You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1289 lines
41KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  21. * the algorithm used
  22. */
  23. /**
  24. * @file huffyuv.c
  25. * huffyuv codec for libavcodec.
  26. */
  27. #include "common.h"
  28. #include "bitstream.h"
  29. #include "avcodec.h"
  30. #include "dsputil.h"
  31. #define VLC_BITS 11
  32. #ifdef WORDS_BIGENDIAN
  33. #define B 3
  34. #define G 2
  35. #define R 1
  36. #else
  37. #define B 0
  38. #define G 1
  39. #define R 2
  40. #endif
  41. typedef enum Predictor{
  42. LEFT= 0,
  43. PLANE,
  44. MEDIAN,
  45. } Predictor;
  46. typedef struct HYuvContext{
  47. AVCodecContext *avctx;
  48. Predictor predictor;
  49. GetBitContext gb;
  50. PutBitContext pb;
  51. int interlaced;
  52. int decorrelate;
  53. int bitstream_bpp;
  54. int version;
  55. int yuy2; //use yuy2 instead of 422P
  56. int bgr32; //use bgr32 instead of bgr24
  57. int width, height;
  58. int flags;
  59. int context;
  60. int picture_number;
  61. int last_slice_end;
  62. uint8_t *temp[3];
  63. uint64_t stats[3][256];
  64. uint8_t len[3][256];
  65. uint32_t bits[3][256];
  66. VLC vlc[3];
  67. AVFrame picture;
  68. uint8_t *bitstream_buffer;
  69. unsigned int bitstream_buffer_size;
  70. DSPContext dsp;
  71. }HYuvContext;
  72. static const unsigned char classic_shift_luma[] = {
  73. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  74. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  75. 69,68, 0
  76. };
  77. static const unsigned char classic_shift_chroma[] = {
  78. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  79. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  80. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  81. };
  82. static const unsigned char classic_add_luma[256] = {
  83. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  84. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  85. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  86. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  87. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  88. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  89. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  90. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  91. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  92. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  93. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  94. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  95. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  96. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  97. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  98. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  99. };
  100. static const unsigned char classic_add_chroma[256] = {
  101. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  102. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  103. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  104. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  105. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  106. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  107. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  108. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  109. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  110. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  111. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  112. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  113. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  114. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  115. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  116. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  117. };
  118. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  119. int i;
  120. for(i=0; i<w-1; i++){
  121. acc+= src[i];
  122. dst[i]= acc;
  123. i++;
  124. acc+= src[i];
  125. dst[i]= acc;
  126. }
  127. for(; i<w; i++){
  128. acc+= src[i];
  129. dst[i]= acc;
  130. }
  131. return acc;
  132. }
  133. static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
  134. int i;
  135. uint8_t l, lt;
  136. l= *left;
  137. lt= *left_top;
  138. for(i=0; i<w; i++){
  139. l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
  140. lt= src1[i];
  141. dst[i]= l;
  142. }
  143. *left= l;
  144. *left_top= lt;
  145. }
  146. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  147. int i;
  148. int r,g,b;
  149. r= *red;
  150. g= *green;
  151. b= *blue;
  152. for(i=0; i<w; i++){
  153. b+= src[4*i+B];
  154. g+= src[4*i+G];
  155. r+= src[4*i+R];
  156. dst[4*i+B]= b;
  157. dst[4*i+G]= g;
  158. dst[4*i+R]= r;
  159. }
  160. *red= r;
  161. *green= g;
  162. *blue= b;
  163. }
  164. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  165. int i;
  166. if(w<32){
  167. for(i=0; i<w; i++){
