You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

936 lines
31KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file ratecontrol.c
  22. * Rate control for video encoders.
  23. */
  24. #include "avcodec.h"
  25. #include "dsputil.h"
  26. #include "ratecontrol.h"
  27. #include "mpegvideo.h"
  28. #include "eval.h"
  29. #undef NDEBUG // allways check asserts, the speed effect is far too small to disable them
  30. #include <assert.h>
  31. #ifndef M_E
  32. #define M_E 2.718281828
  33. #endif
  34. static int init_pass2(MpegEncContext *s);
  35. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
  36. void ff_write_pass1_stats(MpegEncContext *s){
  37. snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
  38. s->current_picture_ptr->display_picture_number, s->current_picture_ptr->coded_picture_number, s->pict_type,
  39. s->current_picture.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
  40. s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count, s->skip_count, s->header_bits);
  41. }
  42. int ff_rate_control_init(MpegEncContext *s)
  43. {
  44. RateControlContext *rcc= &s->rc_context;
  45. int i;
  46. emms_c();
  47. for(i=0; i<5; i++){
  48. rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0;
  49. rcc->pred[i].count= 1.0;
  50. rcc->pred[i].decay= 0.4;
  51. rcc->i_cplx_sum [i]=
  52. rcc->p_cplx_sum [i]=
  53. rcc->mv_bits_sum[i]=
  54. rcc->qscale_sum [i]=
  55. rcc->frame_count[i]= 1; // 1 is better cuz of 1/0 and such
  56. rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5;
  57. }
  58. rcc->buffer_index= s->avctx->rc_initial_buffer_occupancy;
  59. if(s->flags&CODEC_FLAG_PASS2){
  60. int i;
  61. char *p;
  62. /* find number of pics */
  63. p= s->avctx->stats_in;
  64. for(i=-1; p; i++){
  65. p= strchr(p+1, ';');
  66. }
  67. i+= s->max_b_frames;
  68. if(i<=0 || i>=INT_MAX / sizeof(RateControlEntry))
  69. return -1;
  70. rcc->entry = (RateControlEntry*)av_mallocz(i*sizeof(RateControlEntry));
  71. rcc->num_entries= i;
  72. /* init all to skipped p frames (with b frames we might have a not encoded frame at the end FIXME) */
  73. for(i=0; i<rcc->num_entries; i++){
  74. RateControlEntry *rce= &rcc->entry[i];
  75. rce->pict_type= rce->new_pict_type=P_TYPE;
  76. rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2;
  77. rce->misc_bits= s->mb_num + 10;
  78. rce->mb_var_sum= s->mb_num*100;
  79. }
  80. /* read stats */
  81. p= s->avctx->stats_in;
  82. for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
  83. RateControlEntry *rce;
  84. int picture_number;
  85. int e;
  86. char *next;
  87. next= strchr(p, ';');
  88. if(next){
  89. (*next)=0; //sscanf in unbelieavle slow on looong strings //FIXME copy / dont write
  90. next++;
  91. }
  92. e= sscanf(p, " in:%d ", &picture_number);
  93. assert(picture_number >= 0);
  94. assert(picture_number < rcc->num_entries);
  95. rce= &rcc->entry[picture_number];
  96. e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
  97. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
  98. &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count, &rce->skip_count, &rce->header_bits);
  99. if(e!=14){
  100. av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
  101. return -1;
  102. }
  103. p= next;
  104. }
  105. if(init_pass2(s) < 0) return -1;
  106. //FIXME maybe move to end
  107. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
  108. #ifdef CONFIG_XVID
  109. return ff_xvid_rate_control_init(s);
  110. #else
  111. av_log(s->avctx, AV_LOG_ERROR, "XviD ratecontrol requires libavcodec compiled with XviD support\n");
