You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3393 lines
126KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "internal.h"
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "h264.h"
  31. #include "h264data.h"
  32. #include "h264_mvpred.h"
  33. #include "h264_parser.h"
  34. #include "golomb.h"
  35. #include "mathops.h"
  36. #include "rectangle.h"
  37. #include "vdpau_internal.h"
  38. #include "cabac.h"
  39. //#undef NDEBUG
  40. #include <assert.h>
  41. static const uint8_t rem6[52]={
  42. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
  43. };
  44. static const uint8_t div6[52]={
  45. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
  46. };
  47. void ff_h264_write_back_intra_pred_mode(H264Context *h){
  48. int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[h->mb_xy];
  49. AV_COPY32(mode, h->intra4x4_pred_mode_cache + 4 + 8*4);
  50. mode[4]= h->intra4x4_pred_mode_cache[7+8*3];
  51. mode[5]= h->intra4x4_pred_mode_cache[7+8*2];
  52. mode[6]= h->intra4x4_pred_mode_cache[7+8*1];
  53. }
  54. /**
  55. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  56. */
  57. int ff_h264_check_intra4x4_pred_mode(H264Context *h){
  58. MpegEncContext * const s = &h->s;
  59. static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
  60. static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
  61. int i;
  62. if(!(h->top_samples_available&0x8000)){
  63. for(i=0; i<4; i++){
  64. int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
  65. if(status<0){
  66. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  67. return -1;
  68. } else if(status){
  69. h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
  70. }
  71. }
  72. }
  73. if((h->left_samples_available&0x8888)!=0x8888){
  74. static const int mask[4]={0x8000,0x2000,0x80,0x20};
  75. for(i=0; i<4; i++){
  76. if(!(h->left_samples_available&mask[i])){
  77. int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
  78. if(status<0){
  79. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  80. return -1;
  81. } else if(status){
  82. h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
  83. }
  84. }
  85. }
  86. }
  87. return 0;
  88. } //FIXME cleanup like ff_h264_check_intra_pred_mode
  89. /**
  90. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  91. */
  92. int ff_h264_check_intra_pred_mode(H264Context *h, int mode){
  93. MpegEncContext * const s = &h->s;
  94. static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
  95. static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
  96. if(mode > 6U) {
  97. av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
  98. return -1;
  99. }
  100. if(!(h->top_samples_available&0x8000)){
  101. mode= top[ mode ];
  102. if(mode<0){
  103. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  104. return -1;
  105. }
  106. }
  107. if((h->left_samples_available&0x8080) != 0x8080){
  108. mode= left[ mode ];
  109. if(h->left_samples_available&0x8080){ //mad cow disease mode, aka MBAFF + constrained_intra_pred
  110. mode= ALZHEIMER_DC_L0T_PRED8x8 + (!(h->left_samples_available&0x8000)) + 2*(mode == DC_128_PRED8x8);
  111. }
  112. if(mode<0){
  113. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  114. return -1;
  115. }
  116. }
  117. return mode;
  118. }
  119. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){
  120. int i, si, di;
  121. uint8_t *dst;
  122. int bufidx;
  123. // src[0]&0x80; //forbidden bit
  124. h->nal_ref_idc= src[0]>>5;
  125. h->nal_unit_type= src[0]&0x1F;
  126. src++; length--;
  127. #if 0
  128. for(i=0; i<length; i++)
  129. printf("%2X ", src[i]);
  130. #endif
  131. #if HAVE_FAST_UNALIGNED
  132. # if HAVE_FAST_64BIT
  133. # define RS 7
  134. for(i=0; i+1<length; i+=9){
  135. if(!((~AV_RN64A(src+i) & (AV_RN64A(src+i) - 0x0100010001000101ULL)) & 0x8000800080008080ULL))
  136. # else
  137. # define RS 3
  138. for(i=0; i+1<length; i+=5){
  139. if(!((~AV_RN32A(src+i) & (AV_RN32A(src+i) - 0x01000101U)) & 0x80008080U))
  140. # endif
  141. continue;
  142. if(i>0 && !src[i]) i--;
  143. while(src[i]) i++;
  144. #else
  145. # define RS 0
  146. for(i=0; i+1<length; i+=2){
  147. if(src[i]) continue;
  148. if(i>0 && src[i-1]==0) i--;
  149. #endif
  150. if(i+2<length && src[i+1]==0 && src[i+2]<=3){
  151. if(src[i+2]!=3){
  152. /* startcode, so we must be past the end */
  153. length=i;
  154. }
  155. break;
  156. }
  157. i-= RS;
  158. }
  159. if(i>=length-1){ //no escaped 0
  160. *dst_length= length;
  161. *consumed= length+1; //+1 for the header
  162. return src;
  163. }
  164. bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
  165. av_fast_malloc(&h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length+FF_INPUT_BUFFER_PADDING_SIZE);
  166. dst= h->rbsp_buffer[bufidx];
  167. if (dst == NULL){
  168. return NULL;
  169. }
  170. //printf("decoding esc\n");
  171. memcpy(dst, src, i);
  172. si=di=i;
  173. while(si+2<length){
  174. //remove escapes (very rare 1:2^22)
  175. if(src[si+2]>3){
  176. dst[di++]= src[si++];
  177. dst[di++]= src[si++];
  178. }else if(src[si]==0 && src[si+1]==0){
  179. if(src[si+2]==3){ //escape
  180. dst[di++]= 0;
  181. dst[di++]= 0;
  182. si+=3;
  183. continue;
  184. }else //next start code
  185. goto nsc;
  186. }
  187. dst[di++]= src[si++];
  188. }
  189. while(si<length)
  190. dst[di++]= src[si++];
  191. nsc:
  192. memset(dst+di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  193. *dst_length= di;
  194. *consumed= si + 1;//+1 for the header
  195. //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
  196. return dst;
  197. }
  198. int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src){
  199. int v= *src;
  200. int r;
  201. tprintf(h->s.avctx, "rbsp trailing %X\n", v);
  202. for(r=1; r<9; r++){
  203. if(v&1) return r;
  204. v>>=1;
  205. }
  206. return 0;
  207. }
  208. /**
  209. * IDCT transforms the 16 dc values and dequantizes them.
  210. * @param qp quantization parameter
  211. */
  212. static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  213. #define stride 16
  214. int i;
  215. int temp[16]; //FIXME check if this is a good idea
  216. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  217. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  218. //memset(block, 64, 2*256);
  219. //return;
  220. for(i=0; i<4; i++){
  221. const int offset= y_offset[i];
  222. const int z0= block[offset+stride*0] + block[offset+stride*4];
  223. const int z1= block[offset+stride*0] - block[offset+stride*4];
  224. const int z2= block[offset+stride*1] - block[offset+stride*5];
  225. const int z3= block[offset+stride*1] + block[offset+stride*5];
  226. temp[4*i+0]= z0+z3;
  227. temp[4*i+1]= z1+z2;
  228. temp[4*i+2]= z1-z2;
  229. temp[4*i+3]= z0-z3;
  230. }
  231. for(i=0; i<4; i++){
  232. const int offset= x_offset[i];
  233. const int z0= temp[4*0+i] + temp[4*2+i];
  234. const int z1= temp[4*0+i] - temp[4*2+i];
  235. const int z2= temp[4*1+i] - temp[4*3+i];
  236. const int z3= temp[4*1+i] + temp[4*3+i];
  237. block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_residual
  238. block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
  239. block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
  240. block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
  241. }
  242. }
  243. #if 0
  244. /**
  245. * DCT transforms the 16 dc values.
  246. * @param qp quantization parameter ??? FIXME
  247. */
  248. static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
  249. // const int qmul= dequant_coeff[qp][0];
  250. int i;
  251. int temp[16]; //FIXME check if this is a good idea
  252. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  253. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  254. for(i=0; i<4; i++){
  255. const int offset= y_offset[i];
  256. const int z0= block[offset+stride*0] + block[offset+stride*4];
  257. const int z1= block[offset+stride*0] - block[offset+stride*4];
  258. const int z2= block[offset+stride*1] - block[offset+stride*5];
  259. const int z3= block[offset+stride*1] + block[offset+stride*5];
  260. temp[4*i+0]= z0+z3;
  261. temp[4*i+1]= z1+z2;
  262. temp[4*i+2]= z1-z2;
  263. temp[4*i+3]= z0-z3;
  264. }
  265. for(i=0; i<4; i++){
  266. const int offset= x_offset[i];
  267. const int z0= temp[4*0+i] + temp[4*2+i];
  268. const int z1= temp[4*0+i] - temp[4*2+i];
  269. const int z2= temp[4*1+i] - temp[4*3+i];
  270. const int z3= temp[4*1+i] + temp[4*3+i];
  271. block[stride*0 +offset]= (z0 + z3)>>1;
  272. block[stride*2 +offset]= (z1 + z2)>>1;
  273. block[stride*8 +offset]= (z1 - z2)>>1;
  274. block[stride*10+offset]= (z0 - z3)>>1;
  275. }
  276. }
  277. #endif
  278. #undef xStride
  279. #undef stride
  280. static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  281. const int stride= 16*2;
  282. const int xStride= 16;
  283. int a,b,c,d,e;
  284. a= block[stride*0 + xStride*0];
  285. b= block[stride*0 + xStride*1];
  286. c= block[stride*1 + xStride*0];
  287. d= block[stride*1 + xStride*1];
  288. e= a-b;
  289. a= a+b;
  290. b= c-d;
  291. c= c+d;
  292. block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
  293. block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
  294. block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
  295. block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
  296. }
  297. #if 0
  298. static void chroma_dc_dct_c(DCTELEM *block){
  299. const int stride= 16*2;
  300. const int xStride= 16;
  301. int a,b,c,d,e;
  302. a= block[stride*0 + xStride*0];
  303. b= block[stride*0 + xStride*1];
  304. c= block[stride*1 + xStride*0];
  305. d= block[stride*1 + xStride*1];
  306. e= a-b;
  307. a= a+b;
  308. b= c-d;
  309. c= c+d;
  310. block[stride*0 + xStride*0]= (a+c);
  311. block[stride*0 + xStride*1]= (e+b);
  312. block[stride*1 + xStride*0]= (a-c);
  313. block[stride*1 + xStride*1]= (e-b);
  314. }
  315. #endif
  316. static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
  317. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  318. int src_x_offset, int src_y_offset,
  319. qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
  320. MpegEncContext * const s = &h->s;
  321. const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
  322. int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
  323. const int luma_xy= (mx&3) + ((my&3)<<2);
  324. uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
  325. uint8_t * src_cb, * src_cr;
  326. int extra_width= h->emu_edge_width;
  327. int extra_height= h->emu_edge_height;
  328. int emu=0;
  329. const int full_mx= mx>>2;
  330. const int full_my= my>>2;
  331. const int pic_width = 16*s->mb_width;
  332. const int pic_height = 16*s->mb_height >> MB_FIELD;
  333. if(mx&7) extra_width -= 3;
  334. if(my&7) extra_height -= 3;
  335. if( full_mx < 0-extra_width
  336. || full_my < 0-extra_height
  337. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  338. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  339. ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  340. src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
  341. emu=1;
  342. }
  343. qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
  344. if(!square){
  345. qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
  346. }
  347. if(CONFIG_GRAY && s->flags&CODEC_FLAG_GRAY) return;
  348. if(MB_FIELD){
  349. // chroma offset when predicting from a field of opposite parity
  350. my += 2 * ((s->mb_y & 1) - (pic->reference - 1));
  351. emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
  352. }
  353. src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  354. src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  355. if(emu){
  356. ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  357. src_cb= s->edge_emu_buffer;
  358. }
  359. chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  360. if(emu){
  361. ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  362. src_cr= s->edge_emu_buffer;
  363. }
  364. chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  365. }
  366. static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
  367. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  368. int x_offset, int y_offset,
  369. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  370. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  371. int list0, int list1){
  372. MpegEncContext * const s = &h->s;
  373. qpel_mc_func *qpix_op= qpix_put;
  374. h264_chroma_mc_func chroma_op= chroma_put;
  375. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  376. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  377. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  378. x_offset += 8*s->mb_x;
  379. y_offset += 8*(s->mb_y >> MB_FIELD);
  380. if(list0){
  381. Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
  382. mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
  383. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  384. qpix_op, chroma_op);
  385. qpix_op= qpix_avg;
  386. chroma_op= chroma_avg;
  387. }
  388. if(list1){
  389. Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
  390. mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
  391. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  392. qpix_op, chroma_op);
  393. }
  394. }
  395. static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
  396. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  397. int x_offset, int y_offset,
  398. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  399. h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
  400. h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
  401. int list0, int list1){
  402. MpegEncContext * const s = &h->s;
  403. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  404. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  405. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  406. x_offset += 8*s->mb_x;
  407. y_offset += 8*(s->mb_y >> MB_FIELD);
  408. if(list0 && list1){
  409. /* don't optimize for luma-only case, since B-frames usually
  410. * use implicit weights => chroma too. */
  411. uint8_t *tmp_cb = s->obmc_scratchpad;
  412. uint8_t *tmp_cr = s->obmc_scratchpad + 8;
  413. uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
  414. int refn0 = h->ref_cache[0][ scan8[n] ];
  415. int refn1 = h->ref_cache[1][ scan8[n] ];
  416. mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
  417. dest_y, dest_cb, dest_cr,
  418. x_offset, y_offset, qpix_put, chroma_put);
  419. mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
  420. tmp_y, tmp_cb, tmp_cr,
  421. x_offset, y_offset, qpix_put, chroma_put);
  422. if(h->use_weight == 2){
  423. int weight0 = h->implicit_weight[refn0][refn1][s->mb_y&1];
  424. int weight1 = 64 - weight0;
  425. luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
  426. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
  427. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
  428. }else{
  429. luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
  430. h->luma_weight[refn0][0][0] , h->luma_weight[refn1][1][0],
  431. h->luma_weight[refn0][0][1] + h->luma_weight[refn1][1][1]);
  432. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  433. h->chroma_weight[refn0][0][0][0] , h->chroma_weight[refn1][1][0][0],
  434. h->chroma_weight[refn0][0][0][1] + h->chroma_weight[refn1][1][0][1]);
  435. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  436. h->chroma_weight[refn0][0][1][0] , h->chroma_weight[refn1][1][1][0],
  437. h->chroma_weight[refn0][0][1][1] + h->chroma_weight[refn1][1][1][1]);
  438. }
  439. }else{
  440. int list = list1 ? 1 : 0;
  441. int refn = h->ref_cache[list][ scan8[n] ];
  442. Picture *ref= &h->ref_list[list][refn];
  443. mc_dir_part(h, ref, n, square, chroma_height, delta, list,
  444. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  445. qpix_put, chroma_put);
  446. luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
  447. h->luma_weight[refn][list][0], h->luma_weight[refn][list][1]);
  448. if(h->use_weight_chroma){
  449. chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  450. h->chroma_weight[refn][list][0][0], h->chroma_weight[refn][list][0][1]);
  451. chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  452. h->chroma_weight[refn][list][1][0], h->chroma_weight[refn][list][1][1]);
  453. }
  454. }
  455. }
  456. static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