  168. const int temp= src[i];
  169. dst[i]= temp - left;
  170. left= temp;
  171. }
  172. return left;
  173. }else{
  174. for(i=0; i<16; i++){
  175. const int temp= src[i];
  176. dst[i]= temp - left;
  177. left= temp;
  178. }
  179. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  180. return src[w-1];
  181. }
  182. }
  183. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  184. int i, val, repeat;
  185. for(i=0; i<256;){
  186. repeat= get_bits(gb, 3);
  187. val = get_bits(gb, 5);
  188. if(repeat==0)
  189. repeat= get_bits(gb, 8);
  190. //printf("%d %d\n", val, repeat);
  191. while (repeat--)
  192. dst[i++] = val;
  193. }
  194. }
  195. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  196. int len, index;
  197. uint32_t bits=0;
  198. for(len=32; len>0; len--){
  199. for(index=0; index<256; index++){
  200. if(len_table[index]==len)
  201. dst[index]= bits++;
  202. }
  203. if(bits & 1){
  204. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  205. return -1;
  206. }
  207. bits >>= 1;
  208. }
  209. return 0;
  210. }
  211. #ifdef CONFIG_ENCODERS
  212. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  213. uint64_t counts[2*size];
  214. int up[2*size];
  215. int offset, i, next;
  216. for(offset=1; ; offset<<=1){
  217. for(i=0; i<size; i++){
  218. counts[i]= stats[i] + offset - 1;
  219. }
  220. for(next=size; next<size*2; next++){
  221. uint64_t min1, min2;
  222. int min1_i, min2_i;
  223. min1=min2= INT64_MAX;
  224. min1_i= min2_i=-1;
  225. for(i=0; i<next; i++){
  226. if(min2 > counts[i]){
  227. if(min1 > counts[i]){
  228. min2= min1;
  229. min2_i= min1_i;
  230. min1= counts[i];
  231. min1_i= i;
  232. }else{
  233. min2= counts[i];
  234. min2_i= i;
  235. }
  236. }
  237. }
  238. if(min2==INT64_MAX) break;
  239. counts[next]= min1 + min2;
  240. counts[min1_i]=
  241. counts[min2_i]= INT64_MAX;
  242. up[min1_i]=
  243. up[min2_i]= next;
  244. up[next]= -1;
  245. }
  246. for(i=0; i<size; i++){
  247. int len;
  248. int index=i;
  249. for(len=0; up[index] != -1; len++)
  250. index= up[index];
  251. if(len >= 32) break;
  252. dst[i]= len;
  253. }
  254. if(i==size) break;
  255. }
  256. }
  257. #endif /* CONFIG_ENCODERS */
  258. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  259. GetBitContext gb;
  260. int i;
  261. init_get_bits(&gb, src, length*8);
  262. for(i=0; i<3; i++){
  263. read_len_table(s->len[i], &gb);
  264. if(generate_bits_table(s->bits[i], s->len[i])<0){
  265. return -1;
  266. }
  267. #if 0
  268. for(j=0; j<256; j++){
  269. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  270. }
  271. #endif
  272. free_vlc(&s->vlc[i]);
  273. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  274. }
  275. return (get_bits_count(&gb)+7)/8;
  276. }
  277. static int read_old_huffman_tables(HYuvContext *s){
  278. #if 1
  279. GetBitContext gb;
  280. int i;
  281. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  282. read_len_table(s->len[0], &gb);
  283. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  284. read_len_table(s->len[1], &gb);
  285. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  286. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  287. if(s->bitstream_bpp >= 24){
  288. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  289. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  290. }
  291. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  292. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  293. for(i=0; i<3; i++){
  294. free_vlc(&s->vlc[i]);
  295. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  296. }
  297. return 0;
  298. #else
  299. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  300. return -1;
  301. #endif
  302. }
  303. static void alloc_temp(HYuvContext *s){
  304. int i;
  305. if(s->bitstream_bpp<24){
  306. for(i=0; i<3; i++){
  307. s->temp[i]= av_malloc(s->width + 16);
  308. }
  309. }else{
  310. s->temp[0]= av_malloc(4*s->width + 16);
  311. }
  312. }
  313. static int common_init(AVCodecContext *avctx){
  314. HYuvContext *s = avctx->priv_data;
  315. s->avctx= avctx;
  316. s->flags= avctx->flags;
  317. dsputil_init(&s->dsp, avctx);
  318. s->width= avctx->width;
  319. s->height= avctx->height;
  320. assert(s->width>0 && s->height>0);
  321. return 0;
  322. }
  323. #ifdef CONFIG_DECODERS
  324. static int decode_init(AVCodecContext *avctx)
  325. {
  326. HYuvContext *s = avctx->priv_data;
  327. common_init(avctx);
  328. memset(s->vlc, 0, 3*sizeof(VLC));
  329. avctx->coded_frame= &s->picture;
  330. s->interlaced= s->height > 288;
  331. s->bgr32=1;
  332. //if(avctx->extradata)
  333. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  334. if(avctx->extradata_size){
  335. if((avctx->bits_per_sample&7) && avctx->bits_per_sample != 12)
  336. s->version=1; // do such files exist at all?