  112. return -1;
  113. #endif
  114. }
  115. }
  116. if(!(s->flags&CODEC_FLAG_PASS2)){
  117. rcc->short_term_qsum=0.001;
  118. rcc->short_term_qcount=0.001;
  119. rcc->pass1_rc_eq_output_sum= 0.001;
  120. rcc->pass1_wanted_bits=0.001;
  121. /* init stuff with the user specified complexity */
  122. if(s->avctx->rc_initial_cplx){
  123. for(i=0; i<60*30; i++){
  124. double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
  125. RateControlEntry rce;
  126. double q;
  127. if (i%((s->gop_size+3)/4)==0) rce.pict_type= I_TYPE;
  128. else if(i%(s->max_b_frames+1)) rce.pict_type= B_TYPE;
  129. else rce.pict_type= P_TYPE;
  130. rce.new_pict_type= rce.pict_type;
  131. rce.mc_mb_var_sum= bits*s->mb_num/100000;
  132. rce.mb_var_sum = s->mb_num;
  133. rce.qscale = FF_QP2LAMBDA * 2;
  134. rce.f_code = 2;
  135. rce.b_code = 1;
  136. rce.misc_bits= 1;
  137. if(s->pict_type== I_TYPE){
  138. rce.i_count = s->mb_num;
  139. rce.i_tex_bits= bits;
  140. rce.p_tex_bits= 0;
  141. rce.mv_bits= 0;
  142. }else{
  143. rce.i_count = 0; //FIXME we do know this approx
  144. rce.i_tex_bits= 0;
  145. rce.p_tex_bits= bits*0.9;
  146. rce.mv_bits= bits*0.1;
  147. }
  148. rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
  149. rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
  150. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  151. rcc->frame_count[rce.pict_type] ++;
  152. bits= rce.i_tex_bits + rce.p_tex_bits;
  153. q= get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
  154. rcc->pass1_wanted_bits+= s->bit_rate/(1/av_q2d(s->avctx->time_base)); //FIXME missbehaves a little for variable fps
  155. }
  156. }
  157. }
  158. return 0;
  159. }
  160. void ff_rate_control_uninit(MpegEncContext *s)
  161. {
  162. RateControlContext *rcc= &s->rc_context;
  163. emms_c();
  164. av_freep(&rcc->entry);
  165. #ifdef CONFIG_XVID
  166. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  167. ff_xvid_rate_control_uninit(s);
  168. #endif
  169. }
  170. static inline double qp2bits(RateControlEntry *rce, double qp){
  171. if(qp<=0.0){
  172. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  173. }
  174. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
  175. }
  176. static inline double bits2qp(RateControlEntry *rce, double bits){
  177. if(bits<0.9){
  178. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  179. }
  180. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
  181. }
  182. int ff_vbv_update(MpegEncContext *s, int frame_size){
  183. RateControlContext *rcc= &s->rc_context;
  184. const double fps= 1/av_q2d(s->avctx->time_base);
  185. const int buffer_size= s->avctx->rc_buffer_size;
  186. const double min_rate= s->avctx->rc_min_rate/fps;
  187. const double max_rate= s->avctx->rc_max_rate/fps;
  188. //printf("%d %f %d %f %f\n", buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  189. if(buffer_size){
  190. int left;
  191. rcc->buffer_index-= frame_size;
  192. if(rcc->buffer_index < 0){
  193. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  194. rcc->buffer_index= 0;
  195. }
  196. left= buffer_size - rcc->buffer_index - 1;
  197. rcc->buffer_index += clip(left, min_rate, max_rate);
  198. if(rcc->buffer_index > buffer_size){
  199. int stuffing= ceil((rcc->buffer_index - buffer_size)/8);
  200. if(stuffing < 4 && s->codec_id == CODEC_ID_MPEG4)
  201. stuffing=4;
  202. rcc->buffer_index -= 8*stuffing;
  203. if(s->avctx->debug & FF_DEBUG_RC)
  204. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  205. return stuffing;
  206. }
  207. }
  208. return 0;
  209. }