  457. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  458. int x_offset, int y_offset,
  459. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  460. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  461. h264_weight_func *weight_op, h264_biweight_func *weight_avg,
  462. int list0, int list1){
  463. if((h->use_weight==2 && list0 && list1
  464. && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ][h->s.mb_y&1] != 32))
  465. || h->use_weight==1)
  466. mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  467. x_offset, y_offset, qpix_put, chroma_put,
  468. weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
  469. else
  470. mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  471. x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
  472. }
  473. static inline void prefetch_motion(H264Context *h, int list){
  474. /* fetch pixels for estimated mv 4 macroblocks ahead
  475. * optimized for 64byte cache lines */
  476. MpegEncContext * const s = &h->s;
  477. const int refn = h->ref_cache[list][scan8[0]];
  478. if(refn >= 0){
  479. const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
  480. const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
  481. uint8_t **src= h->ref_list[list][refn].data;
  482. int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
  483. s->dsp.prefetch(src[0]+off, s->linesize, 4);
  484. off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
  485. s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
  486. }
  487. }
  488. static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  489. qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
  490. qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
  491. h264_weight_func *weight_op, h264_biweight_func *weight_avg){
  492. MpegEncContext * const s = &h->s;
  493. const int mb_xy= h->mb_xy;
  494. const int mb_type= s->current_picture.mb_type[mb_xy];
  495. assert(IS_INTER(mb_type));
  496. prefetch_motion(h, 0);
  497. if(IS_16X16(mb_type)){
  498. mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
  499. qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
  500. weight_op, weight_avg,
  501. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  502. }else if(IS_16X8(mb_type)){
  503. mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
  504. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  505. &weight_op[1], &weight_avg[1],
  506. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  507. mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
  508. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  509. &weight_op[1], &weight_avg[1],
  510. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  511. }else if(IS_8X16(mb_type)){
  512. mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
  513. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  514. &weight_op[2], &weight_avg[2],
  515. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  516. mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
  517. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  518. &weight_op[2], &weight_avg[2],
  519. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  520. }else{
  521. int i;
  522. assert(IS_8X8(mb_type));
  523. for(i=0; i<4; i++){
  524. const int sub_mb_type= h->sub_mb_type[i];
  525. const int n= 4*i;
  526. int x_offset= (i&1)<<2;
  527. int y_offset= (i&2)<<1;
  528. if(IS_SUB_8X8(sub_mb_type)){
  529. mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  530. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  531. &weight_op[3], &weight_avg[3],
  532. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  533. }else if(IS_SUB_8X4(sub_mb_type)){
  534. mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  535. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  536. &weight_op[4], &weight_avg[4],
  537. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  538. mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
  539. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  540. &weight_op[4], &weight_avg[4],
  541. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  542. }else if(IS_SUB_4X8(sub_mb_type)){
  543. mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  544. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  545. &weight_op[5], &weight_avg[5],
  546. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  547. mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
  548. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  549. &weight_op[5], &weight_avg[5],
  550. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  551. }else{
  552. int j;
  553. assert(IS_SUB_4X4(sub_mb_type));
  554. for(j=0; j<4; j++){
  555. int sub_x_offset= x_offset + 2*(j&1);
  556. int sub_y_offset= y_offset + (j&2);
  557. mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
  558. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  559. &weight_op[6], &weight_avg[6],
  560. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  561. }
  562. }
  563. }
  564. }
  565. prefetch_motion(h, 1);
  566. }
  567. static void free_tables(H264Context *h){
  568. int i;
  569. H264Context *hx;
  570. av_freep(&h->intra4x4_pred_mode);
  571. av_freep(&h->chroma_pred_mode_table);
  572. av_freep(&h->cbp_table);
  573. av_freep(&h->mvd_table[0]);
  574. av_freep(&h->mvd_table[1]);
  575. av_freep(&h->direct_table);
  576. av_freep(&h->non_zero_count);
  577. av_freep(&h->slice_table_base);
  578. h->slice_table= NULL;
  579. av_freep(&h->list_counts);
  580. av_freep(&h->mb2b_xy);
  581. av_freep(&h->mb2br_xy);
  582. for(i = 0; i < MAX_THREADS; i++) {
  583. hx = h->thread_context[i];
  584. if(!hx) continue;
  585. av_freep(&hx->top_borders[1]);
  586. av_freep(&hx->top_borders[0]);
  587. av_freep(&hx->s.obmc_scratchpad);
  588. av_freep(&hx->rbsp_buffer[1]);
  589. av_freep(&hx->rbsp_buffer[0]);
  590. hx->rbsp_buffer_size[0] = 0;
  591. hx->rbsp_buffer_size[1] = 0;
  592. if (i) av_freep(&h->thread_context[i]);
  593. }
  594. }
  595. static void init_dequant8_coeff_table(H264Context *h){
  596. int i,q,x;
  597. const int transpose = (h->h264dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
  598. h->dequant8_coeff[0] = h->dequant8_buffer[0];
  599. h->dequant8_coeff[1] = h->dequant8_buffer[1];
  600. for(i=0; i<2; i++ ){
  601. if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
  602. h->dequant8_coeff[1] = h->dequant8_buffer[0];
  603. break;
  604. }
  605. for(q=0; q<52; q++){
  606. int shift = div6[q];
  607. int idx = rem6[q];
  608. for(x=0; x<64; x++)
  609. h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
  610. ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
  611. h->pps.scaling_matrix8[i][x]) << shift;
  612. }
  613. }
  614. }
  615. static void init_dequant4_coeff_table(H264Context *h){
  616. int i,j,q,x;
  617. const int transpose = (h->h264dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
  618. for(i=0; i<6; i++ ){
  619. h->dequant4_coeff[i] = h->dequant4_buffer[i];
  620. for(j=0; j<i; j++){
  621. if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
  622. h->dequant4_coeff[i] = h->dequant4_buffer[j];
  623. break;
  624. }
  625. }
  626. if(j<i)
  627. continue;
  628. for(q=0; q<52; q++){
  629. int shift = div6[q] + 2;
  630. int idx = rem6[q];
  631. for(x=0; x<16; x++)
  632. h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
  633. ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
  634. h->pps.scaling_matrix4[i][x]) << shift;
  635. }
  636. }
  637. }
  638. static void init_dequant_tables(H264Context *h){
  639. int i,x;
  640. init_dequant4_coeff_table(h);
  641. if(h->pps.transform_8x8_mode)
  642. init_dequant8_coeff_table(h);
  643. if(h->sps.transform_bypass){
  644. for(i=0; i<6; i++)
  645. for(x=0; x<16; x++)
  646. h->dequant4_coeff[i][0][x] = 1<<6;
  647. if(h->pps.transform_8x8_mode)
  648. for(i=0; i<2; i++)
  649. for(x=0; x<64; x++)
  650. h->dequant8_coeff[i][0][x] = 1<<6;
  651. }
  652. }
  653. int ff_h264_alloc_tables(H264Context *h){
  654. MpegEncContext * const s = &h->s;
  655. const int big_mb_num= s->mb_stride * (s->mb_height+1);
  656. const int row_mb_num= 2*s->mb_stride*s->avctx->thread_count;
  657. int x,y;
  658. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->intra4x4_pred_mode, row_mb_num * 8 * sizeof(uint8_t), fail)
  659. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->non_zero_count , big_mb_num * 32 * sizeof(uint8_t), fail)
  660. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base), fail)
  661. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->cbp_table, big_mb_num * sizeof(uint16_t), fail)
  662. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t), fail)
  663. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[0], 16*row_mb_num * sizeof(uint8_t), fail);
  664. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[1], 16*row_mb_num * sizeof(uint8_t), fail);
  665. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->direct_table, 4*big_mb_num * sizeof(uint8_t) , fail);
  666. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->list_counts, big_mb_num * sizeof(uint8_t), fail)
  667. memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base));
  668. h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
  669. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2b_xy , big_mb_num * sizeof(uint32_t), fail);
  670. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2br_xy , big_mb_num * sizeof(uint32_t), fail);
  671. for(y=0; y<s->mb_height; y++){
  672. for(x=0; x<s->mb_width; x++){
  673. const int mb_xy= x + y*s->mb_stride;
  674. const int b_xy = 4*x + 4*y*h->b_stride;
  675. h->mb2b_xy [mb_xy]= b_xy;
  676. h->mb2br_xy[mb_xy]= 8*(FMO ? mb_xy : (mb_xy % (2*s->mb_stride)));
  677. }
  678. }
  679. s->obmc_scratchpad = NULL;
  680. if(!h->dequant4_coeff[0])
  681. init_dequant_tables(h);
  682. return 0;
  683. fail:
  684. free_tables(h);
  685. return -1;
  686. }
  687. /**
  688. * Mimic alloc_tables(), but for every context thread.
  689. */
  690. static void clone_tables(H264Context *dst, H264Context *src, int i){
  691. MpegEncContext * const s = &src->s;
  692. dst->intra4x4_pred_mode = src->intra4x4_pred_mode + i*8*2*s->mb_stride;
  693. dst->non_zero_count = src->non_zero_count;
  694. dst->slice_table = src->slice_table;
  695. dst->cbp_table = src->cbp_table;
  696. dst->mb2b_xy = src->mb2b_xy;
  697. dst->mb2br_xy = src->mb2br_xy;
  698. dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
  699. dst->mvd_table[0] = src->mvd_table[0] + i*8*2*s->mb_stride;
  700. dst->mvd_table[1] = src->mvd_table[1] + i*8*2*s->mb_stride;
  701. dst->direct_table = src->direct_table;
  702. dst->list_counts = src->list_counts;
  703. dst->s.obmc_scratchpad = NULL;
  704. ff_h264_pred_init(&dst->hpc, src->s.codec_id);
  705. }
  706. /**
  707. * Init context
  708. * Allocate buffers which are not shared amongst multiple threads.
  709. */
  710. static int context_init(H264Context *h){
  711. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t), fail)
  712. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t), fail)
  713. h->ref_cache[0][scan8[5 ]+1] = h->ref_cache[0][scan8[7 ]+1] = h->ref_cache[0][scan8[13]+1] =
  714. h->ref_cache[1][scan8[5 ]+1] = h->ref_cache[1][scan8[7 ]+1] = h->ref_cache[1][scan8[13]+1] = PART_NOT_AVAILABLE;
  715. return 0;
  716. fail:
  717. return -1; // free_tables will clean up for us
  718. }
  719. static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size);
  720. static av_cold void common_init(H264Context *h){
  721. MpegEncContext * const s = &h->s;
  722. s->width = s->avctx->width;
  723. s->height = s->avctx->height;
  724. s->codec_id= s->avctx->codec->id;
  725. ff_h264dsp_init(&h->h264dsp);
  726. ff_h264_pred_init(&h->hpc, s->codec_id);
  727. h->dequant_coeff_pps= -1;
  728. s->unrestricted_mv=1;
  729. s->decode=1; //FIXME
  730. dsputil_init(&s->dsp, s->avctx); // needed so that idct permutation is known early
  731. memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  732. memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  733. }
  734. av_cold int ff_h264_decode_init(AVCodecContext *avctx){
  735. H264Context *h= avctx->priv_data;
  736. MpegEncContext * const s = &h->s;
  737. MPV_decode_defaults(s);
  738. s->avctx = avctx;
  739. common_init(h);
  740. s->out_format = FMT_H264;
  741. s->workaround_bugs= avctx->workaround_bugs;
  742. // set defaults
  743. // s->decode_mb= ff_h263_decode_mb;
  744. s->quarter_sample = 1;
  745. if(!avctx->has_b_frames)
  746. s->low_delay= 1;
  747. avctx->chroma_sample_location = AVCHROMA_LOC_LEFT;
  748. ff_h264_decode_init_vlc();
  749. h->thread_context[0] = h;
  750. h->outputed_poc = INT_MIN;
  751. h->prev_poc_msb= 1<<16;
  752. h->x264_build = -1;
  753. ff_h264_reset_sei(h);
  754. if(avctx->codec_id == CODEC_ID_H264){
  755. if(avctx->ticks_per_frame == 1){
  756. s->avctx->time_base.den *=2;
  757. }
  758. avctx->ticks_per_frame = 2;
  759. }
  760. if(avctx->extradata_size > 0 && avctx->extradata && *(char *)avctx->extradata == 1){
  761. int i, cnt, nalsize;
  762. unsigned char *p = avctx->extradata;
  763. h->is_avc = 1;
  764. if(avctx->extradata_size < 7) {
  765. av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
  766. return -1;
  767. }
  768. /* sps and pps in the avcC always have length coded with 2 bytes,
  769. so put a fake nal_length_size = 2 while parsing them */
  770. h->nal_length_size = 2;
  771. // Decode sps from avcC
  772. cnt = *(p+5) & 0x1f; // Number of sps
  773. p += 6;
  774. for (i = 0; i < cnt; i++) {
  775. nalsize = AV_RB16(p) + 2;
  776. if(decode_nal_units(h, p, nalsize) < 0) {
  777. av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i);
  778. return -1;
  779. }
  780. p += nalsize;
  781. }
  782. // Decode pps from avcC
  783. cnt = *(p++); // Number of pps
  784. for (i = 0; i < cnt; i++) {
  785. nalsize = AV_RB16(p) + 2;
  786. if(decode_nal_units(h, p, nalsize) != nalsize) {
  787. av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i);
  788. return -1;
  789. }
  790. p += nalsize;
  791. }
  792. // Now store right nal length size, that will be use to parse all other nals
  793. h->nal_length_size = ((*(((char*)(avctx->extradata))+4))&0x03)+1;
  794. } else {
  795. h->is_avc = 0;
  796. if(decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) < 0)
  797. return -1;
  798. }
  799. if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  800. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  801. s->low_delay = 0;
  802. }
  803. return 0;
  804. }
  805. int ff_h264_frame_start(H264Context *h){
  806. MpegEncContext * const s = &h->s;
  807. int i;
  808. if(MPV_frame_start(s, s->avctx) < 0)
  809. return -1;
  810. ff_er_frame_start(s);
  811. /*
  812. * MPV_frame_start uses pict_type to derive key_frame.
  813. * This is incorrect for H.264; IDR markings must be used.
  814. * Zero here; IDR markings per slice in frame or fields are ORed in later.
  815. * See decode_nal_units().
  816. */
  817. s->current_picture_ptr->key_frame= 0;
  818. s->current_picture_ptr->mmco_reset= 0;
  819. assert(s->linesize && s->uvlinesize);
  820. for(i=0; i<16; i++){
  821. h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
  822. h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
  823. }
  824. for(i=0; i<4; i++){
  825. h->block_offset[16+i]=
  826. h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  827. h->block_offset[24+16+i]=
  828. h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  829. }
  830. /* can't be in alloc_tables because linesize isn't known there.
  831. * FIXME: redo bipred weight to not require extra buffer? */
  832. for(i = 0; i < s->avctx->thread_count; i++)
  833. if(!h->thread_context[i]->s.obmc_scratchpad)
  834. h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
  835. /* some macroblocks can be accessed before they're available in case of lost slices, mbaff or threading*/
  836. memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(*h->slice_table));
  837. // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
  838. // We mark the current picture as non-reference after allocating it, so
  839. // that if we break out due to an error it can be released automatically
  840. // in the next MPV_frame_start().
  841. // SVQ3 as well as most other codecs have only last/next/current and thus
  842. // get released even with set reference, besides SVQ3 and others do not
  843. // mark frames as reference later "naturally".