  337. else
  338. s->version=2;
  339. }else
  340. s->version=0;
  341. if(s->version==2){
  342. int method, interlace;
  343. method= ((uint8_t*)avctx->extradata)[0];
  344. s->decorrelate= method&64 ? 1 : 0;
  345. s->predictor= method&63;
  346. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  347. if(s->bitstream_bpp==0)
  348. s->bitstream_bpp= avctx->bits_per_sample&~7;
  349. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  350. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  351. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  352. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  353. return -1;
  354. }else{
  355. switch(avctx->bits_per_sample&7){
  356. case 1:
  357. s->predictor= LEFT;
  358. s->decorrelate= 0;
  359. break;
  360. case 2:
  361. s->predictor= LEFT;
  362. s->decorrelate= 1;
  363. break;
  364. case 3:
  365. s->predictor= PLANE;
  366. s->decorrelate= avctx->bits_per_sample >= 24;
  367. break;
  368. case 4:
  369. s->predictor= MEDIAN;
  370. s->decorrelate= 0;
  371. break;
  372. default:
  373. s->predictor= LEFT; //OLD
  374. s->decorrelate= 0;
  375. break;
  376. }
  377. s->bitstream_bpp= avctx->bits_per_sample & ~7;
  378. s->context= 0;
  379. if(read_old_huffman_tables(s) < 0)
  380. return -1;
  381. }
  382. switch(s->bitstream_bpp){
  383. case 12:
  384. avctx->pix_fmt = PIX_FMT_YUV420P;
  385. break;
  386. case 16:
  387. if(s->yuy2){
  388. avctx->pix_fmt = PIX_FMT_YUV422;
  389. }else{
  390. avctx->pix_fmt = PIX_FMT_YUV422P;
  391. }
  392. break;
  393. case 24:
  394. case 32:
  395. if(s->bgr32){
  396. avctx->pix_fmt = PIX_FMT_RGBA32;
  397. }else{
  398. avctx->pix_fmt = PIX_FMT_BGR24;
  399. }
  400. break;
  401. default:
  402. assert(0);
  403. }
  404. alloc_temp(s);
  405. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  406. return 0;
  407. }
  408. #endif
  409. #ifdef CONFIG_ENCODERS
  410. static int store_table(HYuvContext *s, uint8_t *len, uint8_t *buf){
  411. int i;
  412. int index= 0;
  413. for(i=0; i<256;){
  414. int val= len[i];
  415. int repeat=0;
  416. for(; i<256 && len[i]==val && repeat<255; i++)
  417. repeat++;
  418. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  419. if(repeat>7){
  420. buf[index++]= val;
  421. buf[index++]= repeat;
  422. }else{
  423. buf[index++]= val | (repeat<<5);
  424. }
  425. }
  426. return index;
  427. }
  428. static int encode_init(AVCodecContext *avctx)
  429. {
  430. HYuvContext *s = avctx->priv_data;
  431. int i, j;
  432. common_init(avctx);
  433. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  434. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  435. s->version=2;
  436. avctx->coded_frame= &s->picture;
  437. switch(avctx->pix_fmt){
  438. case PIX_FMT_YUV420P:
  439. s->bitstream_bpp= 12;
  440. break;
  441. case PIX_FMT_YUV422P:
  442. s->bitstream_bpp= 16;
  443. break;
  444. default:
  445. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  446. return -1;
  447. }
  448. avctx->bits_per_sample= s->bitstream_bpp;
  449. s->decorrelate= s->bitstream_bpp >= 24;
  450. s->predictor= avctx->prediction_method;
  451. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  452. if(avctx->context_model==1){
  453. s->context= avctx->context_model;
  454. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  455. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  456. return -1;
  457. }
  458. }else s->context= 0;
  459. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  460. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  461. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  462. return -1;
  463. }
  464. if(avctx->context_model){
  465. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  466. return -1;
  467. }
  468. if(s->interlaced != ( s->height > 288 ))
  469. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  470. }
  471. ((uint8_t*)avctx->extradata)[0]= s->predictor;
  472. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  473. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  474. if(s->context)
  475. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  476. ((uint8_t*)avctx->extradata)[3]= 0;
