova m1, lim_res
  2399. %endif
  2400. pmullw m6, [pw_9]
  2401. pmullw m1, [pw_9]
  2402. paddw m6, m7
  2403. paddw m1, m7
  2404. %ifdef m15
  2405. SWAP 7, 15
  2406. %else
  2407. mova m7, lim_sign
  2408. %endif
  2409. psraw m6, 7
  2410. psraw m1, 7
  2411. packsswb m6, m1 ; a1
  2412. pxor m0, m0
  2413. psubb m0, m6
  2414. pand m0, m7 ; -a1
  2415. pandn m7, m6 ; +a1
  2416. %ifdef m8
  2417. SWAP 1, 13
  2418. SWAP 6, 14
  2419. %else
  2420. mova m1, p2backup
  2421. mova m6, q2backup
  2422. %endif
  2423. psubusb m1, m0
  2424. paddusb m6, m0
  2425. paddusb m1, m7 ; p1+a1
  2426. psubusb m6, m7 ; q1-a1
  2427. ; store
  2428. %ifidn %2, v
  2429. movrow [dst2_reg+mstride_reg*4], m1
  2430. movrow [dst_reg +mstride_reg*2], m2
  2431. movrow [dst_reg +mstride_reg ], m3
  2432. movrow [dst_reg], m4
  2433. movrow [dst2_reg], m5
  2434. movrow [dst2_reg+ stride_reg ], m6
  2435. %if mmsize == 16 && %4 == 8
  2436. add dst8_reg, mstride_reg
  2437. movhps [dst8_reg+mstride_reg*2], m1
  2438. movhps [dst8_reg+mstride_reg ], m2
  2439. movhps [dst8_reg], m3
  2440. add dst8_reg, stride_reg
  2441. movhps [dst8_reg], m4
  2442. movhps [dst8_reg+ stride_reg ], m5
  2443. movhps [dst8_reg+ stride_reg*2], m6
  2444. %endif
  2445. %else ; h
  2446. inc dst_reg
  2447. inc dst2_reg
  2448. ; 4x8/16 transpose
  2449. TRANSPOSE4x4B 1, 2, 3, 4, 0
  2450. SBUTTERFLY bw, 5, 6, 0
  2451. %if mmsize == 8 ; mmx/mmxext (h)
  2452. WRITE_4x2D 1, 2, 3, 4, dst_reg, dst2_reg, mstride_reg, stride_reg
  2453. add dst_reg, 4
  2454. WRITE_8W m5, m6, dst2_reg, dst_reg, mstride_reg, stride_reg, %4
  2455. %else ; sse2 (h)
  2456. lea dst8_reg, [dst8_reg+mstride_reg+1]
  2457. WRITE_4x4D 1, 2, 3, 4, dst_reg, dst2_reg, dst8_reg, mstride_reg, stride_reg, %4
  2458. lea dst_reg, [dst2_reg+mstride_reg+4]
  2459. lea dst8_reg, [dst8_reg+mstride_reg+4]
  2460. WRITE_8W m5, m5, dst2_reg, dst_reg, mstride_reg, stride_reg, %2
  2461. %ifidn %2, sse4
  2462. lea dst_reg, [dst8_reg+ stride_reg]
  2463. %endif
  2464. WRITE_8W m6, m6, dst2_reg, dst8_reg, mstride_reg, stride_reg, %2
  2465. %endif
  2466. %endif
  2467. %if mmsize == 8
  2468. %if %4 == 8 ; chroma
  2469. %ifidn %2, h
  2470. sub dst_reg, 5
  2471. %endif
  2472. cmp dst_reg, dst8_reg
  2473. mov dst_reg, dst8_reg
  2474. jnz .next8px
  2475. %else
  2476. %ifidn %2, h
  2477. lea dst_reg, [dst_reg + stride_reg*8-5]
  2478. %else ; v
  2479. add dst_reg, 8
  2480. %endif
  2481. dec cnt_reg
  2482. jg .next8px
  2483. %endif
  2484. %endif
  2485. %ifndef m8 ; sse2 on x86-32 or mmx/mmxext
  2486. mov rsp, stack_reg ; restore stack pointer
  2487. %endif
  2488. RET
  2489. %endmacro
  2490. INIT_MMX
  2491. %define SPLATB_REG SPLATB_REG_MMX
  2492. MBEDGE_LOOPFILTER mmx, v, 6, 16, 0
  2493. MBEDGE_LOOPFILTER mmx, h, 6, 16, 0
  2494. MBEDGE_LOOPFILTER mmx, v, 6, 8, 0
  2495. MBEDGE_LOOPFILTER mmx, h, 6, 8, 0
  2496. %define SPLATB_REG SPLATB_REG_MMXEXT
  2497. MBEDGE_LOOPFILTER mmxext, v, 6, 16, 0
  2498. MBEDGE_LOOPFILTER mmxext, h, 6, 16, 0
  2499. MBEDGE_LOOPFILTER mmxext, v, 6, 8, 0
  2500. MBEDGE_LOOPFILTER mmxext, h, 6, 8, 0
  2501. INIT_XMM
  2502. %define SPLATB_REG SPLATB_REG_SSE2
  2503. MBEDGE_LOOPFILTER sse2, v, 5, 16, 16
  2504. %ifdef m8
  2505. MBEDGE_LOOPFILTER sse2, h, 5, 16, 16
  2506. %else
  2507. MBEDGE_LOOPFILTER sse2, h, 6, 16, 16
  2508. %endif
  2509. MBEDGE_LOOPFILTER sse2, v, 6, 8, 16
  2510. MBEDGE_LOOPFILTER sse2, h, 6, 8, 16
  2511. %define SPLATB_REG SPLATB_REG_SSSE3
  2512. MBEDGE_LOOPFILTER ssse3, v, 5, 16, 16
  2513. %ifdef m8
  2514. MBEDGE_LOOPFILTER ssse3, h, 5, 16, 16
  2515. %else
  2516. MBEDGE_LOOPFILTER ssse3, h, 6, 16, 16
  2517. %endif
  2518. MBEDGE_LOOPFILTER ssse3, v, 6, 8, 16
  2519. MBEDGE_LOOPFILTER ssse3, h, 6, 8, 16
  2520. %ifdef m8
  2521. MBEDGE_LOOPFILTER sse4, h, 5, 16, 16
  2522. %else
  2523. MBEDGE_LOOPFILTER sse4, h, 6, 16, 16
  2524. %endif
  2525. MBEDGE_LOOPFILTER sse4, h, 6, 8, 16