  844. if(s->codec_id != CODEC_ID_SVQ3)
  845. s->current_picture_ptr->reference= 0;
  846. s->current_picture_ptr->field_poc[0]=
  847. s->current_picture_ptr->field_poc[1]= INT_MAX;
  848. assert(s->current_picture_ptr->long_ref==0);
  849. return 0;
  850. }
  851. static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
  852. MpegEncContext * const s = &h->s;
  853. uint8_t *top_border;
  854. int top_idx = 1;
  855. src_y -= linesize;
  856. src_cb -= uvlinesize;
  857. src_cr -= uvlinesize;
  858. if(!simple && FRAME_MBAFF){
  859. if(s->mb_y&1){
  860. if(!MB_MBAFF){
  861. top_border = h->top_borders[0][s->mb_x];
  862. AV_COPY128(top_border, src_y + 15*linesize);
  863. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  864. AV_COPY64(top_border+16, src_cb+7*uvlinesize);
  865. AV_COPY64(top_border+24, src_cr+7*uvlinesize);
  866. }
  867. }
  868. }else if(MB_MBAFF){
  869. top_idx = 0;
  870. }else
  871. return;
  872. }
  873. top_border = h->top_borders[top_idx][s->mb_x];
  874. // There are two lines saved, the line above the the top macroblock of a pair,
  875. // and the line above the bottom macroblock
  876. AV_COPY128(top_border, src_y + 16*linesize);
  877. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  878. AV_COPY64(top_border+16, src_cb+8*uvlinesize);
  879. AV_COPY64(top_border+24, src_cr+8*uvlinesize);
  880. }
  881. }
  882. static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){
  883. MpegEncContext * const s = &h->s;
  884. int deblock_left;
  885. int deblock_top;
  886. int top_idx = 1;
  887. uint8_t *top_border_m1;
  888. uint8_t *top_border;
  889. if(!simple && FRAME_MBAFF){
  890. if(s->mb_y&1){
  891. if(!MB_MBAFF)
  892. return;
  893. }else{
  894. top_idx = MB_MBAFF ? 0 : 1;
  895. }
  896. }
  897. if(h->deblocking_filter == 2) {
  898. deblock_left = h->left_type[0];
  899. deblock_top = h->top_type;
  900. } else {
  901. deblock_left = (s->mb_x > 0);
  902. deblock_top = (s->mb_y > !!MB_FIELD);
  903. }
  904. src_y -= linesize + 1;
  905. src_cb -= uvlinesize + 1;
  906. src_cr -= uvlinesize + 1;
  907. top_border_m1 = h->top_borders[top_idx][s->mb_x-1];
  908. top_border = h->top_borders[top_idx][s->mb_x];
  909. #define XCHG(a,b,xchg)\
  910. if (xchg) AV_SWAP64(b,a);\
  911. else AV_COPY64(b,a);
  912. if(deblock_top){
  913. if(deblock_left){
  914. XCHG(top_border_m1+8, src_y -7, 1);
  915. }
  916. XCHG(top_border+0, src_y +1, xchg);
  917. XCHG(top_border+8, src_y +9, 1);
  918. if(s->mb_x+1 < s->mb_width){
  919. XCHG(h->top_borders[top_idx][s->mb_x+1], src_y +17, 1);
  920. }
  921. }
  922. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  923. if(deblock_top){
  924. if(deblock_left){
  925. XCHG(top_border_m1+16, src_cb -7, 1);
  926. XCHG(top_border_m1+24, src_cr -7, 1);
  927. }
  928. XCHG(top_border+16, src_cb+1, 1);
  929. XCHG(top_border+24, src_cr+1, 1);
  930. }
  931. }
  932. }
  933. static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
  934. MpegEncContext * const s = &h->s;
  935. const int mb_x= s->mb_x;
  936. const int mb_y= s->mb_y;
  937. const int mb_xy= h->mb_xy;
  938. const int mb_type= s->current_picture.mb_type[mb_xy];
  939. uint8_t *dest_y, *dest_cb, *dest_cr;
  940. int linesize, uvlinesize /*dct_offset*/;
  941. int i;
  942. int *block_offset = &h->block_offset[0];
  943. const int transform_bypass = !simple && (s->qscale == 0 && h->sps.transform_bypass);
  944. /* is_h264 should always be true if SVQ3 is disabled. */
  945. const int is_h264 = !CONFIG_SVQ3_DECODER || simple || s->codec_id == CODEC_ID_H264;
  946. void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  947. void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
  948. dest_y = s->current_picture.data[0] + (mb_x + mb_y * s->linesize ) * 16;
  949. dest_cb = s->current_picture.data[1] + (mb_x + mb_y * s->uvlinesize) * 8;
  950. dest_cr = s->current_picture.data[2] + (mb_x + mb_y * s->uvlinesize) * 8;
  951. s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
  952. s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
  953. h->list_counts[mb_xy]= h->list_count;
  954. if (!simple && MB_FIELD) {
  955. linesize = h->mb_linesize = s->linesize * 2;
  956. uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
  957. block_offset = &h->block_offset[24];
  958. if(mb_y&1){ //FIXME move out of this function?
  959. dest_y -= s->linesize*15;
  960. dest_cb-= s->uvlinesize*7;
  961. dest_cr-= s->uvlinesize*7;
  962. }
  963. if(FRAME_MBAFF) {
  964. int list;
  965. for(list=0; list<h->list_count; list++){
  966. if(!USES_LIST(mb_type, list))
  967. continue;
  968. if(IS_16X16(mb_type)){
  969. int8_t *ref = &h->ref_cache[list][scan8[0]];
  970. fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
  971. }else{
  972. for(i=0; i<16; i+=4){
  973. int ref = h->ref_cache[list][scan8[i]];
  974. if(ref >= 0)
  975. fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
  976. }
  977. }
  978. }
  979. }
  980. } else {
  981. linesize = h->mb_linesize = s->linesize;
  982. uvlinesize = h->mb_uvlinesize = s->uvlinesize;
  983. // dct_offset = s->linesize * 16;
  984. }
  985. if (!simple && IS_INTRA_PCM(mb_type)) {
  986. for (i=0; i<16; i++) {
  987. memcpy(dest_y + i* linesize, h->mb + i*8, 16);
  988. }
  989. for (i=0; i<8; i++) {
  990. memcpy(dest_cb+ i*uvlinesize, h->mb + 128 + i*4, 8);
  991. memcpy(dest_cr+ i*uvlinesize, h->mb + 160 + i*4, 8);
  992. }
  993. } else {
  994. if(IS_INTRA(mb_type)){
  995. if(h->deblocking_filter)
  996. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
  997. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  998. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
  999. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
  1000. }
  1001. if(IS_INTRA4x4(mb_type)){
  1002. if(simple || !s->encoding){
  1003. if(IS_8x8DCT(mb_type)){
  1004. if(transform_bypass){
  1005. idct_dc_add =
  1006. idct_add = s->dsp.add_pixels8;
  1007. }else{
  1008. idct_dc_add = h->h264dsp.h264_idct8_dc_add;
  1009. idct_add = h->h264dsp.h264_idct8_add;
  1010. }
  1011. for(i=0; i<16; i+=4){
  1012. uint8_t * const ptr= dest_y + block_offset[i];
  1013. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  1014. if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
  1015. h->hpc.pred8x8l_add[dir](ptr, h->mb + i*16, linesize);
  1016. }else{
  1017. const int nnz = h->non_zero_count_cache[ scan8[i] ];
  1018. h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
  1019. (h->topright_samples_available<<i)&0x4000, linesize);
  1020. if(nnz){
  1021. if(nnz == 1 && h->mb[i*16])
  1022. idct_dc_add(ptr, h->mb + i*16, linesize);
  1023. else
  1024. idct_add (ptr, h->mb + i*16, linesize);
  1025. }
  1026. }
  1027. }
  1028. }else{
  1029. if(transform_bypass){
  1030. idct_dc_add =
  1031. idct_add = s->dsp.add_pixels4;
  1032. }else{
  1033. idct_dc_add = h->h264dsp.h264_idct_dc_add;
  1034. idct_add = h->h264dsp.h264_idct_add;
  1035. }
  1036. for(i=0; i<16; i++){
  1037. uint8_t * const ptr= dest_y + block_offset[i];
  1038. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  1039. if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
  1040. h->hpc.pred4x4_add[dir](ptr, h->mb + i*16, linesize);
  1041. }else{
  1042. uint8_t *topright;
  1043. int nnz, tr;
  1044. if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
  1045. const int topright_avail= (h->topright_samples_available<<i)&0x8000;
  1046. assert(mb_y || linesize <= block_offset[i]);
  1047. if(!topright_avail){
  1048. tr= ptr[3 - linesize]*0x01010101;
  1049. topright= (uint8_t*) &tr;
  1050. }else
  1051. topright= ptr + 4 - linesize;
  1052. }else
  1053. topright= NULL;
  1054. h->hpc.pred4x4[ dir ](ptr, topright, linesize);
  1055. nnz = h->non_zero_count_cache[ scan8[i] ];
  1056. if(nnz){
  1057. if(is_h264){
  1058. if(nnz == 1 && h->mb[i*16])
  1059. idct_dc_add(ptr, h->mb + i*16, linesize);
  1060. else
  1061. idct_add (ptr, h->mb + i*16, linesize);
  1062. }else
  1063. ff_svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
  1064. }
  1065. }
  1066. }
  1067. }
  1068. }
  1069. }else{
  1070. h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
  1071. if(is_h264){
  1072. if(!transform_bypass)
  1073. h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[0][s->qscale][0]);
  1074. }else
  1075. ff_svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
  1076. }
  1077. if(h->deblocking_filter)
  1078. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple);
  1079. }else if(is_h264){
  1080. hl_motion(h, dest_y, dest_cb, dest_cr,
  1081. s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
  1082. s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
  1083. h->h264dsp.weight_h264_pixels_tab, h->h264dsp.biweight_h264_pixels_tab);
  1084. }
  1085. if(!IS_INTRA4x4(mb_type)){
  1086. if(is_h264){
  1087. if(IS_INTRA16x16(mb_type)){
  1088. if(transform_bypass){
  1089. if(h->sps.profile_idc==244 && (h->intra16x16_pred_mode==VERT_PRED8x8 || h->intra16x16_pred_mode==HOR_PRED8x8)){
  1090. h->hpc.pred16x16_add[h->intra16x16_pred_mode](dest_y, block_offset, h->mb, linesize);
  1091. }else{
  1092. for(i=0; i<16; i++){
  1093. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16])
  1094. s->dsp.add_pixels4(dest_y + block_offset[i], h->mb + i*16, linesize);
  1095. }
  1096. }
  1097. }else{
  1098. h->h264dsp.h264_idct_add16intra(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache);
  1099. }
  1100. }else if(h->cbp&15){
  1101. if(transform_bypass){
  1102. const int di = IS_8x8DCT(mb_type) ? 4 : 1;
  1103. idct_add= IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
  1104. for(i=0; i<16; i+=di){
  1105. if(h->non_zero_count_cache[ scan8[i] ]){
  1106. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  1107. }
  1108. }
  1109. }else{
  1110. if(IS_8x8DCT(mb_type)){
  1111. h->h264dsp.h264_idct8_add4(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache);
  1112. }else{
  1113. h->h264dsp.h264_idct_add16(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache);
  1114. }
  1115. }
  1116. }
  1117. }else{
  1118. for(i=0; i<16; i++){
  1119. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
  1120. uint8_t * const ptr= dest_y + block_offset[i];
  1121. ff_svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
  1122. }
  1123. }
  1124. }
  1125. }
  1126. if((simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)) && (h->cbp&0x30)){
  1127. uint8_t *dest[2] = {dest_cb, dest_cr};
  1128. if(transform_bypass){
  1129. if(IS_INTRA(mb_type) && h->sps.profile_idc==244 && (h->chroma_pred_mode==VERT_PRED8x8 || h->chroma_pred_mode==HOR_PRED8x8)){
  1130. h->hpc.pred8x8_add[h->chroma_pred_mode](dest[0], block_offset + 16, h->mb + 16*16, uvlinesize);
  1131. h->hpc.pred8x8_add[h->chroma_pred_mode](dest[1], block_offset + 20, h->mb + 20*16, uvlinesize);
  1132. }else{
  1133. idct_add = s->dsp.add_pixels4;
  1134. for(i=16; i<16+8; i++){
  1135. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16])
  1136. idct_add (dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  1137. }
  1138. }
  1139. }else{
  1140. chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp[0], h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
  1141. chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp[1], h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
  1142. if(is_h264){
  1143. idct_add = h->h264dsp.h264_idct_add;
  1144. idct_dc_add = h->h264dsp.h264_idct_dc_add;
  1145. for(i=16; i<16+8; i++){
  1146. if(h->non_zero_count_cache[ scan8[i] ])
  1147. idct_add (dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  1148. else if(h->mb[i*16])
  1149. idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  1150. }
  1151. }else{
  1152. for(i=16; i<16+8; i++){
  1153. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
  1154. uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
  1155. ff_svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, ff_h264_chroma_qp[s->qscale + 12] - 12, 2);
  1156. }
  1157. }
  1158. }
  1159. }
  1160. }
  1161. }
  1162. if(h->cbp || IS_INTRA(mb_type))
  1163. s->dsp.clear_blocks(h->mb);
  1164. }
  1165. /**
  1166. * Process a macroblock; this case avoids checks for expensive uncommon cases.
  1167. */
  1168. static void hl_decode_mb_simple(H264Context *h){
  1169. hl_decode_mb_internal(h, 1);
  1170. }
  1171. /**
  1172. * Process a macroblock; this handles edge cases, such as interlacing.
  1173. */
  1174. static void av_noinline hl_decode_mb_complex(H264Context *h){
  1175. hl_decode_mb_internal(h, 0);
  1176. }
  1177. void ff_h264_hl_decode_mb(H264Context *h){
  1178. MpegEncContext * const s = &h->s;
  1179. const int mb_xy= h->mb_xy;
  1180. const int mb_type= s->current_picture.mb_type[mb_xy];
  1181. int is_complex = CONFIG_SMALL || h->is_complex || IS_INTRA_PCM(mb_type) || s->qscale == 0;
  1182. if (is_complex)
  1183. hl_decode_mb_complex(h);
  1184. else hl_decode_mb_simple(h);
  1185. }
  1186. static int pred_weight_table(H264Context *h){
  1187. MpegEncContext * const s = &h->s;
  1188. int list, i;
  1189. int luma_def, chroma_def;
  1190. h->use_weight= 0;
  1191. h->use_weight_chroma= 0;
  1192. h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
  1193. h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
  1194. luma_def = 1<<h->luma_log2_weight_denom;
  1195. chroma_def = 1<<h->chroma_log2_weight_denom;
  1196. for(list=0; list<2; list++){
  1197. h->luma_weight_flag[list] = 0;
  1198. h->chroma_weight_flag[list] = 0;
  1199. for(i=0; i<h->ref_count[list]; i++){
  1200. int luma_weight_flag, chroma_weight_flag;
  1201. luma_weight_flag= get_bits1(&s->gb);
  1202. if(luma_weight_flag){
  1203. h->luma_weight[i][list][0]= get_se_golomb(&s->gb);
  1204. h->luma_weight[i][list][1]= get_se_golomb(&s->gb);
  1205. if( h->luma_weight[i][list][0] != luma_def
  1206. || h->luma_weight[i][list][1] != 0) {
  1207. h->use_weight= 1;
  1208. h->luma_weight_flag[list]= 1;
  1209. }
  1210. }else{
  1211. h->luma_weight[i][list][0]= luma_def;
  1212. h->luma_weight[i][list][1]= 0;
  1213. }
  1214. if(CHROMA){
  1215. chroma_weight_flag= get_bits1(&s->gb);
  1216. if(chroma_weight_flag){
  1217. int j;
  1218. for(j=0; j<2; j++){
  1219. h->chroma_weight[i][list][j][0]= get_se_golomb(&s->gb);
  1220. h->chroma_weight[i][list][j][1]= get_se_golomb(&s->gb);
  1221. if( h->chroma_weight[i][list][j][0] != chroma_def
  1222. || h->chroma_weight[i][list][j][1] != 0) {
  1223. h->use_weight_chroma= 1;
  1224. h->chroma_weight_flag[list]= 1;
  1225. }
  1226. }
  1227. }else{
  1228. int j;
  1229. for(j=0; j<2; j++){
  1230. h->chroma_weight[i][list][j][0]= chroma_def;
  1231. h->chroma_weight[i][list][j][1]= 0;
  1232. }
  1233. }
  1234. }
  1235. }
  1236. if(h->slice_type_nos != FF_B_TYPE) break;
  1237. }
  1238. h->use_weight= h->use_weight || h->use_weight_chroma;
  1239. return 0;
  1240. }
  1241. /**
  1242. * Initialize implicit_weight table.