  477. s->avctx->extradata_size= 4;
  478. if(avctx->stats_in){
  479. char *p= avctx->stats_in;
  480. for(i=0; i<3; i++)
  481. for(j=0; j<256; j++)
  482. s->stats[i][j]= 1;
  483. for(;;){
  484. for(i=0; i<3; i++){
  485. char *next;
  486. for(j=0; j<256; j++){
  487. s->stats[i][j]+= strtol(p, &next, 0);
  488. if(next==p) return -1;
  489. p=next;
  490. }
  491. }
  492. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  493. }
  494. }else{
  495. for(i=0; i<3; i++)
  496. for(j=0; j<256; j++){
  497. int d= FFMIN(j, 256-j);
  498. s->stats[i][j]= 100000000/(d+1);
  499. }
  500. }
  501. for(i=0; i<3; i++){
  502. generate_len_table(s->len[i], s->stats[i], 256);
  503. if(generate_bits_table(s->bits[i], s->len[i])<0){
  504. return -1;
  505. }
  506. s->avctx->extradata_size+=
  507. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  508. }
  509. if(s->context){
  510. for(i=0; i<3; i++){
  511. int pels = s->width*s->height / (i?40:10);
  512. for(j=0; j<256; j++){
  513. int d= FFMIN(j, 256-j);
  514. s->stats[i][j]= pels/(d+1);
  515. }
  516. }
  517. }else{
  518. for(i=0; i<3; i++)
  519. for(j=0; j<256; j++)
  520. s->stats[i][j]= 0;
  521. }
  522. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  523. alloc_temp(s);
  524. s->picture_number=0;
  525. return 0;
  526. }
  527. #endif /* CONFIG_ENCODERS */
  528. static void decode_422_bitstream(HYuvContext *s, int count){
  529. int i;
  530. count/=2;
  531. for(i=0; i<count; i++){
  532. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  533. s->temp[1][ i ]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  534. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  535. s->temp[2][ i ]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  536. }
  537. }
  538. static void decode_gray_bitstream(HYuvContext *s, int count){
  539. int i;
  540. count/=2;
  541. for(i=0; i<count; i++){
  542. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  543. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  544. }
  545. }
  546. #ifdef CONFIG_ENCODERS
  547. static int encode_422_bitstream(HYuvContext *s, int count){
  548. int i;
  549. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  550. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  551. return -1;
  552. }
  553. count/=2;
  554. if(s->flags&CODEC_FLAG_PASS1){
  555. for(i=0; i<count; i++){
  556. s->stats[0][ s->temp[0][2*i ] ]++;
  557. s->stats[1][ s->temp[1][ i ] ]++;
  558. s->stats[0][ s->temp[0][2*i+1] ]++;
  559. s->stats[2][ s->temp[2][ i ] ]++;
  560. }
  561. }
  562. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  563. return 0;
  564. if(s->context){
  565. for(i=0; i<count; i++){
  566. s->stats[0][ s->temp[0][2*i ] ]++;
  567. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  568. s->stats[1][ s->temp[1][ i ] ]++;
  569. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  570. s->stats[0][ s->temp[0][2*i+1] ]++;
  571. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  572. s->stats[2][ s->temp[2][ i ] ]++;
  573. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  574. }
  575. }else{
  576. for(i=0; i<count; i++){
  577. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  578. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  579. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  580. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  581. }
  582. }
  583. return 0;
  584. }
  585. static int encode_gray_bitstream(HYuvContext *s, int count){
  586. int i;
  587. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  588. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  589. return -1;
  590. }
  591. count/=2;
  592. if(s->flags&CODEC_FLAG_PASS1){
  593. for(i=0; i<count; i++){
  594. s->stats[0][ s->temp[0][2*i ] ]++;
  595. s->stats[0][ s->temp[0][2*i+1] ]++;
  596. }
  597. }
  598. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  599. return 0;
  600. if(s->context){
  601. for(i=0; i<count; i++){
  602. s->stats[0][ s->temp[0][2*i ] ]++;
  603. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  604. s->stats[0][ s->temp[0][2*i+1] ]++;