  210. /**
  211. * modifies the bitrate curve from pass1 for one frame
  212. */
  213. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
  214. RateControlContext *rcc= &s->rc_context;
  215. AVCodecContext *a= s->avctx;
  216. double q, bits;
  217. const int pict_type= rce->new_pict_type;
  218. const double mb_num= s->mb_num;
  219. int i;
  220. char *error = NULL;
  221. double const_values[]={
  222. M_PI,
  223. M_E,
  224. rce->i_tex_bits*rce->qscale,
  225. rce->p_tex_bits*rce->qscale,
  226. (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
  227. rce->mv_bits/mb_num,
  228. rce->pict_type == B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
  229. rce->i_count/mb_num,
  230. rce->mc_mb_var_sum/mb_num,
  231. rce->mb_var_sum/mb_num,
  232. rce->pict_type == I_TYPE,
  233. rce->pict_type == P_TYPE,
  234. rce->pict_type == B_TYPE,
  235. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  236. a->qcompress,
  237. /* rcc->last_qscale_for[I_TYPE],
  238. rcc->last_qscale_for[P_TYPE],
  239. rcc->last_qscale_for[B_TYPE],
  240. rcc->next_non_b_qscale,*/
  241. rcc->i_cplx_sum[I_TYPE] / (double)rcc->frame_count[I_TYPE],
  242. rcc->i_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  243. rcc->p_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  244. rcc->p_cplx_sum[B_TYPE] / (double)rcc->frame_count[B_TYPE],
  245. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  246. 0
  247. };
  248. static const char *const_names[]={
  249. "PI",
  250. "E",
  251. "iTex",
  252. "pTex",
  253. "tex",
  254. "mv",
  255. "fCode",
  256. "iCount",
  257. "mcVar",
  258. "var",
  259. "isI",
  260. "isP",
  261. "isB",
  262. "avgQP",
  263. "qComp",
  264. /* "lastIQP",
  265. "lastPQP",
  266. "lastBQP",
  267. "nextNonBQP",*/
  268. "avgIITex",
  269. "avgPITex",
  270. "avgPPTex",
  271. "avgBPTex",
  272. "avgTex",
  273. NULL
  274. };
  275. static double (*func1[])(void *, double)={
  276. (void *)bits2qp,
  277. (void *)qp2bits,
  278. NULL
  279. };
  280. static const char *func1_names[]={
  281. "bits2qp",
  282. "qp2bits",
  283. NULL
  284. };
  285. bits= ff_eval2(s->avctx->rc_eq, const_values, const_names, func1, func1_names, NULL, NULL, rce, &error);
  286. if (isnan(bits)) {
  287. av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\": %s\n", s->avctx->rc_eq, error? error : "");
  288. return -1;
  289. }
  290. rcc->pass1_rc_eq_output_sum+= bits;
  291. bits*=rate_factor;
  292. if(bits<0.0) bits=0.0;
  293. bits+= 1.0; //avoid 1/0 issues
  294. /* user override */
  295. for(i=0; i<s->avctx->rc_override_count; i++){
  296. RcOverride *rco= s->avctx->rc_override;
  297. if(rco[i].start_frame > frame_num) continue;
  298. if(rco[i].end_frame < frame_num) continue;
  299. if(rco[i].qscale)
  300. bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
  301. else
  302. bits*= rco[i].quality_factor;
  303. }
  304. q= bits2qp(rce, bits);
  305. /* I/B difference */
  306. if (pict_type==I_TYPE && s->avctx->i_quant_factor<0.0)
  307. q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  308. else if(pict_type==B_TYPE && s->avctx->b_quant_factor<0.0)
  309. q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  310. return q;
  311. }
  312. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
  313. RateControlContext *rcc= &s->rc_context;
  314. AVCodecContext *a= s->avctx;
  315. const int pict_type= rce->new_pict_type;
  316. const double last_p_q = rcc->last_qscale_for[P_TYPE];
  317. const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
  318. if (pict_type==I_TYPE && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==P_TYPE))