  1243. * @param field, 0/1 initialize the weight for interlaced MBAFF
  1244. * -1 initializes the rest
  1245. */
  1246. static void implicit_weight_table(H264Context *h, int field){
  1247. MpegEncContext * const s = &h->s;
  1248. int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
  1249. for (i = 0; i < 2; i++) {
  1250. h->luma_weight_flag[i] = 0;
  1251. h->chroma_weight_flag[i] = 0;
  1252. }
  1253. if(field < 0){
  1254. cur_poc = s->current_picture_ptr->poc;
  1255. if( h->ref_count[0] == 1 && h->ref_count[1] == 1 && !FRAME_MBAFF
  1256. && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
  1257. h->use_weight= 0;
  1258. h->use_weight_chroma= 0;
  1259. return;
  1260. }
  1261. ref_start= 0;
  1262. ref_count0= h->ref_count[0];
  1263. ref_count1= h->ref_count[1];
  1264. }else{
  1265. cur_poc = s->current_picture_ptr->field_poc[field];
  1266. ref_start= 16;
  1267. ref_count0= 16+2*h->ref_count[0];
  1268. ref_count1= 16+2*h->ref_count[1];
  1269. }
  1270. h->use_weight= 2;
  1271. h->use_weight_chroma= 2;
  1272. h->luma_log2_weight_denom= 5;
  1273. h->chroma_log2_weight_denom= 5;
  1274. for(ref0=ref_start; ref0 < ref_count0; ref0++){
  1275. int poc0 = h->ref_list[0][ref0].poc;
  1276. for(ref1=ref_start; ref1 < ref_count1; ref1++){
  1277. int poc1 = h->ref_list[1][ref1].poc;
  1278. int td = av_clip(poc1 - poc0, -128, 127);
  1279. int w= 32;
  1280. if(td){
  1281. int tb = av_clip(cur_poc - poc0, -128, 127);
  1282. int tx = (16384 + (FFABS(td) >> 1)) / td;
  1283. int dist_scale_factor = (tb*tx + 32) >> 8;
  1284. if(dist_scale_factor >= -64 && dist_scale_factor <= 128)
  1285. w = 64 - dist_scale_factor;
  1286. }
  1287. if(field<0){
  1288. h->implicit_weight[ref0][ref1][0]=
  1289. h->implicit_weight[ref0][ref1][1]= w;
  1290. }else{
  1291. h->implicit_weight[ref0][ref1][field]=w;
  1292. }
  1293. }
  1294. }
  1295. }
  1296. /**
  1297. * instantaneous decoder refresh.
  1298. */
  1299. static void idr(H264Context *h){
  1300. ff_h264_remove_all_refs(h);
  1301. h->prev_frame_num= 0;
  1302. h->prev_frame_num_offset= 0;
  1303. h->prev_poc_msb=
  1304. h->prev_poc_lsb= 0;
  1305. }
  1306. /* forget old pics after a seek */
  1307. static void flush_dpb(AVCodecContext *avctx){
  1308. H264Context *h= avctx->priv_data;
  1309. int i;
  1310. for(i=0; i<MAX_DELAYED_PIC_COUNT; i++) {
  1311. if(h->delayed_pic[i])
  1312. h->delayed_pic[i]->reference= 0;
  1313. h->delayed_pic[i]= NULL;
  1314. }
  1315. h->outputed_poc= INT_MIN;
  1316. h->prev_interlaced_frame = 1;
  1317. idr(h);
  1318. if(h->s.current_picture_ptr)
  1319. h->s.current_picture_ptr->reference= 0;
  1320. h->s.first_field= 0;
  1321. ff_h264_reset_sei(h);
  1322. ff_mpeg_flush(avctx);
  1323. }
  1324. static int init_poc(H264Context *h){
  1325. MpegEncContext * const s = &h->s;
  1326. const int max_frame_num= 1<<h->sps.log2_max_frame_num;
  1327. int field_poc[2];
  1328. Picture *cur = s->current_picture_ptr;
  1329. h->frame_num_offset= h->prev_frame_num_offset;
  1330. if(h->frame_num < h->prev_frame_num)
  1331. h->frame_num_offset += max_frame_num;
  1332. if(h->sps.poc_type==0){
  1333. const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
  1334. if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
  1335. h->poc_msb = h->prev_poc_msb + max_poc_lsb;
  1336. else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
  1337. h->poc_msb = h->prev_poc_msb - max_poc_lsb;
  1338. else
  1339. h->poc_msb = h->prev_poc_msb;
  1340. //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
  1341. field_poc[0] =
  1342. field_poc[1] = h->poc_msb + h->poc_lsb;
  1343. if(s->picture_structure == PICT_FRAME)
  1344. field_poc[1] += h->delta_poc_bottom;
  1345. }else if(h->sps.poc_type==1){
  1346. int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
  1347. int i;
  1348. if(h->sps.poc_cycle_length != 0)
  1349. abs_frame_num = h->frame_num_offset + h->frame_num;
  1350. else
  1351. abs_frame_num = 0;
  1352. if(h->nal_ref_idc==0 && abs_frame_num > 0)
  1353. abs_frame_num--;
  1354. expected_delta_per_poc_cycle = 0;
  1355. for(i=0; i < h->sps.poc_cycle_length; i++)
  1356. expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
  1357. if(abs_frame_num > 0){
  1358. int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
  1359. int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
  1360. expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
  1361. for(i = 0; i <= frame_num_in_poc_cycle; i++)
  1362. expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
  1363. } else
  1364. expectedpoc = 0;
  1365. if(h->nal_ref_idc == 0)
  1366. expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
  1367. field_poc[0] = expectedpoc + h->delta_poc[0];
  1368. field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
  1369. if(s->picture_structure == PICT_FRAME)
  1370. field_poc[1] += h->delta_poc[1];
  1371. }else{
  1372. int poc= 2*(h->frame_num_offset + h->frame_num);
  1373. if(!h->nal_ref_idc)
  1374. poc--;
  1375. field_poc[0]= poc;
  1376. field_poc[1]= poc;
  1377. }
  1378. if(s->picture_structure != PICT_BOTTOM_FIELD)
  1379. s->current_picture_ptr->field_poc[0]= field_poc[0];
  1380. if(s->picture_structure != PICT_TOP_FIELD)
  1381. s->current_picture_ptr->field_poc[1]= field_poc[1];
  1382. cur->poc= FFMIN(cur->field_poc[0], cur->field_poc[1]);
  1383. return 0;
  1384. }
  1385. /**
  1386. * initialize scan tables
  1387. */
  1388. static void init_scan_tables(H264Context *h){
  1389. int i;
  1390. if(h->h264dsp.h264_idct_add == ff_h264_idct_add_c){ //FIXME little ugly
  1391. memcpy(h->zigzag_scan, zigzag_scan, 16*sizeof(uint8_t));
  1392. memcpy(h-> field_scan, field_scan, 16*sizeof(uint8_t));
  1393. }else{
  1394. for(i=0; i<16; i++){
  1395. #define T(x) (x>>2) | ((x<<2) & 0xF)
  1396. h->zigzag_scan[i] = T(zigzag_scan[i]);
  1397. h-> field_scan[i] = T( field_scan[i]);
  1398. #undef T
  1399. }
  1400. }
  1401. if(h->h264dsp.h264_idct8_add == ff_h264_idct8_add_c){
  1402. memcpy(h->zigzag_scan8x8, ff_zigzag_direct, 64*sizeof(uint8_t));
  1403. memcpy(h->zigzag_scan8x8_cavlc, zigzag_scan8x8_cavlc, 64*sizeof(uint8_t));
  1404. memcpy(h->field_scan8x8, field_scan8x8, 64*sizeof(uint8_t));
  1405. memcpy(h->field_scan8x8_cavlc, field_scan8x8_cavlc, 64*sizeof(uint8_t));
  1406. }else{
  1407. for(i=0; i<64; i++){
  1408. #define T(x) (x>>3) | ((x&7)<<3)
  1409. h->zigzag_scan8x8[i] = T(ff_zigzag_direct[i]);
  1410. h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
  1411. h->field_scan8x8[i] = T(field_scan8x8[i]);
  1412. h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
  1413. #undef T
  1414. }
  1415. }
  1416. if(h->sps.transform_bypass){ //FIXME same ugly
  1417. h->zigzag_scan_q0 = zigzag_scan;
  1418. h->zigzag_scan8x8_q0 = ff_zigzag_direct;
  1419. h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
  1420. h->field_scan_q0 = field_scan;
  1421. h->field_scan8x8_q0 = field_scan8x8;
  1422. h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc;
  1423. }else{
  1424. h->zigzag_scan_q0 = h->zigzag_scan;
  1425. h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
  1426. h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
  1427. h->field_scan_q0 = h->field_scan;
  1428. h->field_scan8x8_q0 = h->field_scan8x8;
  1429. h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc;
  1430. }
  1431. }
  1432. static void field_end(H264Context *h){
  1433. MpegEncContext * const s = &h->s;
  1434. AVCodecContext * const avctx= s->avctx;
  1435. s->mb_y= 0;
  1436. s->current_picture_ptr->qscale_type= FF_QSCALE_TYPE_H264;
  1437. s->current_picture_ptr->pict_type= s->pict_type;
  1438. if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  1439. ff_vdpau_h264_set_reference_frames(s);
  1440. if(!s->dropable) {
  1441. ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  1442. h->prev_poc_msb= h->poc_msb;
  1443. h->prev_poc_lsb= h->poc_lsb;
  1444. }
  1445. h->prev_frame_num_offset= h->frame_num_offset;
  1446. h->prev_frame_num= h->frame_num;
  1447. if (avctx->hwaccel) {
  1448. if (avctx->hwaccel->end_frame(avctx) < 0)
  1449. av_log(avctx, AV_LOG_ERROR, "hardware accelerator failed to decode picture\n");
  1450. }
  1451. if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  1452. ff_vdpau_h264_picture_complete(s);
  1453. /*
  1454. * FIXME: Error handling code does not seem to support interlaced
  1455. * when slices span multiple rows
  1456. * The ff_er_add_slice calls don't work right for bottom
  1457. * fields; they cause massive erroneous error concealing
  1458. * Error marking covers both fields (top and bottom).
  1459. * This causes a mismatched s->error_count
  1460. * and a bad error table. Further, the error count goes to
  1461. * INT_MAX when called for bottom field, because mb_y is
  1462. * past end by one (callers fault) and resync_mb_y != 0
  1463. * causes problems for the first MB line, too.
  1464. */
  1465. if (!FIELD_PICTURE)
  1466. ff_er_frame_end(s);
  1467. MPV_frame_end(s);
  1468. h->current_slice=0;
  1469. }
  1470. /**
  1471. * Replicates H264 "master" context to thread contexts.
  1472. */
  1473. static void clone_slice(H264Context *dst, H264Context *src)
  1474. {
  1475. memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
  1476. dst->s.current_picture_ptr = src->s.current_picture_ptr;
  1477. dst->s.current_picture = src->s.current_picture;
  1478. dst->s.linesize = src->s.linesize;
  1479. dst->s.uvlinesize = src->s.uvlinesize;
  1480. dst->s.first_field = src->s.first_field;
  1481. dst->prev_poc_msb = src->prev_poc_msb;
  1482. dst->prev_poc_lsb = src->prev_poc_lsb;
  1483. dst->prev_frame_num_offset = src->prev_frame_num_offset;
  1484. dst->prev_frame_num = src->prev_frame_num;
  1485. dst->short_ref_count = src->short_ref_count;
  1486. memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
  1487. memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
  1488. memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
  1489. memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list));
  1490. memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
  1491. memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
  1492. }
  1493. /**
  1494. * decodes a slice header.
  1495. * This will also call MPV_common_init() and frame_start() as needed.