  605. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  606. }
  607. }else{
  608. for(i=0; i<count; i++){
  609. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  610. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  611. }
  612. }
  613. return 0;
  614. }
  615. #endif /* CONFIG_ENCODERS */
  616. static void decode_bgr_bitstream(HYuvContext *s, int count){
  617. int i;
  618. if(s->decorrelate){
  619. if(s->bitstream_bpp==24){
  620. for(i=0; i<count; i++){
  621. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  622. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  623. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  624. }
  625. }else{
  626. for(i=0; i<count; i++){
  627. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  628. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  629. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  630. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  631. }
  632. }
  633. }else{
  634. if(s->bitstream_bpp==24){
  635. for(i=0; i<count; i++){
  636. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  637. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  638. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  639. }
  640. }else{
  641. for(i=0; i<count; i++){
  642. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  643. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  644. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  645. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  646. }
  647. }
  648. }
  649. }
  650. #ifdef CONFIG_DECODERS
  651. static void draw_slice(HYuvContext *s, int y){
  652. int h, cy;
  653. int offset[4];
  654. if(s->avctx->draw_horiz_band==NULL)
  655. return;
  656. h= y - s->last_slice_end;
  657. y -= h;
  658. if(s->bitstream_bpp==12){
  659. cy= y>>1;
  660. }else{
  661. cy= y;
  662. }
  663. offset[0] = s->picture.linesize[0]*y;
  664. offset[1] = s->picture.linesize[1]*cy;
  665. offset[2] = s->picture.linesize[2]*cy;
  666. offset[3] = 0;
  667. emms_c();
  668. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  669. s->last_slice_end= y + h;
  670. }
  671. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
  672. HYuvContext *s = avctx->priv_data;
  673. const int width= s->width;
  674. const int width2= s->width>>1;
  675. const int height= s->height;
  676. int fake_ystride, fake_ustride, fake_vstride;
  677. AVFrame * const p= &s->picture;
  678. int table_size= 0;
  679. AVFrame *picture = data;
  680. s->bitstream_buffer= av_fast_realloc(s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  681. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  682. if(p->data[0])
  683. avctx->release_buffer(avctx, p);
  684. p->reference= 0;
  685. if(avctx->get_buffer(avctx, p) < 0){
  686. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  687. return -1;
  688. }
  689. if(s->context){
  690. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  691. if(table_size < 0)
  692. return -1;
  693. }
  694. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  695. return -1;
  696. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  697. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  698. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  699. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  700. s->last_slice_end= 0;
  701. if(s->bitstream_bpp<24){
  702. int y, cy;
  703. int lefty, leftu, leftv;
  704. int lefttopy, lefttopu, lefttopv;
  705. if(s->yuy2){
  706. p->data[0][3]= get_bits(&s->gb, 8);
  707. p->data[0][2]= get_bits(&s->gb, 8);
  708. p->data[0][1]= get_bits(&s->gb, 8);
  709. p->data[0][0]= get_bits(&s->gb, 8);
  710. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  711. return -1;
  712. }else{
  713. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  714. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  715. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  716. p->data[0][0]= get_bits(&s->gb, 8);
  717. switch(s->predictor){
  718. case LEFT:
  719. case PLANE:
  720. decode_422_bitstream(s, width-2);
  721. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  722. if(!(s->flags&CODEC_FLAG_GRAY)){