  319. q= last_p_q *ABS(a->i_quant_factor) + a->i_quant_offset;
  320. else if(pict_type==B_TYPE && a->b_quant_factor>0.0)
  321. q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
  322. /* last qscale / qdiff stuff */
  323. if(rcc->last_non_b_pict_type==pict_type || pict_type!=I_TYPE){
  324. double last_q= rcc->last_qscale_for[pict_type];
  325. const int maxdiff= FF_QP2LAMBDA * a->max_qdiff;
  326. if (q > last_q + maxdiff) q= last_q + maxdiff;
  327. else if(q < last_q - maxdiff) q= last_q - maxdiff;
  328. }
  329. rcc->last_qscale_for[pict_type]= q; //Note we cant do that after blurring
  330. if(pict_type!=B_TYPE)
  331. rcc->last_non_b_pict_type= pict_type;
  332. return q;
  333. }
  334. /**
  335. * gets the qmin & qmax for pict_type
  336. */
  337. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
  338. int qmin= s->avctx->lmin;
  339. int qmax= s->avctx->lmax;
  340. assert(qmin <= qmax);
  341. if(pict_type==B_TYPE){
  342. qmin= (int)(qmin*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  343. qmax= (int)(qmax*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  344. }else if(pict_type==I_TYPE){
  345. qmin= (int)(qmin*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  346. qmax= (int)(qmax*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  347. }
  348. qmin= clip(qmin, 1, FF_LAMBDA_MAX);
  349. qmax= clip(qmax, 1, FF_LAMBDA_MAX);
  350. if(qmax<qmin) qmax= qmin;
  351. *qmin_ret= qmin;
  352. *qmax_ret= qmax;
  353. }
  354. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
  355. RateControlContext *rcc= &s->rc_context;
  356. int qmin, qmax;
  357. double bits;
  358. const int pict_type= rce->new_pict_type;
  359. const double buffer_size= s->avctx->rc_buffer_size;
  360. const double fps= 1/av_q2d(s->avctx->time_base);
  361. const double min_rate= s->avctx->rc_min_rate / fps;
  362. const double max_rate= s->avctx->rc_max_rate / fps;
  363. get_qminmax(&qmin, &qmax, s, pict_type);
  364. /* modulation */
  365. if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==P_TYPE)
  366. q*= s->avctx->rc_qmod_amp;
  367. bits= qp2bits(rce, q);
  368. //printf("q:%f\n", q);
  369. /* buffer overflow/underflow protection */
  370. if(buffer_size){
  371. double expected_size= rcc->buffer_index;
  372. double q_limit;
  373. if(min_rate){
  374. double d= 2*(buffer_size - expected_size)/buffer_size;
  375. if(d>1.0) d=1.0;
  376. else if(d<0.0001) d=0.0001;
  377. q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  378. q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index)*3, 1));
  379. if(q > q_limit){
  380. if(s->avctx->debug&FF_DEBUG_RC){
  381. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  382. }
  383. q= q_limit;
  384. }
  385. }
  386. if(max_rate){
  387. double d= 2*expected_size/buffer_size;
  388. if(d>1.0) d=1.0;
  389. else if(d<0.0001) d=0.0001;
  390. q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  391. q_limit= bits2qp(rce, FFMAX(rcc->buffer_index/3, 1));
  392. if(q < q_limit){
  393. if(s->avctx->debug&FF_DEBUG_RC){
  394. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  395. }
  396. q= q_limit;
  397. }
  398. }
  399. }
  400. //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity);
  401. if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
  402. if (q<qmin) q=qmin;
  403. else if(q>qmax) q=qmax;
  404. }else{
  405. double min2= log(qmin);
  406. double max2= log(qmax);
  407. q= log(q);
  408. q= (q - min2)/(max2-min2) - 0.5;
  409. q*= -4.0;
  410. q= 1.0/(1.0 + exp(q));
  411. q= q*(max2-min2) + min2;