  1496. *
  1497. * @param h h264context
  1498. * @param h0 h264 master context (differs from 'h' when doing sliced based parallel decoding)
  1499. *
  1500. * @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
  1501. */
  1502. static int decode_slice_header(H264Context *h, H264Context *h0){
  1503. MpegEncContext * const s = &h->s;
  1504. MpegEncContext * const s0 = &h0->s;
  1505. unsigned int first_mb_in_slice;
  1506. unsigned int pps_id;
  1507. int num_ref_idx_active_override_flag;
  1508. unsigned int slice_type, tmp, i, j;
  1509. int default_ref_list_done = 0;
  1510. int last_pic_structure;
  1511. s->dropable= h->nal_ref_idc == 0;
  1512. if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !h->nal_ref_idc){
  1513. s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab;
  1514. s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab;
  1515. }else{
  1516. s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab;
  1517. s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab;
  1518. }
  1519. first_mb_in_slice= get_ue_golomb(&s->gb);
  1520. if(first_mb_in_slice == 0){ //FIXME better field boundary detection
  1521. if(h0->current_slice && FIELD_PICTURE){
  1522. field_end(h);
  1523. }
  1524. h0->current_slice = 0;
  1525. if (!s0->first_field)
  1526. s->current_picture_ptr= NULL;
  1527. }
  1528. slice_type= get_ue_golomb_31(&s->gb);
  1529. if(slice_type > 9){
  1530. av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
  1531. return -1;
  1532. }
  1533. if(slice_type > 4){
  1534. slice_type -= 5;
  1535. h->slice_type_fixed=1;
  1536. }else
  1537. h->slice_type_fixed=0;
  1538. slice_type= golomb_to_pict_type[ slice_type ];
  1539. if (slice_type == FF_I_TYPE
  1540. || (h0->current_slice != 0 && slice_type == h0->last_slice_type) ) {
  1541. default_ref_list_done = 1;
  1542. }
  1543. h->slice_type= slice_type;
  1544. h->slice_type_nos= slice_type & 3;
  1545. s->pict_type= h->slice_type; // to make a few old functions happy, it's wrong though
  1546. pps_id= get_ue_golomb(&s->gb);
  1547. if(pps_id>=MAX_PPS_COUNT){
  1548. av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
  1549. return -1;
  1550. }
  1551. if(!h0->pps_buffers[pps_id]) {
  1552. av_log(h->s.avctx, AV_LOG_ERROR, "non-existing PPS %u referenced\n", pps_id);
  1553. return -1;
  1554. }
  1555. h->pps= *h0->pps_buffers[pps_id];
  1556. if(!h0->sps_buffers[h->pps.sps_id]) {
  1557. av_log(h->s.avctx, AV_LOG_ERROR, "non-existing SPS %u referenced\n", h->pps.sps_id);
  1558. return -1;
  1559. }
  1560. h->sps = *h0->sps_buffers[h->pps.sps_id];
  1561. s->avctx->profile = h->sps.profile_idc;
  1562. s->avctx->level = h->sps.level_idc;
  1563. s->avctx->refs = h->sps.ref_frame_count;
  1564. if(h == h0 && h->dequant_coeff_pps != pps_id){
  1565. h->dequant_coeff_pps = pps_id;
  1566. init_dequant_tables(h);
  1567. }
  1568. s->mb_width= h->sps.mb_width;
  1569. s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
  1570. h->b_stride= s->mb_width*4;
  1571. s->width = 16*s->mb_width - 2*FFMIN(h->sps.crop_right, 7);
  1572. if(h->sps.frame_mbs_only_flag)
  1573. s->height= 16*s->mb_height - 2*FFMIN(h->sps.crop_bottom, 7);
  1574. else
  1575. s->height= 16*s->mb_height - 4*FFMIN(h->sps.crop_bottom, 3);
  1576. if (s->context_initialized
  1577. && ( s->width != s->avctx->width || s->height != s->avctx->height
  1578. || av_cmp_q(h->sps.sar, s->avctx->sample_aspect_ratio))) {
  1579. if(h != h0)
  1580. return -1; // width / height changed during parallelized decoding
  1581. free_tables(h);
  1582. flush_dpb(s->avctx);
  1583. MPV_common_end(s);
  1584. }
  1585. if (!s->context_initialized) {
  1586. if(h != h0)
  1587. return -1; // we cant (re-)initialize context during parallel decoding
  1588. avcodec_set_dimensions(s->avctx, s->width, s->height);
  1589. s->avctx->sample_aspect_ratio= h->sps.sar;
  1590. if(!s->avctx->sample_aspect_ratio.den)
  1591. s->avctx->sample_aspect_ratio.den = 1;
  1592. if(h->sps.video_signal_type_present_flag){
  1593. s->avctx->color_range = h->sps.full_range ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
  1594. if(h->sps.colour_description_present_flag){
  1595. s->avctx->color_primaries = h->sps.color_primaries;
  1596. s->avctx->color_trc = h->sps.color_trc;
  1597. s->avctx->colorspace = h->sps.colorspace;
  1598. }
  1599. }
  1600. if(h->sps.timing_info_present_flag){
  1601. int64_t den= h->sps.time_scale;
  1602. if(h->x264_build < 44U)
  1603. den *= 2;
  1604. av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
  1605. h->sps.num_units_in_tick, den, 1<<30);
  1606. }
  1607. s->avctx->pix_fmt = s->avctx->get_format(s->avctx, s->avctx->codec->pix_fmts);
  1608. s->avctx->hwaccel = ff_find_hwaccel(s->avctx->codec->id, s->avctx->pix_fmt);
  1609. if (MPV_common_init(s) < 0)
  1610. return -1;
  1611. s->first_field = 0;
  1612. h->prev_interlaced_frame = 1;
  1613. init_scan_tables(h);
  1614. ff_h264_alloc_tables(h);
  1615. for(i = 1; i < s->avctx->thread_count; i++) {
  1616. H264Context *c;
  1617. c = h->thread_context[i] = av_malloc(sizeof(H264Context));
  1618. memcpy(c, h->s.thread_context[i], sizeof(MpegEncContext));
  1619. memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext));
  1620. c->h264dsp = h->h264dsp;
  1621. c->sps = h->sps;
  1622. c->pps = h->pps;
  1623. init_scan_tables(c);
  1624. clone_tables(c, h, i);
  1625. }
  1626. for(i = 0; i < s->avctx->thread_count; i++)
  1627. if(context_init(h->thread_context[i]) < 0)
  1628. return -1;
  1629. }
  1630. h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
  1631. h->mb_mbaff = 0;
  1632. h->mb_aff_frame = 0;
  1633. last_pic_structure = s0->picture_structure;
  1634. if(h->sps.frame_mbs_only_flag){
  1635. s->picture_structure= PICT_FRAME;
  1636. }else{
  1637. if(get_bits1(&s->gb)) { //field_pic_flag
  1638. s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
  1639. } else {
  1640. s->picture_structure= PICT_FRAME;
  1641. h->mb_aff_frame = h->sps.mb_aff;
  1642. }
  1643. }
  1644. h->mb_field_decoding_flag= s->picture_structure != PICT_FRAME;
  1645. if(h0->current_slice == 0){
  1646. while(h->frame_num != h->prev_frame_num &&
  1647. h->frame_num != (h->prev_frame_num+1)%(1<<h->sps.log2_max_frame_num)){
  1648. av_log(NULL, AV_LOG_DEBUG, "Frame num gap %d %d\n", h->frame_num, h->prev_frame_num);
  1649. if (ff_h264_frame_start(h) < 0)
  1650. return -1;
  1651. h->prev_frame_num++;
  1652. h->prev_frame_num %= 1<<h->sps.log2_max_frame_num;
  1653. s->current_picture_ptr->frame_num= h->prev_frame_num;
  1654. ff_h264_execute_ref_pic_marking(h, NULL, 0);
  1655. }
  1656. /* See if we have a decoded first field looking for a pair... */
  1657. if (s0->first_field) {
  1658. assert(s0->current_picture_ptr);
  1659. assert(s0->current_picture_ptr->data[0]);
  1660. assert(s0->current_picture_ptr->reference != DELAYED_PIC_REF);
  1661. /* figure out if we have a complementary field pair */
  1662. if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) {
  1663. /*
  1664. * Previous field is unmatched. Don't display it, but let it
  1665. * remain for reference if marked as such.
  1666. */
  1667. s0->current_picture_ptr = NULL;
  1668. s0->first_field = FIELD_PICTURE;
  1669. } else {
  1670. if (h->nal_ref_idc &&
  1671. s0->current_picture_ptr->reference &&
  1672. s0->current_picture_ptr->frame_num != h->frame_num) {
  1673. /*
  1674. * This and previous field were reference, but had
  1675. * different frame_nums. Consider this field first in
  1676. * pair. Throw away previous field except for reference
  1677. * purposes.
  1678. */
  1679. s0->first_field = 1;
  1680. s0->current_picture_ptr = NULL;
  1681. } else {
  1682. /* Second field in complementary pair */
  1683. s0->first_field = 0;
  1684. }
  1685. }
  1686. } else {
  1687. /* Frame or first field in a potentially complementary pair */
  1688. assert(!s0->current_picture_ptr);
  1689. s0->first_field = FIELD_PICTURE;
  1690. }
  1691. if((!FIELD_PICTURE || s0->first_field) && ff_h264_frame_start(h) < 0) {
  1692. s0->first_field = 0;
  1693. return -1;
  1694. }
  1695. }
  1696. if(h != h0)
  1697. clone_slice(h, h0);
  1698. s->current_picture_ptr->frame_num= h->frame_num; //FIXME frame_num cleanup
  1699. assert(s->mb_num == s->mb_width * s->mb_height);
  1700. if(first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= s->mb_num ||
  1701. first_mb_in_slice >= s->mb_num){
  1702. av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
  1703. return -1;
  1704. }
  1705. s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
  1706. s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << FIELD_OR_MBAFF_PICTURE;
  1707. if (s->picture_structure == PICT_BOTTOM_FIELD)
  1708. s->resync_mb_y = s->mb_y = s->mb_y + 1;
  1709. assert(s->mb_y < s->mb_height);
  1710. if(s->picture_structure==PICT_FRAME){
  1711. h->curr_pic_num= h->frame_num;
  1712. h->max_pic_num= 1<< h->sps.log2_max_frame_num;
  1713. }else{
  1714. h->curr_pic_num= 2*h->frame_num + 1;
  1715. h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
  1716. }
  1717. if(h->nal_unit_type == NAL_IDR_SLICE){
  1718. get_ue_golomb(&s->gb); /* idr_pic_id */
  1719. }
  1720. if(h->sps.poc_type==0){
  1721. h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
  1722. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
  1723. h->delta_poc_bottom= get_se_golomb(&s->gb);
  1724. }
  1725. }
  1726. if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
  1727. h->delta_poc[0]= get_se_golomb(&s->gb);
  1728. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
  1729. h->delta_poc[1]= get_se_golomb(&s->gb);
  1730. }
  1731. init_poc(h);
  1732. if(h->pps.redundant_pic_cnt_present){
  1733. h->redundant_pic_count= get_ue_golomb(&s->gb);
  1734. }
  1735. //set defaults, might be overridden a few lines later
  1736. h->ref_count[0]= h->pps.ref_count[0];
  1737. h->ref_count[1]= h->pps.ref_count[1];
  1738. if(h->slice_type_nos != FF_I_TYPE){
  1739. if(h->slice_type_nos == FF_B_TYPE){
  1740. h->direct_spatial_mv_pred= get_bits1(&s->gb);
  1741. }
  1742. num_ref_idx_active_override_flag= get_bits1(&s->gb);
  1743. if(num_ref_idx_active_override_flag){
  1744. h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  1745. if(h->slice_type_nos==FF_B_TYPE)
  1746. h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  1747. if(h->ref_count[0]-1 > 32-1 || h->ref_count[1]-1 > 32-1){
  1748. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
  1749. h->ref_count[0]= h->ref_count[1]= 1;
  1750. return -1;
  1751. }
  1752. }
  1753. if(h->slice_type_nos == FF_B_TYPE)
  1754. h->list_count= 2;
  1755. else
  1756. h->list_count= 1;
  1757. }else
  1758. h->list_count= 0;
  1759. if(!default_ref_list_done){
  1760. ff_h264_fill_default_ref_list(h);
  1761. }
  1762. if(h->slice_type_nos!=FF_I_TYPE && ff_h264_decode_ref_pic_list_reordering(h) < 0)
  1763. return -1;
  1764. if(h->slice_type_nos!=FF_I_TYPE){
  1765. s->last_picture_ptr= &h->ref_list[0][0];
  1766. ff_copy_picture(&s->last_picture, s->last_picture_ptr);
  1767. }
  1768. if(h->slice_type_nos==FF_B_TYPE){
  1769. s->next_picture_ptr= &h->ref_list[1][0];
  1770. ff_copy_picture(&s->next_picture, s->next_picture_ptr);
  1771. }
  1772. if( (h->pps.weighted_pred && h->slice_type_nos == FF_P_TYPE )
  1773. || (h->pps.weighted_bipred_idc==1 && h->slice_type_nos== FF_B_TYPE ) )
  1774. pred_weight_table(h);
  1775. else if(h->pps.weighted_bipred_idc==2 && h->slice_type_nos== FF_B_TYPE){
  1776. implicit_weight_table(h, -1);
  1777. }else {
  1778. h->use_weight = 0;
  1779. for (i = 0; i < 2; i++) {
  1780. h->luma_weight_flag[i] = 0;
  1781. h->chroma_weight_flag[i] = 0;
  1782. }
  1783. }
  1784. if(h->nal_ref_idc)
  1785. ff_h264_decode_ref_pic_marking(h0, &s->gb);
  1786. if(FRAME_MBAFF){
  1787. ff_h264_fill_mbaff_ref_list(h);
  1788. if(h->pps.weighted_bipred_idc==2 && h->slice_type_nos== FF_B_TYPE){
  1789. implicit_weight_table(h, 0);
  1790. implicit_weight_table(h, 1);
  1791. }
  1792. }
  1793. if(h->slice_type_nos==FF_B_TYPE && !h->direct_spatial_mv_pred)
  1794. ff_h264_direct_dist_scale_factor(h);
  1795. ff_h264_direct_ref_list_init(h);
  1796. if( h->slice_type_nos != FF_I_TYPE && h->pps.cabac ){
  1797. tmp = get_ue_golomb_31(&s->gb);
  1798. if(tmp > 2){
  1799. av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
  1800. return -1;
  1801. }
  1802. h->cabac_init_idc= tmp;
  1803. }
  1804. h->last_qscale_diff = 0;
  1805. tmp = h->pps.init_qp + get_se_golomb(&s->gb);
  1806. if(tmp>51){
  1807. av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
  1808. return -1;
  1809. }
  1810. s->qscale= tmp;
  1811. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  1812. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  1813. //FIXME qscale / qp ... stuff
  1814. if(h->slice_type == FF_SP_TYPE){
  1815. get_bits1(&s->gb); /* sp_for_switch_flag */
  1816. }
  1817. if(h->slice_type==FF_SP_TYPE || h->slice_type == FF_SI_TYPE){
  1818. get_se_golomb(&s->gb); /* slice_qs_delta */
  1819. }
  1820. h->deblocking_filter = 1;
  1821. h->slice_alpha_c0_offset = 52;
  1822. h->slice_beta_offset = 52;
  1823. if( h->pps.deblocking_filter_parameters_present ) {
  1824. tmp= get_ue_golomb_31(&s->gb);
  1825. if(tmp > 2){
  1826. av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp);
  1827. return -1;
  1828. }
  1829. h->deblocking_filter= tmp;
  1830. if(h->deblocking_filter < 2)
  1831. h->deblocking_filter^= 1; // 1<->0
  1832. if( h->deblocking_filter ) {
  1833. h->slice_alpha_c0_offset += get_se_golomb(&s->gb) << 1;
  1834. h->slice_beta_offset += get_se_golomb(&s->gb) << 1;
  1835. if( h->slice_alpha_c0_offset > 104U
  1836. || h->slice_beta_offset > 104U){
  1837. av_log(s->avctx, AV_LOG_ERROR, "deblocking filter parameters %d %d out of range\n", h->slice_alpha_c0_offset, h->slice_beta_offset);
  1838. return -1;
  1839. }
  1840. }
  1841. }
  1842. if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
  1843. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type_nos != FF_I_TYPE)
  1844. ||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type_nos == FF_B_TYPE)
  1845. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  1846. h->deblocking_filter= 0;
  1847. if(h->deblocking_filter == 1 && h0->max_contexts > 1) {
  1848. if(s->avctx->flags2 & CODEC_FLAG2_FAST) {
  1849. /* Cheat slightly for speed:
  1850. Do not bother to deblock across slices. */
  1851. h->deblocking_filter = 2;
  1852. } else {
  1853. h0->max_contexts = 1;
  1854. if(!h0->single_decode_warning) {
  1855. av_log(s->avctx, AV_LOG_INFO, "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
  1856. h0->single_decode_warning = 1;
  1857. }
  1858. if(h != h0)
  1859. return 1; // deblocking switched inside frame
  1860. }
  1861. }
  1862. h->qp_thresh= 15 + 52 - FFMIN(h->slice_alpha_c0_offset, h->slice_beta_offset) - FFMAX3(0, h->pps.chroma_qp_index_offset[0], h->pps.chroma_qp_index_offset[1]);
  1863. #if 0 //FMO
  1864. if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
  1865. slice_group_change_cycle= get_bits(&s->gb, ?);
  1866. #endif
  1867. h0->last_slice_type = slice_type;
  1868. h->slice_num = ++h0->current_slice;
  1869. if(h->slice_num >= MAX_SLICES){
  1870. av_log(s->avctx, AV_LOG_ERROR, "Too many slices, increase MAX_SLICES and recompile\n");
  1871. }
  1872. for(j=0; j<2; j++){
  1873. int id_list[16];
  1874. int *ref2frm= h->ref2frm[h->slice_num&(MAX_SLICES-1)][j];
  1875. for(i=0; i<16; i++){
  1876. id_list[i]= 60;
  1877. if(h->ref_list[j][i].data[0]){
  1878. int k;
  1879. uint8_t *base= h->ref_list[j][i].base[0];
  1880. for(k=0; k<h->short_ref_count; k++)
  1881. if(h->short_ref[k]->base[0] == base){
  1882. id_list[i]= k;
  1883. break;
  1884. }
  1885. for(k=0; k<h->long_ref_count; k++)
  1886. if(h->long_ref[k] && h->long_ref[k]->base[0] == base){
  1887. id_list[i]= h->short_ref_count + k;
  1888. break;
  1889. }
  1890. }
  1891. }
  1892. ref2frm[0]=
  1893. ref2frm[1]= -1;
  1894. for(i=0; i<16; i++)
  1895. ref2frm[i+2]= 4*id_list[i]
  1896. +(h->ref_list[j][i].reference&3);
  1897. ref2frm[18+0]=
  1898. ref2frm[18+1]= -1;
  1899. for(i=16; i<48; i++)
  1900. ref2frm[i+4]= 4*id_list[(i-16)>>1]
  1901. +(h->ref_list[j][i].reference&3);
  1902. }
  1903. h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
  1904. h->emu_edge_height= (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width;
  1905. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  1906. av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
  1907. h->slice_num,
  1908. (s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
  1909. first_mb_in_slice,
  1910. av_get_pict_type_char(h->slice_type), h->slice_type_fixed ? " fix" : "", h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "",
  1911. pps_id, h->frame_num,
  1912. s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
  1913. h->ref_count[0], h->ref_count[1],
  1914. s->qscale,
  1915. h->deblocking_filter, h->slice_alpha_c0_offset/2-26, h->slice_beta_offset/2-26,
  1916. h->use_weight,
  1917. h->use_weight==1 && h->use_weight_chroma ? "c" : "",
  1918. h->slice_type == FF_B_TYPE ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : ""
  1919. );
  1920. }
  1921. return 0;
  1922. }
  1923. int ff_h264_get_slice_type(const H264Context *h)
  1924. {
  1925. switch (h->slice_type) {
  1926. case FF_P_TYPE: return 0;
  1927. case FF_B_TYPE: return 1;
  1928. case FF_I_TYPE: return 2;
  1929. case FF_SP_TYPE: return 3;
  1930. case FF_SI_TYPE: return 4;
  1931. default: return -1;
  1932. }
  1933. }
  1934. /**
  1935. *
  1936. * @return non zero if the loop filter can be skiped
  1937. */
  1938. static int fill_filter_caches(H264Context *h, int mb_type){
  1939. MpegEncContext * const s = &h->s;
  1940. const int mb_xy= h->mb_xy;
  1941. int top_xy, left_xy[2];
  1942. int top_type, left_type[2];
  1943. top_xy = mb_xy - (s->mb_stride << MB_FIELD);
  1944. //FIXME deblocking could skip the intra and nnz parts.