  723. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  724. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  725. }
  726. for(cy=y=1; y<s->height; y++,cy++){
  727. uint8_t *ydst, *udst, *vdst;
  728. if(s->bitstream_bpp==12){
  729. decode_gray_bitstream(s, width);
  730. ydst= p->data[0] + p->linesize[0]*y;
  731. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  732. if(s->predictor == PLANE){
  733. if(y>s->interlaced)
  734. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  735. }
  736. y++;
  737. if(y>=s->height) break;
  738. }
  739. draw_slice(s, y);
  740. ydst= p->data[0] + p->linesize[0]*y;
  741. udst= p->data[1] + p->linesize[1]*cy;
  742. vdst= p->data[2] + p->linesize[2]*cy;
  743. decode_422_bitstream(s, width);
  744. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  745. if(!(s->flags&CODEC_FLAG_GRAY)){
  746. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  747. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  748. }
  749. if(s->predictor == PLANE){
  750. if(cy>s->interlaced){
  751. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  752. if(!(s->flags&CODEC_FLAG_GRAY)){
  753. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  754. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  755. }
  756. }
  757. }
  758. }
  759. draw_slice(s, height);
  760. break;
  761. case MEDIAN:
  762. /* first line except first 2 pixels is left predicted */
  763. decode_422_bitstream(s, width-2);
  764. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  765. if(!(s->flags&CODEC_FLAG_GRAY)){
  766. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  767. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  768. }
  769. cy=y=1;
  770. /* second line is left predicted for interlaced case */
  771. if(s->interlaced){
  772. decode_422_bitstream(s, width);
  773. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  774. if(!(s->flags&CODEC_FLAG_GRAY)){
  775. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  776. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  777. }
  778. y++; cy++;
  779. }
  780. /* next 4 pixels are left predicted too */
  781. decode_422_bitstream(s, 4);
  782. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  783. if(!(s->flags&CODEC_FLAG_GRAY)){
  784. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  785. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  786. }
  787. /* next line except the first 4 pixels is median predicted */
  788. lefttopy= p->data[0][3];
  789. decode_422_bitstream(s, width-4);
  790. add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  791. if(!(s->flags&CODEC_FLAG_GRAY)){
  792. lefttopu= p->data[1][1];
  793. lefttopv= p->data[2][1];
  794. add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  795. add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  796. }
  797. y++; cy++;
  798. for(; y<height; y++,cy++){
  799. uint8_t *ydst, *udst, *vdst;
  800. if(s->bitstream_bpp==12){
  801. while(2*cy > y){
  802. decode_gray_bitstream(s, width);
  803. ydst= p->data[0] + p->linesize[0]*y;
  804. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  805. y++;
  806. }
  807. if(y>=height) break;
  808. }
  809. draw_slice(s, y);
  810. decode_422_bitstream(s, width);
  811. ydst= p->data[0] + p->linesize[0]*y;
  812. udst= p->data[1] + p->linesize[1]*cy;
  813. vdst= p->data[2] + p->linesize[2]*cy;
  814. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  815. if(!(s->flags&CODEC_FLAG_GRAY)){
  816. add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  817. add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  818. }
  819. }
  820. draw_slice(s, height);
  821. break;
  822. }
  823. }
  824. }else{
  825. int y;
  826. int leftr, leftg, leftb;
  827. const int last_line= (height-1)*p->linesize[0];
  828. if(s->bitstream_bpp==32){
  829. skip_bits(&s->gb, 8);
  830. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  831. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  832. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  833. }else{
  834. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  835. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  836. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  837. skip_bits(&s->gb, 8);