  412. q= exp(q);
  413. }
  414. return q;
  415. }
  416. //----------------------------------
  417. // 1 Pass Code
  418. static double predict_size(Predictor *p, double q, double var)
  419. {
  420. return p->coeff*var / (q*p->count);
  421. }
  422. /*
  423. static double predict_qp(Predictor *p, double size, double var)
  424. {
  425. //printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size);
  426. return p->coeff*var / (size*p->count);
  427. }
  428. */
  429. static void update_predictor(Predictor *p, double q, double var, double size)
  430. {
  431. double new_coeff= size*q / (var + 1);
  432. if(var<10) return;
  433. p->count*= p->decay;
  434. p->coeff*= p->decay;
  435. p->count++;
  436. p->coeff+= new_coeff;
  437. }
  438. static void adaptive_quantization(MpegEncContext *s, double q){
  439. int i;
  440. const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
  441. const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
  442. const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
  443. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  444. const float p_masking = s->avctx->p_masking;
  445. const float border_masking = s->avctx->border_masking;
  446. float bits_sum= 0.0;
  447. float cplx_sum= 0.0;
  448. float cplx_tab[s->mb_num];
  449. float bits_tab[s->mb_num];
  450. const int qmin= s->avctx->mb_lmin;
  451. const int qmax= s->avctx->mb_lmax;
  452. Picture * const pic= &s->current_picture;
  453. const int mb_width = s->mb_width;
  454. const int mb_height = s->mb_height;
  455. for(i=0; i<s->mb_num; i++){
  456. const int mb_xy= s->mb_index2xy[i];
  457. float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow()
  458. float spat_cplx= sqrt(pic->mb_var[mb_xy]);
  459. const int lumi= pic->mb_mean[mb_xy];
  460. float bits, cplx, factor;
  461. int mb_x = mb_xy % s->mb_stride;
  462. int mb_y = mb_xy / s->mb_stride;
  463. int mb_distance;
  464. float mb_factor = 0.0;
  465. #if 0
  466. if(spat_cplx < q/3) spat_cplx= q/3; //FIXME finetune
  467. if(temp_cplx < q/3) temp_cplx= q/3; //FIXME finetune
  468. #endif
  469. if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune
  470. if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune
  471. if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode
  472. cplx= spat_cplx;
  473. factor= 1.0 + p_masking;
  474. }else{
  475. cplx= temp_cplx;
  476. factor= pow(temp_cplx, - temp_cplx_masking);
  477. }
  478. factor*=pow(spat_cplx, - spatial_cplx_masking);
  479. if(lumi>127)
  480. factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
  481. else
  482. factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
  483. if(mb_x < mb_width/5){
  484. mb_distance = mb_width/5 - mb_x;
  485. mb_factor = (float)mb_distance / (float)(mb_width/5);
  486. }else if(mb_x > 4*mb_width/5){
  487. mb_distance = mb_x - 4*mb_width/5;
  488. mb_factor = (float)mb_distance / (float)(mb_width/5);
  489. }
  490. if(mb_y < mb_height/5){
  491. mb_distance = mb_height/5 - mb_y;
  492. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  493. }else if(mb_y > 4*mb_height/5){
  494. mb_distance = mb_y - 4*mb_height/5;
  495. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  496. }
  497. factor*= 1.0 - border_masking*mb_factor;
  498. if(factor<0.00001) factor= 0.00001;
  499. bits= cplx*factor;
  500. cplx_sum+= cplx;
  501. bits_sum+= bits;
  502. cplx_tab[i]= cplx;
  503. bits_tab[i]= bits;
  504. }
  505. /* handle qmin/qmax cliping */
  506. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  507. float factor= bits_sum/cplx_sum;