  1945. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  1946. * stuff, I can't imagine that these complex rules are worth it. */
  1947. left_xy[1] = left_xy[0] = mb_xy-1;
  1948. if(FRAME_MBAFF){
  1949. const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
  1950. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  1951. if(s->mb_y&1){
  1952. if (left_mb_field_flag != curr_mb_field_flag) {
  1953. left_xy[0] -= s->mb_stride;
  1954. }
  1955. }else{
  1956. if(curr_mb_field_flag){
  1957. top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
  1958. }
  1959. if (left_mb_field_flag != curr_mb_field_flag) {
  1960. left_xy[1] += s->mb_stride;
  1961. }
  1962. }
  1963. }
  1964. h->top_mb_xy = top_xy;
  1965. h->left_mb_xy[0] = left_xy[0];
  1966. h->left_mb_xy[1] = left_xy[1];
  1967. {
  1968. //for sufficiently low qp, filtering wouldn't do anything
  1969. //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
  1970. int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
  1971. int qp = s->current_picture.qscale_table[mb_xy];
  1972. if(qp <= qp_thresh
  1973. && (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh)
  1974. && (top_xy < 0 || ((qp + s->current_picture.qscale_table[top_xy ] + 1)>>1) <= qp_thresh)){
  1975. if(!FRAME_MBAFF)
  1976. return 1;
  1977. if( (left_xy[0]< 0 || ((qp + s->current_picture.qscale_table[left_xy[1] ] + 1)>>1) <= qp_thresh)
  1978. && (top_xy < s->mb_stride || ((qp + s->current_picture.qscale_table[top_xy -s->mb_stride] + 1)>>1) <= qp_thresh))
  1979. return 1;
  1980. }
  1981. }
  1982. top_type = s->current_picture.mb_type[top_xy] ;
  1983. left_type[0] = s->current_picture.mb_type[left_xy[0]];
  1984. left_type[1] = s->current_picture.mb_type[left_xy[1]];
  1985. if(h->deblocking_filter == 2){
  1986. if(h->slice_table[top_xy ] != h->slice_num) top_type= 0;
  1987. if(h->slice_table[left_xy[0] ] != h->slice_num) left_type[0]= left_type[1]= 0;
  1988. }else{
  1989. if(h->slice_table[top_xy ] == 0xFFFF) top_type= 0;
  1990. if(h->slice_table[left_xy[0] ] == 0xFFFF) left_type[0]= left_type[1] =0;
  1991. }
  1992. h->top_type = top_type ;
  1993. h->left_type[0]= left_type[0];
  1994. h->left_type[1]= left_type[1];
  1995. if(IS_INTRA(mb_type))
  1996. return 0;
  1997. AV_COPY64(&h->non_zero_count_cache[0+8*1], &h->non_zero_count[mb_xy][ 0]);
  1998. AV_COPY64(&h->non_zero_count_cache[0+8*2], &h->non_zero_count[mb_xy][ 8]);
  1999. AV_COPY32(&h->non_zero_count_cache[0+8*5], &h->non_zero_count[mb_xy][16]);
  2000. AV_COPY32(&h->non_zero_count_cache[4+8*3], &h->non_zero_count[mb_xy][20]);
  2001. AV_COPY64(&h->non_zero_count_cache[0+8*4], &h->non_zero_count[mb_xy][24]);
  2002. h->cbp= h->cbp_table[mb_xy];
  2003. {
  2004. int list;
  2005. for(list=0; list<h->list_count; list++){
  2006. int8_t *ref;
  2007. int y, b_stride;
  2008. int16_t (*mv_dst)[2];
  2009. int16_t (*mv_src)[2];
  2010. if(!USES_LIST(mb_type, list)){
  2011. fill_rectangle( h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
  2012. AV_WN32A(&h->ref_cache[list][scan8[ 0]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  2013. AV_WN32A(&h->ref_cache[list][scan8[ 2]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  2014. AV_WN32A(&h->ref_cache[list][scan8[ 8]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  2015. AV_WN32A(&h->ref_cache[list][scan8[10]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  2016. continue;
  2017. }
  2018. ref = &s->current_picture.ref_index[list][4*mb_xy];
  2019. {
  2020. int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  2021. AV_WN32A(&h->ref_cache[list][scan8[ 0]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
  2022. AV_WN32A(&h->ref_cache[list][scan8[ 2]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
  2023. ref += 2;
  2024. AV_WN32A(&h->ref_cache[list][scan8[ 8]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
  2025. AV_WN32A(&h->ref_cache[list][scan8[10]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
  2026. }
  2027. b_stride = h->b_stride;
  2028. mv_dst = &h->mv_cache[list][scan8[0]];
  2029. mv_src = &s->current_picture.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride];
  2030. for(y=0; y<4; y++){
  2031. AV_COPY128(mv_dst + 8*y, mv_src + y*b_stride);
  2032. }
  2033. }
  2034. }
  2035. /*
  2036. 0 . T T. T T T T
  2037. 1 L . .L . . . .
  2038. 2 L . .L . . . .
  2039. 3 . T TL . . . .
  2040. 4 L . .L . . . .
  2041. 5 L . .. . . . .
  2042. */
  2043. //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
  2044. if(top_type){
  2045. AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]);
  2046. }
  2047. if(left_type[0]){
  2048. h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][7+0*8];
  2049. h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][7+1*8];
  2050. h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[0]][7+2*8];
  2051. h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[0]][7+3*8];
  2052. }
  2053. // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
  2054. if(!CABAC && h->pps.transform_8x8_mode){
  2055. if(IS_8x8DCT(top_type)){
  2056. h->non_zero_count_cache[4+8*0]=
  2057. h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4;
  2058. h->non_zero_count_cache[6+8*0]=
  2059. h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8;
  2060. }
  2061. if(IS_8x8DCT(left_type[0])){
  2062. h->non_zero_count_cache[3+8*1]=
  2063. h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF
  2064. }
  2065. if(IS_8x8DCT(left_type[1])){
  2066. h->non_zero_count_cache[3+8*3]=
  2067. h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF
  2068. }
  2069. if(IS_8x8DCT(mb_type)){
  2070. h->non_zero_count_cache[scan8[0 ]]= h->non_zero_count_cache[scan8[1 ]]=
  2071. h->non_zero_count_cache[scan8[2 ]]= h->non_zero_count_cache[scan8[3 ]]= h->cbp & 1;
  2072. h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
  2073. h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2;
  2074. h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
  2075. h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4;
  2076. h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
  2077. h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8;
  2078. }
  2079. }
  2080. if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
  2081. int list;
  2082. for(list=0; list<h->list_count; list++){
  2083. if(USES_LIST(top_type, list)){
  2084. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  2085. const int b8_xy= 4*top_xy + 2;
  2086. int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  2087. AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
  2088. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  2089. h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]];
  2090. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  2091. h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]];
  2092. }else{
  2093. AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
  2094. AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  2095. }
  2096. if(!IS_INTERLACED(mb_type^left_type[0])){
  2097. if(USES_LIST(left_type[0], list)){
  2098. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  2099. const int b8_xy= 4*left_xy[0] + 1;
  2100. int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[0]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  2101. AV_COPY32(h->mv_cache[list][scan8[0] - 1 + 0 ], s->current_picture.motion_val[list][b_xy + h->b_stride*0]);
  2102. AV_COPY32(h->mv_cache[list][scan8[0] - 1 + 8 ], s->current_picture.motion_val[list][b_xy + h->b_stride*1]);
  2103. AV_COPY32(h->mv_cache[list][scan8[0] - 1 +16 ], s->current_picture.motion_val[list][b_xy + h->b_stride*2]);
  2104. AV_COPY32(h->mv_cache[list][scan8[0] - 1 +24 ], s->current_picture.motion_val[list][b_xy + h->b_stride*3]);
  2105. h->ref_cache[list][scan8[0] - 1 + 0 ]=
  2106. h->ref_cache[list][scan8[0] - 1 + 8 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 2*0]];
  2107. h->ref_cache[list][scan8[0] - 1 +16 ]=
  2108. h->ref_cache[list][scan8[0] - 1 +24 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 2*1]];
  2109. }else{
  2110. AV_ZERO32(h->mv_cache [list][scan8[0] - 1 + 0 ]);
  2111. AV_ZERO32(h->mv_cache [list][scan8[0] - 1 + 8 ]);
  2112. AV_ZERO32(h->mv_cache [list][scan8[0] - 1 +16 ]);
  2113. AV_ZERO32(h->mv_cache [list][scan8[0] - 1 +24 ]);
  2114. h->ref_cache[list][scan8[0] - 1 + 0 ]=
  2115. h->ref_cache[list][scan8[0] - 1 + 8 ]=
  2116. h->ref_cache[list][scan8[0] - 1 + 16 ]=
  2117. h->ref_cache[list][scan8[0] - 1 + 24 ]= LIST_NOT_USED;
  2118. }
  2119. }
  2120. }
  2121. }
  2122. return 0;
  2123. }
  2124. static void loop_filter(H264Context *h){
  2125. MpegEncContext * const s = &h->s;
  2126. uint8_t *dest_y, *dest_cb, *dest_cr;
  2127. int linesize, uvlinesize, mb_x, mb_y;
  2128. const int end_mb_y= s->mb_y + FRAME_MBAFF;
  2129. const int old_slice_type= h->slice_type;
  2130. if(h->deblocking_filter) {
  2131. for(mb_x= 0; mb_x<s->mb_width; mb_x++){
  2132. for(mb_y=end_mb_y - FRAME_MBAFF; mb_y<= end_mb_y; mb_y++){
  2133. int mb_xy, mb_type;
  2134. mb_xy = h->mb_xy = mb_x + mb_y*s->mb_stride;
  2135. h->slice_num= h->slice_table[mb_xy];
  2136. mb_type= s->current_picture.mb_type[mb_xy];
  2137. h->list_count= h->list_counts[mb_xy];
  2138. if(FRAME_MBAFF)
  2139. h->mb_mbaff = h->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
  2140. s->mb_x= mb_x;
  2141. s->mb_y= mb_y;
  2142. dest_y = s->current_picture.data[0] + (mb_x + mb_y * s->linesize ) * 16;
  2143. dest_cb = s->current_picture.data[1] + (mb_x + mb_y * s->uvlinesize) * 8;
  2144. dest_cr = s->current_picture.data[2] + (mb_x + mb_y * s->uvlinesize) * 8;
  2145. //FIXME simplify above
  2146. if (MB_FIELD) {
  2147. linesize = h->mb_linesize = s->linesize * 2;
  2148. uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
  2149. if(mb_y&1){ //FIXME move out of this function?
  2150. dest_y -= s->linesize*15;
  2151. dest_cb-= s->uvlinesize*7;
  2152. dest_cr-= s->uvlinesize*7;
  2153. }
  2154. } else {
  2155. linesize = h->mb_linesize = s->linesize;
  2156. uvlinesize = h->mb_uvlinesize = s->uvlinesize;
  2157. }
  2158. backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0);
  2159. if(fill_filter_caches(h, mb_type))
  2160. continue;
  2161. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
  2162. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
  2163. if (FRAME_MBAFF) {
  2164. ff_h264_filter_mb (h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  2165. } else {
  2166. ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  2167. }
  2168. }
  2169. }
  2170. }
  2171. h->slice_type= old_slice_type;
  2172. s->mb_x= 0;
  2173. s->mb_y= end_mb_y - FRAME_MBAFF;
  2174. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  2175. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  2176. }
  2177. static void predict_field_decoding_flag(H264Context *h){
  2178. MpegEncContext * const s = &h->s;
  2179. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  2180. int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
  2181. ? s->current_picture.mb_type[mb_xy-1]
  2182. : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
  2183. ? s->current_picture.mb_type[mb_xy-s->mb_stride]
  2184. : 0;
  2185. h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
  2186. }
  2187. static int decode_slice(struct AVCodecContext *avctx, void *arg){
  2188. H264Context *h = *(void**)arg;
  2189. MpegEncContext * const s = &h->s;
  2190. const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
  2191. s->mb_skip_run= -1;
  2192. h->is_complex = FRAME_MBAFF || s->picture_structure != PICT_FRAME || s->codec_id != CODEC_ID_H264 ||
  2193. (CONFIG_GRAY && (s->flags&CODEC_FLAG_GRAY));
  2194. if( h->pps.cabac ) {
  2195. /* realign */
  2196. align_get_bits( &s->gb );
  2197. /* init cabac */
  2198. ff_init_cabac_states( &h->cabac);
  2199. ff_init_cabac_decoder( &h->cabac,
  2200. s->gb.buffer + get_bits_count(&s->gb)/8,
  2201. (get_bits_left(&s->gb) + 7)/8);
  2202. ff_h264_init_cabac_states(h);
  2203. for(;;){
  2204. //START_TIMER
  2205. int ret = ff_h264_decode_mb_cabac(h);
  2206. int eos;
  2207. //STOP_TIMER("decode_mb_cabac")
  2208. if(ret>=0) ff_h264_hl_decode_mb(h);
  2209. if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ?