  838. }
  839. if(s->bgr32){
  840. switch(s->predictor){
  841. case LEFT:
  842. case PLANE:
  843. decode_bgr_bitstream(s, width-1);
  844. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  845. for(y=s->height-2; y>=0; y--){ //yes its stored upside down
  846. decode_bgr_bitstream(s, width);
  847. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  848. if(s->predictor == PLANE){
  849. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  850. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  851. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  852. }
  853. }
  854. }
  855. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  856. break;
  857. default:
  858. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  859. }
  860. }else{
  861. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  862. return -1;
  863. }
  864. }
  865. emms_c();
  866. *picture= *p;
  867. *data_size = sizeof(AVFrame);
  868. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  869. }
  870. #endif
  871. static int common_end(HYuvContext *s){
  872. int i;
  873. for(i=0; i<3; i++){
  874. av_freep(&s->temp[i]);
  875. }
  876. return 0;
  877. }
  878. #ifdef CONFIG_DECODERS
  879. static int decode_end(AVCodecContext *avctx)
  880. {
  881. HYuvContext *s = avctx->priv_data;
  882. int i;
  883. common_end(s);
  884. av_freep(&s->bitstream_buffer);
  885. for(i=0; i<3; i++){
  886. free_vlc(&s->vlc[i]);
  887. }
  888. return 0;
  889. }
  890. #endif
  891. #ifdef CONFIG_ENCODERS
  892. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  893. HYuvContext *s = avctx->priv_data;
  894. AVFrame *pict = data;
  895. const int width= s->width;
  896. const int width2= s->width>>1;
  897. const int height= s->height;
  898. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  899. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  900. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  901. AVFrame * const p= &s->picture;
  902. int i, j, size=0;
  903. *p = *pict;
  904. p->pict_type= FF_I_TYPE;
  905. p->key_frame= 1;
  906. if(s->context){
  907. for(i=0; i<3; i++){
  908. generate_len_table(s->len[i], s->stats[i], 256);
  909. if(generate_bits_table(s->bits[i], s->len[i])<0)
  910. return -1;
  911. size+= store_table(s, s->len[i], &buf[size]);
  912. }
  913. for(i=0; i<3; i++)
  914. for(j=0; j<256; j++)
  915. s->stats[i][j] >>= 1;
  916. }
  917. init_put_bits(&s->pb, buf+size, buf_size-size);
  918. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  919. int lefty, leftu, leftv, y, cy;
  920. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  921. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  922. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  923. put_bits(&s->pb, 8, p->data[0][0]);
  924. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  925. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  926. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  927. encode_422_bitstream(s, width-2);
  928. if(s->predictor==MEDIAN){
  929. int lefttopy, lefttopu, lefttopv;
  930. cy=y=1;
  931. if(s->interlaced){
  932. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  933. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  934. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  935. encode_422_bitstream(s, width);
  936. y++; cy++;
  937. }
  938. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  939. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  940. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  941. encode_422_bitstream(s, 4);
  942. lefttopy= p->data[0][3];
  943. lefttopu= p->data[1][1];
  944. lefttopv= p->data[2][1];
  945. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  946. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  947. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  948. encode_422_bitstream(s, width-4);
  949. y++; cy++;
  950. for(; y<height; y++,cy++){
  951. uint8_t *ydst, *udst, *vdst;
  952. if(s->bitstream_bpp==12){
  953. while(2*cy > y){
  954. ydst= p->data[0] + p->linesize[0]*y;