  508. for(i=0; i<s->mb_num; i++){
  509. float newq= q*cplx_tab[i]/bits_tab[i];
  510. newq*= factor;
  511. if (newq > qmax){
  512. bits_sum -= bits_tab[i];
  513. cplx_sum -= cplx_tab[i]*q/qmax;
  514. }
  515. else if(newq < qmin){
  516. bits_sum -= bits_tab[i];
  517. cplx_sum -= cplx_tab[i]*q/qmin;
  518. }
  519. }
  520. if(bits_sum < 0.001) bits_sum= 0.001;
  521. if(cplx_sum < 0.001) cplx_sum= 0.001;
  522. }
  523. for(i=0; i<s->mb_num; i++){
  524. const int mb_xy= s->mb_index2xy[i];
  525. float newq= q*cplx_tab[i]/bits_tab[i];
  526. int intq;
  527. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  528. newq*= bits_sum/cplx_sum;
  529. }
  530. intq= (int)(newq + 0.5);
  531. if (intq > qmax) intq= qmax;
  532. else if(intq < qmin) intq= qmin;
  533. //if(i%s->mb_width==0) printf("\n");
  534. //printf("%2d%3d ", intq, ff_sqrt(s->mc_mb_var[i]));
  535. s->lambda_table[mb_xy]= intq;
  536. }
  537. }
  538. void ff_get_2pass_fcode(MpegEncContext *s){
  539. RateControlContext *rcc= &s->rc_context;
  540. int picture_number= s->picture_number;
  541. RateControlEntry *rce;
  542. rce= &rcc->entry[picture_number];
  543. s->f_code= rce->f_code;
  544. s->b_code= rce->b_code;
  545. }
  546. //FIXME rd or at least approx for dquant
  547. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  548. {
  549. float q;
  550. int qmin, qmax;
  551. float br_compensation;
  552. double diff;
  553. double short_term_q;
  554. double fps;
  555. int picture_number= s->picture_number;
  556. int64_t wanted_bits;
  557. RateControlContext *rcc= &s->rc_context;
  558. AVCodecContext *a= s->avctx;
  559. RateControlEntry local_rce, *rce;
  560. double bits;
  561. double rate_factor;
  562. int var;
  563. const int pict_type= s->pict_type;
  564. Picture * const pic= &s->current_picture;
  565. emms_c();
  566. #ifdef CONFIG_XVID
  567. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  568. return ff_xvid_rate_estimate_qscale(s, dry_run);
  569. #endif
  570. get_qminmax(&qmin, &qmax, s, pict_type);
  571. fps= 1/av_q2d(s->avctx->time_base);
  572. //printf("input_pic_num:%d pic_num:%d frame_rate:%d\n", s->input_picture_number, s->picture_number, s->frame_rate);
  573. /* update predictors */
  574. if(picture_number>2 && !dry_run){
  575. const int last_var= s->last_pict_type == I_TYPE ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
  576. update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
  577. }
  578. if(s->flags&CODEC_FLAG_PASS2){
  579. assert(picture_number>=0);
  580. assert(picture_number<rcc->num_entries);
  581. rce= &rcc->entry[picture_number];
  582. wanted_bits= rce->expected_bits;
  583. }else{
  584. rce= &local_rce;
  585. wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
  586. }
  587. diff= s->total_bits - wanted_bits;
  588. br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance;
  589. if(br_compensation<=0.0) br_compensation=0.001;
  590. var= pict_type == I_TYPE ? pic->mb_var_sum : pic->mc_mb_var_sum;
  591. short_term_q = 0; /* avoid warning */
  592. if(s->flags&CODEC_FLAG_PASS2){
  593. if(pict_type!=I_TYPE)
  594. assert(pict_type == rce->new_pict_type);
  595. q= rce->new_qscale / br_compensation;
  596. //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
  597. }else{
  598. rce->pict_type=
  599. rce->new_pict_type= pict_type;
  600. rce->mc_mb_var_sum= pic->mc_mb_var_sum;
  601. rce->mb_var_sum = pic-> mb_var_sum;
  602. rce->qscale = FF_QP2LAMBDA * 2;
  603. rce->f_code = s->f_code;
  604. rce->b_code = s->b_code;
  605. rce->misc_bits= 1;