  2210. s->mb_y++;
  2211. ret = ff_h264_decode_mb_cabac(h);
  2212. if(ret>=0) ff_h264_hl_decode_mb(h);
  2213. s->mb_y--;
  2214. }
  2215. eos = get_cabac_terminate( &h->cabac );
  2216. if((s->workaround_bugs & FF_BUG_TRUNCATED) && h->cabac.bytestream > h->cabac.bytestream_end + 2){
  2217. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2218. return 0;
  2219. }
  2220. if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) {
  2221. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%td)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream);
  2222. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2223. return -1;
  2224. }
  2225. if( ++s->mb_x >= s->mb_width ) {
  2226. s->mb_x = 0;
  2227. loop_filter(h);
  2228. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  2229. ++s->mb_y;
  2230. if(FIELD_OR_MBAFF_PICTURE) {
  2231. ++s->mb_y;
  2232. if(FRAME_MBAFF && s->mb_y < s->mb_height)
  2233. predict_field_decoding_flag(h);
  2234. }
  2235. }
  2236. if( eos || s->mb_y >= s->mb_height ) {
  2237. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  2238. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2239. return 0;
  2240. }
  2241. }
  2242. } else {
  2243. for(;;){
  2244. int ret = ff_h264_decode_mb_cavlc(h);
  2245. if(ret>=0) ff_h264_hl_decode_mb(h);
  2246. if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ?
  2247. s->mb_y++;
  2248. ret = ff_h264_decode_mb_cavlc(h);
  2249. if(ret>=0) ff_h264_hl_decode_mb(h);
  2250. s->mb_y--;
  2251. }
  2252. if(ret<0){
  2253. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  2254. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2255. return -1;
  2256. }
  2257. if(++s->mb_x >= s->mb_width){
  2258. s->mb_x=0;
  2259. loop_filter(h);
  2260. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  2261. ++s->mb_y;
  2262. if(FIELD_OR_MBAFF_PICTURE) {
  2263. ++s->mb_y;
  2264. if(FRAME_MBAFF && s->mb_y < s->mb_height)
  2265. predict_field_decoding_flag(h);
  2266. }
  2267. if(s->mb_y >= s->mb_height){
  2268. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  2269. if(get_bits_count(&s->gb) == s->gb.size_in_bits ) {
  2270. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2271. return 0;
  2272. }else{
  2273. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2274. return -1;
  2275. }
  2276. }
  2277. }
  2278. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
  2279. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  2280. if(get_bits_count(&s->gb) == s->gb.size_in_bits ){
  2281. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2282. return 0;
  2283. }else{
  2284. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2285. return -1;
  2286. }
  2287. }
  2288. }
  2289. }
  2290. #if 0
  2291. for(;s->mb_y < s->mb_height; s->mb_y++){
  2292. for(;s->mb_x < s->mb_width; s->mb_x++){
  2293. int ret= decode_mb(h);
  2294. ff_h264_hl_decode_mb(h);
  2295. if(ret<0){
  2296. av_log(s->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  2297. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2298. return -1;
  2299. }
  2300. if(++s->mb_x >= s->mb_width){
  2301. s->mb_x=0;
  2302. if(++s->mb_y >= s->mb_height){
  2303. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  2304. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2305. return 0;
  2306. }else{
  2307. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2308. return -1;
  2309. }
  2310. }
  2311. }
  2312. if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
  2313. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  2314. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2315. return 0;
  2316. }else{
  2317. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2318. return -1;
  2319. }
  2320. }
  2321. }
  2322. s->mb_x=0;
  2323. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  2324. }
  2325. #endif
  2326. return -1; //not reached
  2327. }
  2328. /**
  2329. * Call decode_slice() for each context.
  2330. *
  2331. * @param h h264 master context
  2332. * @param context_count number of contexts to execute
  2333. */
  2334. static void execute_decode_slices(H264Context *h, int context_count){
  2335. MpegEncContext * const s = &h->s;
  2336. AVCodecContext * const avctx= s->avctx;
  2337. H264Context *hx;
  2338. int i;
  2339. if (s->avctx->hwaccel)
  2340. return;
  2341. if(s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  2342. return;
  2343. if(context_count == 1) {
  2344. decode_slice(avctx, &h);
  2345. } else {
  2346. for(i = 1; i < context_count; i++) {
  2347. hx = h->thread_context[i];
  2348. hx->s.error_recognition = avctx->error_recognition;
  2349. hx->s.error_count = 0;
  2350. }
  2351. avctx->execute(avctx, (void *)decode_slice,
  2352. h->thread_context, NULL, context_count, sizeof(void*));
  2353. /* pull back stuff from slices to master context */
  2354. hx = h->thread_context[context_count - 1];
  2355. s->mb_x = hx->s.mb_x;
  2356. s->mb_y = hx->s.mb_y;
  2357. s->dropable = hx->s.dropable;
  2358. s->picture_structure = hx->s.picture_structure;
  2359. for(i = 1; i < context_count; i++)
  2360. h->s.error_count += h->thread_context[i]->s.error_count;
  2361. }
  2362. }
  2363. static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size){
  2364. MpegEncContext * const s = &h->s;
  2365. AVCodecContext * const avctx= s->avctx;
  2366. int buf_index=0;
  2367. H264Context *hx; ///< thread context
  2368. int context_count = 0;
  2369. int next_avc= h->is_avc ? 0 : buf_size;
  2370. h->max_contexts = avctx->thread_count;
  2371. #if 0
  2372. int i;
  2373. for(i=0; i<50; i++){
  2374. av_log(NULL, AV_LOG_ERROR,"%02X ", buf[i]);
  2375. }
  2376. #endif
  2377. if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){
  2378. h->current_slice = 0;
  2379. if (!s->first_field)
  2380. s->current_picture_ptr= NULL;
  2381. ff_h264_reset_sei(h);
  2382. }
  2383. for(;;){
  2384. int consumed;
  2385. int dst_length;
  2386. int bit_length;
  2387. const uint8_t *ptr;
  2388. int i, nalsize = 0;
  2389. int err;
  2390. if(buf_index >= next_avc) {
  2391. if(buf_index >= buf_size) break;
  2392. nalsize = 0;
  2393. for(i = 0; i < h->nal_length_size; i++)
  2394. nalsize = (nalsize << 8) | buf[buf_index++];
  2395. if(nalsize <= 1 || nalsize > buf_size - buf_index){
  2396. if(nalsize == 1){
  2397. buf_index++;
  2398. continue;
  2399. }else{
  2400. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize);
  2401. break;
  2402. }
  2403. }
  2404. next_avc= buf_index + nalsize;
  2405. } else {
  2406. // start code prefix search
  2407. for(; buf_index + 3 < next_avc; buf_index++){
  2408. // This should always succeed in the first iteration.
  2409. if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
  2410. break;
  2411. }
  2412. if(buf_index+3 >= buf_size) break;
  2413. buf_index+=3;
  2414. if(buf_index >= next_avc) continue;
  2415. }
  2416. hx = h->thread_context[context_count];
  2417. ptr= ff_h264_decode_nal(hx, buf + buf_index, &dst_length, &consumed, next_avc - buf_index);
  2418. if (ptr==NULL || dst_length < 0){
  2419. return -1;
  2420. }
  2421. i= buf_index + consumed;
  2422. if((s->workaround_bugs & FF_BUG_AUTODETECT) && i+3<next_avc &&
  2423. buf[i]==0x00 && buf[i+1]==0x00 && buf[i+2]==0x01 && buf[i+3]==0xE0)
  2424. s->workaround_bugs |= FF_BUG_TRUNCATED;
  2425. if(!(s->workaround_bugs & FF_BUG_TRUNCATED)){
  2426. while(ptr[dst_length - 1] == 0 && dst_length > 0)
  2427. dst_length--;
  2428. }
  2429. bit_length= !dst_length ? 0 : (8*dst_length - ff_h264_decode_rbsp_trailing(h, ptr + dst_length - 1));
  2430. if(s->avctx->debug&FF_DEBUG_STARTCODE){
  2431. av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", hx->nal_unit_type, buf_index, buf_size, dst_length);
  2432. }
  2433. if (h->is_avc && (nalsize != consumed) && nalsize){
  2434. av_log(h->s.avctx, AV_LOG_DEBUG, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize);
  2435. }
  2436. buf_index += consumed;
  2437. if( (s->hurry_up == 1 && h->nal_ref_idc == 0) //FIXME do not discard SEI id
  2438. ||(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  2439. continue;
  2440. again:
  2441. err = 0;
  2442. switch(hx->nal_unit_type){
  2443. case NAL_IDR_SLICE:
  2444. if (h->nal_unit_type != NAL_IDR_SLICE) {
  2445. av_log(h->s.avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices");
  2446. return -1;
  2447. }
  2448. idr(h); //FIXME ensure we don't loose some frames if there is reordering
  2449. case NAL_SLICE:
  2450. init_get_bits(&hx->s.gb, ptr, bit_length);
  2451. hx->intra_gb_ptr=
  2452. hx->inter_gb_ptr= &hx->s.gb;
  2453. hx->s.data_partitioning = 0;
  2454. if((err = decode_slice_header(hx, h)))
  2455. break;
  2456. if (h->current_slice == 1) {
  2457. if (s->avctx->hwaccel && s->avctx->hwaccel->start_frame(s->avctx, NULL, 0) < 0)
  2458. return -1;
  2459. if(CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  2460. ff_vdpau_h264_picture_start(s);
  2461. }
  2462. s->current_picture_ptr->key_frame |=
  2463. (hx->nal_unit_type == NAL_IDR_SLICE) ||
  2464. (h->sei_recovery_frame_cnt >= 0);
  2465. if(hx->redundant_pic_count==0 && hx->s.hurry_up < 5
  2466. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  2467. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE)
  2468. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE)
  2469. && avctx->skip_frame < AVDISCARD_ALL){
  2470. if(avctx->hwaccel) {
  2471. if (avctx->hwaccel->decode_slice(avctx, &buf[buf_index - consumed], consumed) < 0)
  2472. return -1;
  2473. }else
  2474. if(CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  2475. static const uint8_t start_code[] = {0x00, 0x00, 0x01};
  2476. ff_vdpau_add_data_chunk(s, start_code, sizeof(start_code));
  2477. ff_vdpau_add_data_chunk(s, &buf[buf_index - consumed], consumed );
  2478. }else
  2479. context_count++;
  2480. }
  2481. break;
  2482. case NAL_DPA:
  2483. init_get_bits(&hx->s.gb, ptr, bit_length);
  2484. hx->intra_gb_ptr=
  2485. hx->inter_gb_ptr= NULL;
  2486. if ((err = decode_slice_header(hx, h)) < 0)
  2487. break;
  2488. hx->s.data_partitioning = 1;
  2489. break;
  2490. case NAL_DPB:
  2491. init_get_bits(&hx->intra_gb, ptr, bit_length);
  2492. hx->intra_gb_ptr= &hx->intra_gb;
  2493. break;
  2494. case NAL_DPC:
  2495. init_get_bits(&hx->inter_gb, ptr, bit_length);
  2496. hx->inter_gb_ptr= &hx->inter_gb;
  2497. if(hx->redundant_pic_count==0 && hx->intra_gb_ptr && hx->s.data_partitioning
  2498. && s->context_initialized
  2499. && s->hurry_up < 5
  2500. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  2501. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE)
  2502. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE)
  2503. && avctx->skip_frame < AVDISCARD_ALL)
  2504. context_count++;
  2505. break;
  2506. case NAL_SEI:
  2507. init_get_bits(&s->gb, ptr, bit_length);
  2508. ff_h264_decode_sei(h);
  2509. break;
  2510. case NAL_SPS:
  2511. init_get_bits(&s->gb, ptr, bit_length);
  2512. ff_h264_decode_seq_parameter_set(h);
  2513. if(s->flags& CODEC_FLAG_LOW_DELAY)
  2514. s->low_delay=1;
  2515. if(avctx->has_b_frames < 2)
  2516. avctx->has_b_frames= !s->low_delay;
  2517. break;
  2518. case NAL_PPS:
  2519. init_get_bits(&s->gb, ptr, bit_length);
  2520. ff_h264_decode_picture_parameter_set(h, bit_length);
  2521. break;
  2522. case NAL_AUD:
  2523. case NAL_END_SEQUENCE:
  2524. case NAL_END_STREAM:
  2525. case NAL_FILLER_DATA:
  2526. case NAL_SPS_EXT:
  2527. case NAL_AUXILIARY_SLICE:
  2528. break;
  2529. default:
  2530. av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", hx->nal_unit_type, bit_length);
  2531. }
  2532. if(context_count == h->max_contexts) {
  2533. execute_decode_slices(h, context_count);
  2534. context_count = 0;
  2535. }
  2536. if (err < 0)
  2537. av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
  2538. else if(err == 1) {
  2539. /* Slice could not be decoded in parallel mode, copy down
  2540. * NAL unit stuff to context 0 and restart. Note that
  2541. * rbsp_buffer is not transferred, but since we no longer
  2542. * run in parallel mode this should not be an issue. */
  2543. h->nal_unit_type = hx->nal_unit_type;
  2544. h->nal_ref_idc = hx->nal_ref_idc;
  2545. hx = h;
  2546. goto again;
  2547. }
  2548. }
  2549. if(context_count)
  2550. execute_decode_slices(h, context_count);
  2551. return buf_index;
  2552. }
  2553. /**
  2554. * returns the number of bytes consumed for building the current frame
  2555. */
  2556. static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
  2557. if(pos==0) pos=1; //avoid infinite loops (i doubt that is needed but ...)