  955. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  956. encode_gray_bitstream(s, width);
  957. y++;
  958. }
  959. if(y>=height) break;
  960. }
  961. ydst= p->data[0] + p->linesize[0]*y;
  962. udst= p->data[1] + p->linesize[1]*cy;
  963. vdst= p->data[2] + p->linesize[2]*cy;
  964. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  965. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  966. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  967. encode_422_bitstream(s, width);
  968. }
  969. }else{
  970. for(cy=y=1; y<height; y++,cy++){
  971. uint8_t *ydst, *udst, *vdst;
  972. /* encode a luma only line & y++ */
  973. if(s->bitstream_bpp==12){
  974. ydst= p->data[0] + p->linesize[0]*y;
  975. if(s->predictor == PLANE && s->interlaced < y){
  976. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  977. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  978. }else{
  979. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  980. }
  981. encode_gray_bitstream(s, width);
  982. y++;
  983. if(y>=height) break;
  984. }
  985. ydst= p->data[0] + p->linesize[0]*y;
  986. udst= p->data[1] + p->linesize[1]*cy;
  987. vdst= p->data[2] + p->linesize[2]*cy;
  988. if(s->predictor == PLANE && s->interlaced < cy){
  989. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  990. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  991. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  992. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  993. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  994. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  995. }else{
  996. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  997. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  998. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  999. }
  1000. encode_422_bitstream(s, width);
  1001. }
  1002. }
  1003. }else{
  1004. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1005. }
  1006. emms_c();
  1007. size+= (put_bits_count(&s->pb)+31)/8;
  1008. size/= 4;
  1009. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1010. int j;
  1011. char *p= avctx->stats_out;
  1012. char *end= p + 1024*30;
  1013. for(i=0; i<3; i++){
  1014. for(j=0; j<256; j++){
  1015. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1016. p+= strlen(p);
  1017. s->stats[i][j]= 0;
  1018. }
  1019. snprintf(p, end-p, "\n");
  1020. p++;
  1021. }
  1022. }
  1023. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1024. flush_put_bits(&s->pb);
  1025. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  1026. avctx->stats_out[0] = '\0';
  1027. }
  1028. s->picture_number++;
  1029. return size*4;
  1030. }
  1031. static int encode_end(AVCodecContext *avctx)
  1032. {
  1033. HYuvContext *s = avctx->priv_data;
  1034. common_end(s);
  1035. av_freep(&avctx->extradata);
  1036. av_freep(&avctx->stats_out);
  1037. return 0;
  1038. }
  1039. #endif /* CONFIG_ENCODERS */
  1040. #ifdef CONFIG_DECODERS
  1041. AVCodec huffyuv_decoder = {
  1042. "huffyuv",
  1043. CODEC_TYPE_VIDEO,
  1044. CODEC_ID_HUFFYUV,
  1045. sizeof(HYuvContext),
  1046. decode_init,
  1047. NULL,
  1048. decode_end,
  1049. decode_frame,
  1050. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1051. NULL
  1052. };
  1053. AVCodec ffvhuff_decoder = {
  1054. "ffvhuff",
  1055. CODEC_TYPE_VIDEO,
  1056. CODEC_ID_FFVHUFF,
  1057. sizeof(HYuvContext),
  1058. decode_init,
  1059. NULL,
  1060. decode_end,
  1061. decode_frame,
  1062. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1063. NULL
  1064. };
  1065. #endif
  1066. #ifdef CONFIG_ENCODERS
  1067. AVCodec huffyuv_encoder = {
  1068. "huffyuv",
  1069. CODEC_TYPE_VIDEO,
  1070. CODEC_ID_HUFFYUV,
  1071. sizeof(HYuvContext),
  1072. encode_init,
  1073. encode_frame,
  1074. encode_end,
  1075. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV422P, -1},
  1076. };
  1077. AVCodec ffvhuff_encoder = {
  1078. "ffvhuff",
  1079. CODEC_TYPE_VIDEO,
  1080. CODEC_ID_FFVHUFF,
  1081. sizeof(HYuvContext),
  1082. encode_init,
  1083. encode_frame,
  1084. encode_end,
  1085. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, -1},
  1086. };
  1087. #endif //CONFIG_ENCODERS