  606. bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  607. if(pict_type== I_TYPE){
  608. rce->i_count = s->mb_num;
  609. rce->i_tex_bits= bits;
  610. rce->p_tex_bits= 0;
  611. rce->mv_bits= 0;
  612. }else{
  613. rce->i_count = 0; //FIXME we do know this approx
  614. rce->i_tex_bits= 0;
  615. rce->p_tex_bits= bits*0.9;
  616. rce->mv_bits= bits*0.1;
  617. }
  618. rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
  619. rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
  620. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  621. rcc->frame_count[pict_type] ++;
  622. bits= rce->i_tex_bits + rce->p_tex_bits;
  623. rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
  624. q= get_qscale(s, rce, rate_factor, picture_number);
  625. if (q < 0)
  626. return -1;
  627. assert(q>0.0);
  628. //printf("%f ", q);
  629. q= get_diff_limited_q(s, rce, q);
  630. //printf("%f ", q);
  631. assert(q>0.0);
  632. if(pict_type==P_TYPE || s->intra_only){ //FIXME type dependant blur like in 2-pass
  633. rcc->short_term_qsum*=a->qblur;
  634. rcc->short_term_qcount*=a->qblur;
  635. rcc->short_term_qsum+= q;
  636. rcc->short_term_qcount++;
  637. //printf("%f ", q);
  638. q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
  639. //printf("%f ", q);
  640. }
  641. assert(q>0.0);
  642. q= modify_qscale(s, rce, q, picture_number);
  643. rcc->pass1_wanted_bits+= s->bit_rate/fps;
  644. assert(q>0.0);
  645. }
  646. if(s->avctx->debug&FF_DEBUG_RC){
  647. av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n",
  648. av_get_pict_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000,
  649. br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps
  650. );
  651. }
  652. if (q<qmin) q=qmin;
  653. else if(q>qmax) q=qmax;
  654. if(s->adaptive_quant)
  655. adaptive_quantization(s, q);
  656. else
  657. q= (int)(q + 0.5);
  658. if(!dry_run){
  659. rcc->last_qscale= q;
  660. rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum;
  661. rcc->last_mb_var_sum= pic->mb_var_sum;
  662. }
  663. #if 0
  664. {
  665. static int mvsum=0, texsum=0;
  666. mvsum += s->mv_bits;
  667. texsum += s->i_tex_bits + s->p_tex_bits;
  668. printf("%d %d//\n\n", mvsum, texsum);
  669. }
  670. #endif
  671. return q;
  672. }
  673. //----------------------------------------------
  674. // 2-Pass code
  675. static int init_pass2(MpegEncContext *s)
  676. {
  677. RateControlContext *rcc= &s->rc_context;
  678. AVCodecContext *a= s->avctx;
  679. int i, toobig;
  680. double fps= 1/av_q2d(s->avctx->time_base);
  681. double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
  682. uint64_t const_bits[5]={0,0,0,0,0}; // quantizer idependant bits
  683. uint64_t all_const_bits;
  684. uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
  685. double rate_factor=0;
  686. double step;
  687. //int last_i_frame=-10000000;
  688. const int filter_size= (int)(a->qblur*4) | 1;
  689. double expected_bits;
  690. double *qscale, *blured_qscale, qscale_sum;
  691. /* find complexity & const_bits & decide the pict_types */
  692. for(i=0; i<rcc->num_entries; i++){
  693. RateControlEntry *rce= &rcc->entry[i];
  694. rce->new_pict_type= rce->pict_type;
  695. rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
  696. rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
  697. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  698. rcc->frame_count[rce->pict_type] ++;
  699. complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
  700. const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
  701. }
  702. all_const_bits= const_bits[I_TYPE] + const_bits[P_TYPE] + const_bits[B_TYPE];