  2558. if(pos+10>buf_size) pos=buf_size; // oops ;)
  2559. return pos;
  2560. }
  2561. static int decode_frame(AVCodecContext *avctx,
  2562. void *data, int *data_size,
  2563. AVPacket *avpkt)
  2564. {
  2565. const uint8_t *buf = avpkt->data;
  2566. int buf_size = avpkt->size;
  2567. H264Context *h = avctx->priv_data;
  2568. MpegEncContext *s = &h->s;
  2569. AVFrame *pict = data;
  2570. int buf_index;
  2571. s->flags= avctx->flags;
  2572. s->flags2= avctx->flags2;
  2573. /* end of stream, output what is still in the buffers */
  2574. if (buf_size == 0) {
  2575. Picture *out;
  2576. int i, out_idx;
  2577. //FIXME factorize this with the output code below
  2578. out = h->delayed_pic[0];
  2579. out_idx = 0;
  2580. for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame && !h->delayed_pic[i]->mmco_reset; i++)
  2581. if(h->delayed_pic[i]->poc < out->poc){
  2582. out = h->delayed_pic[i];
  2583. out_idx = i;
  2584. }
  2585. for(i=out_idx; h->delayed_pic[i]; i++)
  2586. h->delayed_pic[i] = h->delayed_pic[i+1];
  2587. if(out){
  2588. *data_size = sizeof(AVFrame);
  2589. *pict= *(AVFrame*)out;
  2590. }
  2591. return 0;
  2592. }
  2593. buf_index=decode_nal_units(h, buf, buf_size);
  2594. if(buf_index < 0)
  2595. return -1;
  2596. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){
  2597. if (avctx->skip_frame >= AVDISCARD_NONREF || s->hurry_up) return 0;
  2598. av_log(avctx, AV_LOG_ERROR, "no frame!\n");
  2599. return -1;
  2600. }
  2601. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){
  2602. Picture *out = s->current_picture_ptr;
  2603. Picture *cur = s->current_picture_ptr;
  2604. int i, pics, out_of_order, out_idx;
  2605. field_end(h);
  2606. if (cur->field_poc[0]==INT_MAX || cur->field_poc[1]==INT_MAX) {
  2607. /* Wait for second field. */
  2608. *data_size = 0;
  2609. } else {
  2610. cur->interlaced_frame = 0;
  2611. cur->repeat_pict = 0;
  2612. /* Signal interlacing information externally. */
  2613. /* Prioritize picture timing SEI information over used decoding process if it exists. */
  2614. if(h->sps.pic_struct_present_flag){
  2615. switch (h->sei_pic_struct)
  2616. {
  2617. case SEI_PIC_STRUCT_FRAME:
  2618. break;
  2619. case SEI_PIC_STRUCT_TOP_FIELD:
  2620. case SEI_PIC_STRUCT_BOTTOM_FIELD:
  2621. cur->interlaced_frame = 1;
  2622. break;
  2623. case SEI_PIC_STRUCT_TOP_BOTTOM:
  2624. case SEI_PIC_STRUCT_BOTTOM_TOP:
  2625. if (FIELD_OR_MBAFF_PICTURE)
  2626. cur->interlaced_frame = 1;
  2627. else
  2628. // try to flag soft telecine progressive
  2629. cur->interlaced_frame = h->prev_interlaced_frame;
  2630. break;
  2631. case SEI_PIC_STRUCT_TOP_BOTTOM_TOP:
  2632. case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM:
  2633. // Signal the possibility of telecined film externally (pic_struct 5,6)
  2634. // From these hints, let the applications decide if they apply deinterlacing.
  2635. cur->repeat_pict = 1;
  2636. break;
  2637. case SEI_PIC_STRUCT_FRAME_DOUBLING:
  2638. // Force progressive here, as doubling interlaced frame is a bad idea.
  2639. cur->repeat_pict = 2;
  2640. break;
  2641. case SEI_PIC_STRUCT_FRAME_TRIPLING:
  2642. cur->repeat_pict = 4;
  2643. break;
  2644. }
  2645. if ((h->sei_ct_type & 3) && h->sei_pic_struct <= SEI_PIC_STRUCT_BOTTOM_TOP)
  2646. cur->interlaced_frame = (h->sei_ct_type & (1<<1)) != 0;
  2647. }else{
  2648. /* Derive interlacing flag from used decoding process. */
  2649. cur->interlaced_frame = FIELD_OR_MBAFF_PICTURE;
  2650. }
  2651. h->prev_interlaced_frame = cur->interlaced_frame;
  2652. if (cur->field_poc[0] != cur->field_poc[1]){
  2653. /* Derive top_field_first from field pocs. */
  2654. cur->top_field_first = cur->field_poc[0] < cur->field_poc[1];
  2655. }else{
  2656. if(cur->interlaced_frame || h->sps.pic_struct_present_flag){
  2657. /* Use picture timing SEI information. Even if it is a information of a past frame, better than nothing. */
  2658. if(h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM
  2659. || h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP)
  2660. cur->top_field_first = 1;
  2661. else
  2662. cur->top_field_first = 0;
  2663. }else{
  2664. /* Most likely progressive */
  2665. cur->top_field_first = 0;
  2666. }
  2667. }
  2668. //FIXME do something with unavailable reference frames
  2669. /* Sort B-frames into display order */
  2670. if(h->sps.bitstream_restriction_flag
  2671. && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  2672. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  2673. s->low_delay = 0;
  2674. }
  2675. if( s->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT
  2676. && !h->sps.bitstream_restriction_flag){
  2677. s->avctx->has_b_frames= MAX_DELAYED_PIC_COUNT;
  2678. s->low_delay= 0;
  2679. }
  2680. pics = 0;
  2681. while(h->delayed_pic[pics]) pics++;
  2682. assert(pics <= MAX_DELAYED_PIC_COUNT);
  2683. h->delayed_pic[pics++] = cur;
  2684. if(cur->reference == 0)
  2685. cur->reference = DELAYED_PIC_REF;
  2686. out = h->delayed_pic[0];
  2687. out_idx = 0;
  2688. for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame && !h->delayed_pic[i]->mmco_reset; i++)
  2689. if(h->delayed_pic[i]->poc < out->poc){
  2690. out = h->delayed_pic[i];
  2691. out_idx = i;
  2692. }
  2693. if(s->avctx->has_b_frames == 0 && (h->delayed_pic[0]->key_frame || h->delayed_pic[0]->mmco_reset))
  2694. h->outputed_poc= INT_MIN;
  2695. out_of_order = out->poc < h->outputed_poc;
  2696. if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames)
  2697. { }
  2698. else if((out_of_order && pics-1 == s->avctx->has_b_frames && s->avctx->has_b_frames < MAX_DELAYED_PIC_COUNT)
  2699. || (s->low_delay &&
  2700. ((h->outputed_poc != INT_MIN && out->poc > h->outputed_poc + 2)
  2701. || cur->pict_type == FF_B_TYPE)))
  2702. {
  2703. s->low_delay = 0;
  2704. s->avctx->has_b_frames++;
  2705. }
  2706. if(out_of_order || pics > s->avctx->has_b_frames){
  2707. out->reference &= ~DELAYED_PIC_REF;
  2708. for(i=out_idx; h->delayed_pic[i]; i++)
  2709. h->delayed_pic[i] = h->delayed_pic[i+1];
  2710. }
  2711. if(!out_of_order && pics > s->avctx->has_b_frames){
  2712. *data_size = sizeof(AVFrame);
  2713. if(out_idx==0 && h->delayed_pic[0] && (h->delayed_pic[0]->key_frame || h->delayed_pic[0]->mmco_reset)) {
  2714. h->outputed_poc = INT_MIN;
  2715. } else
  2716. h->outputed_poc = out->poc;
  2717. *pict= *(AVFrame*)out;
  2718. }else{
  2719. av_log(avctx, AV_LOG_DEBUG, "no picture\n");
  2720. }
  2721. }
  2722. }
  2723. assert(pict->data[0] || !*data_size);
  2724. ff_print_debug_info(s, pict);
  2725. //printf("out %d\n", (int)pict->data[0]);
  2726. return get_consumed_bytes(s, buf_index, buf_size);
  2727. }
  2728. #if 0
  2729. static inline void fill_mb_avail(H264Context *h){
  2730. MpegEncContext * const s = &h->s;
  2731. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  2732. if(s->mb_y){
  2733. h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
  2734. h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
  2735. h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
  2736. }else{
  2737. h->mb_avail[0]=
  2738. h->mb_avail[1]=
  2739. h->mb_avail[2]= 0;
  2740. }
  2741. h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
  2742. h->mb_avail[4]= 1; //FIXME move out
  2743. h->mb_avail[5]= 0; //FIXME move out
  2744. }
  2745. #endif
  2746. #ifdef TEST
  2747. #undef printf
  2748. #undef random
  2749. #define COUNT 8000
  2750. #define SIZE (COUNT*40)
  2751. int main(void){
  2752. int i;
  2753. uint8_t temp[SIZE];
  2754. PutBitContext pb;
  2755. GetBitContext gb;
  2756. // int int_temp[10000];
  2757. DSPContext dsp;
  2758. AVCodecContext avctx;
  2759. dsputil_init(&dsp, &avctx);
  2760. init_put_bits(&pb, temp, SIZE);
  2761. printf("testing unsigned exp golomb\n");
  2762. for(i=0; i<COUNT; i++){
  2763. START_TIMER
  2764. set_ue_golomb(&pb, i);
  2765. STOP_TIMER("set_ue_golomb");
  2766. }
  2767. flush_put_bits(&pb);
  2768. init_get_bits(&gb, temp, 8*SIZE);
  2769. for(i=0; i<COUNT; i++){
  2770. int j, s;
  2771. s= show_bits(&gb, 24);
  2772. START_TIMER
  2773. j= get_ue_golomb(&gb);
  2774. if(j != i){
  2775. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  2776. // return -1;
  2777. }
  2778. STOP_TIMER("get_ue_golomb");
  2779. }
  2780. init_put_bits(&pb, temp, SIZE);
  2781. printf("testing signed exp golomb\n");
  2782. for(i=0; i<COUNT; i++){
  2783. START_TIMER
  2784. set_se_golomb(&pb, i - COUNT/2);
  2785. STOP_TIMER("set_se_golomb");
  2786. }
  2787. flush_put_bits(&pb);
  2788. init_get_bits(&gb, temp, 8*SIZE);
  2789. for(i=0; i<COUNT; i++){
  2790. int j, s;
  2791. s= show_bits(&gb, 24);
  2792. START_TIMER
  2793. j= get_se_golomb(&gb);
  2794. if(j != i - COUNT/2){
  2795. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  2796. // return -1;
  2797. }
  2798. STOP_TIMER("get_se_golomb");
  2799. }
  2800. #if 0
  2801. printf("testing 4x4 (I)DCT\n");
  2802. DCTELEM block[16];
  2803. uint8_t src[16], ref[16];
  2804. uint64_t error= 0, max_error=0;
  2805. for(i=0; i<COUNT; i++){
  2806. int j;
  2807. // printf("%d %d %d\n", r1, r2, (r2-r1)*16);
  2808. for(j=0; j<16; j++){
  2809. ref[j]= random()%255;
  2810. src[j]= random()%255;
  2811. }
  2812. h264_diff_dct_c(block, src, ref, 4);
  2813. //normalize
  2814. for(j=0; j<16; j++){
  2815. // printf("%d ", block[j]);
  2816. block[j]= block[j]*4;
  2817. if(j&1) block[j]= (block[j]*4 + 2)/5;
  2818. if(j&4) block[j]= (block[j]*4 + 2)/5;
  2819. }
  2820. // printf("\n");
  2821. h->h264dsp.h264_idct_add(ref, block, 4);
  2822. /* for(j=0; j<16; j++){
  2823. printf("%d ", ref[j]);
  2824. }
  2825. printf("\n");*/
  2826. for(j=0; j<16; j++){
  2827. int diff= FFABS(src[j] - ref[j]);
  2828. error+= diff*diff;
  2829. max_error= FFMAX(max_error, diff);
  2830. }
  2831. }
  2832. printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
  2833. printf("testing quantizer\n");
  2834. for(qp=0; qp<52; qp++){
  2835. for(i=0; i<16; i++)
  2836. src1_block[i]= src2_block[i]= random()%255;
  2837. }
  2838. printf("Testing NAL layer\n");
  2839. uint8_t bitstream[COUNT];
  2840. uint8_t nal[COUNT*2];
  2841. H264Context h;
  2842. memset(&h, 0, sizeof(H264Context));
  2843. for(i=0; i<COUNT; i++){
  2844. int zeros= i;
  2845. int nal_length;
  2846. int consumed;
  2847. int out_length;
  2848. uint8_t *out;
  2849. int j;
  2850. for(j=0; j<COUNT; j++){
  2851. bitstream[j]= (random() % 255) + 1;
  2852. }
  2853. for(j=0; j<zeros; j++){
  2854. int pos= random() % COUNT;
  2855. while(bitstream[pos] == 0){
  2856. pos++;
  2857. pos %= COUNT;
  2858. }
  2859. bitstream[pos]=0;
  2860. }
  2861. START_TIMER
  2862. nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
  2863. if(nal_length<0){
  2864. printf("encoding failed\n");
  2865. return -1;
  2866. }
  2867. out= ff_h264_decode_nal(&h, nal, &out_length, &consumed, nal_length);
  2868. STOP_TIMER("NAL")
  2869. if(out_length != COUNT){
  2870. printf("incorrect length %d %d\n", out_length, COUNT);
  2871. return -1;
  2872. }
  2873. if(consumed != nal_length){
  2874. printf("incorrect consumed length %d %d\n", nal_length, consumed);
  2875. return -1;
  2876. }
  2877. if(memcmp(bitstream, out, COUNT)){
  2878. printf("mismatch\n");
  2879. return -1;
  2880. }
  2881. }
  2882. #endif
  2883. printf("Testing RBSP\n");
  2884. return 0;
  2885. }
  2886. #endif /* TEST */
  2887. av_cold void ff_h264_free_context(H264Context *h)
  2888. {
  2889. int i;
  2890. free_tables(h); //FIXME cleanup init stuff perhaps
  2891. for(i = 0; i < MAX_SPS_COUNT; i++)
  2892. av_freep(h->sps_buffers + i);
  2893. for(i = 0; i < MAX_PPS_COUNT; i++)
  2894. av_freep(h->pps_buffers + i);
  2895. }
  2896. av_cold int ff_h264_decode_end(AVCodecContext *avctx)
  2897. {
  2898. H264Context *h = avctx->priv_data;
  2899. MpegEncContext *s = &h->s;
  2900. ff_h264_free_context(h);
  2901. MPV_common_end(s);
  2902. // memset(h, 0, sizeof(H264Context));
  2903. return 0;
  2904. }
  2905. AVCodec h264_decoder = {
  2906. "h264",
  2907. AVMEDIA_TYPE_VIDEO,
  2908. CODEC_ID_H264,
  2909. sizeof(H264Context),
  2910. ff_h264_decode_init,
  2911. NULL,
  2912. ff_h264_decode_end,
  2913. decode_frame,
  2914. /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  2915. .flush= flush_dpb,
  2916. .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),
  2917. .pix_fmts= ff_hwaccel_pixfmt_list_420,
  2918. };
  2919. #if CONFIG_H264_VDPAU_DECODER
  2920. AVCodec h264_vdpau_decoder = {
  2921. "h264_vdpau",
  2922. AVMEDIA_TYPE_VIDEO,
  2923. CODEC_ID_H264,
  2924. sizeof(H264Context),
  2925. ff_h264_decode_init,
  2926. NULL,
  2927. ff_h264_decode_end,
  2928. decode_frame,
  2929. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  2930. .flush= flush_dpb,
  2931. .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (VDPAU acceleration)"),
  2932. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_H264, PIX_FMT_NONE},
  2933. };
  2934. #endif