  703. if(all_available_bits < all_const_bits){
  704. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
  705. return -1;
  706. }
  707. qscale= av_malloc(sizeof(double)*rcc->num_entries);
  708. blured_qscale= av_malloc(sizeof(double)*rcc->num_entries);
  709. toobig = 0;
  710. for(step=256*256; step>0.0000001; step*=0.5){
  711. expected_bits=0;
  712. rate_factor+= step;
  713. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  714. /* find qscale */
  715. for(i=0; i<rcc->num_entries; i++){
  716. qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
  717. }
  718. assert(filter_size%2==1);
  719. /* fixed I/B QP relative to P mode */
  720. for(i=rcc->num_entries-1; i>=0; i--){
  721. RateControlEntry *rce= &rcc->entry[i];
  722. qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
  723. }
  724. /* smooth curve */
  725. for(i=0; i<rcc->num_entries; i++){
  726. RateControlEntry *rce= &rcc->entry[i];
  727. const int pict_type= rce->new_pict_type;
  728. int j;
  729. double q=0.0, sum=0.0;
  730. for(j=0; j<filter_size; j++){
  731. int index= i+j-filter_size/2;
  732. double d= index-i;
  733. double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur));
  734. if(index < 0 || index >= rcc->num_entries) continue;
  735. if(pict_type != rcc->entry[index].new_pict_type) continue;
  736. q+= qscale[index] * coeff;
  737. sum+= coeff;
  738. }
  739. blured_qscale[i]= q/sum;
  740. }
  741. /* find expected bits */
  742. for(i=0; i<rcc->num_entries; i++){
  743. RateControlEntry *rce= &rcc->entry[i];
  744. double bits;
  745. rce->new_qscale= modify_qscale(s, rce, blured_qscale[i], i);
  746. bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  747. //printf("%d %f\n", rce->new_bits, blured_qscale[i]);
  748. bits += 8*ff_vbv_update(s, bits);
  749. rce->expected_bits= expected_bits;
  750. expected_bits += bits;
  751. }
  752. /*
  753. av_log(s->avctx, AV_LOG_INFO,
  754. "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
  755. expected_bits, (int)all_available_bits, rate_factor);
  756. */
  757. if(expected_bits > all_available_bits) {
  758. rate_factor-= step;
  759. ++toobig;
  760. }
  761. }
  762. av_free(qscale);
  763. av_free(blured_qscale);
  764. /* check bitrate calculations and print info */
  765. qscale_sum = 0.0;
  766. for(i=0; i<rcc->num_entries; i++){
  767. /* av_log(s->avctx, AV_LOG_DEBUG, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
  768. i, rcc->entry[i].new_qscale, rcc->entry[i].new_qscale / FF_QP2LAMBDA); */
  769. qscale_sum += clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, s->avctx->qmin, s->avctx->qmax);
  770. }
  771. assert(toobig <= 40);
  772. av_log(s->avctx, AV_LOG_DEBUG,
  773. "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
  774. s->bit_rate,
  775. (int)(expected_bits / ((double)all_available_bits/s->bit_rate)));
  776. av_log(s->avctx, AV_LOG_DEBUG,
  777. "[lavc rc] estimated target average qp: %.3f\n",
  778. (float)qscale_sum / rcc->num_entries);
  779. if (toobig == 0) {
  780. av_log(s->avctx, AV_LOG_INFO,
  781. "[lavc rc] Using all of requested bitrate is not "
  782. "necessary for this video with these parameters.\n");
  783. } else if (toobig == 40) {
  784. av_log(s->avctx, AV_LOG_ERROR,
  785. "[lavc rc] Error: bitrate too low for this video "
  786. "with these parameters.\n");
  787. return -1;
  788. } else if (fabs(expected_bits/all_available_bits - 1.0) > 0.01) {
  789. av_log(s->avctx, AV_LOG_ERROR,
  790. "[lavc rc] Error: 2pass curve failed to converge\n");
  791. return -1;
  792. }
  793. return 0;
  794. }